太阳能电池工作原理和应用
太阳能电池的工作原理和应用
太阳能电池的工作原理和应用太阳能电池已经成为了现代能源领域的热门研究方向,其具有环保、可再生、无噪音、无污染等优点,已经成为人类未来能源的一个重要选择。
那么,太阳能电池是如何工作的?它有哪些应用呢?本文将详细介绍太阳能电池的工作原理和应用。
一、太阳能电池的工作原理太阳能电池,是将太阳能转化成电能的重要器件,其原理是利用半导体材料的带隙特性,将太阳光电子能量转化成电能。
具体地说,太阳能电池是由p型半导体和n型半导体组成的二极管结构。
当太阳光照射在p-n结上时,会激发p-n结上空穴带正电荷、电子带负电荷,形成电势差,并在p-n结上形成电动势。
此时,如果将带有负载电阻的电路接在电池的两端,就会产生电流,通过阻值制定,就能将太阳光转化成电能。
此外,太阳能电池的转换效率还与其外部形态和材质结构密切相关。
例如,太阳能电池的表面通常设计成一系列条形凸起的结构,并在其表面涂覆一层反射层,将反射光再次转到电池表面上来提高其利用率。
太阳能电池的类型主要有单晶硅太阳能电池、多晶硅太阳能电池、非晶硅太阳能电池、有机物太阳能电池等。
由于其工艺技术难度不同,转换效率也不同,单晶硅太阳能电池效率最高,可达到20%-25%。
二、太阳能电池的应用1. 电站光伏电站是太阳能电池的重要应用领域之一,它是利用太阳能发电的典型模式。
光伏电站的构造由方阵型太阳能电池板铺建晒在阳光下所组成,太阳光照入电池板后通过半导体材料“电子跃迁”的过程转换成电能。
光伏电站通常是由多块太阳能电池板组合而成,一般要安装在阳光充足的地方,如荒漠、山地等。
目前,国际上各大经济体都在积极推进光伏电站建设。
2. 家用太阳能电池板也可以作为家用电器的能量来源,如用于家庭照明、水泵、空气调节、冷冻和海水淡化等方面。
而且,太阳能电池板的成本较低,安装使用方便,而且是绿色环保的,无需考虑能源的开支和污染问题。
因此,在一些没有电力供应或降低能耗的地方效果显著。
除此之外,太阳能光伏板也可以用于架设街头亮化装饰灯、广场音乐喷泉等。
太阳能电池的原理及应用
太阳能电池的原理及应用1. 太阳能电池的原理太阳能电池,也被称为光伏电池,是一种将光能转换成电能的装置。
它利用光电效应,将太阳光中的光子转化为电子,从而产生电流。
太阳能电池通常由多个半导体材料组成,其中最常见的是硅(Si)。
太阳能电池的基本结构包括两个电极——正极和负极,以及中间的半导体材料。
太阳能电池的工作原理如下:1.太阳光中的光子进入太阳能电池,与半导体材料发生相互作用。
2.当光子与半导体材料相互作用时,能量被传递给原子中的电子,将其激发到一个高能级,使其跃迁到导带(conduction band)中。
3.在半导体材料中,导带中的电子是自由的,可以在电场的作用下移动。
4.太阳能电池中的电场通过电极将电子从半导体材料中吸引出来,形成电流。
5.通过将正极和负极连接起来,太阳能电池可以将光能转换为电能,供给外部电路使用。
2. 太阳能电池的应用太阳能电池因其清洁、可再生的特性,逐渐成为一种重要的替代能源。
以下是太阳能电池的主要应用领域:2.1 太阳能发电系统太阳能发电系统是太阳能电池应用的最常见形式。
通过将多个太阳能电池组合在一起,形成太阳能电池组,可以产生更大的电流和电压。
这些组合后的太阳能电池组可以用于给家庭、工业和商业建筑供电,以减少对传统电力的依赖。
2.2 太阳能照明系统太阳能电池还可以用于照明系统,例如太阳能街灯和太阳能路灯。
这些系统利用太阳能电池将光能转化为电能,并存储在电池中,以供给LED灯泡。
太阳能照明系统通常具有自动感应和节能功能,可以在夜晚或光线不足时自动点亮,为公共场所提供照明。
2.3 太阳能充电系统太阳能电池还广泛应用于电子设备的充电系统。
通过连接太阳能电池和充电控制器,可以将太阳能转化为电能,为手机、平板电脑、数码相机等设备提供充电。
太阳能充电系统适用于户外环境和没有电力供应的地区,可以方便地满足人们对电力的需求。
2.4 太阳能水泵系统利用太阳能电池的电能,可以推动水泵运转,用于灌溉、供水和污水处理等领域。
有机太阳能电池的基础原理及其应用
有机太阳能电池的基础原理及其应用太阳能是一种无尽的绿色能源,具有可再生、环保、分散布局等优点,是目前人类广泛研究和应用的能源之一。
有机太阳能电池是太阳能电池中的一种,其具有相对于传统硅太阳能电池来说更加轻便、柔性、成本更低等特点,因此逐渐成为许多领域备受瞩目。
本文将阐述有机太阳能电池的基础原理及其应用。
一、有机太阳能电池的基础原理有机太阳能电池是一种能够将光能转化为电能的电池,其基础原理是光电转换。
光电转换是指光子激发电子,将光能转换为电子能量。
在有机太阳能电池中,通常采用有机半导体材料作为吸收光线的介质。
光线照射到有机半导体中,激发半导体中的电子产生电荷,然后通过电池外部的负载得以放电。
有机太阳能电池的核心部分是由与多个层次构成的有机半导体薄膜组成,这些有机半导体是由聚合物和全小分子等组成的。
二、有机太阳能电池的优点与传统的硅太阳能电池相比,有机太阳能电池有以下优点:1.轻便:有机太阳能电池非常轻便,重量比硅太阳能电池轻得多,因此它们可以更容易地集成到其他装置中。
2.柔性:有机太阳能电池非常柔性,可以采用印刷技术将它们印在包括纸质材料在内的各种表面上。
此外,有机太阳能电池还可以扭曲和弯曲而不会破裂。
3.成本低:有机太阳能电池的制作成本比硅太阳能电池低得多,因为有机材料通常比硅材料便宜。
此外,有机太阳能电池的制造过程中,用到的能量也比硅太阳能电池的制造过程少得多。
三、有机太阳能电池的应用有机太阳能电池的应用十分广泛。
以下介绍几个具体领域的应用。
1.户外充电有机太阳能电池可以用于户外充电,如将其用于太阳镜或手表,可以让用户在户外活动时免去担心电量不足的烦恼。
