概率论与数理统计大数定律与中心极限定理

合集下载

概率论与数理统计第五章 大数定律及中心极限定理

概率论与数理统计第五章 大数定律及中心极限定理
解: 设Xk为第k次炮击炮弹命中的颗数(k=1,2,…,100),
在100次炮击中炮弹命中的总颗数
100
X = ∑ Xk k =1
相互独立地服从同一分布,
E(Xk)=2, D(Xk)=1.52 (k=1,2,…,100)
随机变量
∑ 1
100 × 1.5
100 k =1
(
X
k

2)
=
1 15
(
X

200)
2. 伯努利定理 事件发生的频率依概率收敛于事件的概率
3. 辛钦定理 (随机变量序列独立同分布且数学期望存在)
n个随机变量的算术平均值以概率收敛于算术 平均值的数学期望。
给出了“频率稳定性”的严格数学解释. 提供了通过试验来确定事件概率的方法. 是数理统计中参数估计的重要理论依据之一.
§5.2 中心极限定理
望 E( Xk ) = µ (k = 1,2,"),则对于任意ε > 0,有
∑ lim
n→∞
P {|
1 n
n k =1
Xk

µ
|<
ε
}
=
1
说明
伯努利大数定理是辛钦定理的特殊情
况。n个随机变量的算术平均值以概率收敛于算
术平均值的数学期望。
三 小结
1、切比雪夫(Chebyshev)定理的特殊情况 算术平均值依概率收敛于数学期望
= 1 − P { V − 100 ≤ 0.387 } (10 12 ) 20
∫ 0.387
≈ 1−
1
e − t 2 dt
−∞ 2π
= 1 −Φ (0.387) = 0.348
所以 P{V > 105} ≈ 0.348

概率第五章_大数定律与中心极限定理090505

概率第五章_大数定律与中心极限定理090505
加法法则
P ( − Eξ ε ) = ξ ≥
P(ξ ≥ Eξ + ε ) + P (ξ ≤ Eξ − ε )
k
=

k : xk ≥ E +
∑ξ ε p
k
+
k : xk ≤ E −
∑ξ ε p
pk +
k :xk ≥ E +
∑ξ ε
( x − Eξ ) 2
ε
2
k :xk ≤ E −
∑ξ ε
( x − Eξ ) 2
, 方差 Dξ n ( n = 1, 2,L),且 Dξi < l (i = 1, 2,L) 其中 l 与 i 无关的
1 Eξ = (1 + 2 + 3 + L + 6) 6
35 7 故 Eξ = Dξ = 12 2
4 2 = P (ξ = 5) + P(ξ = 6) + P (ξ = 1) + P (ξ = 2) = = 6 3 7 1 P( − 2 ) = P(ξ ≥ 5.5) + P(ξ ≤ 1.5) = P (ξ = 6) + P (ξ = 1) = ξ ≥

lim P ( − p < ε ) = 1 n →∞ n
ξ
此定理表明:当试验在不变的条件下重复进行很多次时, 随机事件的频率 频率在它的概率 概率附近摆动。 频率 概率 由贝努里大数定律可知,若事件A的概率很小很小时,则 它的频率也很小很小,即事件A很少发生或几乎不发生, 这种事件叫小概率事件。反之,若随机事件的概率很接近1, 则可认为在个别试验中这事件几乎一定发生。 同分布的两个或多个随机变量: 同分布的两个或多个随机变量 离散型: 它们的概率分布律相同. 离散型 它们的概率分布律相同 连续型: 它们的概率密度函数相同. 连续型 它们的概率密度函数相同 所以它们的期望与方差一定相同. 所以它们的期望与方差一定相同

概率论与数理统计 第五章

概率论与数理统计 第五章

Xn ⎯ ⎯→ X 2. 依概率收敛与依分布收敛的关系
依概率收敛 ⇒ 依分布收敛
L
3. 定义:中心极限定理 设随机变量 X ~ N(0,1),{Xi },i = 1, 2, … 相互独 立,且数学期望和方差都存在, 若标准化随机变量序列

n
i =1
Xi −
∑ E(X
i =1
n
i
)

n
i =1
D(X i)
所以结论成立。 由此有,若X ~ B( n, p ),对于足够大的n,有 ⎧ m1 − np X − np m2 − np ⎫ ⎪ ⎪ < ≤ P{m1 < X ≤ m2 }= P ⎨ ⎬ np(1 − p) np(1 − p) ⎪ ⎪ np(1 − p) ⎩ ⎭
⎧ Yn − np ⎫ ⎪ ⎪ ≤ x ⎬ = Φ( x ) lim P ⎨ n →∞ ⎪ np(1 − p ) ⎪ ⎩ ⎭
证明:对于任意正整数n,随机变量Yn 可表示为 证明:对于任意正整数n Yn = X1+ X2+…+ Xn X1, X2,…, Xn 相互独立,Xi ~ B( 1, p ),且有 E( Xi ) = p , D( Xi ) = p(1-p) 所以随机变量序列{ Xi }, i =1,2,…满足独立同分布 中心极限定理条件。即有
切比雪夫不等式的应用 1)估计随机变量落在某个区间内的概率 (P125例5.5.2) 2)估计ε的值, 使 P(│X - E(X)│<ε) ≥ a (0<a<1) 3)证明大数定律。
二. 大数定律 定义: 依概率收敛 设{Xn}是一个随机变量序列,X 是一个随机变量 或常数,若对于任意的ε> 0,有 lim P{| X n − X |≥ ε } = 0

