一元二次方程根的分布作业
一元二次不等式的解法含参不等式恒成立问题及根的分布
范围是
.
第7页/共27页
题型与解法
(四)一元二次方程根的分布问题
例3 分别求使方程x2-mx-m+3=0的两根满足下列条
件的m值的集合:
(1)两根都大于0;
x=m/2
(2)一个根大于0,另一个根小于0;
(3)两根都小于1.
x1
x2
解:令f(x)=x2-mx-m+3且图像与x轴相交
则△=m2-4(-m+3)=(m+6)(m-2)≥0
.
3.已知关于 x 的方程 x2 (m 2)x 1 0 无正根,
求 m 的取值范围.
第16页/共27页
题型与解法
(三)逆向问题
例2.已知不等式 ax2 bx 2 0 的解集为 ( 1 , 1), 求a-b 的值.
23
[思路分析] 由不等式 ax2 bx 2 0 对应的方程 ax2 bx 2 0 的两根为 1 , 1 , 可利用二次方程
两个根都在(k1 , k2 )内
x1<k1 < k2 <x2
y
y
k1 o k2 x
ok1 k2
x
0
k1
b 2a
k2
f
(k1 )
0
f (k2 ) 0
f f
(k1 ) (k2 )
0 0
第15页/共27页
题型与解法
(四)一元二次方程根的分布问题 1.已知方程 x2 2mx m 12 0 .
(A) x 3a或x 4a (B) 3a x 4a
(C) 4a x 3a (D) 3a x 4a
第22页/共27页
课堂练习
3.(1)不等式ax2+bx+2>0的解集是
一元二次方程根的分布例题
例6.2.已知抛物线y = 2x2-mx+m与直角坐标平面上两点(0,0), (1,1)为端点 的线段(除去两个端点)有公共点,求m的取值范围. 解:以(0,0), (1,1)为端点的线段所在直线为y=x,代入抛物线方程得:
x = 2x2-mx+m 即 2x2-(m+1)x+m=0, ① 由题意,方程①在区间(0, 1)上有实根,令f(x) = 2x2-(m+1)x+m,则 当且仅当 f(0)·f(1)<0或 m<0或 m≤3-2且m≠0. 故m的取值范围为 (-, 0)∪(0, 3-2]. 例6.3.设关于的方程R), (1)若方程有实数解,求实数b的取值范围; (2)当方程有实数解时,讨论方程实根的个数,并求出方程的 解。 分析:可用换元法,设,原方程化为二次方程,但要注意,故原方程有 解并不等价于方程有解,而等价于方程在内有解.另外,方程有解的问 题也可以通过参变分离转化为求值域的问题,它的原理是:若关于的方 程有解,则的值域. 解:(1)原方程为, , 时方程有实数解; (2)①当时,,∴方程有唯一解; ②当时,. 的解为; 令 的解为; 综合①、②,得 1)当时原方程有两解:; 2)当时,原方程有唯一解; 3)当时,原方程无解。 变式:已知方程在上有两个根,求的取值范围. 解:令,当时,. 由于是一一映射的函数,所以在上有两个值,则在上有两个对应的 值.因而方程在(0,2)上有两个不等实根,其充要条件为
例6.2.已知抛物线y = 2x2-mx+m与直角坐Байду номын сангаас平面上两点(0,0), (1,1)为端点 的线段(除去两个端点)有公共点,求m的取值范围.
例6.3.设关于的方程R), (1)若方程有实数解,求实数b的取值范围; (2)当方程有实数解时,讨论方程实根的个数,并求出方程的
一元二次方程根的分布问题
一元二次方程根的分布问题一元二次方程的两根就是相应二次函数的图象与x 轴的交点的横坐标,因此在讨论方程的根的分布时,一定要分析方程对应的函数图象与坐标轴的交点情况,列出等价的不等式(组)求解。
在列不等式组时,一般情况下需要从三个方面考虑:①判别式;②区间端点函数值的正负;③对称轴与区间端点的关系,有时也可以利用韦达定理。
1. 判别式我们知道,对于一元二次方程ax 2+bx +c =0(a ≠0),用配方法可以将其变形为2224()24b b acx a a-+=. ① 因为a ≠0,所以,4a 2>0.于是(1)当b 2-4ac >0时,方程①的右端是一个正数,因此,原方程有两个不相等的实数根x 1,2=2b a-;(2)当b 2-4ac =0时,方程①的右端为零,因此,原方程有两个等的实数根 x 1=x 2=-2b a; (3)当b 2-4ac <0时,方程①的右端是一个负数,而方程①的左边2()2b x a+一定大于或等于零,因此,原方程没有实数根.由此可知,一元二次方程ax 2+bx +c =0(a ≠0)的根的情况可以由b 2-4ac 来判定,我们把b 2-4ac 叫做一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式,通常用符号“Δ”来表示.2.韦达定理如果ax 2+bx +c =0(a ≠0)的两根分别是x 1,x 2,那么x 1+x 2=b a -,x 1·x 2=c a.这一关系也被称为韦达定理.3. 一元二次方程02=++c bx ax 根的分布情况设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为c bx ax x f ++=2)(,方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面表(每种情况对应的均是充要条件)表一:(两根与0的大小比较即根的正负情况)k k k根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧12,x m x n <>,(图形分别如下)需满足的条件是(1)0a >时,()()00f m f n <⎧⎪⎨<⎪⎩; (2)0a <时,()()0f m f n >⎧⎪⎨>⎪⎩4.例题例 1.已知2(3)0x m x m +-+=,分别求方程的根满足下列条件下的m 的取值范围:(1)两个正根; (2)两个负根; (3)两根都小于1; (4)两根都大于1; (5)一根大于1,一根小于1;(6)两根都在区间(0,2)内; (7)两根有且仅有一个在区间(0,2)内;解:(1)由1212000,0200b x x a x x c a ⎧⎪∆>∆>⎧⎪⎪⎪->+>⎨⎨⎪⎪>⎩⎪>⎪⎩即,得01m <≤。
微专题11 二次函数根的分布问题(解析版)
微专题11二次函数根的分布问题【方法技巧与总结】1、实系数一元二次方程20(0)ax bx c a ++=≠的实根符号与系数之间的关系(1)方程有两个不等正根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=->⎨⎪⎪=>⎪⎩(2)方程有两个不等负根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=-<⎨⎪⎪=>⎪⎩(3)方程有一正根和一负根,设两根为12,x x ⇔120cx x a=<2、一元二次方程20(0)ax bx c a ++=≠的根的分布问题一般情况下需要从以下4个方面考虑:(1)开口方向;(2)判别式;(3)对称轴2bx a=-与区间端点的关系;(4)区间端点函数值的正负.设12,x x 为实系数方程20(0)ax bx c a ++=>的两根,则一元二次20(0)ax bx c a ++=>的根的分布与其限定条件如表所示.根的分布图像限定条件12m x x <<02()0b m a f m ∆>⎧⎪⎪->⎨⎪⎪>⎩12x m x <<()0f m <12x x m<<02()0b m a f m ∆>⎧⎪⎪-<⎨⎪⎪>⎩在区间(,)m n 内没有实根∆<12120x x m x x m∆==≤=≥或02()0b m a f m ∆>⎧⎪⎪-<⎨⎪⎪≥⎩02()0b n a f n ∆>⎧⎪⎪->⎨⎪⎪≥⎩()0()0f m f n ≤⎧⎨≤⎩在区间(,)m n 内有且只有一个实根()0()0f m f n >⎧⎨<⎩()0()0f mf n<⎧⎨>⎩在区间(,)m n内有两个不等实根2()0()0bm naf mf n∆>⎧⎪⎪<-<⎪⎨⎪>⎪>⎪⎩【题型归纳目录】题型一:正负根问题题型二:根在区间的分布问题题型三:整数根问题题型四:范围问题【典型例题】题型一:正负根问题例1.(2022·河南·郑州市回民高级中学高一阶段练习)已知m为实数,命题甲:关于x的不等式240mx mx+-<的解集为R;命题乙:关于x的方程22200x mx m-++=有两个不相等的负实数根.若甲、乙至少有一个为真命题,求实数m的取值范围为_______.【答案】(20,0]-【解析】由命题甲:关于x的不等式240mx mx+-<的解集为R,当0m=时,不等式40-<恒成立;当0m≠时,则满足2160mm m<⎧⎨∆=+<⎩,解得160m-<<,综上可得160m-<≤.由命题乙:关于x的方程22200x mx m-++=有两个不相等的负实数根,则满足2121244(20)020200m m x x m x x m ⎧∆=-+>⎪+=<⎨⎪=+>⎩,整理得2200020m m m m ⎧-->⎪<⎨⎪>-⎩,所以45020m m m m <->⎧⎪<⎨⎪>-⎩或,解得204m -<<-.所以甲、乙至少有一个为真命题时,有160m -<≤或204m -<<-,可得200m -<≤,即实数m 的取值范围为(20,0]-.故答案为:(20,0]-.例2.(2022·全国·高一单元测试)关于x 的方程2210ax x ++=的实数根中有且只有一个负实数根的充要条件为____________.【答案】0a ≤或1a =【解析】若方程2210ax x ++=有且仅有一个负实数根,则当0a =时,12x =-,符合题意.当0a ≠时,方程2210ax x ++=有实数根,则440a ∆=-≥,解得1a ≤,当1a =时,方程有且仅有一个负实数根1x =-,当1a <且0a ≠时,若方程有且仅有一个负实数根,则10a<,即0a <.所以当0a ≤或1a =时,关于x 的方程2210ax x ++=的实数根中有且仅有一个负实数根.综上,“关于x 的方程2210ax x ++=的实数根中有且仅有一个负实数根”的充要条件为“0a ≤或1a =”.故答案为:0a ≤或1a =.例3.(2022·甘肃·兰化一中高一阶段练习)若一元二次方程2330kx kx k ++-=的两根都是负数,求k 的取值范围为___________.【答案】125k ≤-或3k >【解析】首先0k ≠,设方程2330kx kx k ++-=的两根为12,x x ,则12121200,00x x x x x x +<⎧<<⇔⎨>⎩,所以2Δ94(3)03030k k k kkk k⎧⎪=--≥⎪⎪-<⎨⎪-⎪>⎪⎩,又0k ≠,解得125k ≤-或3k >.故答案为:125k ≤-或3k >.例4.(2022·全国·高一专题练习)已知关于x 的二次方程2(21)210m x mx m +-+-=有一正数根和一负数根,则实数m 的取值范围是_____.【答案】112m -<<【解析】由题意知,二次方程有一正根和一负根,得2101021m m m +≠⎧⎪-⎨<⎪+⎩,解得112m -<<.故答案为:112m -<<例5.(2022·河南·高一阶段练习)(1)若不等式210ax bx +-<的解集是113x x ⎧⎫-<<⎨⎬⎩⎭∣,求,a b 的值;(2)若31b a =--,且关于x 的方程210+-=ax bx 有两个不同的负根,求a 的取值范围.【解析】(1)由题意可得1-和13是方程210+-=ax bx 的两个实根,则11,31113b a a ⎧-+=-⎪⎪⎨-⎪-⨯=⎪⎩解得3,2a b ==.(2)因为31b a =--,所以()23110ax a x -+-=,由题可知Δ0>,则1a <-或19a >-,由题意,方程有两个负根,即310,10,a a a +⎧<⎪⎪⎨-⎪>⎪⎩解得103-<<a .综上,实数a 的取值范围是109aa ⎧⎫-<<⎨⎬⎩⎭∣.例6.(2022·辽宁·沈阳市第八十三中学高一阶段练习)已知1x 、2x 是一元二次方程24410kx kx k -++=的两个实数根.(1)若1x 、2x 均为正根,求实数k 的取值范围;(2)是否存在实数k ,使得()()12123222x x x x --=-成立?若存在,求出k 的值;若不能存在,请说明理由.【解析】(1)由题意,一元二次方程有两个正根1x 、2x 故20,(4)16(+1)0k k k k ≠∆=-≥,即0k ≤,且121210104x x k x x k +=>⎧⎪+⎨=>⎪⎩,解得:1k <-.(2)由题意,当0∆≥,即0k ≤时,有121211,4k x x x x k++==()()2221212121212129(1)93222+252()92442k k x x x x x x x x x x x x k k ++--=-=+-=-=-=-解得:95k =,与0k ≤矛盾.故不存在实数k ,使得()()12123222x x x x --=-成立题型二:根在区间的分布问题例7.(2022·全国·高一专题练习)已知一元二次方程x 2+ax +1=0的一个根在(0,1)内,另一个根在(1,2)内,则实数a 的取值范围为________.【答案】5(,2)2--【解析】设f (x )=x 2+ax +1,由题意知(0)10(1)20(2)520f f a f a =>⎧⎪=+<⎨⎪=+>⎩,解得-52<a <-2.故答案为:5(,2)2--.例8.(2022·全国·高一课时练习)已知关于x 的方程220x x a -+=.(1)当a 为何值时,方程的一个根大于1,另一个根小于1?(2)当a 为何值时,方程的一个根大于1-且小于1,另一个根大于2且小于3?(3)当a 为何值时,方程的两个根都大于0?【解析】(1)二次函数22y x x a =-+的图象是开口向上的抛物线,故方程220x x a -+=的一个根大于1,另一个根小于1,则2120a -+<,解得1a <,所以a 的取值范围是{}1a a <.(2)方程220x x a -+=的一个根大于1-且小于1,另一个根大于2且小于3,作满足题意的二次函数22y x x a =-+的大致图象,由图知,120120440960a a a a ++>⎧⎪-+<⎪⎨-+<⎪⎪-+>⎩,解得30a -<<.所以a 的取值范围是{}30a a -<<.(3)方程220x x a -+=的两个根都大于0,则Δ4400a a =-≥⎧⎨>⎩,解得01a <≤,所以a 的取值范围是{}01a a <≤.例9.(2022·全国·高一专题练习)已知关于x 的一元二次方程2220x ax a -++=,当a 为何值时,该方程:有不同的两根且两根在(1,3)内.【解析】令2()22f x x ax a =-++,因为方程2220x ax a -++=有不同的两根且两根在(1,3)内,所以213Δ44(2)0(1)30(3)1150a a a f a f a <<⎧⎪=-+>⎪⎨=->⎪⎪=->⎩,解得1125<<a ,故答案为:112,5⎛⎫⎪⎝⎭例10.(2022·江苏·高一专题练习)已知二次函数()2221R y x tx t t =-+-∈.