SPSS17.0在生物统计学中的应用-实验五、方差分析报告 六、简单相关与回归分析报告
SPSS的方差分析实验报告
实验报告
2 选择菜单:【Analyze】→【Compare Means】→【One-Way ANOVA】,将“月销售额”作为观测变量选入【Dependent List】,将“促销方式”作为控制变量选入【Factor】,选择按钮“Option”,打开对话框,选择方差齐性检验,观测变量的基本统计量,选择输出个水平下观测变量均值的折线图
3 选择“Post Hoc”按钮,选择方差相同和方差不同情况下的多重比较的检验方法,如图所示第三题:
1 根据题目建立某商品在不同地区和不同日期的销售数据的文件,如图
2 选择菜单:【Analyze】→【General Linear Model】→【Univariate】,将“销售量”选入【Dependent Variable】,将“地区和日期”选入【Fixed Factor(s)】,选择“Options”,在【Display】中选择“Homogeneity tests”。
如图所示
四、实验结果及分析(最好有截图):
第一题:
(1) 0.000<0.005拒绝原假设.说明不同的促销方式是对该类商品销售量的增长有显著影响
(2) 特价销售的促销方式好
(3)
第三题:
(1) 建立数据文件如图
(2)地区0.313>0.05,接受原假设。
地区对销售量没有显著性影响
日期0.254>0.05,接受原假设。
日期对销售量没有显著性影响
地区和日期0.000<0.05,拒绝原假设。
地区和日期的交互作用对销售量有显著性影响。
《生物统计学》上机内容(SPSS)
《生物统计学》上机实验—— SPSS for Windows 统计软件操作与应用陈光升编绵阳师范学院生命科学与技术学院实验一数据的管理及基本统计分析一、数据格式化:用户可根据具体资料的属性对数据进行格式化。
主要有以下3种数据类型:Numeric:数值型,同时定义数值的宽度(Width),即整数部分+小数点+小数部分的位数,默认为8位;定义小数位数(Decimal Places),默认为2位。
Date:日期型。
如选择mm/dd/yy形式,则1995年6月25日显示为06/25/95。
String:字符型,用户可定义字符长度(Characters)以便输入字符。
二、数据的输入:定义好变量并格式化数据之后,即可向数据管理窗口键入原始数据。
数据管理窗口的主要部分就是电子表格,横方向为电子表格的行,其行头以1、2、3、……表示,即第1、2、3、……行;纵方向为电子表格的列,其列头以var00001,var00002,var00003……表示变量名。
行列交叉处称为单元格,即保存数据的空格。
鼠标一旦移入电子表格内即呈十字形,这时按鼠标左键可激活单元格,被激活的单元格以加粗的边框显示;用户也可以按方向键上下左右移动来激活单元格。
单元格被激活后,用户即可向其中输入新数据或修改已有的数据。
三、数据管理器列宽定义:点击Column Format...钮,用户可定义数据管理器纵列的宽度,以便显示较长的数值或文字;同时用户还可指定数值或文字在数据管理器单元格中的位置:Left表示靠左、Center表示居中、Right表示靠右(此为默认方式)。
四、数据的增删:增加一个新的变量列: Data菜单的Insert Variable命令项。
增加一个新的行: Data菜单的Insert Case 命令项。
增加一个新的观察值:Edit菜单的Cut命令项。
删除一个行:Delete键或选Edit菜单的Clear命令项。
删除一个变量列:Delete键或选Edit菜单的Clear命令项。
SPSS17.0在生物统计学中的应用实验指导-实验一、数据文件的创建与整理 实验二、描述统计-
SPSS在生物统计学中的应用——实验指导手册SPSS简介最初软件全称为“社会科学统计软件包”(Statistical Package for the Social Sciences),但是随着SPSS产品服务领域的扩大和服务深度的增加,SPSS公司已于2000年正式将英文全称更改为Statistical Product and Service Solutions “统计产品与服务解决方案”,标志着SPSS的战略方向正在做出重大调整。
20 世纪60 年代末,美国斯坦福大学的三位研究生研制开发了最早的统计分析软件SPSS,同时成立了SPSS 公司,并于1975 年在芝加哥组建了SPSS 总部。
20 世纪80年代以前,SPSS统计软件主要应用于企事业单位。
1984年SPSS 总部首先推出了世界第一个统计分析软件微机版本SPSS/PC+,开创了SPSS 微机系列产品的开发方向,极大地扩充了它的应用范围,并使其能很快地应用于自然科学、技术科学、社会科学的各个领域,世界上许多有影响的报刊杂志纷纷就SPSS 的自动统计绘图、数据的深入分析、使用方便、功能齐全等方面给予了高度的评价与称赞。
SPSS 名为社会科学统计软件包,这是为了强调其在社会科学应用的一面(因为社会科学研究中的许多现象都是随机的,要使用统计学来进行研究),而实际上广泛应用于经济学、社会学、生物学、教育学、心理学、医学以及体育、工业、农业、林业、商业和金融等各个领域。
SPSS 现已推广到多种各种操作系统的计算机上,它和SAS、BMDP并称为国际上最有影响的三大统计软件。
和国际上几种统计分析软件比较,它的优越性更加突出。
在众多用户统计要与大量的数据打交道,涉及繁杂的计算和图表绘制。
现代的数据分析工作如果离开统计软件几乎是无法正常开展。
在准确理解和掌握了各种统计方法原理之后,再来掌握几种统计分析软件的实际操作,是十分必要的。
SAS 和SPSS 是目前在大型企业、各类院校以及科研机构中较为流行的两种统计软件。
SPSS17.0在生物统计学中的应用-实验五、方差分析报告 六、简单相关与回归分析报告
SPSS在生物统计学中的应用——实验指导手册实验五:方差分析一、实验目标与要求1.帮助学生深入了解方差及方差分析的基本概念,掌握方差分析的基本思想和原理2.掌握方差分析的过程。
3.增强学生的实践能力,使学生能够利用SPSS统计软件,熟练进行单因素方差分析、两因素方差分析等操作,激发学生的学习兴趣,增强自我学习和研究的能力。
