高等数学下册总复习
高等数学下册总复习word
总复习(三重积分、曲线曲面积分) (注:教材中带*号的内容不考)一, 各种积分:重积分(一重积分即定积分,二重积分,三重积分), 曲线积分(第一类,第二类;平面,空间),曲面积分(第一类,第二类)怎样识别:根据积分区域。
另外对第一、第二类线、面积分还要看微元字符。
二, 重点:1,重积分重点主要是定限和计算,其次是几何应用(体积,曲面面积)与物理应用(质量,质心,做功,引力)2,曲线曲面积分重点主要是计算,其次是几何与物理应用3,各种积分的关系(主要用于通过互化来计算):格林公式,高斯公式,斯托克斯公式*,两类曲线曲面积分互化三,三重积分的计算: 1. “2+1”公式:21(,)(,)(,,) (1)xyz x y z x y D f x y z dxdydz dxdy f x y z dz Ω=⎰⎰⎰⎰⎰⎰(,,)此公式可导出“1+1+1”公式,柱坐标,球坐标* 2. “1+2”公式”:(,,) (2)(,,)zd cD z f x y z dxdydz dz f x y z dxdy D z f x y z z Ω=Ω⎰⎰⎰⎰⎰⎰(,,)其中为用垂直于 轴的平面去截割积分区域所得到的平面区域.此公式常用于当仅含时.2211()(,)()(,)2223. (,,) (3)12, , by x z x y a y x z x y f x y z dxdydz dx dy f x y z dz x y z r c Ω=++=⎰⎰⎰⎰⎰⎰化为三次积分:(,,)4. 化为柱坐标:当公式(),()中的二重积分用极坐标时即为柱坐标。
5*. 化为球坐标:当被积函数含有积分区域的边界曲面是球坐标曲 面(球面圆锥, c c ϕθ==面半平面)时,常使用球坐标。
公式(3)定限方法:穿越法:1212(,) (,) () () z z x y z z x y y y x y y x ====为入口面,为出口面,为入口线,为出口线.要领:内限是外积分变量的函数。
《高等数学》下册期末总复习第六版.
《高等数学》(下册期末总复习一、向量代数与空间解析几何(一)向量代数JJJJ G G G G1、点M (x , y , z ⇔向量OM =(x , y , z =xi +yj +zk ;JJJ G 2、点A (x 1, y 1, z 1, B (x 2, y 2, z 2 ⇒向量AB =(x 2−x 1, y 2−y 1, z 2−z 1 ;G G 3、设a =(a x , a y , a z , b =(b x , b y , b z ,则G G Ga ±b =(a x ±b x , a y ±b y , a z ±b z ;λa =(λa x , λa y , λa z (λ为数); G G G G G G na ⋅b =|a |⋅|b |cos(a , b =a x b x +a y b y +a z b z ;G G G i j k G G G G G G G G G G G G G G na ×b =a x a y a z ,(|a ×b |=|a ||b |sin(a , b , a ×b ⊥b , a ×b ⊥a ;b x b y b zb x b y b z G Ga &b ⇔==(对应坐标成比例);a x a y a zG G G Ga ⊥b ⇔a ⋅b =0;G G G a ⋅b G ncos(a , b =;|a ||b |G G G G n Prj b =|b |cos(a , bG a(二)曲面、空间曲线及其方程1、曲面及其方程Σ:F (x , y , z =0,旋转曲面【绕谁不换谁,正负根号里没有谁;作图时先画母线然后绕其轴旋转之】,柱面【柱面三缺一,缺谁母线就平行于谁;作图时先画准线结合母线特点得柱面】,二次曲面【截痕法与伸缩变形法作图】;要熟悉常见的曲面及其方程并会作图 2、空间曲线及其方程:一般方程(面交式)、参数方程;3、曲线(曲面或空间立体)在坐标面上的投影:投谁便消去谁4、会作简单立体图形(三)平面方程与直线方程:1、平面方程:1)一般方程:Ax +By +Cz +D =0,其中n =(A , B , C 为其一法向量.G第 1 页共 14 页 12)点法式方程:法向量n =(A , B , C ,点M (x 0, y 0, z 0 ∈Π,则A (x −x 0 +B (y −y 0 +C (z −z 0 =0 . 