(1)若该二次函数有两个互为相反数的零点,解不等式22210x tx t -+-≥;(2)若关于x 的方程22210x tx t -+-=的两个实根均大于2-且小于4,求实数t 的取值范围.【解析】(1)设二次函数()2221y x tx t t =-+-∈R 的两个零点分别为1x ,2x ,由已知得120x x +=,而122x x t +=,所以20t =,故0=t ,不等式22210x tx t -+-≥即210x -≥,解得1≥x 或1x ≤-,故不等式的解集为{1x x ≥或}1≤-x .(2)因为方程22210x tx t -+-=的两个实根均大于2-且小于4,所以()()()()222222Δ2t 4t 102t 422t 2t 1042t 4t 10⎧=---≥⎪⎪-<<⎨⎪--⨯-+->⎪-⨯+->⎩,即2240244308150t t t t t ≥⎧⎪-<<⎪⎨++>⎪⎪-+>⎩,解得:13t -<<,即实数t 的取值范围为{}13t t -<<.例11.(2022·全国·高一单元测试)求实数m 的范围,使关于x 的方程()221 260.x m x m +-++=(1)有两个实根,且一个比2大,一个比2小;(2)有两个实根 αβ,,且满足014αβ<<<<;(3)至少有一个正根.【答案】(1)1m <-(2)7554m -<<-(3)1m ≤-【分析】设()()22126y f x x m x m ==+-++,一元二次方程根的分布主要从对称轴、判别式、端点值、开口方向这几个方面来确定.(1)设()()22126y f x x m x m ==+-++.依题意有()20f <,即()441260m m +-++<,得1m <-.(2)设()()22126y f x x m x m ==+-++.依题意有()()()02601450410140f m f m f m ⎧=+>⎪=+<⎨⎪=+>⎩,解得7554m -<<-.(3)设()()22126y f x x m x m ==+-++.方程至少有一个正根,则有三种可能:①有两个正根,此时可得()()Δ0002102f m ⎧⎪≥⎪⎪>⎨⎪-⎪>⎪-⎩,即153.311m m m m m ≤-≥⎧⎪>-∴-<≤-⎨⎪<⎩或.②有一个正根,一个负根,此时可得()00f <,得3m <-.③有一个正根,另一根为0,此时可得()6203210m m m +=⎧∴=-⎨-<⎩,.综上所述,得1m ≤-.例12.(2022·上海市七宝中学高一阶段练习)方程()2271320x a x a a -++--=的一个根在区间()0,1上,另一个根在区间()1,2上,则实数a 的取值范围为___________.【答案】()()2,13,4--【解析】令()()227132f x x a x a a =-++--,因为程()2271320x a x a a -++--=的一个根在区间()0,1上,另一个根在区间()1,2上,所以()()()001020f f f ⎧>⎪<⎨⎪>⎩,即()22220713202821320a a a a a a a a ⎧-->⎪--+--<⎨⎪-++-->⎩,解得21a -<<-或34a <<,所以实数a 的取值范围为()()2,13,4--.故答案为:()()2,13,4--.例13.(2022·全国·高一专题练习)关于x 的方程()2140x a x --+=在区间[]1,3内有两个不等实根,则实数a 的取值范围是_____.【答案】16(5,]3【解析】关于x 的方程()2140x a x --+=在区间[]1,3内有两个不等实根,令()()214f x x a x =--+,则有()()()2Δ1160113216031630a a f a f a ⎧=-->⎪-⎪<<⎪⎨⎪=-≥⎪=-≥⎪⎩,解得1653a <≤,所以实数a 的取值范围是16(5,]3.故答案为:16(5,]3例14.(2022·全国·高一单元测试)方程()2250x a x a --+-=的两根都大于2,则实数 a 的取值范围是_____.【答案】54a -<≤-【解析】由题意,方程()2250x a x a +=---的两根都大于 2,令()()225f x x a x a =+---,可得()020222f a⎧⎪≥⎪>⎨⎪-⎪>⎩,即2165024a a a ⎧≥⎪+>⎨⎪->⎩,解得54a <≤--.故答案为:54a -<≤-.例15.(2022·全国·高一专题练习)已知关于x 的方程220ax x ++=的两个实根一个小于0,另一个大于1,则实数a 的取值范围是_____.【答案】()3,0-【解析】显然0a ≠,关于x 的方程220ax x ++=对应的二次函数()22f x ax x =++当0a >时,二次函数()22f x ax x =++的图象开口向上,因为220ax x ++=的两个实根一个小于0,另一个大于1等价于二次函()22f x ax x =++的图象与x 轴的两个零点一个小于0,另一个大于1,所以()()0010f f ⎧<⎪⎨<⎪⎩,即2030a <⎧⎨+<⎩,解得a ∈∅;②当0a <时,二次函数()22f x ax x =++的图象开口向下,因为220ax x ++=的两个实根一个小于0,另一个大于1等价于二次函()22f x ax x =++的图象与x 轴的两个零点一个小于0,另一个大于1,所以()()0010f f ⎧>⎪⎨>⎪⎩,即2030a >⎧⎨+>⎩,解得30a -<<.;综上所述,实数a 的范围是()3,0-.故答案为:()3,0-.例16.(2022·全国·高一专题练习)已知方程()()22110x a x a a -+++=的两根分别在区间()0,1,()1,3之内,则实数a 的取值范围为______.【答案】()0,1.【解析】方程()()()()2211010x a x a a x a x a ⎡⎤+++=⇒--+=⎣⎦-∴方程两根为12,1x a x a ==+,若要满足题意,则01113a a <<⎧⎨<+<⎩,解得01a <<,故答案为:()0,1.例17.(2022·上海·高一专题练习)方程2240x ax -+=的两根均大于1,则实数a 的取值范围是_______【答案】5[2,)2【解析】2240x ax -+=的两个根都大于121520Δ4160a a a >⎧⎪∴->⎨⎪=-≥⎩,解得522a ≤<可求得实数a 的取值范围为5[2,2故答案为:5[2,)2例18.(2022·湖北·华中师大一附中高一开学考试)关于x 的方程()2290ax a x a +++=有两个不相等的实数根12,x x ,且121x x <<,那么a 的取值范围是()A .2275a -<<B .25a >C .27a <-D .2011a -<<【答案】D【解析】当0a =时,()2290ax a x a +++=即为20x =,不符合题意;故0a ≠,()2290ax a x a +++=即为22190x x a ⎛⎫+++= ⎪⎝⎭,令2219y x x a ⎛⎫=+++ ⎪⎝⎭,由于关于x 的方程()2290ax a x a +++=有两个不相等的实数根12,x x ,且121x x <<,则()229y ax a x a =+++与x 轴有两个交点,且分布在1的两侧,故1x =时,0y <,即211190a ⎛⎫++⨯+< ⎪⎝⎭,解得211a<-,故2011a -<<,故选:D例19.(2022·全国·高一课时练习)关于x 的方程()22210x m x m +-+-=恰有一根在区间()0,1内,则实数m 的取值范围是()A .13,22⎡⎤⎢⎥⎣⎦B .12,23⎛⎤ ⎥⎝⎦C .1,22⎡⎫⎪⎢⎣⎭D.{12,623⎛⎤⋃- ⎥⎝⎦【答案】D【解析】方程2(2)210x m x m +-+-=对应的二次函数设为:()2(2)21f x x m x m =+-+-因为方程2(2)210x m x m +-+-=恰有一根属于(0,1),则需要满足:①()()010f f ⋅<,()()21320m m --<,解得:1223m <<;②函数()f x 刚好经过点()0,0或者()1,0,另一个零点属于(0,1),把点()0,0代入()2(2)21f x x m x m =+-+-,解得:12m =,此时方程为2302x x -=,两根为0,32,而()30,12∉,不合题意,舍去把点()1,0代入()2(2)21f x x m x m =+-+-,解得:23m =,此时方程为23410x x -+=,两根为1,13,而()10,13∈,故符合题意;③函数与x 轴只有一个交点,横坐标属于(0,1),()2(2)4210m m ∆=---=,解得6m =±当6m =+2(2)210x m x m +-+-=的根为2-若6m =-2(2)210x m x m +-+-=2,符合题意综上:实数m的取值范围为{12,623⎛⎤⋃- ⎥⎝⎦故选:D题型三:整数根问题例20.(2022·上海市实验学校高一开学考试)已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根.(1)是否存在实数k ,使得()()12123222x x x x --=-成立?若存在,求出k 的值;若不存在,请说明理由;(2)求使12212x x x x +-的值为整数的实数k 的整数值.【解析】(1)假设存在实数k ,使得()()12123222x x x x --=-成立,一元二次方程24410kx kx k -++=的两个实数根,()2400Δ(4)441160k k k k k k ≠⎧∴⇒<⎨=--⋅+=-⎩,(不要忽略判别式的要求),由韦达定理得1212114x x k x x k +=⎧⎪+⎨=⎪⎩,()()()()2221212121212129322252942k x x x x x x x x x x x x k +∴--=+-=+-=-=-,95k ⇒=但0k <,∴不存在实数k ,使得()()12123222x x x x --=-成立.(2)()22212121221121244224411x x x x x x k x x x x x x k k +++-==-=-=-++,∴要使其值是整数,只需要1k +能被4整除,故1124k +=±±±,,,即021335k =---,,,,,,0k <,235k ∴=---,,.例21.(2022·上海·高三专题练习)已知,a Z ∈关于x 的一元二次不等式260x x a -+≤的解集中有且仅有3个整数,则所有符合条件的a 的值之和是()A .13B .18C .21D .26【答案】C【解析】设2()6f x x x a =-+,其图象为开口向上,对称轴为3x =的抛物线,根据题意可得,3640a ∆=->,解得9a <,因为()0f x ≤解集中有且仅有3个整数,结合二次函数的对称性可得(2)0(1)0f f ≤⎧⎨>⎩,即4120160a a -+≤⎧⎨-+>⎩,解得58a <≤,又,a Z ∈所以a =6,7,8,所以符合题意的a 的值之和6+7+8=21.故选:C例22.(多选题)(2022·全国·高一课时练习)已知a ∈Z ,关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则a 的值可以是()A .5B .6C .7D .9【答案】BC【解析】设()26f x x x a =-+,函数图象开口向上,且对称轴为3x =,因此关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数时,需满足()()2010f f ⎧≤⎪⎨>⎪⎩,即2226201610a a ⎧-⨯+≤⎨-⨯+>⎩,解得58a <≤,又因为a ∈Z ,所以6a =或7或8,故选:BC.例23.(2022·全国·高一专题练习)若方程()22460x kx x --+=有两个不相等的实根,则k 可取的最大整数值是______.【答案】1【解析】方程化为()221860k x x --+=,由()Δ6424210k =-->,12k ≠解得116k <,所以k 最大整数值是1.故答案为:1.题型四:范围问题例24.(2022·上海·高一专题练习)已知t 是实数,若a ,b 是关于x 的一元二次方程2210x x t -+-=的两个非负实根,则()()2211a b --的最小值是___________.【答案】3-【解析】a ,b 是关于x 的一元二次方程2210x x t -+-=的两个非负实根,∴可得2a b +=,10ab t =-≥,1t ∴≥,又()4410t ∆=--≥,可得2t ≤,12t ∴≤≤,又()()()()()()222222211121a b ab a b ab a b ab --=-++=-+++()()()()2221114211a b t t ∴--=--+-+,24t =-,又12t ≤≤,2340t ∴-≤-≤,故答案为:3-.例25.(2022·吉林省实验中学高一阶段练习)设方程240x mx m -+=的两实根分别为12,x x .(1)当1m =时,求1211+x x 的值;(2)若120,0x x >>,求实数m 的取值范围及124x x +的最小值.【解析】(1)当1m =时,方程为2410x x -+=,2(4)4120∆=--=>,所以12124,1x x x x +=⋅=,122112114x x x x x x ∴+⋅+==.(2)因为240x mx m -+=两根120,0x x >>,所以21212Δ1640400m m x x m x x m ⎧=-≥⎪+=>⎨⎪⋅=>⎩,解得14m ≥.因为12124x x x x +=,120,0x x >>,所以12114x x +=,所以211212121241111194(4)()(5)54444x x x x x x x x x x ⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭,当且仅当21124x x x x =,即1233,48x x ==时等号成立,此时91324m =>符合题意,124x x ∴+的最小值为94.例26.(2022·北京海淀·高一期末)已知函数()22f x x bx c =++(b ,c 为实数),()()1012f f -=.若方程()0f x =有两个正实数根1x ,2x ,则1211+x x 的最小值是()A .4B .2C .1D .12【答案】B【解析】因为函数()22f x x bx c =++(b ,c 为实数),()()1012f f -=,所以1012200288b c b c +=++-,解得4b =-,所以()224f x x x c -+=,因为方程()0f x =有两个正实数根1x ,2x ,所以()Δ168000c f c =-≥⎧⎨=>⎩,解得02c <≤,所以121212112422x x c x x x x c =++==≥,当c =2时,等号成立,所以其最小值是2,故选:B例27.