二、实验原理在现实的生产和经营管理过程中,影响产品质量、数量或销量的因素往往很多。
例如,农作物的产量受作物的品种、施肥的多少及种类等的影响;某种商品的销量受商品价格、质量、广告等的影响。
为此引入方差分析的方法。
方差分析也是一种假设检验,它是对全部样本观测值的变动进行分解,将某种控制因素下各组样本观测值之间可能存在的由该因素导致的系统性误差与随即误差加以比较,据以推断各组样本之间是否存在显著差异。
若存在显著差异,则说明该因素对各总体的影响是显著的。
方差分析有3个基本的概念:观测变量、因素和水平。
●观测变量是进行方差分析所研究的对象;●因素是影响观测变量变化的客观或人为条件;●因素的不同类别或不通取值则称为因素的不同水平。
在上面的例子中,农作物的产量和商品的销量就是观测变量,作物的品种、施肥种类、商品价格、广告等就是因素。
在方差分析中,因素常常是某一个或多个离散型的分类变量。
⏹根据观测变量的个数,可将方差分析分为单变量方差分析和多变量方差分析;⏹根据因素个数,可分为单因素方差分析和多因素方差分析。
在SPSS中,有One-way ANOV A(单变量-单因素方差分析)、GLM Univariate(单变量多因素方差分析);GLM Multivariate (多变量多因素方差分析),不同的方差分析方法适用于不同的实际情况。
本节仅练习最为常用的单变量方差分析。
三、实验演示容与步骤㈠单变量-单因素方差分析单因素方差分析也称一维方差分析,对两组以上的均值加以比较。
检验由单一因素影响的一个分析变量由因素各水平分组的均值之间的差异是否有统计意义。
SPSS统计分析_第五章__方差分析课件
实验数据
各组平均值
第一组 0.8 0.9 0.7 0.8
红细胞增加数(百万/m3)
第二组
第三组
1.3
0.9
1.2
1.1
1.1
1.0
1.2
1.0
第四组 2.1 2.2 2.0 2.1
• 这是个双因素方差分析的问题,因素A与因素B。每个 因素均有用该药与不用该药两个水平,研究药物A和B 是否对红细胞的增加有显著影响是对红细胞增加数的 均值作以下比较:
• 处理(Treatments)是影响因变量变化的人为条件。也可以通称 为因素。如研究不同肥料对不同种系农作物产量的影响时农作 物的不同种系可称为因素,所施肥料可视为不同的处理。
• 一般情况下Factors与Treatments在方差分析中可作相同理解。 在要求进行方差分析的数据文件中均作为分类变量出现。即它 们的值只有有限个取值。即使是气温、降雨量等平常看作是连 续变量的,在方差分析中如果作为影响产量的因素进行研究, 就应该将其数值用分组定义水平的方法事先变为具有有限个取 值的离散变量
ห้องสมุดไป่ตู้
二、方差分析中的术语
• 因素与处理(Factor and Treament) • 水平(Level) • 单元(Cell) • 因素的主效应和因素间的交互效应 • 均值比较 • 协方差分析
SPSS统计分析_第五章__方差分析
1.因素与处理
• 因素(Factor)是影响因变量变化的客观条件;例如影响农作物 产量的因素有气温、降雨量、日照时间等;
• General Linear Model (简 称GLM,一般线性模型) 过程
SPSS统计分析_第五章__方差分析
SPSS17.0在生物统计学中的应用实验五、方差分析六、简单相关与回归分析
SPSS17.0在生物统计学中的应用-实验五、方差分析---六、简单相关与回归分析SPSS在生物统计学中的应用——实验指导手册实验五:方差分析一、实验目标与要求1.帮助学生深入了解方差及方差分析的基本概念,掌握方差分析的基本思想和原理2.掌握方差分析的过程。
3.增强学生的实践能力,使学生能够利用SPSS统计软件,熟练进行单因素方差分析、两因素方差分析等操作,激发学生的学习兴趣,增强自我学习和研究的能力。
二、实验原理在现实的生产和经营管理过程中,影响产品质量、数量或销量的因素往往很多。
例如,农作物的产量受作物的品种、施肥的多少及种类等的影响;某种商品的销量受商品价格、质量、广告等的影响。
为此引入方差分析的方法。
方差分析也是一种假设检验,它是对全部样本观测值的变动进行分解,将某种控制因素下各组样本观测值之间可能存在的由该因素导致的系统性误差与随即误差加以比较,据以推断各组样本之间是否存在显著差异。
若存在显著差异,则说明该因素对各总体的影响是显著的。
方差分析有3个基本的概念:观测变量、因素和水平。
●观测变量是进行方差分析所研究的对象;●因素是影响观测变量变化的客观或人为条件;●因素的不同类别或不通取值则称为因素的不同水平。
在上面的例子中,农作物的产量和商品的销量就是观测变量,作物的品种、施肥种类、商品价格、广告等就是因素。
在方差分析中,因素常常是某一个或多个离散型的分类变量。
⏹根据观测变量的个数,可将方差分析分为单变量方差分析和多变量方差分析;⏹根据因素个数,可分为单因素方差分析和多因素方差分析。
在SPSS中,有One-way ANOV A(单变量-单因素方差分析)、GLM Univariate(单变量多因素方差分析);GLM Multivariate (多变量多因素方差分析),不同的方差分析方法适用于不同的实际情况。
本节仅练习最为常用的单变量方差分析。
三、实验演示内容与步骤㈠单变量-单因素方差分析单因素方差分析也称一维方差分析,对两组以上的均值加以比较。
方差分析实验报告
实验报告方差分析学院:参赛队员:参赛队员: 参赛队员: 指导老师:目录一、实验目的 (6)1.了解方差分析的基本容; (6)2.了解单因素方差分析; (6)3.了解多因素方差分析; (6)4.学会运用spss软件求解问题; (6)5.加深理论与实践相结合的能力。
(6)二、实验环境 (6)三、实验方法 (7)1. 单因素方差分析; (7)2. 多因素方差分析。