2.建筑领域有机太阳能电池可以用于建筑物的外墙,充当太阳能窗户,用于室内照明,可大大提高建筑物的能源利用效率。
3.农业由于有机太阳能电池柔性,且可与其他生物低档板块一起使用,因此可用于农业领域中,协助监测灌溉设备、温室采光不足等问题。
4.医疗领域有机太阳能电池柔性且成本低,非常适合在医疗领域中使用,如可用于眼镜或其他设备,方便患者更好的使用和管理其他医疗设备。
太阳能电池板原理及其应用
太阳能电池板原理及其应用随着全球能源需求的不断增长,寻找新的、可再生的能源逐渐成为了人们关注的重点。
太阳能电池板作为一种可再生的能源形式,被更多的人们所关注和利用。
一、太阳能电池板工作原理太阳能电池板是一种利用太阳能光能转换成电能的器件。
太阳能电池板的主要成分是硅(Si)和磷(P),存在着Si-P结构。
根据光电效应,太阳能电池板中被光激发的电子会流到另一端,产生电流。
这种现象的发生与太阳能电池板的材料、结构有关。
太阳光照射到太阳能电池板上时,将阳光中的光子吸收,使太阳能电池板中的电子被激发,从而形成电流。
太阳光照射到太阳能电池板时,会使得太阳能电池板中的硅原子产生电子和空穴,其中的电子向一个极端移动,空穴向另一个极端移动,从而产生电流。
二、太阳能电池板的应用太阳能电池板的应用范围非常广泛。
太阳能电池板的最主要的应用领域是太阳能发电,它可以将太阳能转化为电能,供给人类使用。
太阳能发电的方式有很多种,其中最常用的是光伏发电和太阳热发电。
光伏发电就是利用太阳能电池板将太阳能转化为电能,使用于很多地方,例如:太阳能灯、太阳能热水器、太阳能电池车等。
此外,太阳能电池板还可以应用于电子设备中,例如太阳能手表、太阳能充电器、太阳能手机等。
另外,太阳能电池板还可以应用于航天器的开发中,例如小行星探测器、月球车、太阳能航天站等。
三、太阳能电池板存在的问题尽管太阳能电池板在环保、可再生能源领域具有广阔的市场前景,但它依然存在着许多问题。
首先是容量问题,太阳能电池板的容量非常有限,无法在短时间内满足人们的用电需求。
其次,太阳能电池板的材料成本相对较高,从而导致制造成本也相当高昂。
此外,太阳能电池板的污染排放问题也不容忽视,虽然太阳能电池板本身使用的是可再生资源,但生产太阳能电池板时需要消耗很多的能源,这些能源的消耗会导致污染,影响环境。
四、太阳能电池板的未来发展近年来,太阳能电池板的市场容量逐渐扩大,其在可再生能源市场的地位也越来越重要。
太阳能电池技术的原理及应用
太阳能电池技术的原理及应用太阳能电池,顾名思义是利用太阳辐射能转换为电能的装置。
相较于传统的火力发电、水力发电等方式,太阳能电池可以减少极大的能源消耗和空气污染,成为当今世界逐渐普及的新型能源技术之一。
一、太阳能电池技术的原理太阳能电池是利用光电效应来转换太阳能。
光电效应指的是光线照射到低功函数的物体上时,就会打出电子,从而形成电流。
太阳能电池正是利用这一原理,将太阳光直接转换为电能。
具体来说,太阳能电池的基本构造是由两个半导体材料,即P 型半导体与N型半导体,通过P-N结相连接而成。
当光线照射到这个结上时,电子会从P型半导体的能级跃至N型半导体的低位能级,从而形成电流。
这一过程需要光子的能量大于硅等材料的能隙。
硅的能隙为1.12eV,因此只有波长小于1100nm的光线被吸收,形成电流。
二、太阳能电池技术的应用太阳能电池广泛应用于各种领域,从家庭照明到卫星能源系统。
1. 家庭应用随着人们环保意识的增强和能源价格的攀升,太阳能电池在家庭应用中越来越常见。
普及太阳能发电能够减少家庭的能源消耗,节约开支,并对减缓气候变化产生深远影响。
2. 太阳能水泵太阳能水泵可以在没有电力供应的地方使用,如偏远区域或者农村地区。
水泵的运转需要电力,而在没有电网的地方,太阳能水泵的这一不足就得到了弥补。
这就可以使得农业灌溉、家庭供水等问题得到优解。
3. 卫星能源系统太阳能电池作为卫星能源系统的核心之一,是目前卫星最广泛使用的能源系统。
卫星中的太阳能电池通过转换太阳辐射能为电能,以此为卫星提供能源。
三、太阳能电池技术的优缺点太阳能电池作为新兴能源技术,其优缺点非常明显。
1. 优点太阳能电池是一种清洁、绿色、可再生的能源技术。
其不会产生有害气体和污染物,对环境和生态的影响非常小。
而且太阳能电池是不受能源分布限制的,有非常广阔的应用前景。
此外,太阳能电池在长时间使用时还可以带来节能、节约成本的效果,十分经济实用。
2. 缺点太阳能电池的缺点主要是受环境影响。
简述太阳能电池的基本原理和应用
简述太阳能电池的基本原理和应用1. 太阳能电池的基本原理太阳能电池是一种能够将太阳光能转化为电能的设备,其基本原理是光电效应。
光电效应是指当光照射到某些特定材料上时,材料中的光子将被吸收并激发电子跃迁到较高能级,从而产生电流。
1.1 光电效应的基本原理•光的粒子性:光同时具有波动性和粒子性,被称为光子。
光子具有能量和动量。
•光电子释放:当光子能量足够高时,它的能量可以激发金属内部的电子跃迁到导带,形成电流。
•真空条件下:光电效应只在真空或极度稀薄的空气中发生。
•光电流强度:光电流的强度取决于光的频率和光子的能量。
1.2 太阳能电池的组成太阳能电池通常由一层或多层半导体材料组成。
其中,最常用的是硅(Si)材料。
太阳能电池一般由以下几个主要部分组成:•正极:也称为P型半导体,含有掺杂的硼(B)等杂质。
•负极:也称为N型半导体,含有掺杂的磷(P)等杂质。
•pn结:正极和负极之间形成的结构,是太阳能电池的关键部分。
•金属导线:连接太阳能电池的正负极。
•反射层:用于提高光的吸收效率。
2. 太阳能电池的应用太阳能电池是一种清洁、可再生的能源技术,具有广泛的应用前景。
以下是太阳能电池的几个主要应用领域:2.1 太阳能发电太阳能电池作为一种直接将太阳光能转化为电能的装置,广泛应用于太阳能发电系统。
这些系统通常包括太阳能电池板、电池组、逆变器和电网连接。