3)截距式方程:Gx y z++=1 a b c⎧A 1x +B 1y +C 1z +D 1=0的平面束方程为⎩A 2x +B 2y +C 2z +D 2=04)平面束方程:过直线⎨(A 1x +B 1y +C 1z +D 1 +λ(A 2x +B 2y +C 2z +D 2 =02、直线方程:点M 0(x 0, y 0, z 0 ∈L ,则1)对称式方程(点向式方程):方向向量s =(m , n , p ,Gx −x 0y −y 0z −z 0==m n p⎧x =x 0+mt⎪2)参数式方程:⎨y =y 0+nt⎪z =z +pt0⎩3)一般式方程:⎨⎧A 1x +B 1y +C 1z +D 1=0⎩A 2x +B 2y +C 2z +D 2=03、面面、线线、线面关系:G G |n G G 1⋅n 2|n n =1 面面:cos θ=|cos(n , |=12|n 1||n 2|G GΠ1⊥Π2⇔n 1⋅n 2=0⇔A 1A 2+B 1B 2+C 1C 2=0; A 1B 1C 1G G Π1&Π(或重合)⇔n &n ⇔== 212A 2B 2C 2G G |s G G 1⋅s 2|n s == 2 线线:cos θ=|cos(s , |12|s 1||s 2|G GL 1⊥L 2⇔s 1⋅s 2=0⇔m 1m 2+n 1n 2+p 1p 2=0; m 1n 1p 1G G L 1&L (或重合)⇔s &s ⇔== 212m 2n 2p 2G G |s ⋅n |G G m 3 线面:sin ϕ=|cos(s , n |==|s ||n |A B C G GL ⊥Π⇔s &n ⇔==;m n pG GL &Π(或L 在Π上⇔s ⊥n ⇔Am +Bn +Cp =0第 2 页共 14 页24、距离点面:d =JJJJJ J G 点线:d =|M G 0M ×s ||s |,其中Gs 为直线的方向向量,M 为直线上任意一点.第 3 页共 14 页 3二、多元函数的微分学及其应用(一)极限(求法与一元函数的类似,洛必达法则除外):(x , y →(x 0, y 0limf (x , y =A ⇔∀ε>0, ∃δ>0, δ时,有|f (x , y -A |<ε(x , y →(x 0, y 0∆(二)连续性:∆limf (x , y =f (x 0, y 0⇔∀ε>0, ∃δ>0, δ时,有|f (x , y -f (x 0, y 0 |<ε(三)偏导数:1、显函数:z =f (x , y1)定义:f x (x 0, y 0 =lim∆x →0f (x 0+∆x , y 0 −f (x 0, y 0,∆xf y (x 0, y 0 =lim∆y →0f (x 0, y 0+∆y −f (x 0, y 0∆y2)求导法则:对x 求偏导,暂时视y 为常量;对y 求偏导,暂时视x 为常量3)复合函数的求导法则(链式法则):若z =f (u , v 具有连续偏导数,而u =g (x , y 与v =h (x , y 都具有偏导数,则复合函数z =f [g (x , y , h (x , y ]的偏导数为:∂z ∂z ∂u ∂z ∂v=⋅+⋅=f u ⋅u x +f v ⋅v x =f 1′⋅g x +f 2′⋅h x ;∂x ∂u ∂x ∂v ∂x∂z ∂z ∂u ∂z ∂v =⋅+⋅=f u ⋅u y +f v ⋅v y =f 1′⋅g y +f 2′⋅h y ∂y ∂u ∂y ∂v ∂y特别的,设z =f [h (x , g (x ],则dz=f 1′⋅h ′(x +f 2′⋅g ′(x dx例如,设z =f (xy , 2x +3y ,其中f 具有二阶连续偏导数:令u =xy , v =2x +3y ,则∂z ∂z=f 1′⋅y +f 2′⋅2=yf 1′+2f 2′,=xf 1′+3f 2′. ∂x ∂y∂2z ∂∂′′⋅x +f 12′′⋅3]+2(f 21′′⋅x +f 22′′⋅3 =(yf 1′ +2(f 2′ =[f 1′+y (f 11∂x ∂y ∂y ∂y′′+(3y +2x f 12′′+6f 22′′ =f 1′+xyf 11注意:1)解题时,要注意偏导数以及导数的写法. 