概率论与数理统计第五章大数定律及中心极限定理

概率论与数理统计第五章大数定律及中心极限定理

概率论与数理统计第五章大数定律及中心极限定理课前导读概率论是研究大量试验后呈现出的统计规律性的一门理论。

数学中研究大量的工具是极限。

因此这一章学习概率论中的极限定理。

第一节大数定律随着试验次数的增大,事件的频率逐步稳定到事件的概率。

意味着随着试验次数的增多,在其中一种收敛意义下,频率的极限是概率。

大数定律解释了这一结论。

首先介绍切比雪夫不等式。

一、切比雪夫(Chebyshev)不等式随机变量X的取值总是围绕着其期望变动,若X的分布已知时,可以计算事件\{,X-E(X),\geq \epsilon \}的概率。

切比雪夫不等式:对切比雪夫不等式的直观理解:方差越小,X在其期望附近取值的密集程度越高,原理期望的区域的概率上加越小。

进一步说明了方差的概率意义,方差时随机变量取值与其中心位置的偏离程度的一种度量指标。

当随机变量X的分布未知时,可由X的观测数据估计得到X的期望和方差,然后使用切比雪夫不等式估计X关于E(X)的偏离程度。

二、依概率收敛随机变量序列即由随机变量构成的一个序列。

不能用类似定义数列极限的方式定义随机变量序列的极限,因为序列中的每一个元素X_n是随机变量,取值不确定,不可能和一个常数c的距离任意小。

只能说一些事件A发生的频率f_n(A)收敛到A的概率P(A)。

依概率收敛的定义:定理2:三、大数定律三个大数定律:切比雪夫大数定律、辛钦大数定律和伯努利大数定律。

注意这三个大数定律的条件有何异同。

定理3 切比雪夫大数定律:若随机变量序列相互不相关,方差存在且一致有上界,当n充分大时,随机序列的前n项的算术平均值和自身的期望充分接近几乎总是发生的。

定理4 相互独立同分布的大数定律(辛钦大数定律):辛钦大数定律为算术平均值法则提供了理论依据。

伯努利大数定律:伯努利大数定律是相互独立同分布大数定律的特例,限定分布为两点分布。

伯努利大数定律体现了:随着试验次数的增大,事件的频率逐步稳定到时间的概率,这里的稳定即为依概率收敛。

概率论与数理统计 第五章 大数定律与中心极限定理

概率论与数理统计 第五章 大数定律与中心极限定理
nA 一种提法是: “当 n 足够大时,频率 n 与概率 p 有较大偏差
的概率很小” ,用数学语言表达,就是要证明: 0 ,有
nA nA lim P p 0 lim P p 1 n ,或 n n . n
另一种提法是:研究随机变量 n A 的分布的极限行为,即讨 论分布函数
nA lim P p 0 lim P n n 或 n
nA p 1 . n
证 引入
1 , 第i次试验中事件A发生 Xi ,i 1 , 2 , , n , 0 , 第i次试验中事件A不发生
下面我们进一步来讨论贝努利试验.若记 n A 为 n 次贝努利试
nA 验中事件 A 发生的次数, 则事件 A 发生的频率为 n . 所谓 “频 率的稳定性” ,无非是指当试验次数 n 无限增大(即 n )时,
nA 频率 n 无限接近于某个固定常数.这个固定的常数就是“事 件 A 在一次试验中发生的的概率 p” . nA 由此可见,讨论频率 n 的极限行为,是理解概率论中最基本
2019年1月14日星期一
11 / 102
§5.1
大数定律
作为预备知识,我们先明确随机变量序列收敛的
相关概念,同时给出一个重要的不等式,它是以下理 论证明所用的主要工具之一.
定 义 1.1 设 a 是常数,对于随机变量序列 ,如果 0 ,有
X1 , X 2 ,
, Xn ,
lim P
n
个常数,即在这个常数的附近摆动,这就是所谓的“频
率稳定性”.但对这一点,至今为止我们尚未给予理论 上的说明.另外,在第二章我们给出了二项分布的泊松 逼近,那么更一般的近似计算方案又是怎样呢?

第五章 大数定律与中心极限定理 《概率论》PPT课件

第五章  大数定律与中心极限定理  《概率论》PPT课件

概率论与数理统计
§5.2 中心极限定理
2)中 心极限 定理表明,若 随 机 变 量 序 列
X 1 , X 2 , , X n 独立同分布,且它们的数学期
望及方差存在,则当n充分大时,其和的分布,
n
即 X k 都近似服从正态分布. (注意:不一定是 k 1
标准正态分布)
3)中心定理还表明:无论每一个随机变量 X k ,
概率论与数理统计
§5.1 大数定律
定理1(Chebyshev切比雪夫大数定律)
假设{ Xn}是两两不相关的随机
变量序列,EXn , DXn , n 1,2, 存在,
其方差一致有界,即 D(Xi) ≤L,
i=1,2, …, 则对任意的ε>0,
lim P{|
n
1 n
n i1
Xi
1 n
n i1
E(Xi ) | } 1.
概率论与数理统计
§5.2 中心极限定理
现在我们就来研究独立随机变量之和所 特有的规律性问题.
在概率论中,习惯于把和的分布 收敛于正态分布这一类定理都叫做中心 极限定理.
下面给出的独立同分布随机变量序 列的中心极限定理, 也称列维——林德 伯格(Levy-Lindberg)定理.
概率论与数理统计
§5.2 中心极限定理
大量的随机现象平均结果的稳定性
大量抛掷硬币 正面出现频率
生产过程中的 字母使用频率 废品率
概率论与数理统计
§5.1 大数定律
一、大数定律
阐明大量的随机现象平均结果的稳定性的一系
列定理统称为大数定律。
定义1 如果对于任意 0, 当n趋向无穷时,事件
" Xn X " 的概率收敛到1,即