太阳能发电具有以下优点:•环保:太阳能发电不产生任何污染物,没有二氧化碳和其他有害气体的排放。
•可再生:太阳能是一种可再生资源,可以持续不断地得到利用。
•维护成本低:太阳能电池几乎没有任何机械运动,因此维护成本低。
•分布式发电:太阳能电池板可以安装在建筑物的屋顶上,实现分布式发电。
2.2 太阳能光热利用除了直接将太阳光能转化为电能,太阳能电池还可以用于太阳能光热利用系统。
在这种系统中,太阳能电池板将太阳能转化为热能,用于供暖、热水等需要热能的领域。
太阳能光热利用具有以下优点:•高效利用:太阳能光热利用可以将太阳能光能转化为热能,提高能源利用效率。
太阳能电池的工作原理与应用
太阳能电池的工作原理与应用太阳能电池是一种利用太阳能转化为电能的设备,广泛应用于可再生能源领域。
本文将介绍太阳能电池的工作原理以及它在实际应用中的重要性。
一、太阳能电池的工作原理太阳能电池是通过太阳能的光线转化为电能的装置。
它主要由多个组件构成,包括硅片、P-N结、场效应晶体管等。
首先,硅片是太阳能电池的核心部件,通常采用单晶硅、多晶硅或非晶硅制成。
硅片的表面被分为P型和N型两部分,形成一个P-N结。
当光线照射在P-N结上时,光子的能量会激发硅片中的电子,使其跃迁到导带中,从而产生电流。
其次,场效应晶体管起到调节和放大电流的作用。
当光子激发了硅片中的电子后,电流会通过场效应晶体管进行调节并放大,最终输出为可用的电能。
总结起来,太阳能电池的工作原理可以概括为:太阳能的光线通过硅片的P-N结激发电子,产生电流;电流通过场效应晶体管调节和放大,最终输出为可用的电能。
二、太阳能电池的应用太阳能电池具有许多重要的应用,下面将介绍其中几个具有代表性的领域。
1. 太阳能发电太阳能电池广泛应用于太阳能发电系统中。
当太阳光照射到太阳能电池上时,光子会激发电子从而产生电流,这些电流可以被存储和使用。
太阳能发电是一种清洁、环保且可再生的能源,可以为家庭、企业甚至整个城市提供电力。
2. 太阳能热水器太阳能电池也可以用于太阳能热水器中。
太阳能热水器通过将太阳能电池转化的电能用来加热水,从而提供热水供应。
这种方式不仅节约了能源,还减少了对传统能源的依赖。
3. 太阳能照明太阳能电池还可以用于太阳能照明系统中。
太阳能光伏板可以将太阳能转化为电能,供给LED灯进行照明。
这种太阳能照明系统不需要电网供电,具有绿色环保、节能高效的特点。
4. 太阳能移动设备充电如今,越来越多的移动设备使用太阳能电池作为充电方式,例如太阳能手机充电板。
这些充电板可以将太阳能转化为电能,为手机、平板电脑等设备充电。
这种方式非常适合户外活动或缺乏电源的地方。
太阳能电池的原理和作用
太阳能电池的原理和作用太阳能电池是一种利用光电效应将太阳能转换成电能的装置。
具体来说,它是利用半导体材料的光电效应将太阳能转化成电能的一种设备。
太阳能电池是太阳能利用的重要手段之一,可以被广泛应用于航天、铁路、轮船、汽车、电视、计算机等领域。
本文将简要介绍太阳能电池的原理和作用。
一、太阳能电池的原理太阳能电池利用了光电效应,即将光的能量转换成电能的一种过程。
光线射向太阳能电池时,被半导体吸收,并激发半导体中的自由电子,使其跃迁到导带中成为导电电子。
这些导电电子与空穴结合时就能够产生一个电流,该电流将被集中到太阳能电池的两端,形成电压和电流。
这就是太阳能电池的原理。
二、太阳能电池的作用太阳能电池的主要作用是将太阳能转换成可用的电能。
通过太阳能电池可以将光能转化成电能,在没有外部能源的情况下,太阳能电池可以用于直接驱动一些小型的电器设备,例如计算机、手提电话、电视机和防盗报警器等。
此外,太阳能电池也广泛应用于太阳能集热器、太阳能还原电池、太阳镜等设备中。
太阳能电池还可以用于发电和储能,以满足夜晚或光线不足时的使用需求。
三、太阳能电池的类型太阳能电池的类型主要有三种:硅太阳能电池、薄膜太阳能电池和有机太阳能电池。
硅太阳能电池是一种常见的太阳能电池,其主要材料为硅。
硅太阳能电池的优点是寿命长,具有良好的稳定性和高转换效率。
但是,硅太阳能电池的成本比较高,制造过程也比较复杂。
薄膜太阳能电池是使用一层薄膜来构建电池的。
它比硅太阳能电池更轻、更薄,也更便宜,但转换效率要低得多。
有机太阳能电池是在导电高分子和有机半导体的基础上构建的。
有机太阳能电池具有成本低、制造工艺简单等优点,但由于材料中的电子、空穴易于相互复合,因此转化效率相对较低。
四、太阳能电池的发展趋势随着太阳能技术的发展,太阳能电池的效率不断提高,成本也在不断降低。
未来,太阳能电池将更加普及,发展趋势也会更加多元化。
例如,人们正在研究太阳能电池与其他电池类型的混合使用,增加电池系统的储能容量。
太阳能电池原理及应用图文详解-精
Part1:电池与PN结的工作原理 Part2:扩散工序简介 Part3:清洗及扩散原理 Part4:异常处理及调节
2
Part1:电池与PN结的工作原理
太阳能电池的工作原理 太阳能电池等效电路 PN结的形成 PN结的特性及等效电路
3
太阳能电池工作原理
太阳能电池结构
14
PN结的特性
➢势垒电容CB :势垒电容是由空间电荷区的离子薄层形成的。 当外加电压使PN结上压强发生变化时,离子薄层的厚度也 相应地随之改变,这相当PN结中存储的电荷量也随之变化, 犹如电容的充放电。 ➢扩散电容CD:扩散电容是由多子扩散后,在PN结的另一侧 面积累而形成的。因PN结正偏时,由N区扩散到P区的电子, 与外电源提供的空穴相复合,形成正向电流。刚扩散过来的 电子就堆积在 P 区内紧靠PN结的附近,形成一定的多子浓 度梯度分布曲线。反之,由P区扩散到N区的空穴,在N区内 也形成类似的浓度梯度分布曲线。 当外加正向电压不同时, 扩散电流即外电路电流的大小也就不同。所以PN结两侧堆 积的多子的浓度梯度分布也不同,这就相当于电容的充放电 过程。势垒电容和扩散电容均是非线性电容。