(7)四、实验过程 (7)问题一: (7)1.1实验过程 (7)1.1.1输入数据,数据处理; (7)1.1.2单因素方差分析 (8)1.2输出结果 (9)1.3结果分析 (10)1.3.1描述 (10)1.3.2方差性检验 (10)1.3.3单因素方差分析 (10)问题二: (10)2.1实验步骤 (11)2.1.1命名变量 (11)2.1.2导入数据 (11)2.1.3单因素方差分析 (12)2.1.4输出结果 (14)2.2结果分析 (15)2.2.1描述 (15)2.2.2方差性检验 (15)2.2.3单因素方差分析 (15)问题三: (15)3.1提出假设 (16)3.2实验步骤 (16)3.2.1数据分组编号 (16)3.2.2多因素方差分析 (17)3.2.3输出结果 (22)3.3结果分析 (23)五、实验总结 (23)方差分析一、实验目的1.了解方差分析的基本容;2.了解单因素方差分析;3.了解多因素方差分析;4.学会运用spss软件求解问题;5.加深理论与实践相结合的能力。
二、实验环境Spss、office三、实验方法1. 单因素方差分析;2. 多因素方差分析。
四、实验过程问题一:用二氧化硒50mg对大鼠染尘后不同时期全肺湿重的变化见下表,试比较染尘后1个月,3个月,6个月,三个时期的全肺湿重有无差别。
1个月3个月6个月3.4 3.4 3.63.64.4 4.44.3 3.45.14.1 4.2 54.2 4.75.53.34.2 4.71.1实验过程1.1.1输入数据,数据处理;1.1.2单因素方差分析选择:分析比较均值单因素AVONA;将变量大鼠全肺湿重放置因变量列表栏中,月份放置因子栏中;两两比较中,勾选最小显著差异法;选项中,勾选描述性,方差同质性检验,welch;1.3.1描述由描述可知,一月份的均值为3.817,标准差为0.4355,三月份的均值为4.050,标准差为0.5357,六月份的均值为4.717,标准差为0.66161.3.2方差性检验由方差齐性检验可知,Sig值=0.826>0.05,说明各组的方差在α=0.05水平上没有显著性差异,即方差具有齐次性1.3.3单因素方差分析根据输出的p值为0.034可以看出,小于0.05,大于0.01,因此拒绝原假设,染尘后1个月,3个月,6个月,三个时期的全肺湿重有无差别有显著性意义,结论是染尘后1个月,3个月,6个月,三个时期的全肺湿重有差别,一个月大鼠的全肺湿重最小,三个月其次,六个月大鼠的全肺湿重最大。
spss统计学实验报告
竭诚为您提供优质文档/双击可除spss统计学实验报告篇一:统计学spss实验报告spss实验报告一.实验目的1.掌握spss的基本操作,能够熟练应用spss进行基本的统计分析。
2.在用spss对具体实例进行分析的基础上能对结果进行正确的解释。
3.在对spss基本操作熟练的情况下,进一步自学spss 更强大的分析能。
二.实验要求1.掌握如何通过spss进行数据的获取和管理,包括数据的录入,保存,读取,转化,增加,删除;数据集的合并,拆分,排序。
2.了解描述性统计的作用,并掌握其spss的实现(频数,均值,标准差,中位数,众数,极差)。
3.应用spss生成表格和图形,并对表格和图形进行简单的编辑和分析。
4.应用spss做一些探索性分析(如方差分析,相关分析)三.实验内容(一).问题的提出对不同广告方式和不同地区对某商品销售额影响进行分析。
在制定某商品的广告策略时,收集了该商品在不同地区采用不同广告形式促销后的销售额数据,分析广告形式和地区是否影响商品销售额。
自变量为广告方式(x1)和地区(x2),因变量为销售额(Y)。
涉及地区18个,每个地区抽取样本8个,共有案例144个。
具体数据如下:x11.002.004.003.001.002.004.003.001.002.004.003.001.002.004.003.001.002.004.003.00x21.001.001.001.002.002.002.002.003.003.003.003 .004.004.004.004.005.005.005.005.00Y75.0069.0063.00 52.0057.0051.0067.0061.0076.00100.0085.0061.0077.00 90.0080.0076.0075.0077.0087.0057.002.006.004.006.003.006.001.007.002.007.00 4.007.003.007.001.008.002.008.00 4.008.003.008.001.009.002.009.00 4.009.003.009.001.0010.002.0010.00 4.0010.003.0010.001.0011.002.0011.00 4.0011.001.0012.002.0012.00 4.0012.003.0012.001.0013.002.0013.004.0013.003.0011.003.0013.001.0014.002.0014.004.0014.003.0014.001.0015.002.0015.004.0015.003.0015.001.0016.002.0016.004.0016.003.0016.0060.0062.0052.0076.0033.0070.0033.0081.0079 .0075.0069.0063.0073.0040.0060.0094.00100.0064.0061 .0054.0061.0040.0070.0068.0067.0066.0087.0068.0051. 0041.0065.0065.0063.0061.0058.0065.0083.0075.0050.0079.0076.0064.0044.002.0017.004.0017.003.0017.001.0018.002.0018.004.0018.003.0018.001.001.002.001.004.001.003.001.001.002.002.002.004.002.003.002.001.003.002.003.004.003.003.003.001.004.002.004.004.004.00 3.004.001.005.002.005.00 4.005.003.005.001.006.002.006.00 4.006.003.006.001.007.002.007.00 4.007.003.007.001.008.002.008.00 4.008.003.008.001.009.002.009.00 4.009.003.009.0073.0050.0045.0075.0074.0062.0058.0068.0054. 