大数定律与中心极限定理总结

大数定律与中心极限定理总结

大数定律与中心极限定理总结大数定律与中心极限定理是概率论与数理统计中的两个重要定理,用于描述随机变量序列的性质。

下面我将分别对这两个定理进行总结,并给出相关的参考内容。

一、大数定律大数定律是概率论中的一个基本定理,描述了随机变量序列的极限性质。

大数定律可以分为弱大数定律和强大数定律两种。

1. 弱大数定律弱大数定律是指对于一个随机变量序列,如果序列的均值存在,并且均值收敛于某个常数,那么这个序列就满足弱大数定律。

弱大数定律的代表是辛钦大数定律。

具体来说,如果一个随机变量序列X1, X2, ..., Xn,其中Xi是相互独立、同样分布的随机变量序列,它们的均值为μ,方差为σ^2。

那么对于任意给定的正数ε,有:lim(n→∞)P( |X1+X2+...+Xn)/n - μ| ≤ ε ) = 1这意味着当样本数量趋向于无穷大时,样本均值的概率逼近于1,即样本均值趋近于总体均值μ。

2. 强大数定律强大数定律是指对于一个随机变量序列,如果序列的均值存在,并且均值以概率1收敛于某个常数,那么这个序列就满足强大数定律。

强大数定律的代表是伯努利大数定律和切比雪夫大数定律。

伯努利大数定律是对于一个独立随机变量序列X1, X2, ..., Xn,其中每个随机变量取值为0或1,概率为p或1-p,那么对于任意给定的正数ε,有:lim(n→∞)P( |X1+X2+...+Xn)/n - p| ≤ ε ) = 1切比雪夫大数定律是对于一个独立随机变量序列X1, X2, ..., Xn,其具有相同的均值μ和方差σ^2,那么对于任意给定的正数ε,有:lim(n→∞)P( |X1+X2+...+Xn)/n - μ| ≤ ε ) = 1以上的大数定律说明了随机变量序列的均值具有稳定的性质,当样本数量足够大时,样本均值可以准确地反映总体均值。

二、中心极限定理中心极限定理是概率论与数理统计中的一个基本定理,描述了独立随机变量和的分布的极限性质。

概率论与数理统计----第五章大数定律及中心极限定理

概率论与数理统计----第五章大数定律及中心极限定理

= 1 − Φ(3.54)
=0.0002
一箱味精净重大于20500的概率为 的概率为0.0002. 一箱味精净重大于 的概率为
推论:
特别,若X~B(n,p),则当n充分大时, 特别, ~B(n 则当n充分大时,
X~N(np,npq) X~N(np,npq) np
若随机变量X~B( X~B(n, ),则对任意实数x有 ),则对任意实数 即 若随机变量X~B( ,p),则对任意实数 有
不等式证明 P{-1<X<2n+1}≥(2n+1)/(n+1)(n+1)
3. 设P{|X-E(X)|<ε}不小于 不小于0.9,D(X)=0.009.则用 不小于 则用
切比绍夫不等式估计ε的 最小值是( 切比绍夫不等式估计 的 最小值是
0.3 ).
4.(894) 设随机变量 的数学期望为 设随机变量X的数学期望为 的数学期望为µ, 标准差为σ,则由切比绍夫不等式 标准差为 则由切比绍夫不等式 P{|X-µ|≥3σ}≤( ). 1/9 5. 设随机变量X的分布律为 设随机变量 的分布律为 P{X=0.3}=0.2, P{X=0.6}=0.8, 用切比绍夫不等式估计 |X-E(X)|<0.2的概率 的概率. 的概率
1 n lim P ∑ Xi − µ < ε = 1 n→∞ n i =1
定理(贝努里利大数定律) 设每次实验中事件A发生的概率 定理(贝努里利大数定律) 设每次实验中事件A 为p,n次重复独立实验中事件A发生的次数为nA,则对任 次重复独立实验中事件A发生的次数为n 意的ε>0 意的ε>0 ,事件的频率 nA ,有 ε>

+∞
−∞

概率论与数理统计 五大数定理

概率论与数理统计 五大数定理

[注]: X n P → a 注: 推论(辛钦大数定律) 推论(辛钦大数定律)
X n − a P → 0
设独立随机变量 X 1 , X 2 ,⋅ ⋅ ⋅, X n 服从同一分布 并且有数学 服从同一分布, 期望 µ 及方差 σ 2, X 1 , X 2 ,⋅ ⋅ ⋅, X n 的算术平均值当 n → ∞ 则 时,按概率收敛于µ, 即对于任何正数 ε,恒有 按概率收敛于 ,
第五章 大数定理与中心极限定理
“大数定律”: 用来阐明大量随机现象平均结果稳定性的定理 大数定律” 用来阐明大量随机现象平均结果稳定性的定理. 大数定律
一、切比雪夫不等式
切比雪夫不等式: 切比雪夫不等式: 设随机变量 X 有数学期望 EX 及方差 DX, , 下列不等式成立: 则对于任何正数 则对于任何正数 ε,下列不等式成立:
2 i
n
则:E(Yn ) =
2 µi , D(Yn ) = ∑σi2 = sn . ∑
n i =1
n
i =1
i =1
∴ Z n = Yn
1 = sn