13 13
PN结的特性
PN结的反向截止性: ✓外加的反向电压方向与PN结内电场方向相 同,加强了内电场。内电场对多子扩散运动 的阻碍增强,扩散电流大大减小。此时PN 结区的少子在内电场作用下形成的漂移电流 大于扩散电流,可忽略扩散电流,PN结呈 现高阻性。 ✓在一定的温度条件下,由本征激发决定的 少子浓度是一定的,故少子形成的漂移电流 是恒定的,基本上与所加反向电压的大小无 关,这个电流也称为反向饱和电流。
这就是“复合”。 ➢热平衡:在一定温度下,又没有光照射等外界影响时,产生和复 合的载流子数相等,半导体中将在产生和复合的基础上形成热平衡。 此时,电子和空穴的浓度保持稳定不变,但是产生和复合仍在持续 的发生。
太阳能电池的基本原理及应用技巧
太阳能电池的基本原理及应用技巧1. 太阳能电池的基本原理1.1 直接转换式太阳能电池直接转换式太阳能电池是将太阳光直接转换为电能的一种装置。
目前最常见的一种直接转换式太阳能电池是硅晶太阳能电池。
其基本原理是利用太阳光中光子的能量将硅晶中的电子激发出来,形成电流。
当太阳光照射到硅晶太阳能电池上时,光子会与硅晶中的硅原子发生相互作用。
光子的能量将硅原子中的电子激发出来,形成电子-空穴对。
在太阳能电池的 p-n结中,电子-空穴对会被分离,电子会通过外部电路从n 区向p 区移动,形成电流。
1.2 间接转换式太阳能电池间接转换式太阳能电池是先将太阳光转换为其他形式的能量,再将这种能量转换为电能的一种装置。
一种常见的间接转换式太阳能电池是光化学太阳能电池。
其基本原理是利用太阳光激发光敏剂,产生电荷分离,形成电流。
当太阳光照射到光化学太阳能电池的光敏剂上时,光子会将光敏剂中的电子激发出来,形成电子-空穴对。
在光化学电池的电荷分离层中,电子-空穴对会被分离,电子会通过外部电路从光敏剂向电荷分离层移动,形成电流。
2. 太阳能电池的应用技巧2.1 太阳能电池组件的安装太阳能电池组件的安装是太阳能电池应用的重要环节。
在安装太阳能电池组件时,需要考虑以下几个因素:•光照条件:太阳能电池的效率受到光照条件的影响。
一般来说,太阳光越强,太阳能电池的输出功率越高。
因此,在安装太阳能电池组件时,需要选择光照条件较好的地方。
•温度:太阳能电池的效率也会受到温度的影响。
一般来说,太阳能电池在较高的温度下性能会下降。
因此,在安装太阳能电池组件时,需要考虑温度的影响,并采取相应的措施,如安装遮阳板等。
•朝向和倾斜角度:太阳能电池组件的朝向和倾斜角度也会影响其输出功率。
一般来说,太阳能电池组件的朝向应该朝向太阳,倾斜角度应该根据当地的纬度和季节进行调整。
2.2 太阳能电池系统的储能设备太阳能电池的输出功率受到光照条件的影响,因此,在夜间或光照不足的情况下,太阳能电池的输出功率会下降。
太阳能电池的工作原理应用
太阳能电池的工作原理应用1. 工作原理太阳能电池是一种将太阳能直接转化为电能的设备。
它的工作原理主要基于光伏效应和半导体材料的特性。
•光伏效应:光伏效应是指当光子照射到半导体材料上时,能量被吸收并激发出电子-空穴对。
这些电子-空穴对被分离后,形成电流。
•半导体材料:太阳能电池中常用的半导体材料是硅(Si)。
硅材料具有良好的光伏效应和较高的光电转换效率。
太阳能电池通常由多个光伏电池片组成,这些电池片由硅材料通过特殊工艺制成。
当太阳光照射到太阳能电池片上时,硅材料吸收光能,产生电子-空穴对。
这些电子-空穴对在电场的作用下被分离,正极收集电子,负极收集空穴,形成电流。
2. 应用领域太阳能电池作为一种可再生能源技术,具有广泛的应用领域。
以下列举了几个主要的应用领域:•发电系统:太阳能电池可以用于建筑物、屋顶、太阳能发电站等地方,将阳光转化为电能,以满足电力需求。
这种形式的太阳能发电无污染、静音、可持续。
•航天航空领域:太阳能电池被广泛应用于卫星、航天器和飞机上。
它们可以为这些设备提供稳定的电源,使其能够长时间运行。
•水泵系统:太阳能电池可用于驱动水泵系统,将光能转化为机械能,用于水源提供、灌溉和供水等领域。
这种方式具有能源可再生、经济高效等优势。
•户外照明:太阳能电池可用于户外照明系统,如夜景照明、路灯、庭院灯等。
由于无需供电线路,安装方便,并能节约能源。
•电动车:太阳能电池可以用于电动车辆的充电系统,提供电力供应。
这种方式可以减少对传统能源的依赖,实现绿色出行。
3. 太阳能电池的优势和限制太阳能电池具有一些突出的优势,但也存在一些限制。
3.1 优势:•可再生能源:太阳能电池利用太阳能转化为电能,太阳能是一种可再生的能源,不会枯竭。
•环境友好:太阳能电池发电过程无污染,不会产生二氧化碳等有害气体,对环境友好。
•长寿命:太阳能电池具有较长的使用寿命,一般可达20-30年。
•静音无噪音:太阳能电池发电过程无噪音,不会产生噪声。
太阳能电池的工作原理及应用
太阳能电池的工作原理及应用太阳能电池是透过光电效应将阳光转化成电能的一种装置。
和火力发电、核能发电等传统发电方式相比,太阳能发电是一种清洁环保、无污染、无噪音、无需消耗资源的绿色能源。
因此,太阳能电池在当今的新能源领域中有着非常广泛的应用。
太阳能电池的工作原理太阳能电池是一种半导体器件,它能将太阳光的光能直接转成电能。
太阳能电池是由两个半导体层组成的,它们是P型半导体和N型半导体。
这两个层分别含有不同种类的材料,它们的结合能够产生电位差。
当太阳光射来时,它进入到P型半导体,激活其中的电子使其跃迁到N型半导体中,它们之间的电势差能够产生电流。
所以太阳光通过光伏效应转化成为电流,即直流电。
这样就形成了太阳能电池的工作原理。
太阳能电池的应用太阳能电池在当今各个领域中都有着广泛的应用,不仅可以满足家庭生活用电的需求,还可以为各种应用系统和设备提供能源。