0058.0041.0075.0078.0082.0044.0083.0079.0078.0086.0 066.0083.0087.0075.0066.0074.0070.0075.0076.0069.00 77.0063.0070.0068.0068.0052.0086.0075.0061.0061.006 2.0065.0055.0043.001.002.004.003.001.002.004.003.001.002.004.003.001.002.004.003.001.002.004.003.001.002.004.003.001.002.004.003.001.002.004.003.001.002.004.003.0010.0010.0010.0010.0011.0011.0011.0011.0012.0012.0012.0012.0013.0013.00 13.0013.0014.0014.0014.0014.0015.0015.0015.0015.001 6.0016.0016.0016.0017.0017.0017.0017.0018.0018.0018.0018.0088.0070.0076.0069.0056.0053.0070.0043.0086. 0073.0077.0051.0084.0079.0042.0060.0077.0066.0071.0 052.0078.0065.0065.0055.0080.0081.0078.0052.0062.00 57.0037.0045.0070.0065.0083.0060.00x1一列中,1表示报纸,2表示广播,3表示宣传品,4表示体验。
SPSS统计软件在生物统计课程教学中的应用
SPSS统计软件在生物统计课程教学中的应用SPSS统计软件在生物统计课程教学中的应用摘要:生物统计课程是生命科学领域本科学生的必修课程,因其理论性强、内容抽象、计算公式繁多往往影响教学效果。
将易学好用的SPSS统计软件应用到大学生物统计课程教学过程中,既能锻炼学生的实际动手能力又能提升学生的学习兴趣,增强教学效果。
本文主要探讨SPSS软件的特点及在辅助生物统计教学新模式中的重要性和必要性,对生物统计课程的教学改革具有一定的积极意义。
关键词:生物统计SPSS软件课程教学教学效率生物统计学是研究数据资料的收集、整理、分析和解释的科学,是用数理统计原理和方法分析和解释生物界各种现象和试验调查资料的一门学科,是把数学语言引入具体生命科学领域进行搜集、分析和解释生物学数据的一门科学,是一门应用性很强的方法论学科。
随着生物学研究不断开展,生物统计学在各领域中的应用越来越广泛。
目前生物统计学已成为生物学和农业科学领域研究和实际工作必不可少的工具。
生物统计学这门课程的概念和原理比拟抽象,课程内容多、公式多,计算比拟复杂,学生想学好、教师想教好都有一定的难度,因此怎样增强这门课程教学效果,一直是生物统计课程教师不断思考和探索的问题。
目前国内高校统计相关课程教学中辅助统计软件的种类较多,有Excel、Matlab、SPSS、Origin、SAS、S-Plus、Stata、Minitab等,但适合高等院校非统计专业可使用的软件较少。
本文主要结合教学实践,阐述SPSS在生物统计课程教学中的应用。
SPSS软件是世界上应用最广泛的专业统计软件之一,在全球约有25万用户,分布于通信、医疗、银行、证券、保险、制造、商业、市场研究和科研教育等多个领域和行业,全球500强中约有80%的公司使用SPSS,而在市场研究和市场调查领域那么拥有超过80%的市场占有率,与SAS并称为当今最权威的两大统计软件。
SPSS原先是statistical package for the social science的缩写,SPSS的历史开始于1968年,斯坦福大学三位不同专业的研究生编制出了世界上最早的统计软件系统,并将其命名为SPSS,随后该软件和相应成立的SPSS公司走上了持续开展的创新之路。
SPSS统计分析第五章方差分析
单因素方差分析的选择项
Contrasts:可以指定一种要用t检验来检验的Priori对比,即进 行均值的多项式比较选项; Post Hoc:可以指定一种多重比较检验; Option:可以指定要输出项〕
Polynomial<多项式比较>:均值的多项式比较是包括 两个或更多个均值的比较.单因素方差分析的Oneway ANOVA过程允许进行高达5次的均值多项式比 较.Linear线性、Quadratic二次、 Cubic三次、 4th 四次、 5th五次多项式
2.水平
因素的不同等级称作水平. 例如,性别因素在一般情况下只研究两个水平:男、女.化学实验或 生物实验中的"剂量"必须离散化为几个有限的水平数.如:1ml、 2ml、4ml三个水平. 应该特别注意的是在SPSS数据文件中,作为因素出现的变量不能 是字符型变量,必须是数值型变量.例如性别变量SEX,定义为数值 型,取值为0、1.换句话说,因素变量的值实际上是该变量实际值的 代码,代码必须是数值型的.可以定义值标签F、M〔或Fema1e、 ma1e〕来表明0、1两个值的实际含义,以便在打印方差分析结果 时使用.使结果更加具有可读性.
6.协方差分析
在一般进行方差分析时,要求除研究的因素外应该 保证其他条件的一致.作动物实验往往采用同一胎 动物分组给予不同的处理,研究各种处理对研究对 象的影响就是这个道理. 例如研究身高与体重的关系时要求按性别分别进 行分析.这样消除性别因素的影响.不同年龄的身 高对体重的关系也是有区别的,被测对象往往是不 同年龄的.要消除年龄的影响,应该采用协方差分 析.
2.方差分析的假设检验
假设有m个样本,如果原假设H0:样本均数都相同 μ1=μ2=μ3=········=μm=μ,m个样本有共同的方差σ2. 则m个样本来自具有共同的方差σ2和相同的均数μ的 总体. 如果经过计算结果组间均方远远大于组内均方的F> F0.05<f组间,f组内>,〔括号中的两个f是自由度〕则p <0.05,推翻原假设,说明样本来自不同的正态总体,说 明处理造成均值的差异,有统计意义.否则,F<F0.05<f 组间,f组内>,P>0.05承认原假设,样本来自相同总体, 处理无作用.