(2022·江苏·高一)已知关于x 的方程230x kx k -++=有两个正根,那么两个根的倒数和最小值是()A .-2B .23C .89D .1【答案】B【解析】由题意可得∆2()4(3)0k k =--+ ,解得6k 或2k ≤-,设两个为1x ,2x ,由两根为正根可得12120·30x x k x x k +=>⎧⎨=+>⎩,解得0k >,综上知,6k .故两个根的倒数和为12121211x x x x x x ++=1331k k k==++,6k ,∴1106k < ,3102k < ,故33112k <+,∴12331k+,故两个根的倒数和的最小值是23.故选:B例28.(2022·上海·华师大二附中高一期中)已知实数a b <,关于x 的不等式()210x a b x ab -+++<的解集为()12,x x ,则实数a 、b 、1x 、2x 从小到大的排列是()A .12a x x b <<<B .12x a b x <<<C .12a x b x <<<D .12x a x b<<<【答案】A【解析】由题可得:12x x a b +=+,121x x ab =+.由a b <,12x x <,设1x a m =+,则2x b m =-.所以212()()()1a m b m ab m b a m ab x x =+-=+--=+,所以2()1m b a m --=,21m m b a+=-.又a b <,所以0b a ->,所以0m >.故1x a >,2x b <.又12x x <,故12a x x b <<<.故选:A.例29.(2022·福建厦门·高一期末)已知函数()()11f x x x a =-⋅--,a R ∈.(1)若0a =,解不等式()1f x <;(2)若函数()f x 恰有三个零点1x ,2x ,3x ,求123111x x x ++的取值范围.【解析】(1)当0a =时,原不等式可化为()120x x -⋅-<…①.(ⅰ)当0x ≥时,①式化为220x x --<,解得12x -<<,所以02x ≤<;(ⅱ)当0x <时,①式化为220x x -+>,解得x ∈R ,所以0x <.综上,原不等式的解集为(),2-∞.(2)依题意,()()()2211,11,x a x a x af x x a x a x a ⎧-++--<⎪=⎨-++-≥⎪⎩.因为()10f a =-<,且二次函数()211y x a x a =-++-开口向上,所以当x a ≥时,函数()f x 有且仅有一个零点.所以x a <时,函数()f x 恰有两个零点.所以()()()21,21410,10.a a a a f a +⎧<⎪⎪⎪=+-+>⎨⎪=-<⎪⎪⎩解得3a >.不妨设123x x x <<,所以1x ,2x 是方程()2110x a x a -++--=的两相异实根,则12121,1x x a x x a +=+⎧⎨=+⎩,所以121212111x x x x x x ++==.因为3x 是方程()2110x a x a -++-=的根,且312a x +>,由求根公式得3x =因为函数()g a ()3,+∞上单调递增,所以()332x g >=31012x <<-.所以123111x x x ++.所以a 的取值范围是21,22⎛- ⎝⎭.【过关测试】一、单选题1.(2022·江苏·高一专题练习)已知p :a m <(其中R a ∈,m ∈Z ),q :关于x 的一元二次方程2210ax x ++=有一正一负两个根.若p 是q 的充分不必要条件,则m 的最大值为()A .1B .0C .1-D .2【答案】C【解析】因为2210ax x ++=有一正一负两个根,所以224010a a ⎧∆=->⎪⎨<⎪⎩,解得0a <.因为p 是q 的充分不必要条件,所以0m <,且m ∈Z ,则m 的最大值为1-.故选:C2.(2022·江苏·高一专题练习)已知方程2(2)50x m x m +-+-=有两个不相等的实数根,且两个实数根都大于2,则实数m 的取值范围是()A .(5,4)(4,)--+∞B .(5,)-+∞C .(5,4)--D .(4,2)(4,)--+∞【答案】C【解析】令()2(2)5mf x m x x =+-+-由题可知:()()()()2Δ02450442222242250520m m m m m m m m m m f >⎧⎧--⨯->><-⎧⎪⎪-⎪⎪>⇒<-⇒<-⎨⎨⎨⎪⎪⎪+-⨯+->>-⎩>⎩⎪⎩或则54m -<<-,即(5,4)m ∈--故选:C3.(2021·北京·北师大实验中学高一期中)设方程2610x x -+=的两个不等实根分别为12,x x ,则12||x x -=()A .3B .6C.D.【答案】D【解析】2610x x -+=,364320∆=-=>,故121261x x x x +=⎧⎨=⎩,12||x x -===.故选:D.4.(2021·江苏·高一课时练习)设a 为实数,若方程220x ax a -+=在区间(1,1)-上有两个不相等的实数解,则a 的取值范围是().A .(,0)(1,)-∞⋃+∞B .(1,0)-C .1,03⎛⎫- ⎪⎝⎭D .1,0(1,)3⎛⎫-+∞ ⎪⎝⎭【答案】C【解析】令2()2g x x ax a =-+,由方程220x ax a -+=在区间(1,1)-上有两个不相等的实数解可得244011(1)0(1)0a a a g g ⎧∆=->⎪-<<⎪⎨->⎪⎪>⎩,即011131a a a a <⎧⎪-<<⎪⎪⎨>-⎪⎪<⎪⎩或111131a a a a >⎧⎪-<<⎪⎪⎨>-⎪⎪<⎪⎩,解得103-<<a ,故选:C5.(2022·全国·高一课时练习)一元二次方程()22100ax x a ++=≠有一个正实数根和一个负实数根的一个充分不必要条件是()A .0a <B .0a >C .1a <-D .2a <【答案】C【解析】由题意,不妨设2()21f x ax x =++,因为(0)10=>f ,且()22100ax x a ++=≠有一个正实数根和一个负实数根,所以2()21f x ax x =++的图像开口向下,即0a <,故对于选项ABCD ,只有C 选项:1a <-是0a <的充分不必要条件.故选:C.6.(2021·四川·树德中学高一阶段练习)设集合{}2320A x x x =-+<,集合{}2210B x ax x =--=,若A B ⋂≠∅,则实数a 的取值范围是()A .34,43⎡⎫⎪⎢⎣⎭B .5,34⎛⎫ ⎪⎝⎭C .3,4⎡⎫+∞⎪⎢⎣⎭D .(1,)+∞【答案】B【解析】由题意,{}2320{|12}A x x x x x =-+<=<<若AB ⋂≠∅,即方程2210ax x --=存在根在区间(1,2)(1)若102102a x x =∴--=∴=-,不成立;(2)若0a ≠,由于0x =不为方程的根,故0x ≠,则222221211210(1)1x ax x a x x x x+--=⇔==+=+-由于21115(1,2)(,1)(1)1(,3)24x x x ∈∴∈∴+-∈综上,实数a 的取值范围是5,34⎛⎫⎪⎝⎭故选:B7.(2022·全国·高一课时练习)要使关于x 的方程()22120x a x a +-+-=的一根比1大且另一根比1小,则实数a 的取值范围是()A .{}12a a -<<B .{}21a a -<<C .{}2a a <-D .{}1a a >【答案】B【解析】由题意可得()2211220a a a a +-+-=+-<,解得21a -<<.故选:B.8.(2021·甘肃·天水市第一中学高一阶段练习)已知一元二次方程2(1)10()x m x m Z +++=∈有两个实数根1x ,2x ,且12013x x <<<<,则m 的值为()A .4-B .5-C .6-D .7-【答案】A【解析】因为元二次方程2(1)10()x m x m Z +++=∈有两个实数根1x ,2x ,且12013x x <<<<,令2()(1)1f x x m x =+++,则由题意可得(0)0(1)0(3)0f f f >⎧⎪<⎨⎪>⎩,即10,30,1330,m m >⎧⎪+<⎨⎪+>⎩解得1333m -<<-,又m Z ∈,可得4m =-.故选:A 二、多选题9.(2022·江苏南通·高一开学考试)已知不等式20(0)x ax b a ++>>的解集是{}|x x d ≠,则下列四个结论中正确的是().A .24a b=B .若不等式2+x ax b c +<的解集为(3,1)-,则7a b c ++=C .若不等式20x ax b +-<的解集为12(,)x x ,则120x x >D .若不等式2x ax b c ++<的解集为12(,)x x ,且12||4x x -=,则4c =【答案】ABD【解析】由题意,不等式20(0)x ax b a ++>>的解集是{}|x x d ≠,所以240a b ∆=-=,24a b ∴=,所以A 正确;对于B :2+x ax b c +<变形为2+0x ax b c +-<,其解集为(3,1)-,所以231 314 a b c a b -+=-⎧⎪-⨯=-⎨⎪=⎩,得214a b c =⎧⎪=⎨⎪=⎩,故7a b c ++=成立,所以B 正确;对于C :若不等式20x ax b +-<的解集为12(,)x x ,由韦达定理知:21204a x xb =-=-<,所以C 错误;对于D :若不等式2x ax bc ++<的解集为12(,)x x ,即20x ax b c ++-<的解集为12(,)x x ,由韦达定理知:21212,4a x x a x x b c c +=-=-=,则12||4x x -==,解得4c =,所以D 正确.故选:D.10.(2021·江苏·海安高级中学高一阶段练习)一元二次方程240x x m -+=有正数根的充分不必要条件是()A .4m =B .5m =C .1m =D .12=-m 【答案】ACD【解析】设()24f x x x m =-+,则二次函数()f x 的图象的对称轴为2x =.当4m =时,方程即()224420x x x -+=-=,求得2x =,满足方程有正根,但由方程240x x m -+=有正数根,可得()240f m =-≤,即4m ≤,故4m =是方程240x x m -+=有正数根的充分不必要条件,故A 满足条件;当5m =时,方程即()224521x x x -+=-=-,求得x ∈∅,不满足方程有正实数根,故5m =不是方程240x x m -+=有正数根的充分条件,故排除B .当1m =时,方程即()224123x x x -+=-=,求得2=±x 但由方程240x x m -+=有正数根,可得()240f m =-≤,即4m ≤,故1m =方程240x x m -+=有正数根的充分不必要条件,故C 满足条件;当12=-m 时,方程即24120x x --=,求得2x =-,或6x =,满足方程有正根,但由方程240x x m -+=有正数根,可得()240f m =-≤,即4m ≤,故12=-m 方程240x x m -+=有正数根的充分不必要条件,故D 满足条件,故选:ACD .11.(2022·湖南湖南·高一期末)若方程220x x λ++=在区间()1,0-上有实数根,则实数λ的取值可以是()A .3-B .18C .14D .1【答案】BC【解析】由题意22x x λ=--在(1,0)-上有解.∵(1,0)x ∈-,∴222(1)1(0,1)x x x λ=--=-++∈,故选:BC .12.(2021·全国·高一专题练习)已知关于x 的方程()230x m x m +-+=,则下列结论中正确的是()A .方程()230x m x m +-+=有一个正根一个负根的充要条件是{}0m m m ∈<B .方程()230x m x m +-+=有两个正实数根的充要条件是{}01m m m ∈<≤C .方程()230x m x m +-+=无实数根的充要条件是{}1m m m ∈>D .当m =3时,方程()230x m x m +-+=的两个实数根之和为0【答案】AB【解析】对A ,当0x =时,函数2(3)y x m x m =+-+的值为m ,由二次函数的图象知,方程有一正一负根的充要条件是{}|0m m m ∈<,故A 正确;对B ,若方程()230x m x m +-+=有两个正实数根1x ,2x ,即()2121234030,0,m m x x m x x m ⎧∆=--≥⎪+=->⎨⎪=>⎩解得:01m <≤,故B 正确;对C ,方程()230x m x m +-+=无实数根,即()2340m m ∆=--<,解得:19m <<,方程()230x m x m +-+=无实数根的充要条件是{}19m m m ∈<<,故C 错误;对D ,当3m =时,方程为230x +=,无实数根,故D 错误.故答案为:AB.13.(2021·江苏·高一专题练习)已知一元二次方程()()21102x m x m Z +++=∈有两个实数根12,x x ,且12013x x <<<<,则m 的值为()A .-2B .-3C .-4D .-5【答案】BC 【解析】设()()2112f x x m x =+++,由12013x x <<<<,可得()()()()10200110110230193102f f m f m ⎧>⎪⎧>⎪⎪⎪<⇒+++<⎨⎨⎪⎪>⎩⎪+++>⎪⎩,解得:25562m -<<-,又因为m Z ∈,得3m =-或4m =-,故选:BC.三、填空题14.(2022·安徽省蚌埠第三中学高一开学考试)关于x 的方程210x ax ++=的一根大于1,一根小于1,则a 的取值范围是:__________________.【答案】a <-2【解析】∵关于x 的方程210x ax ++=的一根大于1,另一根小于1,令2()1=++f x x ax ,则(1)20f a =+<,求得2a <-,故答案为:2a <-15.(2021·北京师大附中高一期中)若关于x 的一元二次方程2240x ax -+=有两个实根,且一个实根小于1,另一个实根大于2,则实数a 的取值范围是________.【答案】(52,+∞)【解析】设2()24f x x ax =-+,由题意2Δ4160(1)1240(2)4440a f a f a ⎧=->⎪=-+<⎨⎪=-+<⎩,解得52a >,故答案为:5(,)2+∞.16.(2021·上海·复旦附中高一期中)若关于x 的方程220x kx -+=的一根大于-1,另一根小于-1,则实数k 的取值范围为______.【答案】(),3-∞-【解析】由题意,关于x 的方程220x kx -+=的一根大于-1,另一根小于-1,设()22f x x kx =-+,根据二次函数的性质,可得()130f k -=+<,解得3k <-,所以实数k 的取值范围为(),3-∞-.故答案为:(),3-∞-.17.(2020·上海·高一专题练习)已知集合()(){}2|320,A x x x x x R =-+-≤∈,{}2|120,B x x ax x R =--≤∈,若A B ⊆,则实数a 的取值范围是______________.