2)其中f 1′=∂f (u , v∂u u =xyf 1′(xy , 2x +3y 】与原函数具有相同的复合结构. =f u (xy , 2x +3y 【即4v =2x +3y第 4 页共 14 页2、隐函数:1)一个方程的情形:F x dy ⎧=−⎪dx F y ⎪⎪y =y (x→⎨隐函数求导法:方程两边对x 求导,注意y =二元方程可确定一个一元隐函数:F (x , y =0⎯⎯⎯⎪微分法:方程两边取微分,F dx +F dy =0x y⎪⎪⎩y (x 为x 的函数F y ⎧F x ∂z ∂z=−, =−z =z (x , y ⎪dx F z dy F z ⎪三元方程可确定一个二元隐函数:F (x , y ,z =0⇒⎨隐函数求导法:方程两边对x (或y 求偏导,注意z =z (x , y 为x 、y 的函数⎪⎪⎩微分法:方程两边取微分,F x dx +F y dy +F z dz =0⇒dz ="2)方程组的情形:(隐函数求导法)⎧y =y (x⎨⎩z =z (x⎧F (x , y , z =0dy dz三元方程组确定两个一元隐函数:⎨⇒,对x 求导dx dx G x y z (, , =0⎩四元方程组可确定两个二元隐函数:{F (x , y , u , v =0G (x , y , u , v =0⎧u =u (x , y ⎨⎩v =v (x , y⇒对x (或y 求偏导,视y (或x 为常量,得∂u ∂v , ∂x ∂x(或∂u ∂v )∂y ∂y(四)全微分:可微函数z =f (x , y 的全微分为:dz =z x dx +z y dy . 定义为:∆z [=f (x 0+∆x , y 0+∆y −f (x 0, y 0]=A ∆x +B ∆y +o (ρ ,其中ρ=(五)应用:1、几何应用:1)曲线的切线与法平面:∆⎧x =x (t ⎪a 、若曲线Γ的方程为参数方程:⎨y =y (t ,点M (x 0, y 0, z 0 ∈Γ↔t =t 0,则⎪z =z (t ⎩G切向量为T =(x ′(t 0, y ′(t 0, z ′(t 0 ,切线方程为x −x 0y −y 0z −z 0; ==x ′(t 0 y ′(t 0 z ′(t 0法平面方程为x ′(t 0 ⋅(x −x 0 +y ′(t 0 ⋅(y −y 0 +z ′(t 0 ⋅(z −z 0 =0G ⎧y =f (x,点M (x 0, y 0, z 0 ∈Γ,则切向量为T =(1,y ′(x 0, z ′(x 0 ,从而可b 、若曲线Γ的方程为:⎨⎩z =g (x得切线方程与法平面方程.⎧F (x , y , z =0,点M (x 0, y 0, z 0 ∈Γ,则切向量为c 、若曲线Γ的方程为一般方程:⎨G (x , y , z 0=⎩第 5 页共 14 页5G dy dz T =(1,y ′(x 0, z ′(x 0 (利用隐函数求导法,方程两边对x 求导,可得, ),从而可得切线方程与法dx dxG G G G G平面方程.【另解:n 1=(F x , F y , F z |M ,n 2=(G x , G y , G z |M ,可取切向量为T =n 1×n 2】2)曲面的切平面与法线:a 、若曲面Σ的方程为F (x , y , z =0,点M (x 0, y 0, z 0 ∈Σ,则法向量为:n =(F x (x 0, y 0, z 0, F y (x 0, y 0, z 0, F z (x 0, y 0, z 0 ,切平面方程为:F x (x 0, y 0, z 0(x −x 0 +F y (x 0, y 0, z 0(y −y 0 +F z (x 0, y 0, z 0(z −z 0 =0;法线方程为:Gx −x 0y −y 0z −z 0==F x (x 0, y 0, z 0 F y (x 0, y 0, z 0 F z (x 0, y 0, z 0b 、若曲面Σ的方程为z =f (x , y ,点M (x 0, y 0, z 0 ∈Σ,则法向量为:n =(f x (x 0, y 0, f y (x 0, y 0, −1 ,切平面方程为:f x (x 0, y 0(x −x 0 +f y (x 0, y 0(y −y 0 −(z −z 0 =0;法线方程为:Gx −x 0y −y 0z −z 0==f x (x 0, y 0 f y (x 0, y 0 −1⎧f x (x , y =02、极值:1 无条件:设z =f (x , y ,由⎨解得驻点(x 0, y 0 ,f (x , y 0=⎩y令A =f xx (x 0, y 0, B =f xy (x 0, y 0, C =f yy (x 0, y 0 ,然后利用A , B , C 判定极值与否:AC −B 2>0有极值,A >0极小,A <0极大;AC −B 2<0无极值;AC −B 2=0用此法无法判定.