SPSS17.0在生物统计学中的应用实验指导-实验三、参数估计 实验四、t检验
SPSS在生物统计学中的应用——实验指导手册实验三:参数估计一、实验目的与要求1.理解参数估计的概念2.熟悉区间估计的概念与操作方法二、实验原理1. 参数估计的定义●参数估计(parameter estimation)是根据从总体中抽取的样本估计总体分布中的未知参数的方法。
它是统计推断的一种基本形式,是数理统计学的一个重要分支,分为点估计和区间估计两部分。
●点估计(point estimation):又称定值估计,就是用实际样本指标数值作为总体参数的估计值。
当总体的性质不清楚时,我们须利用某一量数(样本统计量)作为估计数,以帮助了解总体的性质,如:样本平均数乃是总体平均数μ的估计数,当我们只用一个特定的值,亦即数线上的一个点,作为估计值以估计总体参数时,就叫做点估计。
✧点估计的数学方法很多,常见的有“矩估计法”、“最大似然估计法”、“最小二乘估计法”、“顺序统计量法”等。
✧点估计的精确程度用置信区间表示。
●区间估计(interval estimation)是从点估计值和抽样标准误出发,按给定的概率值建立包含待估计参数的区间。
其中这个给定的概率值称为置信度或置信水平(confidence level),这个建立起来的包含待估计函数的区间称为置信区间,指总体参数值落在样本统计值某一区内的概率●置信区间(confidence interval)是指在某一置信水平下,样本统计值与总体参数值间误差范围。
置信区间越大,置信水平越高。
划定置信区间的两个数值分别称为置信下限(lower confidence limit,lcl)和置信上限(upper confidence limit,ucl)2. 参数估计的基本原理统计分析的目的就是由样本推断总体,参数估计即是实现这一目的的方法之一。
3. 参数估计的方法参数估计的结果,常用点估计值(样本均值)+置信区间(置信下限、置信上限)来表示。
三、实验内容与步骤1. 单个总体均值的区间估计打开数据文件“描述性统计(100名女大学生的血清蛋白含量).sav”选择菜单【分析】—>【描述统计】—>【探索】”,打开图3.1探索(Explore)对话框。
SPSS17.0在生物统计学中的应用-实验五、方差分析---六、简单相关及回归分析
SPSS在生物统计学中的应用——实验指导手册实验五:方差分析一、实验目标与要求1.帮助学生深入了解方差及方差分析的基本概念,掌握方差分析的基本思想和原理2.掌握方差分析的过程。
3.增强学生的实践能力,使学生能够利用SPSS统计软件,熟练进行单因素方差分析、两因素方差分析等操作,激发学生的学习兴趣,增强自我学习和研究的能力。
二、实验原理在现实的生产和经营管理过程中,影响产品质量、数量或销量的因素往往很多。
例如,农作物的产量受作物的品种、施肥的多少及种类等的影响;某种商品的销量受商品价格、质量、广告等的影响。
为此引入方差分析的方法。
方差分析也是一种假设检验,它是对全部样本观测值的变动进行分解,将某种控制因素下各组样本观测值之间可能存在的由该因素导致的系统性误差与随即误差加以比较,据以推断各组样本之间是否存在显著差异。
若存在显著差异,则说明该因素对各总体的影响是显著的。
方差分析有3个基本的概念:观测变量、因素和水平。
●观测变量是进行方差分析所研究的对象;●因素是影响观测变量变化的客观或人为条件;●因素的不同类别或不通取值则称为因素的不同水平。
在上面的例子中,农作物的产量和商品的销量就是观测变量,作物的品种、施肥种类、商品价格、广告等就是因素。
在方差分析中,因素常常是某一个或多个离散型的分类变量。
⏹根据观测变量的个数,可将方差分析分为单变量方差分析和多变量方差分析;⏹根据因素个数,可分为单因素方差分析和多因素方差分析。
在SPSS中,有One-way ANOV A(单变量-单因素方差分析)、GLM Univariate(单变量多因素方差分析);GLM Multivariate (多变量多因素方差分析),不同的方差分析方法适用于不同的实际情况。
本节仅练习最为常用的单变量方差分析。
三、实验演示内容与步骤㈠单变量-单因素方差分析单因素方差分析也称一维方差分析,对两组以上的均值加以比较。
检验由单一因素影响的一个分析变量由因素各水平分组的均值之间的差异是否有统计意义。
SPSS方差分析在生物统计的应用
SPSS方差分析在生物统计的应用SPSS方差分析在生物统计的应用在生物统计学中,SPSS(统计软件包for社会科学)是一个非常常用的统计分析工具。
方差分析(ANOVA)是SPSS中常用的一种分析方法,它能够帮助研究人员验证不同组之间的平均值是否存在显著差异。
本文将介绍SPSS方差分析的基本原理和在生物统计中的应用。
一、方差分析的基本原理方差分析是一种统计方法,用于测试两个或多个样本平均数之间是否存在显著差异。
方差分析的基本原理是比较不同组别的方差之间的差异和同一组别内部的方差之间的差异,通过计算F值来判断差异是否显著。
F值大于临界值时,可以认为组别之间的差异是显著的。
二、生物统计中方差分析的应用在生物统计中,方差分析在许多方面有广泛的应用。
下面将介绍方差分析在生物统计中的三个常见应用场景。
1. 实验设计在生物学实验中,研究人员常常需要将实验对象分为不同的组别进行处理或观察。
通过方差分析可以评估不同处理组之间的差异是否显著。
例如,研究人员可以将实验对象分为两组,分别接受不同剂量的药物处理,并观察它们的生理指标是否有显著差异。
方差分析可以帮助研究人员确定不同处理组之间的差异是否受到药物剂量的影响。
2. 品种比较在农业或植物学中,研究人员经常需要比较不同品种或种群之间的差异。
方差分析可以用于比较不同品种植物的生长速度、抗病性等性状。
通过方差分析,研究人员可以确定不同品种之间的差异是否显著,并选择最适合的品种进行种植或繁殖。
3. 环境因素影响评估环境因素对生物特征或行为的影响是生物统计研究中常见的问题。
方差分析可以帮助研究人员确定环境因素对生物特征的影响是否显著。
例如,研究人员可以研究温度对昆虫行为的影响,将昆虫置于不同温度条件下观察其活动性。
通过方差分析,研究人员可以得出不同温度条件下昆虫行为的差异是否显著。
三、SPSS方差分析的步骤SPSS是一个功能强大且易于使用的统计软件,它提供了方差分析的实现方法。
最新使用SPSS (SPSS17.0中文版)统计软件的统计分析操作方法资料
植物的若干性状测定与统计使用SPSS(SPSS17.0中文版)统计
软件的统计分析操作方法
峰哥
(昆明学院园艺二班)
摘要:使用SPSS(SPSS17.0中文版)统计软件的统计分析操作对大学生统计数据分析极为重要,但大多学生不会使用SPSS,而且培训使用软件操作费用昂贵,为了方便学生学习,做了一个简单的操作SPSS(SPSS17.0中文版)统计软件的方法。
关键字:使用SPSS 统计软件操作简单的操作SPSS
1.打开SPSS17.0中文版
2.选择,
3. 打开自己的数据如“”
5.选择“品种”和“茎粗”的数据
点开SPSS窗口→点击“”→单击→修改菜单名“”
6.单击“”→“”→“”
7.单击“”→“”
8.单击“”→“”
9.单击“”→→→
→→→
10.单击“”→→→
11.单击“”→→→
12.单击“”
13.单击鼠标右键→→→→
→→,
完成!!“”,如下图顺序操作!!