n Y n − EY n 1 n = = ∑ X i − ∑ µ i sn i =1 DY n i =1
∑ (X
i =1
n
i
− µ i ), 则有:E ( Z n ) = 0 , D ( Z n ) = 1 . 则有:
概率论中有关论证随机变量的和的极限分布是正态分布的定 概率论中有关论证随机变量的和的极限分布是正态分布的定 随机变量的和的极限分布是正态分布 是独立随机变量, 设 X 1 , X 2 ,⋅ ⋅ ⋅ , X n ,⋅ ⋅ ⋅ 是独立随机变量,并各有
EX i = µ i , DXi = σ , i = 1,2,⋅ ⋅ ⋅, n,⋅ ⋅ ⋅. 设 n = ∑Xi , Y

东华大学《概率论与数理统计》课件 第五章 大数定律与中心极限定理

东华大学《概率论与数理统计》课件 第五章 大数定律与中心极限定理

7 8.75E-06 6.2863E-05 7.19381E-05 7.28862E-05 7.2992E-05
8 3.65E-07 7.3817E-06 8.93826E-06 9.1053E-06 9.124E-06
4 0.01116 0.01494171 0.015289955 0.015324478 0.01532831
5 0.001488 0.00289779 0.003048808 0.003063976 0.00306566
6 0.000138 0.00046345 0.0005061 0.000510458 0.00051094
ln n) + 1 ( 2
ln n) = 0
Dn
=
E
2 n
=
1 2
(ln n) +
1 2
(ln n)
=
ln n

但 1
n2
n
D( i ) =
i =1
1 n2
n i =1
Di
=
1 n2
n
ln i
i =1
1 n2
n
ln n =
i =1
ln n n
→0
满足马尔可夫条件,{
}服从大数定律
n
注意: 辛钦大数定律只要求一阶矩存在,但是 随机变量序列是独立同分布的. 若所讨论的 随机变量序列是不服从同分布的要求或不独 立可应用切比雪夫大数定律 或者马尔可夫大 数定律 .
(2)设 n 为 n 次独立重复试验中 A 出现的次数, p 是事件 A 在每次试验中出现的概率, 0 ,

lim
n→
P{
n
n

p

《概率论与数理统计》课件第五章大数定律及中心极限定理

《概率论与数理统计》课件第五章大数定律及中心极限定理
有极其重要的地位?
4.大样本统计推断的理论基础
是什么?
大数定律中心极限定理
随机现象中平均结果的稳定性
大数定律的客观背景
大量抛掷硬币正面出现频率
字母使用频率
生产过程中的废品率
§5.1 大数定律
背景:1. 频率稳定性2. 大量测量结果算术平均值的稳定性
回顾
随机现象的主要研究方法
概率分布
01
证:_x001A__x001B__x001B_,_x001A__x001B__x001B_,⋯, _x001A__x001B__x001B_, ⋯相互独立同分布,则_x001A__x001B__x001B__x001B_,_x001A__x001B__x001B__x001B_, ⋯,_x001A__x001B__x001B__x001B_, ⋯也相互独立同分布,由辛钦大数定律得证.
第五章 大数定律及中心极限定理
§5.1 大数定律§5.2 中心极限定理
要点:用切比雪夫不等式估算概率独立同分布,用中心极限定理计算对于二项分布,当n很大时,计算
本章要解决的问题
1.为何能以某事件发生的频率
作为该事件的概率的估计?
2.为何能以样本均值作为总体
期望的估计?
3.为何正态分布在概率论中占
解:(1)设X表示一年内死亡的人数,则~(, ),其中=,=.%. 设Y表示保险公司一年的利润,=×−.需要求的是_x001A_<_x001B_.
由中心极限定理
_x001A_<_x001B_=_x001A_×−<_x001B_ =_x001A_>_x001B_=−_x001A_≤_x001B_
且,
由中心极限定理
解:设为第i个螺丝钉的重量, 相互独立同分布. 于是,一盒螺丝钉的重量为

第五章 大数定律与中心极限定理

第五章 大数定律与中心极限定理

( ) = ∑ X − nµ n ⋅σ D (∑ X )
n n i =1 i
lim FYn ( x) = lim P{Yn ≤ x} = Φ ( x) ,
n→∞ n →∞
(5.6)
其中 Φ ( x) 为标准正态分布函数. 由列维-林德贝格中心极限定理可得计算有关独立同分布随机变量和 的事件概率的近似 .......... 公式:
X ~ B(3000,0.001) ,E(X)=np=3,D(X)=np(1-p)=2.997.
由德莫佛-拉普拉斯中心极限定理得保险公司一年获利不小于 10000 元的概率为
P{10000 ≤ 30000 − 2000 X ≤ 30000} = P{0 ≤ X ≤ 10}
10 − 3 0−3 ≈ Φ − Φ 2.997 2.997
n x − nµ x − nµ P ∑ X i ≤ x = P Yn ≤ ≈ Φ . i =1 n ⋅σ n ⋅σ
{
}
(5.7)
例 1 设一加法器同时收到 20 个噪声电压 Vk ( k = 1,2, " ,20) ,它们是相互独立的随机变量, 且都服从区间(0,10)上的均匀分布,试求 P ∑ Vk > 105 .
第2 页 共6 页
概率论与数理统计
第五章 大数定律 与中心极限定理
定理 3 (辛钦大数定律) 设随机变量 X 1 , X 2 , " , X n , " 相互独立,服从同一分布且存在 相同的期望 E(Xi)=μ(i=1,2,…),则对任意正数ε有
1 n lim P X i − µ < ε = 1. ∑ n→∞ = 1 i n §5.2 中心极限定理