【答案】[]1,1-【解析】由()()2320x x x -+-≤,得23020x x x ⎧-≥⎪⎨+-≤⎪⎩或23020x x x ⎧-≤⎪⎨+-≥⎪⎩,解得13x ≤≤,所以集合{|31A x x =-≤≤-或}13x ≤≤,因为A B ⊆,令()212f x x ax =--,则()()3030f f ⎧-≤⎪⎨≤⎪⎩,即9312093120a a +-≤⎧⎨--≤⎩,解得11a -≤≤,所以实数a 的取值范围是[]1,1-故答案为:[]1,1-四、解答题18.(2022·全国·高一期中)命题:p 关于x 的方程20x x m ++=有两个相异负根;命题():0,q x ∃∈+∞,2390x mx -+<.(1)若命题q 为假命题,求实数m 的取值范围;(2)若这两个命题有且仅有一个为真命题,求实数m 的取值范围.【解析】(1)若命题q 为假命题,则对()0,x ∀∈+∞,2390x mx -+≥为真命题;239mx x ∴≤+,即93m x x ≤+;96x x +≥(当且仅当9x x =,即3x =时取等号),36m ∴≤,解得:2m ≤,∴实数m 的取值范围为(],2-∞.(2)由(1)知:若命题q为真命题,则2m >;若命题p 为真命题,则Δ1400m m =->⎧⎨>⎩,解得:104m <<;若p 真q 假,则104m <<;若p 假q 真,则2m >;综上所述:实数m 的取值范围为()10,2,4⎛⎫+∞ ⎪⎝⎭.19.(2022·湖南·高一课时练习)若一元二次方程2570x x a --=的一个根在区间()1,0-内,另一个根在区间()1,2内,求实数a 的取值范围.【解析】令2()57f x x x a =--,则根据题意得(1)057012(0)000(1)0202(2)0201406f a a f a a f a a f a a ->⇒+->⇒<⎧⎪<⇒-⇒⎪⎨<⇒--⇒-⎪⎪>⇒-->⇒<⎩,∴06a <<.故实数a 的取值范围(0,6).20.(2021·辽宁·昌图县第一高级中学高一期中)1.已知()()2213f x x a x =+-+.(1)如果方程()0f x =在()0,3有两个根,求实数a 的取值范围;(2)如果[]1,2x ∃∈,()0f x >成立,求实数a 的取值范围.【解析】(1)()()2213f x x a x =+-+的对称轴为1x a=-要想方程()0f x =在()0,3有两个根,需要满足()()()100001330f a f a f ⎧-<⎪>⎪⎨<-<⎪⎪>⎩解得:(1,1a ∈--(2)[]1,2x ∃∈,()22130x a x +-+>成立,即3122x a x ⎛⎫->-+ ⎪⎝⎭在[]1,2x ∈上有解,只需1a -大于()322x g x x ⎛⎫=-+ ⎪⎝⎭的最小值,其中()322x g x x ⎛⎫=-+ ⎪⎝⎭为对勾函数,在x ⎡∈⎣上单调递增,在)x ∈上单调递减,又()131222g ⎛⎫=-+=- ⎪⎝⎭,()2372244g ⎛⎫=-+=- ⎪⎝⎭,所以最小值为()12g =-故12a ->-,解得:1a >-,实数a 的取值范围为()1,-+∞21.(2021·上海市七宝中学高一阶段练习)设二次函数()2f x ax bx c =++,其中R a b c ∈、、.(1)若()21,94b a c a =+=+,且关于x 的不等式()28200-+<x x f x 的解集为R ,求a 的取值范围;(2)若Z a b c ∈、、,且()()01f f 、均为奇数,求证:方程()0f x =无整数根;(3)若21,21,a b k c k ==-=,当方程()0f x =有两个大于1的不等根时求k 的取值范围.【解析】(1)∵()22820440x x x -+=-+>∴()()221940f x ax a x a =++++<在R 上恒成立∵0a ≠,则()()20Δ414940a a a a <⎧⎪⎨=+-+<⎪⎩,解得12a <-综上所述:a 的取值范围为1,2⎛⎫-∞- ⎪⎝⎭.(2)∵()()0,1f c f a b c ==++,则c 为奇数,a b +为偶数当Z x ∈时,则有:1.若a b 、均为偶数时,则2ax bx +为偶数∴()20f x ax bx c =++≠,即方程()0f x =无整数根2.若a b 、均为奇数时,则有①若x 为偶数时,则2ax bx +为偶数∴()20f x ax bx c =++≠,即方程()0f x =无整数根②若x 为奇数时,则()2ax bx x ax b +=+为偶数∴()20f x ax bx c =++≠,即方程()0f x =无整数根综上所述:方程()0f x =无整数根(3)()()2221f x x k x k =+-+由题意可得()()222Δ21402112120k k k f k k ⎧=-->⎪-⎪->⎨⎪=+>⎪⎩,解得2k <-则k 的取值范围为(),2∞--.。
不等式专题:一元二次方程根的分布问题-【题型分类归纳】高一数学上学期同步讲与练(解析版)
一元二次方程根的分布问题一、二次函数相关知识对于形如()20=++≠y ax bx c a 的二次函数,有以下性质:1、判别式:ac b 42-=∆;求根公式:aacb b x 242-±-=;2、韦达定理:a b x x -=+21,acx x =21;3、二次函数对称轴a b x 2-=,定点坐标(a b 2-,ac b ac 442-).二、一元二次方程根的0分布方程的根相对于零的关系。
比如二次方程有一正根,有一负根,其实就是指这个二次方程一个根比零大,一个根比零小,或者说,这两个根分布在零的两侧.0分布结合判别式,韦达定理以及0处的函数值列不等式,即可求出参数的取值范围。
三、一元二次方程根的k 分布k x k x <<21,k x k x >>21,21x k x <<()0∆>⎧⎩()0∆>⎧⎩0∆>0∆>kkk∆>()0f m⎧> 0∆>⎧题型一 R 上根的分布情况【例1】设k 为实数,若关于x 的一元二次方程210x kx k +++=没有实数根,则k 的取值范围是___.【答案】(222,222-+.【解析】∵关于x 的一元二次方程210x kx k +++=没有实数根∴()2Δ410k k =-+<∴2440k k --<解得:222222k -<<+【变式1-1】关于x 的方程()2210mx m x m +++=有两个不等的实根,则m 的取值范围是( )A .1,4⎛⎫-+∞ ⎪⎝⎭B .1,4⎛⎫-∞- ⎪⎝⎭C .1,4⎡⎤-+∞⎢⎥⎣⎦D .()1,00,4⎛⎫-+∞ ⎪⎝⎭【答案】D【解析】因为关于x 的方程()2210mx m x m +++=有两个不等的实根0m ≠且>0∆,即:()22214410m m m +-=+>且0m ≠, 解得14m >-且0m ≠.故选:D.【变式1-2】关于x 的一元二次方程2310kx x +-=有实根,则k 的取值范围是( ) A .94k ≤- B .94k ≥-且0k ≠ C .94k ≥- D .94k >-且0k ≠【答案】B【解析】由题可知:240k +≥△=3,所以94k ≥-,又因为0k ≠,所以94k ≥-且0k ≠.故选:B.【变式1-3】若关于x 的一元二次方程2(1)0x m x m -+-=有两个不相等的实根,则m 的取值范围为( ) A .()(),232232,-∞---++∞ B .()322322---+,C .()(),322322,-∞---++∞ D .()232232---+,【答案】C【解析】由关于x 的一元二次方程2(1)0x m x m -+-=有两个不相等的实根,所以2(1)40m m ∆=++=,即26+10m m +> 解得:322m >-+或322m <--故选:C.题型二 根的“0”分布【例2】若关于x 的方程2210ax ax -+=有两个不同的正根,则实数a 的取值范围是( ) A .()0,1 B .()0,∞+ C .()1,+∞ D .(),0-∞ 【答案】C【解析】因为关于x 的方程2210ax ax -+=有两个不同的正根,所以2044010a a a a ⎧⎪≠⎪∆=->⎨⎪⎪>⎩,解得1a >,故实数a 的取值范围是()1,+∞.故选:C【变式2-1】若一元二次方程2330kx kx k ++-=的两根都是负数,求k 的取值范围为___________. 【答案】125k ≤-【解析】首先0k ≠,设方程2330kx kx k ++-=的两根为12,x x ,则12121200,00x x x x x x +<⎧<<⇔⎨>⎩,所以2Δ94(3)03030k k k kkk k⎧⎪=--≥⎪⎪-<⎨⎪-⎪>⎪⎩,又0k ≠,解得125k ≤-.故答案为:125k ≤-.【变式2-2】已知关于x 的二次方程2(21)210m x mx m +-+-=有一正数根和一负数根,则实数m 的取值范围是_____. 【答案】112m -<<【解析】由题意知,二次方程有一正根和一负根,得2101021m m m +≠⎧⎪-⎨<⎪+⎩,解得112m -<<.【变式2-3】一元二次方程24260x mx m -++=有两个不等的非正根,则实数m 的范围为( ) A .30m -<< B .31m -<≤- C .31m -≤<- D .312m -≤≤ 【答案】C【解析】因为一元二次方程24260x mx m -++=有两个不等的非正根,2164(26)020260m m m m ⎧∆=-+>⎪<⎨⎪+≥⎩,解得31m -≤<-,故选:C【变式2-4】若方程()2250x m x m ++++=只有正根,则m 的取值范围是( )A .4m ≤-或4m ≥B .54m -<≤-C .54m -≤≤-D .52m -<<- 【答案】B【解析】方程()2250x m x m ++++=只有正根,则1()当()()22450m m ∆=+-+=,即4m =±时,当4m =-时,方程为()210x -=时,1x =,符合题意;当4m =时,方程为()230x +=时,3x =-不符合题意.故4m =-成立;2()当()()22450m m ∆=+-+>,解得4m <-或4m >,则()()()224502050m m m m ⎧∆=+-+>⎪-+>⎨⎪+>⎩,解得54m -<<-. 综上得54m -<≤-.故选B.题型三 根的“k ”分布【例3】已知方程2(2)50x m x m +-+-=有两个不相等的实数根,且两个实数根都大于2,则实数m 的取值范围是( )A .(5,4)(4,)--+∞B .(5,)-+∞C .(5,4)--D .(4,2)(4,)--+∞ 【答案】C【解析】令()2(2)5m f x m x x =+-+-由题可知:()()()()2Δ02450442222242250520m m m m m m m m m m f >⎧⎧--⨯->><-⎧⎪⎪-⎪⎪>⇒<-⇒<-⎨⎨⎨⎪⎪⎪+-⨯+->>-⎩>⎩⎪⎩或 则54m -<<-,即(5,4)m ∈--,故选:C【变式3-1】方程2240x ax -+=的两根均大于1,则实数a 的取值范围是_______ 【答案】5[2,)2【解析】2240x ax -+=的两个根都大于121520Δ4160a a a >⎧⎪∴->⎨⎪=-≥⎩,解得522a ≤<可求得实数a 的取值范围为5[2,)2,故答案为:5[2,)2【变式3-2】若关于x 的方程220x kx -+=的一根大于-1,另一根小于-1,则实数k 的取值范围为______. 【答案】(),3-∞-【解析】由题意,关于x 的方程220x kx -+=的一根大于-1,另一根小于-1,设()22f x x kx =-+,根据二次函数的性质,可得()130f k -=+<,解得3k <-, 所以实数k 的取值范围为(),3-∞-.【变式3-3】若关于x 的方程20x x a ++=的一个根大于1、另一个根小于1,则实数a 的取值范围为_____. 【答案】(,2)-∞-【解析】关于x 的方程20x x a ++=的一个根大于1、另一个根小于1,令2()f x x x a =++,则()120f a =+<,解得2a <-,题型四 根在区间上的分布【例4】关于x 方程2210ax x --=在01x <<内恰有一解,则( ) A .1a <- B .1a > C .11a -<< D .01a <≤ 【答案】B【解析】当0a =时,1(0,1)x =-∉,不合题意;∴0a ≠,令2()21f x ax x =--,有(0)1f =-,(1)2(1)f a =-, 要使()f x 在01x <<内恰有一个零点, ∴(0)(1)0f f <即可,则1a >,故选:B【变式4-1】(多选)已知一元二次方程()()21102x m x m Z +++=∈有两个实数根12,x x ,且12013x x <<<<,则m 的值为( )A .-2B .-3C .-4D .-5【答案】BC【解析】设()()2112f x x m x =+++,由12013x x <<<<,可得()()()()10200110110230193102f fm f m ⎧>⎪⎧>⎪⎪⎪<⇒+++<⎨⎨⎪⎪>⎩⎪+++>⎪⎩,解得:25562m -<<-, 又因为m Z ∈,得3m =-或4m =-,故选:BC.【变式4-2】若关于x 的一元二次方程2240x ax -+=有两个实根,且一个实根小于1,另一个实根大于2,则实数a 的取值范围是________. 【答案】(52,+∞) 【解析】设2()24f x x ax =-+,由题意2Δ4160(1)1240(2)4440a f a f a ⎧=->⎪=-+<⎨⎪=-+<⎩,解得52a >,故答案为:5(,)2+∞.【变式4-3】已知一元二次方程x 2+ax +1=0的一个根在(0,1)内,另一个根在(1,2)内,则实数a 的取值范围为________. 【答案】5(,2)2--【解析】设f (x )=x 2+ax +1,由题意知(0)10(1)20(2)520f f a f a =>⎧⎪=+<⎨⎪=+>⎩,解得-52<a <-2.【变式4-4】关于x 的方程()22210x m x m +-+-=恰有一根在区间()0,1内,则实数m 的取值范围是( )A .13,22⎡⎤⎢⎥⎣⎦ B .12,23⎛⎤ ⎥⎝⎦ C .1,22⎡⎫⎪⎢⎣⎭ D .{12,623⎛⎤⋃- ⎥⎝⎦【答案】D【解析】方程2(2)210x m x m +-+-=对应的二次函数设为:()2(2)21f x x m x m =+-+-因为方程2(2)210x m x m +-+-=恰有一根属于(0,1),则需要满足: ①()()010f f ⋅<,()()21320m m --<,解得:1223m <<; ②函数()f x 刚好经过点()0,0或者()1,0,另一个零点属于(0,1),把点()0,0代入()2(2)21f x x m x m =+-+-,解得:12m =,此时方程为2302x x -=,两根为0,32,而()30,12∉,不合题意,舍去 把点()1,0代入()2(2)21f x x m x m =+-+-,解得:23m =,此时方程为23410x x -+=,两根为1,13,而()10,13∈,故符合题意; ③函数与x 轴只有一个交点,横坐标属于(0,1),()2(2)4210m m ∆=---=,解得6m =±当6m =+2(2)210x m x m +-+-=的根为2- 若6m =-2(2)210x m x m +-+-=2,符合题意综上:实数m 的取值范围为{12,623⎛⎤⋃- ⎥⎝⎦,故选:D【变式4-5】关于x 的一元二次方程2210x kx k ++-=在区间(1,2)-内、外各有一个实数根,则实数k 的取值范围是___________. 【答案】3,04⎛⎤- ⎥⎝⎦【解析】2210x kx k ++-=在区间(1,2)-内、外各有一个实数根,令()221f x x kx k =++-,当1,2x x =-=不是方程的根时,所以()()()24210120k k f f ⎧∆=-->⎪⎨-⋅<⎪⎩,解得:304k -<<;当1x =-是方程的根时,得12100k k k -+-=⇒=, 此时方程变为:210x -=,解得:1x =或1x =-,1x =在区间(1,2)-内,1x =-在区间(1,2)-外,符合题意;当2x =是方程的根时,得3422104k k k ++-=⇒=-,此时方程变为:23344210x x ⎛⎫+⨯-= ⎪⎝⎭--,解得:2x =或54x =-, 此时方程的两根均在区间(1,2)-外,不符合题意;所以实数k 的取值范围是3,04⎛⎤- ⎥⎝⎦.。