1.居家用电近年来,随着人们对环境保护要求的提高和太阳能光伏技术成本的降低,越来越多的家庭开始使用太阳能电池供电,包括照明、电视、空调、冰箱等用电器都可以使用太阳能电池产生的电能。
2.交通工具现如今,太阳能电池的应用也已经扩展到了交通工具领域。
例如,一些城市的公共自行车租赁站就采用了太阳能电池进行充电,以供城市公共自行车使用。
在未来,太阳能电池或许还可以应用到一些公共交通工具中,例如地铁、公交车等。
3.露营旅行太阳能电池还可以为露营旅行者提供免费的能源,例如充电电池、便携式电灯、GPS设备、收音机等。
4.太阳能计算机随着各种嵌入式设备的出现,现在还可以生产太阳能供电的计算机产品,例如笔记本电脑和平板电脑等。
这些产品具有长续航能力和节能减排的优点,得到了消费者的欢迎。
5.太阳能光伏电站太阳能光伏电站是目前太阳能电池的最大应用领域之一。
在不同地区和不同环境中,建造大型的太阳能光伏电站可以产生大量的太阳能电能,可以为城市的发电和农村地区的用电供应提供可靠的源头。
太阳能电池的原理和应用
太阳能电池的工作原理和应用摘要:介绍了太阳能电池的种类和工作原理,列举了太阳能电池的一些应用例子。
关键词:太阳能电池;种类;原理;应用太阳能一般指太阳光的辐射能量。
太阳能电池是指通过光电效应或者光化学效应直接把光能转化成电能的装置。
1.太阳能电池的种类根据所用材料的不同,太阳能电池可分为:硅太阳能电池、多元化合物薄膜太阳能电池、纳米晶太阳能电池和有机太阳能电池等,其中硅太阳能电池是目前发展最成熟的,在应用中居主导地位【1】。
1.1.硅太阳能电池硅太阳能电池又分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种,其中单晶硅太阳能电池转换效率最高,技术也最为成熟。
由于单晶硅太阳能电池的成本较高,为了节省高质量材料,薄膜太阳能电池就成了单晶硅电池的替代产品,其中以多晶硅薄膜太阳能电池和非晶体硅薄膜太阳能电池为典型代表【2】。
1.2.多元化合物薄膜太阳能电池多元化合物薄膜太阳能电池材料为无机盐,主要有砷化镓III-V族化合物电池、硫化镉、碲化镉多晶薄膜电池和铜铟硒薄膜电池。
硫化镉、碲化镉多晶薄膜电池的效率较非晶体硅薄膜太阳能电池效率高,成本较单晶硅电池低,也易于大规模生产。
但由于镉有剧毒,会对环境造成严重的污染,因此并不是晶体硅太阳能电池最理想的替代产品。
GaAs属于III-V族化合物半导体材料,具有十分理想的光学带隙以及较高的吸收效率,抗辐照能力强,对热不敏感,转换效率可达28%,适合于制造高效单结电池。
但是GaAs材料的价格不菲,因而在很大程度上限制了GaAs电池的普及。
CIS作为太阳能电池的半导体材料,具有价格低廉、性能良好、工艺简单和不存在光致衰退问题等优点,将成为今后太阳能电池发展的一个重要方向,唯一的是材料的来源问题,由于铟和硒都是比较稀有的元素,因此,这类电池的发展必然受到限制【2】。
1.3.纳米晶太阳能电池纳米TiO2晶体化学能太阳能电池是新近发展的,优点在于其廉价的成本、简单的工艺及稳定的性能,其光电效率稳定在10%以上,制作成本仅为硅太阳电池的1/5~1/10,寿命能达到20年以上【2】。
太阳能电池板的物理原理及应用
太阳能电池板的物理原理及应用太阳能电池板的物理原理与应用太阳能电池板是利用太阳辐射能源所转化成的光能,将其转换成电能的一种电子元件。
随着节能减排的呼声日渐高涨,太阳能电池板的应用越来越广泛,它广泛应用于电动汽车、家居、灯具等领域。
本文将介绍太阳能电池板的物理原理和应用。
一、太阳能电池板的物理原理光电效应是物理学的一个基本现象,指的是光线照射到物质上时,被物质吸收后,物质的电子受到光子的碰撞而发生电离运动,抛出电子,从而使物质带有一个电荷。
根据能带理论,只有在光线能量大于或等于导带底部相应的能量时,才能促使电子从价带进入导带中,形成电流。
太阳能电池板的特殊构造可以使光子与半导体材料发生相互作用,产生电荷分离,从而产生电流。
太阳能电池板的结构如图所示:太阳能电池板的工作原理如下:1. 光子被吸收后,电荷分离。
太阳能电池板中,主要的物理过程就是光子被半导体吸收后,会让原子的几率电子由价带跃迁至导带成为电子,从而产生电子和空穴对。
在PN结的电场作用下,电子和空穴分别向两侧运动,形成电流。
2. 光照强度变化,电流产生变化。
太阳能电池板的输出电流取决于光的强度,充电电流与光强成正比。
在实际使用过程中,太阳能电电池板的输出电压和电流也会受到环境温度、辐射强度等环境因素的影响而变化。
二、太阳能电池板的应用伴随着能源危机和环境保护意识的提高,太阳能电池板的应用越来越广泛。
1. 家庭应用随着智能家居的发展和生活质量的提高,太阳能电池板也越来越常见于家庭环境。
家庭太阳能电池板可以替代市电,为人们提供等同的用电体验,同时还可以通过卖出电力向电力公司获得可观收益。
2. 交通运输随着电动汽车的普及,电动汽车的续航是一个关键的问题。
太阳能电池板可以为电动汽车充电,这样一方面可以减少对繁忙的充电站的依赖,另一方面太阳能电池板可以使电动汽车的续航更长。
3. 绿色灯具太阳能灯具也成为田亮绿色能源领域的一种新兴产品。
太阳能灯具的光线来源是太阳辐射,它不会消耗动力,故而将会成为未来照明领域的重要选择。
太阳能光伏电池的原理与应用
太阳能光伏电池的原理与应用随着能源危机的加剧以及环境污染的恶化,人们对新能源的需求越来越迫切。
在各种可再生能源中,太阳能被认为是最为广泛的能源之一。
而太阳能光伏电池作为太阳能的转化工具,也逐渐被广泛应用于各个领域。
本文将着重介绍太阳能光伏电池的原理及其应用领域。
一、太阳能光伏电池的原理太阳能光伏电池是由半导体材料制成的电池,可以将太阳能转化为电能。
其原理基于光电效应,当光子作用于半导体表面时,会激发出电子并引起电子的移动,从而产生电压。
太阳能光伏电池主要有单晶硅、多晶硅、非晶硅、有机半导体等类型。