注意:最后必须求出极值. 2)条件极值:z =f (x , y 在条件ϕ(x , y =0下的极值:构造Lagrange 函数,令⎧L x (x , y =0⎪L (x , y =f (x , y +λϕ(x , y ,联立方程⎨L y (x , y =0,其解(x 0, y 0 为⎪ϕ(x , y =0⎩是否为极值点,一般可由问题的本身性质来判定.3、方向导数与梯度:(以二元函数为例)1)、方向导数:设z =f (x , y 可微分,∂f Ge l =(cosα,cos β ,则∂l=f x (x 0, y 0 c os α+f y (x 0, y 0 cos β(x 0, y 02)梯度:grad f (x , y =(f x (x , y , f y (x , y ,方向导数的最大值为梯度的模,取得方向导数的最大值的方向为梯度的方向.三、积分 (一求法1、重积分I 、二重积分I =∫∫f (x , y d σD⎧b dx y 2(x f (x 若D :⎧⎪⎨a ≤x ≤b ⎪[X :上下]a 、直角坐标:I =∫∫f (x , y dxdy =⎪⎨∫a ∫y , y dy , 1(x⎩y 1(x ≤y ≤y 2(xD⎪⎩∫dcdy ∫x 2(yx f (x , y dx ,若D :⎧⎪⎨c ≤y ≤d 1(y ⎪x x ≤x [Y :左右] ⎩1(y ≤2(y若D 既不是X -型也不是Y -型,则适当分割之.注意:通过二重积分,可交换二次积分的积分次序,这是一类常考的题型.⎧⎨x =ρcos θb 、极坐标: I ZZZZZZ YZZZZZ ⎩y =ρsin θd σ=ρd ρd θX Z ∫∫f (ρcos θ, ρsin θ ⋅ρd ρd θDZZZZZZZZZ D :⎧⎨α≤θ≤βYZZZZZZZZ ⎩ρ1(θ ≤ρ≤ρ2(θX Z ∫βρ2(θαd θ∫ρ(θ f (ρcos θ, ρsin θ ρd ρ1II 、三重积分I =∫∫∫f (x , y , z dvΩa 、直角坐标I =∫∫∫f (x , y , z dxdydz :Ω1)投影法:i )先一后二公式: I ZZZZZZZZZZZZZZZZX YZZZZZZZZZZZZZZZZ Ω={(x , y , z |z 1(x , y ≤z ≤z 2(x , y ,(x , y ∈D xy}z 2(x , yD ∫∫dxdy ∫z f (x , y , z dz1(x , yxy⎧a ≤x ≤b Ω:⎪⎨y 1(x ≤y ≤y 2(x ii 三次积分公式:I ZZZZZZZZZZ YZZZZZZZZZ ⎪⎩z 1 (x , y ≤z ≤z 2(x , yX Z ∫b dx ∫y 2(xz 2(x , ya y (x dy ∫z 1(x , y f (x , y , z dz12)截面法:(先二后一公式)I ZZ ZZZZZZZZZZ YZZZZZZZZZZZ Ω={(x , y , z |c ≤z ≤d ,(x , y ∈D z }X Z∫dcdz ∫∫f (x , y , z dxdyD z⎧⎪x =ρcos θ⎨y =ρsin θ⎪b 、柱面坐标:I ZZZZZZ YZZZZZZ ⎩z =z dv =ρd ρd θdzX ∫∫∫f (ρcos θ, ρsin θ, z ⋅ρd ρd θdzΩ⎧α≤θ≤βΩ:⎪⎨ρ1(θ ≤ρ≤ρ2(θ ZZZZZZZZZZ YZZZZZZZZZ ⎪⎩z 1(ρ, θ ≤z ≤z 2(ρ, θX Z∫β, θαd θ∫ρ2(θρ1(θρd ρ∫z 2(ρz (ρcos θ, ρsin θ, z dz1(ρ, θf⎧⎪x =r sin ϕcos θ⎨y =r sin ϕsin θ⎪c 、球面坐标:I ZZZZZZZZ YZZZZZZZ ⎩z =r cos ϕdv =r 2sin ϕdrd ϕd θX Z ∫∫∫f (r sin ϕcos θ, r sin ϕsin θ, r cos ϕ⋅r 2sin ϕdrd ϕd θΩ⎧α≤θ≤Ω:⎪β⎨ϕ1(θ ≤ϕ≤ϕ2(θ ZZZZZZZZZX YZZZZZZZZ ⎪⎩r 1 (ϕ, θ ≤r ≤r 2(ϕ, θZ Z Z∫βϕ2(θαd θ∫ϕϕd ϕ(ϕ, θ1(θsin ∫r 2r 1(ϕ, θf (r sin ϕcos θ, r