同样的方法再做其他数据!!如下图一样复制进行操作!!!
精品文档
精品文档。
统计学SPSS实验报告.doc
SPSS实验报告一.实验目的1. 掌握SPSS 的基本操作,能够熟练应用SPSS 进行基本的统计分析。
2. 在用SPSS 对具体实例进行分析的基础上能对结果进行正确的解释。
3. 在对SPSS 基本操作熟练的情况下,进一步自学SPSS 更强大的分析能。
二.实验要求1. 掌握如何通过 SPSS 进行数据的获取和管理,包括数据的录入,保存,读取,转化,增加,删除;数据集的合并,拆分,排序。
2. 了解描述性统计的作用,并掌握其 SPSS 的实现(频数,均值,标准差,中位数,众数,极差)。
3. 应用 SPSS 生成表格和图形,并对表格和图形进行简单的编辑和分析。
4. 应用 SPSS 做一些探索性分析(如方差分析,相关分析)三.实验内容(一).问题的提出对不同广告方式和不同地区对某商品销售额影响进行分析。
在制定某商品的广告策略时,收集了该商品在不同地区采用不同广告形式促销后的销售额数据,分析广告形式和地区是否影响商品销售额。
自变量为广告方式(X1)和地区(X2),因变量为销售额(Y)。
涉及地区18个,每个地区抽取样本8个,共有案例144个。
具体数据如下:X1 X2 Y1.00 1.00 75.002.00 1.00 69.004.00 1.00 63.003.00 1.00 52.001.002.00 57.002.00 2.00 51.004.00 2.00 67.003.00 2.00 61.001.00 3.00 76.002.003.00 100.004.00 3.00 85.003.00 3.00 61.001.00 4.00 77.002.00 4.00 90.004.00 4.00 80.003.004.00 76.001.00 5.00 75.002.00 5.00 77.004.005.00 87.003.00 5.00 57.002.00 6.00 60.00 4.00 6.00 62.003.00 6.00 52.001.00 7.00 76.002.00 7.00 33.004.00 7.00 70.00 3.00 7.00 33.001.00 8.00 81.002.00 8.00 79.00 4.00 8.00 75.003.00 8.00 69.001.00 9.00 63.002.00 9.00 73.004.00 9.00 40.00 3.00 9.00 60.001.00 10.00 94.002.00 10.00 100.00 4.00 10.00 64.003.00 10.00 61.001.00 11.00 54.002.00 11.00 61.00 4.00 11.00 40.001.00 12.00 70.002.00 12.00 68.00 4.00 12.00 67.003.00 12.00 66.001.00 13.00 87.002.00 13.00 68.004.00 13.00 51.00 3.00 11.00 41.00 3.00 13.00 65.001.00 14.00 65.002.00 14.00 63.004.00 14.00 61.00 3.00 14.00 58.001.00 15.00 65.002.00 15.00 83.004.00 15.00 75.00 3.00 15.00 50.001.00 16.00 79.002.00 16.00 76.00 4.00 16.00 64.003.00 16.00 44.002.00 17.00 73.004.00 17.00 50.00 3.00 17.00 45.001.00 18.00 75.002.00 18.00 74.00 4.00 18.00 62.003.00 18.00 58.001.00 1.00 68.002.00 1.00 54.00 4.00 1.00 58.003.00 1.00 41.001.002.00 75.002.00 2.00 78.00 4.00 2.00 82.003.00 2.00 44.001.00 3.00 83.002.003.00 79.004.00 3.00 78.00 3.00 3.00 86.001.00 4.00 66.002.00 4.00 83.004.00 4.00 87.00 3.00 4.00 75.001.00 5.00 66.002.00 5.00 74.00 4.00 5.00 70.003.00 5.00 75.001.00 6.00 76.002.00 6.00 69.00 4.00 6.00 77.003.00 6.00 63.001.00 7.00 70.002.00 7.00 68.00 4.00 7.00 68.003.00 7.00 52.001.00 8.00 86.002.00 8.00 75.00 4.00 8.00 61.003.00 8.00 61.001.00 9.00 62.002.00 9.00 65.00 4.00 9.00 55.003.00 9.00 43.002.00 10.00 70.004.00 10.00 76.003.00 10.00 69.001.00 11.00 56.002.00 11.00 53.004.00 11.00 70.003.00 11.00 43.001.00 12.00 86.002.00 12.00 73.004.00 12.00 77.003.00 12.00 51.001.00 13.00 84.002.00 13.00 79.004.00 13.00 42.003.00 13.00 60.001.00 14.00 77.002.00 14.00 66.004.00 14.00 71.003.00 14.00 52.001.00 15.00 78.002.00 15.00 65.004.00 15.00 65.003.00 15.00 55.001.00 16.00 80.002.00 16.00 81.004.00 16.00 78.003.00 16.00 52.001.00 17.00 62.002.00 17.00 57.004.00 17.00 37.003.00 17.00 45.001.00 18.00 70.002.00 18.00 65.004.00 18.00 83.003.00 18.00 60.00X1一列中,1表示报纸,2表示广播,3表示宣传品,4表示体验。