太阳能光伏电池的运行原理分为三步:第一步是光子被吸收,这些光子被吸收后会进入半导体材料中,如果光子的能量大于材料的能带价值,电子就可以被激发出来。
第二步是电子被激发,经过一段时间后,这些被激发的电子将被吸引到p-n结的另一端,因此,它们沿着电路流动,从而在电路中产生电流。
第三步是电子流产生,这些电子在流经负载电阻时会产生电压和电流。
二、太阳能光伏电池的应用领域1. 太阳能发电太阳能光伏电池广泛应用于太阳能发电领域,可将日光直接转化为电能,并直接应用于民用电网或农业、工业生产等领域。
除此之外,太阳能光伏电池还可以应用在一些远程地区或无法接通城市电网的地方,比如偏远山区等。
2. 无线传输太阳能光伏电池还可以应用于无线传输领域。
在一些空间较大且难以接通电源的场所,如广场、公园、高速公路等,可以通过太阳能光伏电池将自然光能够转化为电能,进而提供WiFi信号、广告机等,从而为人们的生活提供更加方便。
3. 极地勘探在极地地区,气温极低且极长夜晚,十分难以给设备供电。
使用太阳能光伏电池可以解决这个问题,从而为勘探人员提供更加便捷的工作条件。
结语作为新能源领域的重点发展方向之一,太阳能光伏电池已经开始逐步普及和应用。
相信随着技术的不断进步和人们的不断探索,太阳能光伏电池的应用将会更加广泛,未来的能源领域也将会更加多元和绿色。
太阳能电池的工作原理及其应用
太阳能电池的工作原理及其应用随着环境保护意识的逐渐加强,越来越多的人开始关注使用清洁能源。
太阳能电池作为一种绿色、清洁能源,受到了越来越多的关注。
本文将介绍太阳能电池的工作原理及其应用。
一、太阳能电池的工作原理太阳能电池是将太阳光能直接转换成电能的一种设备,其核心部件是太阳能电池芯片。
太阳能电池芯片是由P型硅和N型硅交替排列而成,中间有PN结,太阳光照射到PN结上,能够吸收光子,光子的能量将电子从自由电子势垒中释放出来,形成电子空穴对,电子和空穴会沿着电场方向移动,从而形成电流流动。
太阳能电池具有高效、环保、可再生等优点,是目前应用最广泛的清洁能源之一。
其工作原理简单明了,但实际却要考虑很多问题,如太阳光的不稳定性、气候环境等因素会影响太阳能电池的性能,也会影响太阳能电池的应用。
二、太阳能电池的应用太阳能电池应用广泛,涉及到各个领域。
下面将具体介绍其应用领域。
1.家庭电力供应在没有电力供应的地区,太阳能电池可以用来供电。
太阳能电池可以自然地从太阳中吸收能量,转换成电能,供应给家庭使用,可以解决这些地区的能源不足的问题。
2.市政工程太阳能电池可以用来为一些公共设施供电,例如路灯、广告牌等。
这些设施需要经常使用和维护,由于太阳能电池不需要接通电源,使用太阳能电池来为它们供电会十分便捷。
3.交通工具一些车辆也使用太阳能电池,例如太阳能公交车、太阳能汽车等。
这些车辆使用太阳能电池作为能源,可以减少环境污染,减少能源的消耗,达到保护环境、节约能源的目的。
4.航天领域太阳能电池在航天领域也得到了广泛应用。
由于太阳能电池具有高效、轻薄等特点,它可以为卫星、空间站等提供能源,保证其正常运行。
总之,太阳能电池具有广泛的应用前景,在未来会得到更广泛的应用。
但是目前太阳能电池还存在一些缺陷,比如成本高、效率低、可靠性不高等问题,需要进一步研究和改进。
希望有更多的科学家和企业家能够加入到太阳能电池的研究和开发中,推进太阳能电池的应用发展,为人类的可持续发展作出更大的贡献。
太阳能电池的应用及工作原理
太阳能电池的应用及工作原理一、太阳能电池的应用太阳能电池是一种能够将太阳光转化为电能的装置,它在现代社会中有广泛的应用。
以下是太阳能电池的几个主要应用领域:1.太阳能发电太阳能电池作为太阳能发电系统的核心元件,广泛应用于居民、商业和工业领域的太阳能发电设备中。
太阳能发电系统通过将太阳能转化为电能,可用于供电、照明、供暖等各种电力需求。
2.太阳能灯太阳能灯利用太阳能电池板将太阳能转化为电能,储存在电池中,然后在夜晚或光线不足的环境中供给照明。
太阳能灯具有无需电网供电、环保节能等优点,被广泛应用于公路路灯、庭院灯、景观灯等场所。
3.太阳能充电器太阳能充电器利用太阳能电池将太阳能转化为电能,为移动设备、电子产品等充电。
太阳能充电器通常具有便携性和无需外部电源的特点,适用于户外旅行、露营等环境。
4.太阳能供暖太阳能电池可以将太阳能直接转化为热能,用于供暖。
太阳能供暖系统通常包括太阳能电池板、储热装置和辅助供暖设备。
太阳能供暖作为清洁能源供暖方式,可以节约非可再生能源的消耗,减少环境污染。
二、太阳能电池的工作原理太阳能电池基于光电效应,通过将太阳光能转化为电能。
下面是太阳能电池的工作原理:1.光吸收太阳能电池的表面覆盖着半导体材料,一般是硅。
当太阳光照射到这层材料上时,光子被吸收并释放出电子。
2.能带结构太阳能电池的半导体材料通常有相应的能带结构。
在晶体中,能带分为价带和导带,两者之间的能量差即为带隙。
半导体材料的带隙决定了它对不同波长的光的吸收能力。
3.电子激发当光子被吸收后,会激发材料中的电子跃迁到导带中。
在导带中,电子可以自由移动,形成电流。
4.电子流动在太阳能电池中,通过两个电极(通常是金属)连接导带,形成一个闭合的电路。
当电子在导带中流动时,它们会由阴极(负极)流向阳极(正极),形成电流。
5.电流输出通过连接外部负载,如电池或电器设备,太阳能电池的电流可以输出为有用的电能。
三、太阳能电池的优势和挑战太阳能电池作为一种可再生能源技术,具有以下优势和挑战:优势:•清洁能源:太阳能电池使用太阳光能无污染地产生电能。
太阳能电池原理的应用
太阳能电池原理的应用1. 简介太阳能电池是一种通过光电转换将太阳能转化为电能的装置。
它采用半导体材料的特殊性质,将太阳光的能量转化为电能。
太阳能电池的应用广泛,涵盖了各个领域,如住宅和商业建筑的供电、电动车辆、航空航天器等。