sin ϕsin θ, r cos ϕ r 2dr2、曲线积分I 、第一类(对弧长):L :⎧⎨x =x (t a 、平面曲线:∫⎩y =y (tLf (x , y ds ZZZZZ YZ ZZZZ α≤t ≤βX∫βαf [x (t , y (t ](α<β⎧x =x (tΓ:⎪⎨y =y (t b 、空间曲线:∫⎪⎩z =z (t Γf (x , y , z ds ZZZZZ YZZZZZ Xβα≤t ≤β∫αf [x (t , y (t , z (t ](α<βII 、第二类(对坐标) a 、平面曲线:I =∫L P (x , y dx +Q (x , y dyi 参数法:I ZZZZZZ L :⎧⎨x =x (tYZZZZZ ⎩y =y (tβt 由α变到βX Z ∫α{P [x (t , y (t ]x ′(t +Q [x (t , y (t ]y ′(t }dtii 与路径无关:选取特殊的路径求之,注意条件:单连通,偏导数处处连续.定理设函数P (x , y , Q (x , y 在单连通区域D 内处处具有连续的偏导数,则下列命题相互等价:(1)∫LP (x , y dx +Q (x , y dy 在D 内与路径无关;(2)沿D 内任意一条闭曲线C ,v ∫CP (x , y dx +Q (x , y dy =0;(3)在D 内恒有:∂P ∂Q∂y =∂x;(4)P (x , y dx +Q (x , y dy 在D 内为某函数u (x , y 的全微分,即存在函数u (x , y ,使得P (x , y dx +Q (x , y dy =du (x , y .这里u (x , y 可由下列三种方法求得:①曲线积分法:u (x , y =∫(x , y(x x , y dx +Q (x , y dy +C ;0, y 0P (②凑全微分法:利用微分的运算法则,将P (x , y dx +Q (x , y dy 凑成d (" ,则u (x , y =(" +C ;③偏积分法:由du =Pdx +Qdy ,得u x =P (x , y ;两边对x 求偏积分可得u (x , y =P (x , y dx =f (x , y +C (y 两边对y 求偏导可得u y =f y (x , y +C ′(y ,再由u y =Q (x , y ,可解得C (y ,从而得u (x , y . iii )Green 公式:∫v ∫P (x , y dx +Q (x , y dy =∫∫(∂Q ∂P− dxdy ;不闭则补之.注意条件:LD∂x ∂y偏导数处处连续,L 为D 的正向边界.iv )化为第一类:∫LP (x , y dx +Q (x , y dy =∫L[P (x , y cos α+Q (x , y cos β]ds b 、空间曲线:I = ∫ΓP (x , y , z dx +Q (x , y , z dy +R (x , y , z dz⎧Γ:⎪x =x (t⎨y =y (t i 参数法:I ZZZZZZ YZZZZZ ⎪⎩z =z (t t 由α变到βX Z ∫βα{P [x (t , y (t , z (t ]x ′(t +Q [x (t , y (t , z (t ]y ′(t +R [x (t , y (t , z (t ]z ′(t }dtii *与路径无关:选取特殊的路径求之,注意条件:单连通,偏导数处处连续. iii Stokes公式:cos αcos βcos γdydz dzdx dxdy v ∫ΓPdx +Qdy +Rdz =∫∫∂∂∂∂∂∂Σ∂x ∂y ∂z dS =∂x ∂y ∂z ;或∫∫ΣP Q R P Q R不闭则补之.注意方向:L 的方向与Σ的侧符合右手规则. iv 化为第一类:∫ΓPdx +Qdy +Rdz =∫Γ(P cos α+Q cos β+R cos γ ds3、曲面积分I 、第一类(对面积):⎧⎪∫∫D f [x , y , z (x , y ]Σ:z =z (x , y I =∫∫Σf (x , y , z dS =⎪xy⎪⎨⎪∫∫D f [x , y (z , x , z ]Σ:y =y (z , xzx ⎪⎪⎩∫∫D f[x (y , z , y , z ]Σ:x =x (y , z yzII 、第二类(对坐标):I =∫∫P (x , y , z dydz +Q (x , y , z dzdx +R (x , y , z dxdy Σ1) Gauss公式:w ∫∫Pdydz +Qdzdx +Rdxdy =∫∫∫(∂P ∂x +∂Q ∂RΣΩ∂y +∂zdxdydz 若不闭则补之.