概率论与数理统计 第五章 大数定律与中心极限定理 第一节 大数定律

概率论与数理统计 第五章 大数定律与中心极限定理 第一节  大数定律

即n 取18750时,可以使得在n次独立重复 试验中, 事件A出现的频率在0.74~0.76之间的 概率至少为0.90 .
二、大数定律
在大量的随机现象中,随机事件的频率具有稳定性
例 如 , 在 n 重 贝 努 力 试 验 中 , P ( A ) p, 若 n 次 试 验 事 件 A 共 发 生 μ n次 , 则 μn n 即 为 事 件 A发 生 的 频 率 。
1
n
n
xi
依概率收敛于 即n充分大时, x
1
i 1
n
n
xi
i 1
在切比雪夫不等式中取 0.01 n,则
P (0.74
1
X
0.76)
1
= P{ |X-E(X)| <0.01n}
0.1875n
2
n D( X )
(0.01n)
2
1
1875 n
0.0001n
一、切贝谢夫不等式
依题意,取 1 解得
n 1875 n 1875 1 0.9 18750 0.9
大数定律与中心极限定理
第一节 大数定律
一、切贝谢夫不等式
一、切贝谢夫不等式
一、切贝谢夫不等式
一、切贝谢夫不等式
一、切贝谢夫不等式
练习 在每次试验中,事件A发生的概率为 0.75, 利用切比雪夫不等式求:n需要多么大时,才能使得 在n次独立重复试验中, 事件A出现的频率在0.74~0.76 之间的概率至少为0.90? 解:设X为n 次试验中,事件A出现的次数, 则 X~B(n, 0.75) E(X)=0.75n, 所求为满足 的最小的n .
D(X)=0.75*0.25n=0.1875n

自考概率论与数理统计大数定律及中心极限定理

自考概率论与数理统计大数定律及中心极限定理


是这16只元件的寿命的总和.
E(Y)=100×16=1 600,D(Y)= 160 000,
则所求概率为:
定理5.6(李雅普诺夫定理)
设随机变量 X1, X2 ,, Xn ,相互独立, 它 们具有数学期望和方差:
E(Xk ) k ,
D( Xk
)


2 k

0
(k

1,2,),
n

Bn2

0.310000k
k 6801
如果用契比雪夫不等式估计:
E( X ) np 10000 0.7 7000 D( X ) npq 10000 0.7 0.3 2100
P(6800<X<7200)=P(|X

7000|<200)
1
2100 2002

0.95
可见,虽然有10000盏灯,但是只要有供应7200盏 灯的电力就能够以相当大的概率保证够用.事实上, 契比雪夫不等式的估计只说明概率大于0.95,后面 将具体求出这个概率约为0.99999.
k1
的分布函数 Fn( x) 对于任意x 满足
lim
n
Fn
(
x
)

lim
n
P

n k 1
X
k Bn
n k 1
k


x


x

1
t2
e 2 dt


( x).


定理5.6表明:
无论各个随机变量 X1, X2 ,, Xn ,服从什么
自从高斯指出测量误差服从正态 分布之后,人们发现,正态分布在 自然界中极为常见.

中心极限定理

中心极限定理

解: 记某时在工作着的车床 数为 X, 则 X ~ B(200,0.6) .
设至少要供给这个车间r千瓦电才能以99.9%的概率 保证这个车间不会因供电不足而影响生产。由题 r k 意有: P{ X r} C200 (0.6) k (0.4) 200 k
k 0
r 200 0.6 200 0.6 ( ) ( ) 200 0.6 0.4 200 0.6 0.4
X 14 14 14 } (2). P{ X 14} P{ 0.2 0.2 X 14 1 P{ 0} 1 (0) 1 0.5 0.5 0.2
大数定律及中心极限定理
例6 一加法器同时收到20个噪声电压 Vk (k 1,2,,20) , 设它们是互相独立的随机变量,且都在区间 (0,10) 上 服从均匀分布,记 20 V Vk
n
k
E ( X k )
k 1 n
n
D ( X k )
k 1
~ N (0,1)
( n )
返回主目录
大数定律及中心极限定理
定理(德莫佛-拉普拉斯定理) (De Moivre--Laplace) 设随机变量 n (n 1,2,) 服从参数为n,p(0<p<1)的二 项分布 ,即 n ~ B(n, p).
X 1 X - 100 P{ 0.02} P{ 0.02} 600 6 600 1 5
P {X - 100 12} 1 DX 122 1 600 6 6 0.4213 144
大数定律及中心极限定理
§1 大数定律
在实践中,不仅事件发生的频率具有稳定性,还有 大量测量值的算术平均值也具有稳定性。 定义1: 设 Y1 ,, Yn , 是随机变量序列, a 是一个常数; P{| Yn a | } 1 若对任意 0 ,有: nlim P a。 则称 Y1 ,, Yn , 依概率收敛于 a ,记为Yn 定义2: 1 n 设 X 1 , , X n , 是随机变量序列,令Yn X k ,