生物统计实验报告
实验一描述统计与图形绘制一、实验目的1.掌握描述统计分析工具;2.绘制图形。
二、实验原理在原始数据不能直接满足数据分析要求的情况下,需要对原始数据进行适当的转换。
SPSS Transformation菜单提供了各种对变量进行转换的过程,包括对原始数据进行四则运算的Conpute命令、对数据重新编码的Reconde命令等。
这些命令在统计分析的数据整理中起着非常重要的作用。
在常用的统计软件中,SPSS绘制的统计图较为美观,可满足科学研究中图表制作的要求。
因此,SPSS统计图应用非常广泛。
二、实验步骤描述性统计:SPSS操作步骤:(1)建立数据文件并定义变量:将数据输入一列,建立表示母羊体重的变量。
另建立一表示品种的分组变量,甲、乙两品种分别用1、2表示。
(2)定义变量:点击SPSS电子表格左下角的变量视图Variable View或双击变量名,可定义变量。
变量名Name尽量用英文或汉语拼音缩写,宜短不宜长。
3)选择命令操作:SPSS进行基本统计分析可用3种命令实现,即描述(Descriptives)、频率(Frequencies)、探索(Explore)。
图形绘制:散点图SPSS操作步骤:①建立数据文件,包含雏鹅重变量BW、70日龄重变量SW、性别变量gender。
②Graphs<Scatter/Dot Chart<Simple,点击Define,打开散点图对话框,将BW变量选入右侧的X轴变量栏,将SW变量选入Y分类轴,gender 选入设置标记Setmarkers by栏。
③单击Ok,输出散点图。
实验二统计推断一、实验目的1、掌握数据的参数估计,假设检验的基本原理,算法;2、练习用这些方法解决实际问题。
二、实验原理统计推断是通过样本推断总体的统计方法。
总体是通过总体分布的数量特征即参数(如期望和方差)来反映的。
因此,统计推断包括:对总体的未知参数进行估计;对关于参数的假设进行检查;对总体进行预测预报等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SPSS在生物统计学中的应用——实验指导手册实验五:方差分析一、实验目标与要求1.帮助学生深入了解方差及方差分析的基本概念,掌握方差分析的基本思想和原理2.掌握方差分析的过程。
3.增强学生的实践能力,使学生能够利用SPSS统计软件,熟练进行单因素方差分析、两因素方差分析等操作,激发学生的学习兴趣,增强自我学习和研究的能力。
二、实验原理在现实的生产和经营管理过程中,影响产品质量、数量或销量的因素往往很多。
例如,农作物的产量受作物的品种、施肥的多少及种类等的影响;某种商品的销量受商品价格、质量、广告等的影响。
为此引入方差分析的方法。
方差分析也是一种假设检验,它是对全部样本观测值的变动进行分解,将某种控制因素下各组样本观测值之间可能存在的由该因素导致的系统性误差与随即误差加以比较,据以推断各组样本之间是否存在显著差异。
若存在显著差异,则说明该因素对各总体的影响是显著的。
方差分析有3个基本的概念:观测变量、因素和水平。
●观测变量是进行方差分析所研究的对象;●因素是影响观测变量变化的客观或人为条件;●因素的不同类别或不通取值则称为因素的不同水平。
在上面的例子中,农作物的产量和商品的销量就是观测变量,作物的品种、施肥种类、商品价格、广告等就是因素。
在方差分析中,因素常常是某一个或多个离散型的分类变量。
⏹根据观测变量的个数,可将方差分析分为单变量方差分析和多变量方差分析;⏹根据因素个数,可分为单因素方差分析和多因素方差分析。
在SPSS中,有One-way ANOV A(单变量-单因素方差分析)、GLM Univariate(单变量多因素方差分析);GLM Multivariate (多变量多因素方差分析),不同的方差分析方法适用于不同的实际情况。
本节仅练习最为常用的单变量方差分析。
三、实验演示内容与步骤㈠单变量-单因素方差分析单因素方差分析也称一维方差分析,对两组以上的均值加以比较。
检验由单一因素影响的一个分析变量由因素各水平分组的均值之间的差异是否有统计意义。
并可以进行两两组间均值的比较,称作组间均值的多重比较。
主要采用One-way ANOV A过程。
采用One-way ANOV A过程要求:因变量属于正态分布总体,若因变量的分布明显是非正态,应该用非参数分析过程。
若对被观测对象的实验不是随机分组的,而是进行的重复测量形成几个彼此不独立的变量,应该用Repeated Measure菜单项,进行重复测量方差分析,条件满足时,还可以进行趋势分析。
【例6.1】欲比较四种饲料对仔猪增重效果的优劣,随机选取了性别、年龄、体重相同,无亲缘关系的20头猪,随机分为4组,每组5头,分别饲喂一种饲料所得增重数据如下在。
试利用这些数据对4种饲料对仔猪增重效果的差异进行检验。
x 饲料日增重(g)均值iA 57 37 54 42 60 50B 13 39 41 33 19 29C 13 15 13 29 20 18D 18 24 38 22 13 23合计600 μ= x=30打开数据文件“单因素方差分析数据-1.xls”。
在SPSS中实验该检验的步骤如下:♦步骤1:选择菜单【分析】→【比较均值】→【单因素方差分析】,依次将观测变量销量移入因变量列表框,将因素变量地区移入因子列表框。
图 5.1 One-Way ANOV A 对话框♦单击两两比较按钮,如图5.2,该对话框用于进行多重比较检验,即各因素水平下观测变量均值的两两比较。
方差分析的原假设是各个因素水平下的观测变量均值都相等,备择假设是各均值不完全相等。
假如一次方差分析的结果是拒绝原假设,我们只能判断各观测变量均值不完全相等,却不能得出各均值完全不相等的结论。
各因素水平下观测变量均值的更为细致的比较就需要用多重比较检验。
图 5.2 两两比较对话框假定方差齐性选项栏中给出了在观测变量满足不同因素水平下的方差齐性条件下的多种检验方法。
✧LSD。
使用t 检验执行组均值之间的所有成对比较。
对多个比较的误差率不做调整。
✧Bonferroni。
使用t 检验在组均值之间执行成对比较,但通过将每次检验的错误率设置为实验性质的错误率除以检验总数来控制总体误差率。
这样,根据进行多个比较的实情对观察的显著性水平进行调整。