注意条件:偏导数处处连续及方向性:Σ为Ω的整个边界曲面的外侧. 2)投影法:注意垂直性.若不垂直,则∫∫P (x , y, z dydz Σ:x =x (y , z ±∫∫P [x (y , z , y , z ]dydz 【前正后负】ΣD yz∫∫Q (x , y , z dzdx Σ:y =y (z , x ±∫∫Q [x , y (z , x , z ]dzdx 【右正左负】ΣD zx∫∫R (x , y , z dxdy Σ:z =z (x , y ±∫∫R [x , y , z (x , y ]dxdy 【上正下负】ΣD xy3)化为第一类:∫∫Pdydz +Qdzdx +Rdxdy =∫∫(P cos α+Q cos β+R cos γ dSΣΣ4)化为单一型:∫∫Pdydz +Qdzdx +Rdxdy =∫∫(Pcos αΣΣcos γ+Q cos βcos γ+R dxdy (二应用1、面积:平面A =∫∫dxd y ;D曲面A =∫∫d S ,A =Σ∫∫dy(D ∫∫∫∫或)xy D yz D zx2、体积: V =∫∫∫dv ;V =∫∫f (x , y d σ【曲顶柱体】ΩD3、物理应用:质量、功、转动惯量、质心、引力、流量(通量)、环流量等等【自学之】设A G=(P (x , y , z , Q (x , y , z , R (x , y , z ,则散度div A G =∂P ∂x +∂Q ∂y +∂R∂z, G i Gj k G 旋度rot A G =∂∂∂∂x ∂y ∂z P Q R四、级数(一)常数项级数及其收敛性 1、定义:∑u n =1 ∞ n 收敛(发散)⇔ lim sn 存在(不存在)【部分和sn = u1 + u2 + n →∞ ∞ ∞ un 】 2、基本性质:1)∞ ∞ ∑ kun (k ≠ 0 与∑ un 具有相同的收敛性;n =1 n =1 ∞ n =1 2)∑ un 与∑ vn 都收敛⇒ ∑ (un ± vn 收敛【口诀:收加收为收,收加发为发,发加发未必发】 n =1 n =1 3)改变有限项的值不影响级数的收敛性 4)收敛的级数可以任意加括号5)若∑u n =1 n →∞ ∞ n 收敛,则 lim un = 0 ;反之未必.n →∞ ∞ 6)若lim un ≠ 0 ,则∑u n =1 n 发散 3、特殊级数的收敛性【必须牢记之】:①调和级数∑ n 发散;n =1 ∞ ∞ 1 ② p -级数∑n n =1 1 p (常数 p > 0 ):当 p > 1 时收敛,当p ≤ 1 时发散;∞ ③等比级数(几何级数)∑ aq n=0 n ,当| q |≥ 1 时发散,当 | q |< 1 时收敛,且∞ ∑ aq n=0 n = a (| q |< 1 .1− q 4、正项级数∞ ∑u n =1 ∞ n ,其中un ≥ 0(n = 1, 2, : I、∑u n =1 n 收敛⇔ {sn } 有界; II、比较:1)un ≤ vn ( n > N 【大的收,小的也收;小的发,大的也发】 2)lim un = l (0 < l < +∞ 【同敛散】n →∞ v n 11 第 11 页共 14 页III、比值(根值) lim :n →∞ un +1 = ρ (lim n un = ρ ,当ρ < 1 时收敛;当ρ > 1( ρ = +∞ 时发散;而当ρ = 1 时n →∞ un 用此法不能判定其收敛性. IV、极限:lim n un = l (0 < l < +∞ ,当 p > 1 时收敛;当p ≤ 1 时发散.p n →∞ ∞ 5、交错级数∑ (−1 u (u n n =1 n n > 0, n = 1, 2, : {un } 单调减少趋于零. 6、一般项级数∑u n =1 ∞ n=0 ∞ n ( un 为任意常数):发散或收敛(绝对收敛,条件收敛)∞ (二)幂级数∑a x n n 或∑ a (x − x n=0 n 0 n :∞ 1、Abel 定理:若幂级数∞ ∑ an x n 在当x = x0 ( x0 ≠ 0 时收敛,则∑ an x n 当 | x |<| x0 | 时必绝对收敛;反之,n=0 n=0 ∞ n=0 ∞ 若∑ an x n 当 x = x0 时发散,则∑ an x n 当 | x |>| x0 | 时必发散. n=0 ρ = 0, ⎧ +∞, an +1 ⎪: 2、收敛半径:1)若an ≠ 0 【不缺项】ρ = lim (lim n | an | , R = ⎨1/ ρ , 0 < ρ < +∞, n →∞ a n →∞ n ⎪ 0, ρ = +∞; ⎩ 2)若缺项:lim n →∞ un +1 ( x = un ( x < 1 ,解得收敛区间. 