本文将介绍太阳能电池的原理以及其在各个领域的具体应用。
2. 太阳能电池的原理太阳能电池的工作原理是利用光生电效应。
当光线照射到太阳能电池的半导体材料上时,光子会与半导体原子发生相互作用,将光子的能量转移给电子,使得电子跃迁到较高的能级。
通过导电铜片的连接,产生了电流。
太阳能电池的核心材料是硅(Si),它能够较好地吸收光线并转化为电能。
3. 太阳能电池的应用3.1 住宅和商业建筑的供电太阳能电池可以用于为住宅和商业建筑提供电能。
安装在建筑物的屋顶或外墙上的太阳能电池板可以吸收阳光并将其转化为电能。
这样,建筑物可以减少对传统电力的依赖,降低了能源成本,并且对环境友好。
在一些地区,通过太阳能电池产生的电力超出了建筑物的需求,多余的电力甚至可以卖给电网,从而实现了对环境的贡献和经济效益。
3.2 电动车辆太阳能电池还可以用于电动车辆的供能。
太阳能电池板可以安装在车辆的车顶或外壳上,通过吸收阳光来充电。
这样,电动车辆可以更好地利用可再生能源,减少对传统燃料的依赖,降低了运行成本,并减少了对环境的污染。
一些先进的电动车辆甚至配备了高效的太阳能电池,以提高车辆的续航里程。
3.3 航空航天器太阳能电池在航空航天器方面也有广泛的应用。
由于太阳能电池可以在太空环境中产生电能,因此它成为了许多卫星和空间探测器的主要能源来源。
利用太阳能电池,航空航天器可以实现长期的自主能源供应,从而延长了航天任务的时间和范围。
此外,太阳能电池还可以用于为航天器提供稳定的电力,以保障其正常运行。
3.4 农业和灌溉系统太阳能电池也可以应用于农业和灌溉系统中。
通过太阳能电池板收集太阳能并将其转化为电能,可以为农业设备和灌溉系统提供电力。
太阳能电池原理和应用
太阳能电池原理和应用太阳能电池是一种将光能转化为电能的装置,它是利用半导体材料与光线作用的原理制成的。
太阳能电池的应用范围广泛,可以用于家庭光伏发电、移动电源等领域,被誉为环境最友好的能源之一。
一、太阳能电池原理太阳能电池的主要原理是光电效应。
当光线照射到太阳能电池的半导体表面时,光能转化为电能。
这是因为半导体原子的电子云与空穴结合,形成能带。
当光子照射时,会促使能带中的电子与空穴对分离,形成电流。
这个电流可以通过电路连接,向外部输出电能。
太阳能电池的材料主要有硅、锗、氨化镓等半导体物质。
其中硅太阳能电池是最常用的一种,被广泛应用于家庭光伏发电、移动电源等场合。
硅太阳能电池又可以分为单晶硅太阳能电池、多晶硅太阳能电池和非晶硅太阳能电池。
二、太阳能电池的应用太阳能电池的应用范围非常广泛,包括家庭光伏发电、移动电源、太阳能灯等领域。
1. 家庭光伏发电太阳能电池是家庭光伏发电系统的核心部件。
通过安装太阳能电池板,将阳光转化为电能,可为家庭供电。
家庭光伏发电系统可以大大降低家庭的用电成本,并可以向电网卖电,从而获得额外的收益。
2. 移动电源由于太阳能电池具有无污染、可再生、安全环保等特点,因此,它也被应用于移动电源的制作。
太阳能充电器可以将阳光转化为电能,为移动电源内的电池充电。
这种移动电源不仅方便携带,而且无需外接电源即可充电。
3. 太阳能灯太阳能电池还被应用于太阳能灯的制作。
太阳能灯可以直接使用阳光来充电,无需任何外部电源,从而实现了真正的环保节能。
三、太阳能电池的优缺点太阳能电池具有很多优点,例如,它是一种可再生的能源,不会排放有害气体、无噪音、无需燃料,不会损害环境等。
但是,它也存在着一些缺点,例如,太阳能电池制造成本高、发电效率低、天气变化会影响发电效果等。
四、太阳能电池的未来发展随着环保理念的逐渐深入人心,太阳能电池已经被越来越广泛地应用于生产和生活领域,太阳能产业也愈发繁荣。
未来,太阳能电池的发展方向将是发展高效率、低成本、长寿命的太阳能电池,同时也需要在储能、转化、输送等方面进行技术创新,加速太阳能发电技术的推广和应用。
太阳能电池教案:了解太阳能电池的工作原理及应用场景
太阳能电池教案:了解太阳能电池的工作原理及应用场景引言近年来,随着人们对环境和能源问题的日益关注,太阳能电池作为清洁能源的代表,受到越来越多的关注和应用。
太阳能电池被广泛地应用在太阳能发电中,节约了大量的传统能源,成为了当代清洁能源领域的杰出代表。
那么,太阳能电池是如何工作的,它的应用场景有哪些呢?下面我们就来了解一下。
一、太阳能电池的工作原理太阳能电池是将太阳光能直接转换成直流电能的一种设备。
太阳能电池受到阳光照射的时候,就会通过半导体材料内部的PN结,将光能转换成电能,达到将太阳能转换成电能的目的。
1、太阳光的转换太阳光是由能量微粒和电磁波同时组成的一种辐射能。
太阳能电池通常采用硅等半导体材料制成。
当太阳光照射到太阳能电池上时,能量微粒会与半导体材料相互作用。
2、PN结太阳能电池内部由PN结构成,PN结具有单向导电性和半导体材料的类型相反的区域。
它分为P区和N区两个区域,其中P区富含正空穴和少量负离子,而N区则富含负电子和少量正离子。
当光子照射到PN结时,光子的能量将P区内的电子能级提升到晶格结构中的价带,与N区的导带形成电子-空穴对。
3、电荷分离PN结的电荷分离是太阳能电池的核心部分。
当光子打到PN结界面处,被电子吸收后会变得有能量,动能增加,跨越电子势垒,变成自由电子;而原子从内部排出的空穴则被吸收。
这样P区就变成了空穴富集区,N区则变成电子富集区,产生电势差,将自由电子和空穴分离。
这个过程也被称为“内建电场”。
4、电子移动PN结形成的内建电场可推动电子向前流动。
电子流向集电极后再通过电路返回太阳能电池,从而形成电流。
流向 PN 结的电子叫做电流子,流向集电极的电流叫做集电流。
当电子流过负载时,就形成了电能。
这个过程被称为太阳能电池的“工作”。
二、太阳能电池的应用场景太阳能电池具有光点深度透射、节约能源、使用寿命长等特点,被广泛建设在各种工业领域。