概率论与数理统计第5章

概率论与数理统计第5章

2、定理以数学形式证明了随机变量X
1
,
X
的算术平均
n
X

1 n
n i 1
X i接近数学期望E( X k ) (k
1,2, n),这种接近
说明其具有的稳定性
这种稳定性的含义说明算术平均值是依概率收敛的意义下 逼近某一常数.
1.(2010-1)设 n 为n次独立重复试验中事件A发生的次数,p是事件
10
3.(2009 1)
设X i

0, 1,
事件A不发生 事件A发生 (i 1, 2,
,100),且P(A) 0.8,
100
X1, X 2 , , X100相互独立,令Y Xi则由中心极限定理知Y 近似服从于 i 1
正态分布,其方差为________ .
4.(2008 -10)设总体X的分布律为P{X 1} p, P{X 0} 1- p, 其中0 p 1.
P{|
m n

p
|
}1

ln im
P{|
m n

p
|

}
0
注: 贝努里大数定律表明,当重复试验次数n充分 大时,事件A发生的频率m/n与事件A的概率p有较 大偏差的概率很小.
事件发生的频率可以代替事件的概率.
5.2.2 独立同分布随机变量的切比雪夫大数定律
定理5-3
设随机变量X
1
,
X

2
,X
n
,
是独立同分布随机变量序列,
E( Xi ) , D( Xi ) 2 (i 1, 2, )均存在,则对任意 0有
lim{|
n

概率论与数理统计大数定律及中心极限定理

概率论与数理统计大数定律及中心极限定理

且具有相同的数学期望和方差:E( Xk ) ,
D( X k ) 2 (k 1, 2, ), 作前 n 个随机变量
的算术平均
X
1 n
n k 1
X
k
,
则对于任意正
数 有
lim P{| X
n
|
}
lim
n
P
1 n
n k 1
X
k
1.
表 达
{| X | }是一个随机事件, 等式表
式 明,当n 时这个事件的概率趋于1,
切比雪夫大数定律 伯努利大数定律 辛钦大数定律
一、问题的引入
实例 频率的稳定性
随着试验次数的增加, 事件发生的频率逐渐稳 定于某个常数. 单击图形播放/暂停 ESC键退出
启示:从实践 中人们发现 大量测量值 的算术平均 值有稳定性.
二、基本定理
定理一(切比雪夫大数定律)
切比雪夫
设随机变量 X1, X 2 , , X n , 相互独立,
的 即对于任意正数 ,当n充分大时, 不
意 义
等式 | X | 成立的概率很大.
lim P{| Xn|来自}limn
P
1 n
n k 1
Xk
1.
证明
E
1 n
n k 1
X
k
1 n
n k 1
E(Xk )
1 n
n
,
D
1 n
n k 1
Xk
1 n2
n k 1
D( Xk
)
1 n2
n
2
2
n
,
由切比雪夫不等式可得
P
1 n
n k 1
X
k

概率论与数理统计第四章第四节 大数定理与中心极限定理

概率论与数理统计第四章第四节 大数定理与中心极限定理

第四节 大数定理与中心极限定理概率论与数理统计是研究随机现象统计规律性的学科. 而随机现象的规律性在相同的条件下进行大量重复试验时会呈现某种稳定性. 例如, 大量的抛掷硬币的随机试验中, 正面出现频率; 在大量文字资料中, 字母使用频率; 工厂大量生产某种产品过程中, 产品的废品率等. 一般地, 要从随机现象中去寻求事件内在的必然规律, 就要研究大量随机现象的问题.在生产实践中, 人们还认识到大量试验数据、测量数据的算术平均值也具有稳定性. 这种稳定性就是我们将要讨论的大数定律的客观背景. 在这一节中,我们将介绍有关随机变量序列的最基本的两类极限定理----大数定理和中心极限定理.教学目标:了解大数定理与中心极限定理。