3、收敛域:先求收敛半径 R ,可得收敛区间( − R, R ,再讨论端点 x = ± R 处的收敛性可得所求的收敛域 4、幂级数和函数的求法:先求收敛域,再利用幂级数的运算性质(加减乘除四则运算,逐项求导,逐项积分,和函数的连续性)以及换元法,然后代已知的展开式,可得所求的和函数. 5、函数展开成幂级数f ( x = ∑ a (x − x n=0 n 0 ∞ n (x ∈ I : 1)直接展开法:【利用 Taylor 展开定理】求导数得系数,写出泰勒级数,求其收敛域,最后记得判定余项趋于零,便可得到所求的展开式. 2)间接展开法:利用幂级数的运算性质(加减乘除四则运算,逐项求导,逐项积分,和函数的连续性)以及换元法,然后代已知的展开式,可得所求的展开式.注:以下 7 个常用的展开式必须牢记:①e = x xn ∑ n ! (| x |< +∞ ; n =0 ∞ ② sin x = ∑ (−1n n=0 ∞ x 2 n +1 (| x |< +∞ (2n + 1! 第 12 页共 14 页 12③ cos x = ∑ (−1n n=0 ∞ x2n (| x |< +∞ ; (2n! ④ ∞ 1 = ∑ x n (| x |< 1 1 − x n=0 ∞ ∞1 ⑤ = ∑ (−1 n x n (| x |< 1 ; 1 + x n=0 x n +1 ⑥ ln(1 + x = ∑ (−1 (−1 < x ≤ 1 n +1 n =0 n⑦ (1 + x = 1 + α x + α α (α −1 2 2! x + + α (α −1 (α − n +1 n n! x + α >0 ⎧[−1,1] ⎪ (| x |< 1 【α 为常数, I = ⎨ ( −1,1] −1 < α < 0 】⎪α ≤ −1 ⎩(−1,1 (三)傅里叶级数:只复习T = 2π 情形,一般周期 T = 2l 类似. an = 1、系数:1 π 1 ∫ π f ( x cosnxdx(n = 0,1, 2, − π bn = f ( x sin nxdx(n = 1, 2, π ∫π − π 2、收敛性:条件为在一个周期上 1)处处连续或只有有限个第一类间断点;2)只有有限个极值点. f ( x ⎧ a0 ∞ ⎪ 3、和:+ ∑ (an cos nx + bn sin nx = ⎨ f ( x + + f ( x − 2 n =1 ⎪⎩ 2 4、傅里叶级数展开式: f ( x = x为f ( x的连续点 x为f ( x的间断点a0 ∞ + ∑ (an cos nx + bn sinnx , ( x ∈ C 2 n =1 f ( x+ + f ( x− } 2 其中 C = {x | f ( x = 5、函数展开成傅里叶级数: 1)若 f ( x 为T = 2π 的周期函数,则对 f ( x 验证收敛定理的条件,求出 f ( x 的间断点,利用收敛定理,写出 f ( x 的傅氏级数的收敛性,再求出傅氏系数,最后写出所求的傅氏级数展开式.注意:必须写出展开式成立的范围,在展开式不成立的点(必为间断点)必须指明傅氏级数的收敛性. 2)若 f ( x 只在[ −π , π ] 上有定义,则必须对 f ( x 进行周期延拓,然后对周期延拓后所得的函数 F ( x 的傅氏级数展开式限制在[ −π , π ] 上讨论. 3)若 f ( x 只在[0, π ] 上有定义,对 f ( x 进行奇(偶)延拓再周期延拓,可得正弦(余弦)级数.注意:间断点或连续点的判定,必须为周期函数的!第 13 页共 14 页 13五、微分方程——续(一)全微分方程:P ( x, y dx + Q ( x, y dy = 0( ∂Q∂P ,= ∂x ∂y 1)曲线积分法:通解为 u ( x, y = C ,其中u ( x, y = ∫ ( x, y ( x0 , y0 P ( x, y dx + Q( x, y dy ; 2)凑微分法:利用微分的运算法则,设法将原方程凑成 d [∆ ] = 0 ,则可得通解为∆ = C ,.