一元二次方程在给定区间上的根的分布典例讲解
一元二次方程在给定区间上的根的分布典例讲解资料编号:202011202213例题 在“①∅=A ,②A 恰有两个子集,③∅≠⎪⎭⎫⎝⎛2,21 A ”这三个条件中任选一个,补充在下列横线上,求解下列问题. 已知集合{}0122=+-=x mx x A . (1)若A ∉1,求实数m 的取值范围;(2)若集合A 满足__________,求实数m 的取值范围. 解:(1)若A ∈1,则012=+-m ,解之得:1=m . ∵A ∉1∴实数m 的取值范围是{}1≠m m ; (2)若选①:∅=A .当0=m 时,012=+-x ,解之得:21=x ,⎭⎬⎫⎩⎨⎧=21A ,不符合题意; 当0≠m 时,则有:()0422<--=∆m ,解之得:1>m . 综上所述,实数m 的取值范围是()+∞,1. 若选②: A 恰有两个子集. ∵A 恰有两个子集 ∴集合A 中只有一个元素. 当0=m 时,012=+-x ,解之得:21=x ,⎭⎬⎫⎩⎨⎧=21A ,符合题意; 当0≠m 时,则有:()0422=--=∆m ,解之得:1=m . 综上所述,实数m 的取值集合为{}1,0.若选③:∅≠⎪⎭⎫⎝⎛2,21 A .∵∅≠⎪⎭⎫⎝⎛2,21 A∴关于x 的方程0122=+-x mx 在区间⎪⎭⎫⎝⎛2,21内有解,显然,0≠m .(当0=m 时,∅=⎪⎭⎫⎝⎛⎭⎬⎫⎩⎨⎧=2,2121 A ,不符合题意)问题等价于当⎪⎭⎫ ⎝⎛∈2,21x 时,求函数1111222+⎪⎭⎫ ⎝⎛--=-=x x x m 的值域. ∵⎪⎭⎫ ⎝⎛∈2,21x ,∴⎪⎭⎫⎝⎛∈2,211x . ∴(]1,0∈m .∴实数m 的取值范围为(]1,0.另解分析 我们也可以采用“正难则反”的解题策略,来求解选择③时实数m 的取值范围.若∅=⎪⎭⎫⎝⎛2,21 A :当0=m 时,012=+-x ,解之得:21=x ,⎭⎬⎫⎩⎨⎧=21A ,符合题意; 当0≠m 时,若∅=A ,则044<-=∆m ,解之得:1>m ;若∅≠A ,则方程0122=+-x mx 的两个实数根均小于21或大于2. 设()122+-=x mx x f ,其图象的对称轴为直线mm x 122=--=,方程0122=+-x mx 的两个实数根分别为21,x x .当方程0122=+-x mx 的两个实数根均小于21,则有 ⎪⎪⎪⎩⎪⎪⎪⎨⎧>⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-<⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-≥-=∆02121021210442121x x x x m ,即()⎪⎪⎪⎩⎪⎪⎪⎨⎧>+-=++-<-=-+≤04111412101211212121m m x x x x m x x m ,解之得:0<m ; 或⎪⎪⎪⎩⎪⎪⎪⎨⎧<>=⎪⎭⎫ ⎝⎛≥-=∆211041210442m m mf m ,解之得: 0<m ; 当方程0122=+-x mx 的两个实数根均大于2时,则有:()()()()⎪⎩⎪⎨⎧>-->-+-≥-=∆022*******121x x x x m ,即()⎪⎪⎪⎩⎪⎪⎪⎨⎧>+-=++->-=-+≤04414204241212121mm x x x x m x x m ,解之得:无解. 或()()⎪⎪⎩⎪⎪⎨⎧>>-=≥-=∆210342044mm m mf m ,解之得:无解. 综上所述,当∅=⎪⎭⎫⎝⎛2,21 A 时,实数m 的取值范围为(]()+∞∞-,10, .∵∅≠⎪⎭⎫⎝⎛2,21 A∴实数m 的取值范围为(]1,0.重要结论 若一元二次方程02=++c bx ax (0≠a )的两个实数根21,x x 均小于实数k ,则有:()()()()⎪⎩⎪⎨⎧>--<-+-≥∆0002121k x k x k x k x , 或()⎪⎪⎩⎪⎪⎨⎧<->≥∆k ab k af 200. 若一元二次方程02=++c bx ax (0≠a )的两个实数根21,x x 均小于实数k ,则有:()()()()⎪⎩⎪⎨⎧>-->-+-≥∆0002121k x k x k x k x , 或()⎪⎪⎩⎪⎪⎨⎧>->≥∆k ab k af 200. 另解分析 我们也可以从一元二次方程的跟的分布的角度理解问题.∅≠⎪⎭⎫⎝⎛2,21 A 说明方程0122=+-x mx 的两个根都在区间⎪⎭⎫ ⎝⎛2,21内,或只有一个根在区间⎪⎭⎫ ⎝⎛2,21内.需要用到下面重要的结论.(1)若一元二次方程02=++c bx ax (0>a )的两个实数根均在()21,k k 内,则有:()()⎪⎪⎪⎩⎪⎪⎪⎨⎧<-<>>≥∆2121200k ab k k f k f . (2)若一元二次方程02=++c bx ax (0>a )只有一个实数根在()21,k k 内,则有:()()021<k f k f ,或⎪⎩⎪⎨⎧<-<=∆2120k abk . 注意:要验证端点值:()01=k f ,()02=k f .另解 设()122+-=x mx x f ,其图象的对称轴为直线mm x 122=--=. 当0=m 时,012=+-x ,解之得:21=x ,⎭⎬⎫⎩⎨⎧=21A ,不符合题意; 当0≠m 时,若方程0122=+-x mx 的两个根都在区间⎪⎭⎫⎝⎛2,21内,则有:()()⎪⎪⎪⎩⎪⎪⎪⎨⎧<<>-=>=⎪⎭⎫ ⎝⎛≥-=∆21210342041210442mm m mf m mf m ,解之得:m <43≤1. 若方程0122=+-x mx 只有一个根在区间⎪⎭⎫⎝⎛2,21内,则有:()()03441221<-=⋅⎪⎭⎫ ⎝⎛m m f f 或⎪⎩⎪⎨⎧<<=∆21210m.解之得:430<<m 或1=m . 令04121==⎪⎭⎫ ⎝⎛m f ,解之得0=m (舍去);令()0342=-=m f ,解之得:43=m ,把43=m 代入方程可得:04832=+-x x ,解之得:⎪⎭⎫ ⎝⎛∉=2,2121x ,⎪⎭⎫⎝⎛∈=2,21322x ,符合题意. 综上所述,实数m 的取值范围为(]1,0. 巩固练已知方程()0112=+-+x m x .(1)若方程在区间[]2,0上有两个解,求实数m 的取值范围; (2)若方程在区间[]2,0上只有一个解,求实数m 的取值范围; (3)若方程在区间[]2,0上有解,求实数m 的取值范围. 解:(1) ∵方程()0112=+-+x m x 在区间[]2,0上有两个解∴()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧<--<≥-+=>=>--=∆2210012420100412m m f f m ,解之得:23-≤1-<m .∴实数m 的取值范围为⎪⎭⎫⎢⎣⎡--1,23; (2)∵方程()0112=+-+x m x 在区间[]2,0上只有一个解∴()()()[]0124120<-+⨯=⋅m f f 或()⎪⎩⎪⎨⎧<--<=--=∆22100412m m 解之得:23-<m 或1-=m . 令()()01242=-+=m f ,解之得:23-=m ,此时方程在区间[]2,0上有两个解,不符合题意. 综上所述,实数m 的取值范围为{}123,-⎪⎭⎫⎝⎛-∞- ;(3)由(1)、(2)可知,若方程()0112=+-+x m x 在区间[]2,0上有解则实数m 的取值范围为{}(]1,123,1,23-∞-=-⎪⎭⎫⎝⎛-∞-⎪⎭⎫⎢⎣⎡-- .另解 方程()0112=+-+x m x 在区间[]2,0上有解 即方程12-+-=x x mx 在区间[]2,0上有解当0=x 时,01=-,显然不成立,舍去(即不存在实数m ,使方程的解为0). 当0≠x 时,问题等价于当(]2,0∈x 时,求函数11+--=xx m 的值域. ∵1111+⎪⎭⎫⎝⎛+-=+--=x x x x m ≤112112-=+-=+⋅-x x当且仅当xx 1=,即1=x 时,等号成立. ∴m 的最大值为1-,无最小值.∴m ≤1-,即实数m 的取值范围为(]1,-∞-.。
高一数学一元二次方程根的分布
高一数学一元二次方程根的分布苏教版必修2 例:x2+(m-3)x+m=0 求m的范围(1)两个正根例:x2+(m-3)x+m=0 求m的范围(2)有两个负根例:x2+(m-3)x+m=0 求m的范围(3)两个根都小于1例:x2+(m-3)x+m=0 求m的范围(4)两个根都大于例:x2+(m-3)x+m=0 求m的范围(5)一个根大于1,一个根小于1例:x2+(m-3)x+m=0 求m的范围(6)两个根都在(0 . 2)内例:x2+(m-3)x+m=0 求m的范围(7)两个根有且仅有一个在(0 . 2)内例:x2+(m-3)x+m=0 求m的范围(8)一个根在(-2 .0)内,另一个根在(1 . 3)内例:x2+(m-3)x+m=0 求m的范围(9)一个正根,一个负根且正根绝对值较大例:x2+(m-3)x+m=0 求m的范围(10)一个根小于2,一个根大于4例:x2+(m-3)x+m=0 求m的范围(11)一个根在(-2 .0)内,另一个根在(0 . 4)内例1.设有一元二次方程x2+2(m-1)x+(m+2)=0.试问:(1)m为何值时,有一正根、一负根.(2)m为何值时,有一根大于1、另一根小于1.(3)m为何值时,有两正根.(4)m为何值时,有两负根.(5)m为何值时,仅有一根在[1,4]内?例1. m取何实数值时,关于x的方程x2+(m-2)x+5-m=0的两个实根都大于2?例2.已知关于x方程:x2-2ax+a=0有两个实根α,β,且满足0<α<1,β>2,求实根a的取值范围.例3.m为何实数时,关于x的方程x2+(m-2)x+5-m=0的一个实根大于2,另一个实根小于2例2.已知关于x的方程(m-1)x2-2mx+m2+m-6=0有两个实根α,β,且满足0<α<1<β,求实数m的取值范围例3.已知关于x的方程3x2-5x+a=0的有两个实根α,β,满足条件α∈(-2,0),β∈(1,3),求实数a的取值范围四、课后演武场1.已知方程(m-1)x2+3x-1=0的两根都是正数,则m的取值范围是( B )A.B.C.D.2.方程 x2+(m2-1)x+(m-2)=0的一个根比1大,另一个根比-1小,则m的取值范围是( C )A.0<m<2 B.-3<m<1C.-2<m<0 D.-1<m<13.已知关于x的方程3x2+(m-5)x+7=0的一个根大于4,而另一个根小于4,求实数m的取值范围.4.已知关于x的方程x2+2mx+2m+3=0的两个不等实根都在区间(0,2)内,求实数m的取值范围.。
一元二次方程根的分布解析
一元二次方程根的分布解析一、单选题1.已知方程()2250x m x m +-+-=的两根都大于2,则实数m 的取值范围是()A .{54m m -<≤-或}4m ≥B .{}54m m -<≤-C .{}54m m -<<-D .{54m m -<<-或}4m >2.已知关于x 的方程()230x m x m +-+=,下列结论错误的是()A .方程()230x m x m +-+=无实数根的必要条件是{}1m m m ∈>B .方程()230x m x m +-+=有一正一负根的充要条件是{}0m m m ∈<C .方程()230x m x m +-+=有两正实数根的充要条件是{}01m m m ∈<≤D .方程()230x m x m +-+=有实数根的充要条件是{1m m m ∈<或}9m >二、多选题3.已知关于x 的不等式()()1320a x x -+->的解集是()12,x x ,其中12x x <,则下列结论中正确的是()A .1220x x ++=B .1231x x -<<<C .124x x ->D .1230x x +<4.已知关于x 的方程230+++=x ax a ,则().A .当2a =时,方程有两个不相等的实数根B .方程无实数根的一个充分条件是24a -<<C .方程有两个不相等的负根的充要条件是6a >D .方程有一个正根和一个负根的充要条件是4a <-对于C 选项:方程有两个不相等的负根的充要条件是()21212Δ41300,30a a x x a x x a ⎧=-⨯⨯+>⎪+=-<⎨⎪⋅=+>⎩解得:6a >,故C 选项正确;对于D 选项:方程有一个正根和一个负根的充要条件是()212Δ4130,30a a x x a ⎧=-⨯⨯+>⎨⋅=+<⎩解得:3a <-,故D 选项错误;故选:BC.三、填空题5.已知方程221)42(0x m x m -+-=+的两根一个比2大另一个比2小,则实数m 的范围是.【答案】3m <-【分析】根据给定条件,利用一元二次方程实根分布规律列式求解即得.【详解】令2()21)42(f x x m x m -++=-,显然二次函数()f x 的图象开口向上,而()0f x =的两根一个比2大另一个比2小,则(2)0f <,即222102()42m m -++-<,解得3m <-,所以实数m 的范围是3m <-.故答案为:3m <-6.“一元二次方程()()10x a x a ---=有一个正实数根和一个负实数根”的一个充分条件但不是必要条件的是;7.已知关于x 的方程2210x x m -+-=的两个实数根同号,则实数m 的取值范围为.【答案】(]1,2【分析】运用12Δ00x x ≥⎧⎨>⎩解题即可.