✧Sidak。
基于t 统计量的成对多重比较检验。
Sidak 调整多重比较的显著性水平,并提供比Bonferroni更严密的边界。
✧Scheffe。
为均值的所有可能的成对组合执行并发的联合成对比较。
使用F 取样分布。
可用来检查组均值的所有可能的线性组合,而非仅限于成对组合。
✧R-E-G-W F。
基于F 检验的Ryan-Einot-Gabriel-Welsch 多步进过程。
✧R-E-G-W Q。
基于学生化范围的Ryan-Einot-Gabriel-Welsch 多步进过程。
✧S-N-K.使用学生化的范围分布在均值之间进行所有成对比较。
它还使用步进式过程比较具有相同样本大小的同类子集内的均值对。
均值按从高到低排序,首先检验极端差分。
✧Tukey。
使用学生化的范围统计量进行组间所有成对比较。
将试验误差率设置为所有成对比较的集合的误差率。
✧Tukey's b。
使用学生化的范围分布在组之间进行成对比较。
临界值是Tukey's 真实显著性差异检验的对应值与Student-Newman-Keuls 的平均数。
✧Duncan。
使用与Student-Newman-Keuls 检验所使用的完全一样的逐步顺序成对比较,但要为检验的集合的错误率设置保护水平,而不是为单个检验的错误率设置保护水平。
使用学生化的范围统计量。
✧Hochberg's GT2。
使用学生化最大模数的多重比较和范围检验。
与Tukey's 真实显著性差异检验相似。
✧Gabriel。
使用学生化最大模数的成对比较检验,并且当单元格大小不相等时,它通常比Hochberg'sGT2 更为强大。
当单元大小变化过大时,Gabriel 检验可能会变得随意。
✧Waller-Duncan。
基于t 统计的多比较检验;使用Bayesian 方法。
✧Dunnett。
将一组处理与单个控制均值进行比较的成对多重比较t 检验。
最后一类是缺省的控制类别。
另外,您还可以选择第一个类别。
双面检验任何水平(除了控制类别外)的因子的均值是否不等于控制类别的均值。
<控制检验任何水平的因子的均值是否小于控制类别的均值。
>控制检验任何水平的因子的均值是否大于控制类别的均值。
这里选择最常用的LSD检验法、S-N-K检验法、Duncan检验法。
未假定方差齐性选项栏中给出了在观测变量不满足方差齐性条件下的多种检验方法。
✧Tamhane's T2。
基于t 检验的保守成对比较。
当方差不相等时,适合使用此检验。
✧Dunnett's T3。
基于学生化最大值模数的成对比较检验。
当方差不相等时,适合使用此检验。
✧Games-Howell。
有时会变得随意的成对比较检验。
当方差不相等时,适合使用此检验。
✧Dunnett's C。
基于学生化范围的成对比较检验。
当方差不相等时,适合使用此检验。
这里选择Tamhane’s T2检验法、Dunnett's T3检验法。
Significance level输入框中用于输入多重比较检验的显示性水平,默认为5%。
♦单击【选项】按钮,弹出options子对话框,如图所示。
在对话框中选中描述性复选框,输出不同因素水平下观测变量的描述统计量;选择方差同质性检验复选框,输出方差齐性检验结果;选中均值图复选框,输出不同因素水平下观测变量的均值直线图。
图 5.3 “选项”子对话框✧统计量。
描述性。
计算每组中每个因变量的个案数、均值、标准差、均值的标准误、最小值、最大值和95% 置信区间。
固定和随机效果。
显示固定效应模型的标准差、标准误和95% 置信区间,以及随机效应模型的标准误、95% 置信区间和成分间方差估计。
方差同质性检验。
计算Levene 统计量以检验组方差是否相等。
该检验独立于正态的假设。
Brown-Forsythe。
计算Brown-Forsythe 统计量以检验组均值是否相等。
当方差相等的假设不成立时,这种统计量优于 F 统计量。
Welch。
计算Welch 统计量以检验组均值是否相等。
当方差相等的假设不成立时,这种统计量优于 F 统计量。
✧均值图。
显示一个绘制子组均值的图表(每组的均值由因子变量的值定义)。
✧缺失值。
控制对缺失值的处理。
按分析顺序排除个案。
给定分析中的因变量或因子变量有缺失值的个案不用于该分析。
而且,也不使用超出为因子变量指定的范围的个案。
按列表排除个案。
因子变量有缺失值的个案,或包括在主对话框中的因变量列表上的任何因变量的值缺失的个案都排除在所有分析之外。
如果尚未指定多个因变量,那么这个选项不起作用。
♦在主对话框(单因素方差分析对话框)中点击ok按钮,可以得到单因素分析的结果。
实验结果分析:表5.1 资料描述性统计表表5.2 方差齐性检验表Tamhane、Dunnett T3表5.5 多重比较检验结果- Student-Newman-Keuls a法、Duncan a法㈡单变量-多因素方差分析例7.1 为了比较3种不同饲料配方对4种不同品种的增重效果,从每个品种猪中随机抽取了3头体重相同的仔猪,分别随机饲喂不同的饲料,3个月后的增重效果(kg/头)如下。
试分析不同饲打开数据文件“两因素方差分析数据-无重复数据.xls”。
在SPSS中实验该检验的步骤如下:♦步骤1:选择菜单【分析】→【一般线性模型】→【单变量...】,弹出“单变量”对话框图 5.5 “单变量”对话框依次将观测变量“增重”销量移入因变量列表框,将因素变量“品种”、“饲料”移入固定因子列表框。
单击【模型】按钮,弹出“模型”对话框,如图5.6图 5.6 “模型”对话框●指定模型:全因子模型包含所有因子主效应、所有协变量主效应以及所有因子间交互。
它不包含协变量交互。
选择定制可以仅指定其中一部分的交互或指定因子协变量交互。
必须指定要包含在模型中的所有项。
●因子与协变量。
列出因子与协变量。
●模型:模型取决于数据的性质。
选择定制之后,您可以选择分析中感兴趣的主效应和交互效应。
●平方和:计算平方和的方法。
对于没有缺失单元的平衡或非平衡模型,类型III 平方和方法最常用。
●在模型中包含截距:模型中通常包含截距。
如果您可以假设数据穿过原点,则可以排除截距。
●构建项:对于选定因子和协变量:交互。
创建所有选定变量的最高级交互项。
这是缺省值。
主效应。
为每个选定的变量创建主效应项。
所有二阶。
创建选定变量的所有可能的二阶交互。
所有三阶。
创建选定变量的所有可能的三阶交互。
所有四阶。