随着清洁能源的不断发展,太阳能电池也被广泛应用到各个领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
太阳能电池的分类简介
(1)硅太阳能电池
硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。
单晶硅太阳能电池转换效率最高,技术也最为成熟。
在实验室里最高的转换效率为24.7%,规模生产时的效率为15%(截止2011,为18%)。
在大规模应用和工业生产中仍占据主导地位,但由于单晶硅成本价格高,大幅度降
低其成本很困难,为了节省硅材料,发展了多晶硅
薄膜和非晶硅薄膜做为单晶硅太阳能电池的替代
产品。
多晶硅薄膜太阳能电池与单晶硅比较,成本低
廉,而效率高于非晶硅薄膜电池,其实验室最高转
换效率为18%,工业规模生产的转换效率为10%(截
止2011,为17%)。
因此,多晶硅薄膜电池不久
将会在太阳能电池市场上占据主导地位。
非晶硅薄膜太阳能电池成本低重量轻,转换效率较高,便于大规模生产,有极大的潜力。
但受制于其材料引发的光电效率衰退效应,稳定性不高,直接影响了它的实际应用。
如果能进一步解决稳定性问题及提高转换率问题,那么,非晶硅太阳能电池无疑是太阳能电池的主要发展产品之一。
2)多晶体薄膜电池
多晶体薄膜电池硫化镉、碲化镉多晶薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代产
品。
砷化镓(GaAs)III-V化合物电池的转换效率
可达28%,GaAs化合物材料具有十分理想的光学
带隙以及较高的吸收效率,抗辐照能力强,对热
不敏感,适合于制造高效单结电池。
但是GaAs
材料的价格不菲,因而在很大程度上限制了用
GaAs电池的普及。
(3)有机聚合物电池
以有机聚合物代替无机材料是刚刚开始的一个太阳能电池制造的研究方向。
由于有机材料柔性好,制作容易,材料来源广泛,成本低等优势,从而对大规模利用太阳能,提供廉价电能具有重要意义。
但以有机材料制备太阳能电池的研究仅仅刚开始,不论是使用寿命,还是电池效率都不能和无机材料特别是硅电池相比。
能否发展成为具有实用意义的产品,还有待于进一步研究探索。
(5)有机薄膜电池
有机薄膜太阳能电池,就是由有机材料构成核心部分的太阳能电池。
大家对有机太阳能电池不熟悉,这是情理中的事。
如今量产的太阳能电池里,95%以上是硅基的,而剩下的不到5%也是由其它无机材料制成的
6)染料敏化电池
染料敏化太阳能电池,是将一种色素附着在TiO2粒子上,然后浸泡在一种电解液中。
色素受到光的照射,生成自由电子和空穴。
自由电子被TiO2吸收,从电极流出进入外电路,再经过用电器,流入电解液,最后回到色素。
染料敏化太阳能电池的制造成本很低,这使它具有很强的竞争力。
它的能量转换效率为12%左右。
(7)塑料电池
塑料太阳能电池以可循环使用的塑料薄膜为原料,能通过“卷对卷印刷”技术大规模生产,其成本低廉、环保。
但塑料太阳能电池尚不成熟,预计在未来5年到10年,基于塑料等有机材料的太阳能电池制造技术将走向成熟并大规模投入使用。
太阳能工作原理
太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。
太阳能发电有两种方式,一种是光一热一电转换方式,另一种是光一电直接转换方式。
其中,光一电直接转换方式是利用光电效应,将太阳辐射能直接转换成电能,光一电转换的基本装置就是太阳能电池。
太阳能电池是一种大有前途的新型
电源,具有永久性、清洁性和灵活性三大优点。
太阳能电池的工作原理基础是:半导体P
—n结的光生伏打效应。
所谓光生伏打效应,
简言之,就是当物体受到光照时,物体内的电
荷分布状态发生变化而产生电动势和电流的
一种效应。
当太阳光或其他光照射半导体P—
n结时,就会在P—n结的两边出现电压,叫
光生电压。
使P.n结短路,就会产生电流。
单晶硅的原子是按照一定的规律排列的。
硅原
子的外层电子壳层中有4个电子,如图1所示。
每个原子的外层电子都有固定的位置,
并受原子核的约束。
它们在外来能量的激发下,如在太阳光辐射时,就会摆脱原子核的束缚而成为自由电子,并同时在它原来的地方留出一个空位,即半导体物理学中所谓的“空穴”。
由于电子带负电,空穴就表现为带正电。
电子和空穴就是单晶硅中可以运动的电荷。
如果在晶体硅中掺人能够俘获电子的硼、铝、镓或铟等杂质元素,那么它就成为空穴型半导体,简称P型半导体。
如果有硅晶体中掺入能够释放电子的磷、砷或锑等杂质元素,那么它就成了电子型的半导体,简称n型半导体。
若把这两种半导体结合在一起,由于电子和空穴的扩散,在交界面处便会形成p-n结,并在结的两边形成内建电场,又称势垒电场。
由于此处电
阻特别高,所以也称为阻挡层。
当太阳光照射p-n结时,在半
导体内的电子由于获得了光能而释
放电子,相应地便产生了电子——
空穴对,并在势垒电场的作用下,
电子被驱向凡型区,空穴被驱向P
型区,从而使n区有过剩的电子,P
区有过剩的空穴;是,就在p-n结
的附近形成了与势垒电场方向相反
的光生电场,如下图2所示。
光生电场的一部分抵消势垒电场,其余部分使P型区带正电,n型区带负电;于是,就使得在n区与P区之间的薄层产生了电动势,即光生伏打电动势。
接通电路时便有电能输出。
这就是P.凡结接触型单晶硅太阳能电池发电的基本原理。
若把几十个、数百个太阳能电池单体串联、并连起来,组成太阳能电池组体,在太阳光的照射下,便可获得相当可观的输出功率的电能。
太阳能电池的应用
太阳能电池的应用已从军事领域、航天领域进入工业、商业、农业、通信、家用电器以及公用设施等部门,尤其可以分散地在边远地区、高山、沙漠、海岛和农村使用,以节省造价很贵的输电线路。
但是在现阶段,它的成本还很高,发出1kW电需要投资上万美元,因此大规模使用仍然受到经济上的限制。