【详解】根据题意得到12Δ00x x ≥⎧⎨>⎩,即44(1)010m m --≥⎧⎨->⎩,解得12m <≤.故答案为:(]1,2.8.关于x 的不等式()2231x ax +<的整数解恰有3个,则实数a 的取值范围是.四、解答题9.已知方程()22210x k x k +-+=,且方程有两个大于1的实数根.(1)求实数k 的取值范围;(2)若存在实数k ,使()2150x k x ++≥,求实数x 的取值集合.10.已知关于x 的方程()221260x m x m +-++=至少有一个正根,求实数m 的取值范围.【答案】1m ≤-.【分析】根据一元二次方程根的分布,结合分类讨论即可求解.【详解】设()()22126f x x m x m =+-++,方程至少有一个正根,则有三种可能:11.关于x 的方程2(3)0x m x m +-+=满足下列条件,求m 的取值范围.(1)有两个正根;(2)一个根大于1,一个根小于1;(3)一个根在(2,0)-内,另一个根在(0,4)内;(4)一个根小于2,一个根大于4;12.关于x 的方程()230x m x m +-+=满足下列条件,求m 的取值范围.(1)有两个正根;(2)一个根在()2,0-内,另一个根在()0,4内;13.关于x 的方程()230x m x m +-+=满足下列条件,求m 的取值范围.(1)有两个正根;(2)一个根大于1,一个根小于1;(3)一个根在()2,0-内,另一个根在()0,4内;14.已知方程2244120x mx m +--=.(1)若关于m 的方程总有实数解,求x 的取值范围;(2)求证:无论m 取何实数,关于x 的方程2244120x mx m +--=必有互异实数根.15.已知函数()2f x x x a =+-,a ∈R .(1)若关于x 的方程()0f x =有两个实数根1x ,2x ,且120x x <<,求实数a 的取值范围;(2)若不等式()2f x ax >+对(]0,1a ∀∈恒成立,求实数x 的取值范围.16.回答下面两题:(1)已知函数2()1f x x mx =+-,若对于任意[,1]x m m ∈+,都有()0f x <成立,求实数m 的取值范围;(2)解关于x 的不等式210,R ax x a ++>∈.17.已知二次函数()()()2225,0f x x k x k f x =+++>的解集为()()1212,,,x x x x ∞∞-⋃+≠.(1)若1k =-,求221212x x x x +的值;(2)若120,0x x <<,求实数k 的取值范围.18.已知函数()222,y x a x a a =-++∈R(1)解关于x 的不等式0y <;(2)若方程()2221x a x a x -++=+有两个正实数根12,x x ,求21x x x x +的最小值.19.已知12,x x 是一元二次方程()()22414110k x k x +-++=的两个不相等的实数根.(1)若两根同号,求实数k 的取值范围;(2)求使得124x x x x ++的值为整数的整数k 的值.20.已知函数()222,Ry ax a x a =-++∈(1)求不等式0y ≥的解集;(2)若存在0m >使关于x 的方程()21221ax a x m m-++=++有4个不同的实根,求实数a 的取值范围。
专题二次函数根的分布问题、含参数一元二次不等式(原卷版)
专题09 二次函数根的分布问题、含参数一元二次不等式【考点预测】1、实系数一元二次方程20(0)ax bx c a ++=≠的实根符号与系数之间的关系 (1)方程有两个不等正根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=->⎨⎪⎪=>⎪⎩(2)方程有两个不等负根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=-<⎨⎪⎪=>⎪⎩(3)方程有一正根和一负根,设两根为12,x x ⇔120cx x a=< 2、一元二次方程20(0)ax bx c a ++=≠的根的分布问题 一般情况下需要从以下4个方面考虑: (1)开口方向;(2)判别式;(3)对称轴2bx a=-与区间端点的关系;(4)区间端点函数值的正负.设12,x x 为实系数方程20(0)ax bx c a ++=>的两根,则一元二次20(0)ax bx c a ++=>的根的分布与其限定条件如表所示. 根的分布图像限定条件12m x x <<2()0b m a f m ∆>⎧⎪⎪->⎨⎪⎪>⎩ 12x m x <<()0f m <12x x m <<02()0b m a f m ∆>⎧⎪⎪-<⎨⎪⎪>⎩ 在区间(,)m n 内 没有实根0∆<12120x x m x x m∆==≤=≥或02()0b m a f m ∆>⎧⎪⎪-<⎨⎪⎪≥⎩02()0b n a f n ∆>⎧⎪⎪->⎨⎪⎪≥⎩()0()0f m f n ≤⎧⎨≤⎩ Onm yxOnmyxOnm yxOnm yxOnm yx在区间(,)m n 内 有且只有一个实根()0()0f m f n >⎧⎨<⎩()0()0f m f n <⎧⎨>⎩在区间(,)m n 内 有两个不等实根02()0()0b m n a f m f n ∆>⎧⎪⎪<-<⎪⎨⎪>⎪>⎪⎩ 3、解含参数的一元二次不等式需要对字母的取值进行分类讨论,常用的分类方法有以下三种:(1)按二次项系数a 的符号分类,即0,0,0a a a >=<; (2)按判别式的符号分类,即0,0,0∆>∆=∆<;(3)按方程20ax bx c ++=的根1x 、2x 的大小分类,即121212,,x x x x x x >=<. 【典型例题】例1.(2022·辽宁·营口市第二高级中学高一期末)已知关于x 的不等式2320(R)ax x a ++>∈. (1)若2320ax x ++>的解集为{}1x b x <<,求实数,a b 的值; (2)求关于x 的不等式2321ax x ax -+>-的解集.例2.(2022·全国·高一专题练习)已知关于x 的不等式ax 2﹣x +1﹣a <0.OnmyxOn m yxOn myx(1)当a =2时,解关于x 的不等式; (2)当a >0时,解关于x 的不等式.例3.(2022·河南·高一阶段练习)(1)若不等式210ax bx +-<的解集是113x x ⎧⎫-<<⎨⎬⎩⎭∣,求,a b的值;(2)若31b a =--,且关于x 的方程210+-=ax bx 有两个不同的负根,求a 的取值范围.例4.(2022·全国·高一课时练习)已知关于x 的方程220x x a -+=. (1)当a 为何值时,方程的一个根大于1,另一个根小于1?(2)当a 为何值时,方程的一个根大于1-且小于1,另一个根大于2且小于3? (3)当a 为何值时,方程的两个根都大于0?例5.(2022·全国·高一单元测试)求实数m 的范围,使关于x 的方程()221?260.x m x m +-++= (1)有两个实根,且一个比2大,一个比2小; (2)有两个实根 αβ,,且满足014αβ<<<<; (3)至少有一个正根.【过关测试】一、单选题1.(2022·湖北·华中师大一附中高一开学考试)关于x 的方程()2290ax a x a +++=有两个不相等的实数根12,x x ,且121x x ,那么a 的取值范围是( ) A .2275a -<<B .25a > C .27a <-D .2011a -<<2.(2022·全国·高一课时练习)关于x 的方程()22210x m x m +-+-=恰有一根在区间()0,1内,则实数m 的取值范围是( ) A .13,22⎡⎤⎢⎥⎣⎦B .12,23⎛⎤ ⎥⎝⎦C .1,22⎡⎫⎪⎢⎣⎭D .{}12,6723⎛⎤⋃- ⎥⎝⎦3.(2022·江苏·高一专题练习)关于x 的方程222(1)0x m x m m +-+-=有两个实数根α,β,且2212αβ+=,那么m 的值为( ) A .1-B .4-C .4-或1D .1-或44.(2022·江苏·高一)已知关于x 的方程230x kx k -++=有两个正根,那么两个根的倒数和最小值是( ) A .-2B .23C .89D .15.(2022·全国·高一专题练习)已知方程240x x a -+=的两根都大于1,则a 的取值范围是( ) A .34a <≤ B .14a <≤ C .1a >D .4a ≤6.(2022·全国·高一期中)若关于x 的不等式()2330x m x m -++<的解集中恰有3个整数,则实数m 的取值范围为( ) A .(]6,7B .[)1,0-C .[)(]1,06,7-⋃D .[]1,7-7.(2022·上海·高一专题练习)关于x 的不等式2320ax x -+>的解集为{|1x x <或}x b >,则关于x 的不等式2()0ax ac b x bx -++>,以下结论正确的是( ) A .当0c >时,解集为{}|0x x c << B .当0c 时,解集为R C .当0c <时,解集为{|x x c <或0}x >D .以上都不正确8.(2022·全国·高一课时练习)若关于x 的不等式()210x a x a -++<的解集中恰有两个整数,则实数a 的取值范围是 A .{}34a a << B .{|21a a -<<-或}34a << C .{}34a a < D .{|21a a -<-或}34a <二、多选题9.(2022·湖南·株洲二中高一开学考试)已知关于x 的不等式组222802(27)70x x x k x k ⎧-->⎨+++<⎩仅有一个整数解,则k 的值可能为( ) A .5-B .3-C .πD .510.(2022·江苏·高一专题练习)已知函数23y ax bx =+-,则下列结论正确的是( )A .关于x 的不等式230ax bx +-<的解集可以是{}3x x >B .关于x 的不等式230ax bx +->的解集可以是∅C .函数23y ax bx =+-在()0,∞+上可以有两个零点D .“关于x 的方程230ax bx +-=有一个正根和一个负根”的充要条件是“0a >”11.(2022·湖南·长沙市实验中学高一期中)已知关于x 的方程x 2+(m -3)x +m =0,下列结论正确的是( )A .方程x 2+(m -3)x +m =0有实数根的充要条件是m ∈{m |m <1或m >9}B .方程x 2+(m -3)x +m =0有一正一负根的充要条件是m ∈{m |m <0}C .方程x 2+(m -3)x +m =0有两正实数根的充要条件是m ∈{m |0<m ≤1}D .方程x 2+(m -3)x +m =0无实数根的必要条件是m ∈{m |m >1}12.(2022·湖南·新化县教育科学研究所高一期末)已知a Z ∈,关于x 的一元二次不等式x 2-8x +a ≤0的解集中有且仅有3个整数,则a 的值可以是( ) A .13 B .14 C .15 D .17三、填空题13.(2022·全国·高一单元测试)方程()2250x a x a --+-=的两根都大于2,则实数a 的取值范围是_____.14.(2022·全国·高一专题练习)方程()2110mx m x --+=在区间()0,1内有两个不同的根,m 则的取值范围为__.15.(2022·全国·高一专题练习)已知方程()()22110x a x a a -+++=的两根分别在区间()0,1,()1,3之内,则实数a 的取值范围为______.16.(2022·安徽·泾县中学高一开学考试)记关于x 的不等式220x x a a -+-≤的解集为A ,集合{}12B x x =-≤<,若A B ,则实数a 的取值范围为___________. 四、解答题17.(2022·四川成都·高一期末)设函数()()()3f x x x a =--,R a ∈. (1)解关于x 的不等式()0f x <;(2)当()3x ∈+∞,时,不等式()9f x ≥-恒成立,求a 的取值范围.18.(2022·全国·高一课时练习)已知函数()()21f x x x a a =++-,(1)当2a =时,求不等式()0f x <的解集.(2)求不等式()2f x x <的解集.19.(2022·江苏省天一中学高一期末)已知二次函数()()222,R f x ax bx b a a b =++-∈,当()1,3x ∈-时,()0f x >;当()(),13,x ∈-∞-⋃+∞,()0f x <. (1)求a ,b 的值;(2)解关于x 的不等式:()()220R ax b c x c c +-+>∈.20.(2022·湖南·高一课时练习)当k 为何值时,关于x 的方程()22340x k x k +-+=分别满足:(1)无实数根? (2)有两正实根?21.(2022·全国·高一单元测试)关于x 的方程2220x mx m +++=分别满足下列条件: (1)当4m =时,两根分别为1x 、2x ,求2212x x +的值; (2)m 为何值时,有一正根一负根; (3)m 为何值时,有两个不相等的正根.22.(2022·全国·高一专题练习)已知关于x 的方程2(21)70x m x m -+++=有两个不等的实根1x ,2x .(1)两根一个根大于1,一个根小于1,求参数m 的取值范围; (2)113x <<,24x >,求参数m 的取值范围.。
高一数学二次函数根的分布专题归类精练