教学重点:大数定理与中心定理。

教学难点:中心定理。

教学内容:一、依概率收敛与微积分学中的收敛性的概念类似, 在概率论中, 我们要考虑随机变量序列的收敛性.定义1 设 ,,,,21n X X X 是一个随机变量序列, a 为一个常数,若对于任意给定的正数ε,有 ,1}|{|lim =<-∞→εa X P n n 则称序列 ,,,,21n X X X 依概率收敛于a , 记为).(∞→−→−n a X Pn定理1 设,,b Y a X Pn P n −→−−→−又设函数),(y x g 在点),(b a 连续, 则),(),(b a g Y X g Pn n −→−.二、切比雪夫不等式定理2设随机变量X 有期望μ=)(X E 和方差2)(σ=X D ,则对于任给0>ε, 有22}|{|εσεμ≤≥-X P .上述不等式称切比雪夫不等式.注:(i) 由切比雪夫不等式可以看出,若2σ越小, 则事件}|)({|ε<-X E X的概率越大, 即, 随机变量X 集中在期望附近的可能性越大. 由此可见方差刻划了随机变量取值的离散程度.(ii) 当方差已知时,切比雪夫不等式给出了X 与它的期望的偏差不小于ε的概率的估计式.如取,3σε= 则有.111.09}3|)({|22≈≤≥-σσσX E X P故对任给的分布,只要期望和方差2σ存在, 则随机变量X 取值偏离)(X E 超过σ3的概率小于0.111.三、大数定理1.切比雪夫大数定律定理3 (切比雪夫大数定律)设 ,,,,21n X X X 是两两不相关的随机变量序列,它们数学期望和方差均存在, 且方差有共同的上界, 即,,2,1,)( =≤i K X D i 则对任意0>ε, 有1)(11lim 11=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<-∑∑==∞→εn i i n i i n X E n X n P 注: 定理表明: 当n 很大时,随机变量序列}{n X 的算术平均值∑=ni i X n 11依概率收敛于其数学期望∑=ni i X E n 1)(1.2.伯努利大数定理定理4 (伯努利大数定律)设A n 是n 重伯努利试验中事件A 发生的次数, p 是事件A 在每次试验中发生的概率, 则对任意的0>ε, 有1lim =⎭⎬⎫⎩⎨⎧<-→∞εp n n P A n 或 0l i m =⎭⎬⎫⎩⎨⎧≥-→∞εp n n P A n . 注:(i) 伯努利大数定律是定理1的推论的一种特例, 它表明: 当重复试验次数n 充分大时, 事件A 发生的频率nn A依概率收敛于事件A 发生的概率p .定理以严格的数学形式表达了频率的稳定性. 在实际应用中, 当试验次数很大时,便可以用事件发生的频率来近似代替事件的概率.(ii) 如果事件A 的概率很小,则由伯努利大数定律知事件A 发生的频率也是很小的,或者说事件A 很少发生. 即“概率很小的随机事件在个别试验中几乎不会发生”,这一原理称为小概率原理,它的实际应用很广泛. 但应注意到,小概率事件与不可能事件是有区别的. 在多次试验中,小概率事件也可能发生.3.辛钦大数定理 定理5 (辛钦大数定律) 设随机变量 ,,,,21n X X X 相互独立, 服从同一分布,且具有数学期望,,2,1,)( ==i X E i μ 则对任意0>ε, 有11lim 1=⎭⎬⎫⎩⎨⎧<-∑=∞→εμn i i n X n P . 注: (i) 定理不要求随机变量的方差存在;(ii) 伯努利大数定律是辛钦大数定律的特殊情况;(iii) 辛钦大数定律为寻找随机变量的期望值提供了一条实际可行的途径. 例如, 要估计某地区的平均亩产量, 可收割某些有代表性的地块, 如n 块,计算其平均亩产量, 则当n 较大时,可用它作为整个地区平均亩产量的一个估计. 此类做法在实际应用中具有重要意义.四、中心极限定理在实际问题中, 许多随机现象是由大量相互独立的随机因素综合影响所形成, 其中每一个因素在总的影响中所起的作用是微小的. 这类随机变量一般都服从或近似服从正态分布. 以一门大炮的射程为例, 影响大炮的射程的随机因素包括: 大炮炮身结构的制造导致的误差, 炮弹及炮弹内炸药在质量上的误差, 瞄准时的误差, 受风速、风向的干扰而造成的误差等. 其中每一种误差造成的影响在总的影响中所起的作用是微小的, 并且可以看成是相互独立的, 人们关心的是这众多误差因素对大炮射程所造成的总影响. 因此需要讨论大量独立随机变量和的问题.中心极限定理回答了大量独立随机变量和的近似分布问题, 其结论表明: 当一个量受许多随机因素(主导因素除外) 的共同影响而随机取值, 则它的分布就近似服从正态分布.1.林德伯格—勒维定理定理6 (林德伯格—勒维) 设 ,,,,21n X X X 是独立同分布的随机变量序列, 且,,,2,1,)(,)(2n i X D X E i i ===σμ则 ⎰∑∞--=∞→=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-x t n i i n dt e x n n X P 2/1221lim πσμ 注: 定理6表明: 当n 充分大时, n 个具有期望和方差的独立同分布的随机变量之和近似服从正态分布. 虽然在一般情况下, 我们很难求出n X X X +++ 21的分布的确切形式, 但当n 很大时, 可求出其近似分布. 由定理结论有.1),/,(~)1,0(~/1)1,0(~1211∑∑∑====⇒-⇒-n i i ni i ni i X n X n N X N nX n N n n X σμσμσμ近似近似故定理又可表述为: 均值为μ, 方差的02>σ的独立同分布的随机变量 ,,,,21n X X X 的算术平均值X , 当n 充分大时近似地服从均值为μ,方差为n /2σ的正态分布. 这一结果是数理统计中大样本统计推断的理论基础.2. 棣莫佛—拉普拉斯定理在第二章中,作为二项分布的正态近似,我们曾经介绍了棣莫佛—拉普拉斯定理,这里再次给出,并利用上述中心极限定理证明之.定理7(棣莫佛—拉普拉斯定理)设随机变量n Y 服从参数p n ,)10(<<p 的二项分布, 则对任意x , 有)(21)1(lim 22x dt e x p np np Y P x tn n Φ==⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--⎰∞--∞→π注: 易见,棣莫佛—拉普拉斯定理就是林德伯格—勒维定理的一个特殊情况.3.用频率估计概率的误差设n μ为n 重贝努里试验中事件A 发生的频率, p 为每次试验中事件A 发生的概率,,1p q -=由棣莫佛—拉普拉斯定理,有⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<-<-=⎭⎬⎫⎩⎨⎧<-pq n npqnp pq nP p n P n n εμεεμ .12-⎪⎪⎭⎫ ⎝⎛Φ=⎪⎪⎭⎫ ⎝⎛-Φ-⎪⎪⎭⎫ ⎝⎛Φ≈pq n pq n pq n εεε这个关系式可用解决用频率估计概率的计算问题:4. 李雅普诺夫定理定理8(李雅普诺夫定理) 设随机变量 ,,,,21n X X X 相互独立, 它们具有数学期望和方差: ,2,1,0)(,)(2=>==i X D X E kk k k σμ,记.122∑==nk k nB σ 若存在正数δ, 使得当∞→n 时,,0}|{|1122→-∑=++nk k knXE Bδδμ则随机变量之和∑=n k k X 1的标准化变量:nnk kn k kn k k n k k nk k n B X X D X E X Z ∑∑∑∑∑=====-=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=11111μ的分布函数)(x F n 对于任意x , 满足).(21lim )(lim 2/112x dt e x B X P x F x t n n k k n k k n n n Φ==⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤-=⎰∑∑∞--==∞→∞→πμ注:定理8表明, 在定理的条件下, 随机变量.11nnk kn k kn B X Z ∑∑==-=μ当n 很大时,近似地服从正态分布)1,0(N . 由此, 当n 很大时,∑∑==+=nk k n n nk k Z B X 11μ近似地服从正态分布⎪⎪⎭⎫ ⎝⎛∑=21,n n k k B N μ.这就是说,无论各个随机变量),2,1( =k X k 服从什么分布,只要满足定理的条件,那么它们的和∑=nk k X 1当n 很大时,就近似地服从正态分布.这就是为什么正态随机变量在概率论中占有重要地位的一个基本原因.在很多问题中,所考虑的随机变量可以表示成很多个独立的随机变量之和,例如,在任一指定时刻,一个城市的耗电量是大量用户耗电量的总和;一个物理实验的测量误差是由许多观察不到的、可加的微小误差所合成的,它们往往近似地服从正态分布.例题选讲:切比雪夫不等式例1(讲义例1)在每次试验中, 事件A发生的概率为0.75, 利用切比雪夫不等式求: 事件A出现的频率在0.74~0.76之间的概率至少为0.90?中心极限定理例2(讲义例2) 一盒同型号螺丝钉共有100个,已知该型号的螺丝钉的重量是一个随机变量,期望值是100g标准差是10g, 一盒螺丝钉的重量超过10.2kg的概率.例3 (讲义例3)计算机在进行数学计算时,遵从四舍五入原则。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学引入:在第一章,我们提到过事件发生的频率具有稳定性,即随着试验次数的增加,事件发生的频率逐渐稳定于某个常数。在实践中,人们还认识到大量测量值的算术平均值也具有稳定性。这种稳定性就是本节所要讨论的大数定律的客观背景。
本节介绍三个定理,他们分别反映了算术平均值及频率的稳定性。
△一、切贝谢夫不等式
1、定理内容:
随机变量 ,数学期望 ,方差 ,则对 有:
2、概念解析:定理的另一种形式
3、例题应用
若废品率为0.03,利用切贝谢夫不等式估计1000个产品中废品多于20少于40的概率。
4、不等式的局限性
对于随机变量 ,可由不等式估计
10’
30’
内容(其中:重点划“△”,难点划“﹡”)
课时分配
但根据第二章的 原则可知
则对于 ,
4、辛钦大数定律
设 是一个相互独立同分布的随机变量序列,且期望存在,
即 ,则对于 有
三、本节内容总结
1、三大定律之间的关系
2、大数定律的一般定义
设 是一个随机变量序列,即
若存在常数列 ,即
使得对于 均有
则称随机变量序列 服从大数定律。
3、依概率收敛
10’
课后心得
但是,当 很大时, 却是很小的,即使如上述 当 时 ,
也就是说,当 时
2、贝努里大数定律
设 是n次独立重复试验中事件A发生的次数。p是事件A在每次试验中发生的概率,则对于任意正数 ,有