高一数学:二次方程根的分布一、一元二次方程02=++c bx ax )0(≠a 根的分布情况:设方程02=++c bx ax 的两实根为12,x x ,(不妨设21x x ≤),相应的二次函数为c bx ax x f ++=2)(,方程的根12,x x 即为此二次函数的零点, 即此二次函数的图象与x 轴的交点为)0,(1x 和)0,(2x ,因为02=++c bx ax )0(≠a 与0)(2=++x bx ax a 是同解的,故考虑具体的端点值时,考虑的是函数ac abx x a c bx ax a x af y ++=++==222)()(的端点值,这样只考虑开口向上的情况即可.解决根的分布问题的方法:数形结合,三看:一看判别式;二看对称轴;三看端点值.它们的分布情况见下表:如上图,只是可以过两端点,注注2:对于端点值是否可取,最好单独讨论;注3:以上11种情况都有相应的等价形式,对于具体题中的条件,往往是几种情况合在一起的,这时需要分类讨论,此时莫忘注1,注2 .特别注意下列两种情况:一. 函数)(x f 在()n m ,内仅有一个零点,可分:(1)方程0)(=x f 有且只有一根(两根重合时),且这个根在区间()n m ,内,即0∆=, 此时由0∆=可以求出参数的值,然后再将参数的值带入方程,求出相应的根, 检验根是否在给定的区间内,如若不在,舍去相应的参数的值.(2)若()0f m =,可以确定的求出相应的系数(或得到一个关系),从而可以求出另外一根, 若这另外的一根在区间()n m ,内,则满足条件;若不在,则这种情况不成立.(3)若()0f n =时,同理.(4)以上三种都讨论完了,只剩下一种情况,即只要0)()(<n f m f 即可.例1:已知624)(2++-=m mx x x f 在区间()3,0-内有且仅有一个零点,求m 的取值范围.解:①当0∆=时,即()2164260m m -+=,得出1m =-或32m =, 当1m =-时,根()23,0x =-∈-,即1m =-满足题意; 当32m =时,根()33,0x =∉-,故32m =不满足题意; ②当0151462129)3(=+=+++=-m m m f ,解得:1415-=m , 由韦达定理的两根之积为72767156232=+-=+=⨯-m x , 即)0,3(792-∈-=x ,满足条件,故1415-=m 合适; ③当062)0(=+=m f ,解得:3-=m ,由韦达定理的两根之和为12402-==+m x , 即)0,3(122-∉-=x ,不满足条件,故3-=m (舍);④当0)0()3(<⋅-f f 时,即0)62)(1514(<++m m ,得出14153-<<-m ,必满足条件. 综上所述所求m 的取值范围是:14153-≤<-m ,或1m =-. 注:你能发现这个题的巧解吗?二. 函数)(x f 在],[n m 内仅有一个零点,可同上分析.即先讨论0=∆(即方程两根重合)时的情况,验证相应的根是否合适;再看取到端点值时的情况,此时已知一根,由韦达定理易得另一根,验证是否满足条件;最后0)()(<n f m f 即可! 熟练之后,此次序可以灵活变通,只是请注意分类要不重不漏!例2:已知624)(2++-=m mx x x f 在区间]0,3[-内有且仅有一个零点,求m 的取值范围. 解:①当0∆=时,即()2164260m m -+=,得出1m =-或32m =, 当1m =-时,根]0,3[2-∈-=x ,即1m =-满足题意; 当32m =时,根]0,3[3-∉=x ,故32m =不满足题意; ②当0151462129)3(=+=+++=-m m m f ,解得:1415-=m , 由韦达定理的两根之积为72767156232=+-=+=⨯-m x , 即)0,3(792-∈-=x ,不满足条件,故1415-=m (舍);③当062)0(=+=m f ,解得:3-=m ,由韦达定理的两根之和为12402-==+m x , 即)0,3(122-∉-=x ,满足条件,故3-=m 合适;④当0)0()3(<⋅-f f 时,即0)62)(1514(<++m m ,得出14153-<<-m ,必满足条件. 综上所述所求m 的取值范围是:14153-<≤-m ,或1m =-. 注:你能发现这个题的巧解吗?注:讨论端点时,如果遇到下列情况,前参看下列题的处理办法!例3:已知方程02)2(2=++-x m mx 在区间()1,3上有一根,求m 的取值范围. 解:当0=m 时,易知方程仅有一个根为1,不满足条件当0≠m 时,令2)2()(2++-=x m mx x f ,因为()10f =, 所以()()()22212mx m x x mx -++=--,故另一根为2m, 由213m <<,得223m <<即为所求. 例4:已知方程02)2(2=++-x m mx 在区间]3,1[上有一根,求m 的取值范围. 解:当0=m 时,易知方程仅有一个根为1,满足条件;当0≠m 时,令)2)(1(2)2()(2--=++-=mx x x m mx x f ,必有一根为1 故另一根2m ,当12=m,即2=m 时合适; 否则必须满足:12<m 或32>m ,解得:0<m ,或320<<m ,或2>m综上所述,所求m 的取值范围是32<m 或2≥m .注:你能发现这两个题的巧解吗?以后再赘述吧,先抱歉了!二.根的分布经典题归类讲解例1、①m 取何实数值时,方程0)1(22=++-m x m x 有两个不等正实根.②m 取何实数值时,方程013422=-++m mx x 有两个负数根.③m 取何实数值时,关于x 的方程05)2(2=-+-+m x m x 的两个实根都大于2. 解:①令=)(x f m x m x ++-)1(22,其图像开口向上,对称轴为41+=m x , 判别式为168)1(22+-=-+=∆m m m m原条件⎪⎪⎩⎪⎪⎨⎧>=>+>+-=∆⇔0)0(0410162m f m m m 解得:2230-<<m 或223+>m ,即为所求.②令=)(x f 13422-++m mx x ,其图像开口向上,对称轴为m x -=, 判别式为)1)(21(16)2123(16)13(81622--=+-=--=∆m m m m m m . 原条件⎪⎪⎩⎪⎪⎨⎧>-=<-≥--=∆⇔013)0(00)1)(21(16m f m m m 解得:2131≤<m 或1≥m ,即为所求.③令=)(x f m x m x -+-+5)2(2,其图像开口向上,对称轴为21m x -=, 判别式为)4)(4(16)5(4)2(22-+=-=---=∆m m m m m .原条件⎪⎪⎩⎪⎪⎨⎧>+=-+-+=>-≥-+=∆⇔055424)2(2210)4)(4(m m m f m m m 解得:45-≤<-m ,即为所求.例2、①已知二次方程012)12(2=-+-+m mx x m 有一正根和一负根,求实数m 的取值范围.②已知二次函数33)42()2(2+++-+=m x m x m y 与x 轴有两个交点,一个在1=x 的左侧,一个在1=x 的右侧,求实数m 的取值范围.③m 取何实数值时,关于x 的方程05)2(2=-+-+m x m x 的一个实根大于2,另一个实根小于2.解:①令=)(x f 12)12(2-+-+m mx x m ,其图像开口方向不明,原条件0)1)(12()0()12(<-+=+⇔m f m ,解得:21->m . 即为所求. 注:利用两个之积012121<+-=m x x ,也可以快速得出!②令=)(x f 33)42()2(2+++-+m x m x m ,其图像开口方向不明,原条件0)12)(2()33422)(2()1()2(<++=++--++=+⇔m m m m m m f m , 解得:212-<<-m . 即为所求. 注:利用0)1)(1(21<--x x ,即021212422331)(2121<++=+++-++=++-m m m m m m x x x x 也可得.③令=)(x f m x m x -+-+5)2(2,其图像开口向上,原条件055424)2(<+=-+-+=⇔m m m f 解得:5-<m ,即为所求.注:利用0)2)(2(21<--x x ,即054)2(254)(22121<+=+---=++-m m m x x x x 也可得. 例3.①已知关于x 的方程:022=+-a ax x 有两个实根βα,,且满足2,10><<βα,求实数a 的取值范围.②已知关于x 的方程:062)1(22=-++--m m mx x m 有两个实根βα,,且满足βα<<<10, 求实数m 的取值范围.③已知关于x 的方程:0532=+-a x x 有两个实根βα,,且满足)3,1(),0,2(∈-∈βα,求实数a 的取值范围.解:①令=)(x f a ax x +-22,其图像开口向上,画图可得:原条件⎪⎩⎪⎨⎧<-=<-=>=⇔034)2(01)1(0)0(a f a f a f 解得:34>a ,即为所求.②令=)(x f 62)1(22-++--m m mx x m ,其图像开口方向不明,画图可得:原条件⎩⎨⎧<->-⇔0)1()1(0)0()1(f m f m ,即⎪⎩⎪⎨⎧<-++--->-+-⇔0)621)(1(0)6)(1(22m m m m m m m m即⎩⎨⎧<+-->+--⇔0)7)(7)(1(0)3)(2)(1(m m m m m m 解得:73-<<-m 或72<<m ,即为所求.③令=)(x f a x x +-532,其图像开口向上,画图可得:原条件⎪⎪⎩⎪⎪⎨⎧>+=+-=<-=+-=<=>+=++=-⇔0121527)3(022)1(0)0(0221012)2(a a f a a f a f a a f 解得:012<<-a ,即为所求.例4、①已知方程03222=+++m mx x 的两个不等实根都在区间)2,0(内,求实数m 的取值范围.②已知方程03222=+++m mx x 的两个不等实根都在区间]2,0[之外,求实数m 的取值范围. 解:令322)(2+++=m mx x x f ,其图像开口向上,对称轴为m x -=,由判别式0)3)(1(4)32(4)32(4422>-+=--=+-=∆m m m m m m ,得:1-<m 或3>m①的条件⎪⎪⎩⎪⎪⎨⎧>+=>+=<-<>∆⇔076)2(032)0(200m f m f m ,即⎪⎪⎪⎩⎪⎪⎪⎨⎧->-><<->-<⇔67230231m m m m m 或解得:167-<<-m 即为所求.②的条件可分为:两根都小于0,或两根都大于2,或一根小于0,一根大于2,三种情况故⎪⎩⎪⎨⎧>+=<->∆⇔032)0(00m f m 或⎪⎩⎪⎨⎧>+=>->∆076)2(20m f m 或⎩⎨⎧<+=<+=076)2(032)0(m f m f解得:3>m ,或无解,或23-<m ,故所求m 的取值范围是:23-<m 或3>m . 例5:已知集合}0107|{2≤+-=x x x A ,}05)2(|{2≤-+--=m x m x x B ,且A B ⊆, 求实数m 的取值范围.解:首先}52|{≤≤=x x A ;当∅=B 时,即不等式05)2(2≤-+--m x m x 无解,即0)5(4)2(2<---=∆m m 即:0162<-m ,解得:44<<-m ; -----(1)当∅≠B 时,即不等式05)2(2≤-+--m x m x 有解,其形式必为21x x x ≤≤; 其中21,x x 为方程05)2(2=-+--m x m x 的两个根,(不妨设21x x ≤) 按条件,只要5221≤≤≤x x 即可满足A B ⊆;按照根的分布的理论,此时只要满足:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥-+--=≥-+--=≤-≤≥-=∆05)2(525)5(05)2(24)2(52220162m m f m m f m m即⎪⎪⎩⎪⎪⎨⎧-≥-≥-≤≤-≥-≤55284,4m m m m m 或,解得:45-≤≤-m ,-----(2)由(1)(2)可得:所求的m 的取值范围是45≤≤-m .三.自己练习巩固提升1.设有一元二次方程02)1(22=++-+m x m x .试问:(1)m 为何值时,有一正根、一负根.(2)m 为何值时,有一根大于1、另一根小于1. (3)m 为何值时,有两正根. (4)m 为何值时,有两负根.(5)m 为何值时,仅有一根在[1,4]内.2. 关于x 的方程012=-++a ax x 有异号的两个实根,求a 的取值范围.3.如果方程032)3(22=-+++a x a x 的两个实根中一根大于3,另一根小于3,求实数a 的取值范围. 4.若方程07)1(82=-+++m x m x 有两个负根,求实数a 的取值范围. 5. 关于x 的方程0422=-+-a ax x 有两个正根,求a 的取值范围.6.设关于x 的方程0)(44222=+++-n m x n m x 有一个实根大于-1,另一个实根小于-1,则n m ,必须满足什么关系.7. 设关于x 的方程023222=---k x kx 有两个实根都在]0,2[-之间,求k 的取值范围.8.关于x 的方程02)13(72=--+-m x m x 的两个实根21,x x 满足2021<<<x x ,求m 的范围. 9.①已知方程065)9(222=+-+-+a a x a x 的一根小于0,另一根大于2,求实数a 的取值范围.②已知方程065)9(222=+-+-+a a x a x 的存在小于2的根,求实数a 的取值范围.。
一元二次方程根的分布问题
f ( m) 0 f ( n) 0 f ( p) 0 f (q) 0
一元二次方程 ax2+bx+c=0(a>0)的根的分布
两个正根 两个负根 一正根 一负根 一根 一正一负,且 为零 负的绝对值大
0 b x x 0 1 2 a c x x 0 1 2 a
一元二次方程的根分布问题
一、复习
函数零点的定义: 对于函数y=f(x),我们把使f(x)=0的实数x叫做函数 y=f(x)的零点。
等价关系 方程f(x)=0有实数根
函数y=f(x)的图象与x轴有交点
函数y=f(x)有零点
零点存在判定法则
如果函数y=f(x)在区间[a,b]上的图象是连续 不断的一条曲线,并且有f(a)· f(b)<0,那么,函
例3.已知函数 y
y lg(kx2 4 x k 3)的定义域为B,当B
B A
A求实数 k 的取值范围。 A {x | 2 x 3} B {x | kx2 4x k 3 0}
k 0 且函数 f ( x) kx2 4x k 3
f ( 2) 0 f (3) 0 3 4 k 0 2 2 2 3 k
6 x x 2 的定义域为A,函数
的图象与 x 轴的两个交点在-2与3之间。
2
x1
x2
3
2
或方程 kx 4 x k 3 0 有一根为-2或3时,另一 根的情况: 若一根为-2,则k=1,不符合题意,舍去。 若一根
3 1 为3,则 k ,另一根为 , 符合题意。 4 k 3 3 2 2
例4.若不等式 8x 8(a 2) x a 5 0 对于任意实数 均成 立,求实数 的取值范围。 2 2 令 t x ,则问题变为 f (t ) 8t 8(a 2)t a 5在 [0,)
3.1.2一元二次方程根的分布
2
x2
12
练习: 1、若方x程 2 (k3)xk 0 的两根都小 1, 于求k的取 x1 x2 0
-1
值范围?
2、若7方 x2程 k13xk2k20的两 根分0 别 , 1和 在 1, 2内, k的 求取值范
1 0
2 13
练习:
1.已知关于x的方程 a 2 2 x a 1 x a 1 0
解少解题 有:分 一若析 个m:在=原函0,点数则的f(xf右()x=侧)m=x-,23+就x(m+是1-3,表)显x+明然1关的满于图足x象的要与方求x程轴. m的x交2+点(m至-
3)x+1若=0m至≠少0,有有一两个种正根情,况可:借助根与系数的关系来解。
( 1 ) 原 点 的 两 侧 各 有 一 个 , 则 x 1 x 2 m 1 0 得 m 0
-
b 2a
>k
f(k)<0.
△=b2-4ac≥0
f(k)>0.
m< -
b 2a
<n
ห้องสมุดไป่ตู้
7.方程 f(x)=0 的两实根都在区间(m, n)内
△=b2-4ac≥0 f(m)>0
f(n)>0.
3
注 :涉及方程 f(x)=ax2+bx+c=0(a≠0)的实根 分布问题, 一般从四个方面考虑:
① f(x) 图象的开口方向; ②方程 f(x)=0的判别式; ③ f(x) 图象的对称轴与区间的关系; ④区间端点处函数值的符号.
1
x 1 x 2 2
反例x1: 3,x2
1 2
7
例题:已x知 2(方 k3程 )xk0 求满足下列 k的 条范 件围 的?