30’
内容(其中:重点划“△”,难点划“﹡”)
课时分配
3、切贝谢夫大数定律
设 是一个两两不相关的随机变量序列,设它们的方差均有界即存在常数 有
河北金融学院教案
课程名称:概率论与数理统计
教材名称:《概率论与数理统计》
出版单位:中国质检出版社
出版时间:20教案编写人:尹亮亮
授课专业(班级):10物流本、10国贸本、
10保险本
授课时间:2011年9月—2012年1月
河北金融学院课程教案
授课教师: 授课班级: 授课时间:
故切贝谢夫不等式估计精度不够,但理论引用却很强,下面的三大大数定律均是由不等式加以证明的
﹡二、大数定律
1、引入:设 事件在一次实验中发生的概率为 ,共进行了 次试验,其中事件 发生了 次,则事件 在 次试验中的频率为 ,当 时,频率会逐渐稳定与概率,但并非
该极限意味着 在变化过程中,对于 而言,总会有不等式 成立。然而, 是随机的,在实验过程中, 即每次试验事件均发生这一结果是有可能出现的,此时 ,从而即使 特别小 ,无论 多大,也无法保证当 时不等式 成立,所以极限关系不一定正确。
课 题
§5.1大数定律的概念§5.2切贝谢夫不等式§5.3切贝谢夫定理
教学基本
要求与目标
了解大数定律的实际意义及三大定律之间的联系;
掌握切贝谢夫不等式的内容及利用不等式估计随机变量区间概率的方法
方法与手段
讲解与练习相结合
实践性环节
课堂练习
课外要求
完成课后习题
内容(其中:重点划“△”,难点划“﹡”)
课时分配
相关文档
最新文档