四川省南江县第四中学一元二次方程根的分布
四川省南江县第四中学一元二次方程02=++c bx ax根的分布情况四川省南江县第四中学 何其孝 审题人:范永德设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=,方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)表一:(两根与0的大小比较即根的正负情况)k k k表三:(根在区间上的分布)根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧12,x m x n <>,(图形分别如下)需满足的条件是(1)0a >时,()()00f m f n <⎧⎪⎨<⎪⎩; (2)0a <时,()()0f m f n >⎧⎪⎨>⎪⎩对以上的根的分布表中一些特殊情况作说明:(1)两根有且仅有一根在()n m ,内有以下特殊情况:1︒ 若()0f m =或()0f n =,则此时()()0f m f n <不成立,但对于这种情况是知道了方程有一根为m 或n ,可以求出另外一根,然后可以根据另一根在区间()n m ,内,从而可以求出参数的值。
如方程()2220mx m x -++=在区间()1,3上有一根,因为()10f =,所以()()()22212mx m x x mx -++=--,另一根为2m ,由213m <<得223m <<即为所2︒ 方程有且只有一根,且这个根在区间()n m ,内,即0∆=,此时由0∆=可以求出参数的值,然后再将参数的值带入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去相应的参数。
如方程24260x mx m -++=有且一根在区间()3,0-内,求m 的取值范围。
分析:①由()()300f f -<即()()141530m m ++<得出15314m -<<-;②由0∆=即()2164260m m -+=得出1m =-或32m =,当1m =-时,根()23,0x =-∈-,即1m =-满足题意;当32m =时,根()33,0x =∉-,故32m =不满足题意;综上分析,得出15314m -<<-或1m =-函数与方程思想:若y =()f x 与x 轴有交点0x ⇔f (0x )=0若y =f (x )与y =g (x )有交点(0x ,0y )⇔()f x =()g x 有解0x 。
高一数学教案一元二次方程根的分布
高一数学教案一元二次方程根的分布教材: 一元二次方程根的分布目的: 介绍符号〝f(x)〞,并要求学生明白得一元二次方程ax 2+bx+c=0 (a ≠0)的根的分布与系数a,b,c 之间的关系,并能处理有关咨询题。
过程:一、为了本课教学内容的需要与方便,先介绍函数符号〝f(x)〞。
如:二次函数记作f(x)= ax 2+bx+c (a ≠0) x=1时的函数值记作f(1) 即f(1)=a+b+c 二、 例一 关于x 的方程 (k -2)x 2-(3k+6)x+6k=0有两个负根,求k 的取值范畴。
解:()()⎪⎪⎪⎩⎪⎪⎪⎨⎧>-<-+≥⋅--+=∆02602630624632k k k k k k k ⎪⎪⎩⎪⎪⎨⎧><<<-≤≤-⇒2022652k k k k 或 052<≤-⇒k此题要紧依靠∆及韦达定理求解,但此法有时不大奏效。
例二 实数a 在什么范畴内取值时,关于x 的方程3x 2-5x+a=0的一根大于-2而小于0,另一根大于1而小于3。
()()⎪⎪⎩⎪⎪⎨⎧>+⨯-⨯=<+-=<=>+-⨯--⨯=-03533)3(053)1(0)0(02523)2(22a f a f a f a f ⇒ -12<a<0例三 关于x 的方程x 2-2tx+t 2-1=0的两个实根介于-2和4之间,求实数t 解:⎪⎪⎪⎩⎪⎪⎪⎨⎧<=-<->=--=∆>+-=>++=-42204)1(440158)4(034)2(2222t a b t t t t f t t f 31<<-⇒t此题既利用了函数值,还利用了∆及顶点坐标来解题。
三、作业题〔补充〕*1. 关于x 的方程x 2+ax+a -1=0,有异号的两个实根,求a 的取值范畴。
(a<1)*2. 假如方程x 2+2(a+3)x+(2a -3)=0的两个实根中一根大于3,另一根小于3,求实数a 的取值范畴。
微专题(一) 一元二次方程根的分布--2025年高考数学复习讲义及练习解析
所谓一元二次方程根的分布问题,就是已知一个一元二次方程根的分布情况,确定方程中系数的取值范围问题.解决一元二次方程根的分布问题,主要依据方程的根与函数零点间的关系,借助图象,从以下三个方面建立关于系数的不等式(组)进行求解.(1)判别式Δ的符号;(2)对称轴x=-b2a与所给区间的位置关系;(3)区间端点处函数值的符号.一元二次方程根的分布问题,类型较多,情况复杂,但基本可以分为以下三类:类型一已知两根与实数k的大小关系例1(1)若关于x的方程x2-(m-1)x+2-m=0的两根为正数,则实数m的取值范围是________.答案[-1+22,2)解析设f(x)=x2-(m-1)x+2-m,m-1)2-4(2-m)≥0,,2-m>0,解得-1+22≤m<2.(2)(2024·湖北武汉华师第一附中模拟)若关于x的方程ax2+(a+2)x+9a=0有两个不相等的实数根x1,x2,且x1<1<x2,那么实数a的取值范围是________.答案-211,解析由于方程ax2+(a+2)x+9a=0有两个不相等的实数根,故a≠0,则ax2+(a+2)x+9a =0可化为x2+9=0,令f(x)=x2+9,则f(1)=1+9<0,解得-211<a<0.当方程中二次项系数含有参数时,为避免讨论对应二次函数图象的开口方向,可将方程两边同时除以二次项系数,从而只需研究开口向上的情况,当然需要先判断二次项系数能否为0.1.(2023·黑龙江哈尔滨六中模拟)关于x的方程x2+(m-2)x+6-m=0的两根都大于2,则实数m的取值范围是________.答案(-6,-25]解析令f(x)=x 2+(m-2)x+6-m,=(m-2)2-4(6-m)≥0,-m-22>2,2)=4+2(m-2)+6-m>0,即≥25或m≤-25,<-2,>-6,解得-6<m≤-2 5.2.已知二次方程(2m+1)x2-2mx+(m-1)=0有一正根和一负根,则实数m的取值范围是________.答案-12,解析解法一:显然2m+1≠0,令f(x)=x2-2m2m+1x+m-12m+1,则f(0)<0,即m-12m+1<0,所以(2m +1)(m-1)<0,解得-12<m<1.解法二:设x1,x2是方程(2m+1)x2-2mx+(m-1)=0的两个根,则x1x2=m-12m+1<0,解得-12<m<1.类型二已知两根所在的区间f(m)<0,另外,根在区间上的分布还有一种情况:两根分别在区间(m,n)外,即在区间两侧x1<m,x2>n(图形分别如下),需满足的条件是:(1)当a >0m )<0,n )<0;(2)当a <0m )>0,n )>0.例2已知关于x 的二次方程x 2+2mx +2m +1=0.若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,则实数m 的取值范围为________;若方程两根均在区间(0,1)内,则实数m 的取值范围为________.答案-56,--12,1-2解析设函数f (x )=x 2+2mx +2m +1,则其图象与x 轴的交点分别在区间(-1,0)和(1,2)内,画出示意图如图1,由题意,得0)=2m +1<0,1)=2>0,1)=4m +2<0,2)=6m +5>0,<-12,∈R ,<-12,>-56,解得-56<m <-12.由题意知函数f (x )=x 2+2mx +2m +1的图象与x 轴的交点落在区间(0,1)内,画出示意图如图2,由题意,得0)=2m+1>0,1)=4m+2>0,=4m2-4(2m+1)≥0,-m<1,>-12,>-12,≥1+2或m≤1-2,1<m<0,解得-12<m≤1- 2.求解二次方程根的分布问题,最重要的是数形结合,即结合对应二次函数的图象,从以下角度考虑:①开口方向;②对称轴;③判别式;④在区间端点的函数值.注意以下两点:一是特殊点(含参的二次函数过的一些定点(比如与x,y轴的交点)或某些函数值的正负)的应用;二是对于一些特殊情况,还可以利用根与系数的关系、因式分解求出根再求解等方法.3.已知方程x2-(2a+1)x+a(a+1)=0的两根分别在区间(0,1),(1,3)内,则实数a的取值范围为________.答案(0,1)解析解法一:设f(x)=x2-(2a+1)x+a(a+1),则0)>0,1)<0,3)>0,即(a+1)>0,2a+a(a+1)<0,-3(2a+1)+a(a+1)>0,>0或a<-1,a<1,>3或a<2,所以0<a<1.解法二:由x2-(2a+1)x+a(a+1)=0,得(x-a)[x-(a+1)]=0,所以方程两根为x1=a,x2=a+1,a<1,a+1<3,解得0<a<1.4.已知关于x的方程ax2+x+2=0的两个实根一个小于0,另一个大于1,则实数a的取值范围是________.答案(-3,0)解析显然a≠0,则方程ax2+x+2=0可化为x2+xa+2a=0,设f(x)=x2+xa+2a,则0)<0,1)<0,,+1a+2a<0,解得-3<a<0,所以实数a的取值范围是(-3,0).类型三可转化为一元二次方程根的分布的问题一元二次方程根的分布问题是高中数学的重要知识点之一,很多涉及函数零点个数问题或方程根的个数问题,经过换元后都能转化为根的分布问题求解.(2023·河北石家庄藁城一中模拟)设函数f (x )=-32cos2x +a sin x +a +92,若方程f (x )=0在(0,π)上有4个不相等的实数根,则实数a 的取值范围是________.答案(-3,6-62)解析f (x )=-32(1-2sin 2x )+a sin x +a +92=3sin 2x +a sin x +a +3,x ∈(0,π),令sin x =t ,t ∈(0,1],h (t )=3t 2+at +a +3,当0<t <1时,sin x =t 有两个不相等的实数根,当t =1时,sin x =t 有且仅有一个实数根,因为方程f (x )=0在(0,π)上有4个不相等的实数根,所以原问题等价于h (t )=3t 2+at +a +3=0在区间(0,1)上有两个不相等的实数根,所以-a6<1,=a 2-12(a +3)>0,(0)=a +3>0,(1)=2a +6>0,解得-3<a <6-6 2.本题中,令sin x =t ,将原问题转化为3t 2+at +a +3=0在区间(0,1)上有两个不相等的实数根,进而转化为一元二次方程根的分布问题是解决问题的关键,同时要注意区间端点是否满足题意.5.(2024·黑龙江哈尔滨南岗实验中学模拟)设函数f (x )x +1,x ≤0,4x |,x >0,若关于x 的函数g (x )=[f (x )]2-(a +2)f (x )+3恰好有六个零点,则实数a 的取值范围是________.答案23-2,32解析作出函数f (x )x +1,x ≤0,4x |,x >0的图象如图,令f (x )=t ,则当t ∈(1,2]时,方程f (x )=t 有3个不同的实数解,所以使关于x 的方程[f (x )]2-(a +2)f (x )+3=0恰好有六个不同的实数解,则方程t 2-(a +2)t +3=0在(1,2]上有两个不同的实数根,令g (t )=t 2-(a +2)t +3,则=(a +2)2-12>0,1<a +22<2,(1)=2-a >0,(2)=3-2a ≥0,解得23-2<a ≤32,故实数a 23-2,32.。
一元二次方程根的分布问题恒成立问题
一、 知识要点1、利用Δ与韦达定理研究)0a (0c b x ax 2≠=++的根的分布1)方程有两个正根 2)方程两根一正一负 3)方程有两个负根 2、借助函数图像研究)0a (0c b x ax 2≠=++的根的分布设一元二次方程02=++c bx ax (0≠a )的两实根为1x ,2x ,且21x x ≤。
k 为常数。
则一元二次方程根的k 分布(即1x ,2x 相对于k【定理1】⎪⎪⎩⎪⎪⎨⎧>->≥-=∆≤<k ab k af ac b x x k 20)(04221,则【定理2】⎪⎪⎩⎪⎪⎨⎧<->≥-=∆<≤k ab k af ac b k x x 20)(04221,则【定理3】21x k x <<⇔0)(<k af【定理4】有且仅有11x k <(或2x )2k <⇔0)()(21<k f k f 【定理5】221211p x p k x k <<≤<<⇔⎪⎪⎪⎩⎪⎪⎪⎨⎧><<>>0)(0)(0)(0)(02121p f p f k f k f a 或⎪⎪⎪⎩⎪⎪⎪⎨⎧<>><<0)(0)(0)(0)(02121p f p f k f k f a 【定理6】2211k x x k <≤<,则⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧<-<>>>≥-=∆2121220)(0)(004k a b k k f k f a ac b 或⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧<-<<<<≥-=∆2121220)(0)(004k a b k k f k f a ac b二、典型例题例1若一元二次方程0)1(2)1(2=-++-m x m x m 有两个正根,求m 的取值范围。
分析:利用Δ与韦达定理研究)0a (0c b x ax 2≠=++的根的分布例2 k 在何范围内取值,一元二次方程0332=-++k kx kx 有一个正根和一个负根分析:利用0021<<<acx x ,则例3 若一元二次方程03)12(2=-+-+k x k kx 有一根为零,则另一根是正根还是负根 分析:把x=0代入,得k=3,则可算出两根之和为5/3>0,所以另一根为正 例4.方程x 2+2px+1=0有一个根大于1,一个根小于1,求p 的取值范围分析:利用21x k x <<⇔0)(<k af例5.若关于x 的方程x 2+(k-2)x+2k-1=0的两实根中,一根在0和1之间,另一根在1和2之间,求实数k 的取值范围利用零点存在定理练习1.方程mx 2+2(m+1)x+m+3=0仅有一个负根,求m 的取值范围练习2若关于x 的方程kx 2-(2k+1)x-3=0在(-1,1)和(1,3)内各有一个实根,求k 的取值范围不等式的恒成立,能成立,恰成立等问题:不等式恒成立问题的常规处理方式(常应用函数方程思想和“分离变量法”转化为最值问题,也可抓住所给不等式的结构特征,利用数形结合法) 1).恒成立问题若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A >若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B <如(1)设实数,x y 满足22(1)1x y +-=,当0x y c ++≥时,c 的取值范围是______(答:)1,+∞);(2)不等式a x x >-+-34对一切实数x 恒成立,求实数a 的取值范围_____(答:1a <);(3)若不等式)1(122->-x m x 对满足2≤m 的所有m 都成立,则x 的取值范围_____(答:(712-,312+));(4)若不等式na n n1)1(2)1(+-+<-对于任意正整数n 恒成立,则实数a 的取值范围是_____(答:3[2,)2-);(5)若不等式22210x mx m -++>对01x ≤≤的所有实数x 都成立,求m 的取值范围.(答:12m >-) 2). 能成立问题若在区间D 上存在实数x 使不等式()A x f >成立,则等价于在区间D 上()max f x A >; 若在区间D 上存在实数x 使不等式()B x f <成立,则等价于在区间D 上的()min f x B <.如已知不等式a x x <-+-34在实数集R 上的解集不是空集,求实数a 的取值范围____(答:1a >)3). 恰成立问题若不等式()A x f >在区间D 上恰成立, 则等价于不等式()A x f >的解集为D ; 若不等式()B x f <在区间D 上恰成立, 则等价于不等式()B x f <的解集为D .。
高一数学一元二次方程根的分布问题
x2 1 x 3k 2 0
k
2k
m
x1
x2
f (1) 1 1 3k 2 0 k 2k
一根大于m, 另一根小于m
例2.若二次函数 f (x) 4x2 2( p 2)x 2 p2 p 1在 f (m) 0
区间[1,1]内至少存在一点 c,使 f (c) 0 ,求实数 p的取值范围。
{ f (1) 2 p2 p 1 0 f (1) 2 p2 3 p 9 0
1 1
p
3
或
p
3 2
3 p 3 2
例3.已知函数 y 6 x x2 的定义域为A,
函数y lg(kx2 4x k 3)的定义域为B,当B A求实数
k的取值范围。
A {x | 2 x 3} B {x | kx2 4x k 3 0}
构造二次函数 f (x) ax2 bx c(a 0)
一、两实根由一个量来控制
m
x1
x2
一根大于m,
另一根小于m
f (m) 0
m x1 x2
两根均大于m
f
(m)
0
0
b 2a
m
x1
x2
m
两根均小于m
f
(m)
0
0
b 2a
m
二、两实根由二个量来控制
x1 x2
m
n
x1
,
x2
(m,
n)
f (m) 0
f (n) 0
0
m
b
n
2a
mn
x1
x2
一根小于m, 另一根大于n
f (m) 0
f
(n)
0
x1 x2
mn
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程根的分布
*1. 关于x的方程x2+ax+a-1=0,有异号的两个实根,求a的取值范围。
*2. 如果方程x2+2(a+3)x+(2a-3)=0的两个实根中一根大于3,另一根小于3,求实数a的取值范围。
*3. 若方程8x2+(m+1)x+m-7=0有两个负根,求实数m的取值范围。
*4. 关于x的方程x2-ax+a2-4=0有两个正根,求实数a的取值范围。
5.设关于x的方程4x2-4(m+n)x+m2+n2=0有一个实根大于-1,另一个实根小于-1,则m,n必须满足什么关系。
6.关于x的方程2kx2-2x-3k-2=0有两个实根,一根大于1另一个实根小于1,求k的取值范围。
7.实数m为何值时关于x的方程7x2-(m+13)x+m2-m-2=0的两个实根x1,x2满足0<x1<x2<2。
8.已知方程x2+ (a2-9)x+a2-5a+6=0的一根小于0,另一根大于2,求实数a的取值范围。
9.关于x的二次方程2x2+3x-5m=0有两个小于1的实根,求实数m的取值范围。
10.已知方程x2-mx+4=0在-1≤x≤1上有解,求实数m的取值范围。
不等式
1、解不等式:1
211922+-+-x x x x ≥7. 2、解不等式:x 4-2x 3-3x 2<0.
3、解不等式:
6
5592+--x x x ≥-2. 4、解不等式:232+-x x >x +5.
5.解不等式38->-x x .
6.不等式04
9)1(220822<+++++-m x m mx x x 的解集为R,求实数m 的取值范围。
一、解一元二次不等式步骤:
1、把二次项的系数变为正的。
(如果是负,那么在不等式两边都乘以-1,把系数变为正)
2、解对应的一元二次方程。
(先看能否因式分解,若不能,再看△,然后求根)
3、求解一元二次不等式。
(根据一元二次方程的根及不等式的方向)
例1:解不等式
(x+4)(x+5)2(2-x)3
<0 x 2-4x+1 3x 2-7x+2 ≤1
二.填空题
1、不等式(1)(12)0x x -->的解集是 ;
2.不等式2654x x +<的解集为____________.
3、不等式2310x x -++>的解集是 ;
4、不等式2210x x -+≤的解集是 ;
5、不等式245x x -<的解集是 ;
6、不等式220mx mx +-<的解集为R ,则实数m 的取值范围为 ;
7、不等式9)12(2
≤-x 的解集为__________.
8、不等式0<x 2+x -2≤4的解集是_____ .
9、若不等式2(2)2(2)40a x a x -+--<对一切x R ∈恒成立,则a 的取值范围是_____.
10、已知对于任意实数x ,22kx x k -+恒为正数,求实数k 的取值范围。