(二)常系数线性微分方程: 1、齐次:y′′ + py′ + qy = 0 ,其中 p, q 都为常数 1)特征方程 r + pr + q = 0 ⇒ r1 , r2 = ? 2 ⎧C1e r1x + C2 e r2 x r1 ≠ r2 ∈⎪ r1 x r1 = r2 ∈ 2)通解: y = ⎨(C1 + C2 xe ⎪eα x (C cos β x + C sin β x r = α ± iβ ∈ 1 2 1,2 ⎩ 2、非齐次:y′′ + py′ + qy = f ( x ,其中 p, q 都为常数 1)先求出对应的齐次方程y′′ + py′ + qy = 0 的通解: Y = Y ( x ; 2)后求原非齐次方程的特解. A、 f ( x = e Pm ( x 型:令 y = x e Qm ( x ,其中 k 是特征方程含根λ 的重数λx * k λx B、f ( x = e [ P ( x cos ω x + Pn ( x sin ω x] 型: l 令 y = x e [Qm ( x cos ω x + Rm ( x sin ω x] ,其中 m = max{l , n} , k 是特征方程含根λ + iω 的* λx k λx 重数(三)线性微分方程的解的结构: 1)齐次:y′′ + P ( x y′ + Q ( x y = 0 ,通解: y = C1 y1 ( x + C2 y2 ( x ,其中 y1 ( x, y2 ( x 为该方程线性无关的两个解. 2)非齐次:y′′ + P ( x y′ + Q ( x y = f ( x 通解: y = Y ( x + y *( x ,其中 Y ( x 为对应的齐次方程的通解, y *( x 为原方程的一个特解. 3)设 y1 *( x, y2 *( x 分别为y′′ + P ( x y′ + Q ( x y = f1 ( x 与y′′ + P ( x y′ + Q ( x y = f 2 ( x 的特解,则 y* = y1 *( x + y2 *( x 为y′′ + P ( x y′ + Q ( x y = f1 ( x+f 2 ( x 的特解.第 14 页共 14 页 14。
高等数学下-复习资料共25页
(D) A1 = A2, B1 = B2,C1 = C2, D1 = D2 。
→
→
→
→
→
6、设 D = AB+ BC+ CA(其中均为非零向量),则| D |=(
)
(A) 0 ;
→
→
→
(C) | AB | + | BC | +| CA | ;
(B)非零常数;
→
→
→
(D) | AB |2 + | BC |2 + | CA |2 。
dx
dx
线性微分方程是(
)
(A)(1); (B)(2); (C)(3); (D)(1)、(2)、(3)均不是。
6、曲线 y = y(x)经过点 (0,−1) ,且满足微分方程 y′ + 2 y = 4x,则当 x = 1时, y =
() (A)0; (B)1;
(C)2;
(D)4。
7、已知微分方程 y′ + p(x) y = xsin x 有一特解 y = −x cos x ,则此方程通解为( )
10、曲线 y = y(x) 经过原点,且在原点处切线与直线 2x + y + 6 = 0 平行,而
y = y(x) 满足方程 y′′ − 2y′ + 5y = 0,则曲线方程是(
)
(A) y = −ex cos2x +1;(B) y = −ex sin 2x;(C) y = ex cos 2x −1;(D) y = ex sin 2x。
面 2x − 3y + z = 0成 45° 角,则 k = __________ 。
8、一平面过点( 6,−10,1),它在 ox 轴上的截距为 − 3 ,在 oz 轴上的截距为 2 ,则该
《高数课总复习下册》课件
2
例题二
解析:使用方法与策略对复杂的多项式函数和向量的题目进行解析,培养学生的 分析问题和解题能力。
3
例题三
解析:通过计算曲线积分和曲面积分的题目,加深对它们的理解,提高应用技能。
解题技巧和策略
• 理清思路,先抓住问题的关键点。 • 多思考特殊情况和边界条件。 • 熟练掌握公式和计算方法。 • 通过多做习题提高解题速度和准确性。 • 培养逻辑思维和数学建模能力。 • 积极讨论和合作,共同解决问题。
第四章:无穷级数
研讨数列极限、函数连续性和可积性;学习无穷 级数的收敛性和求和方法。
重要知识点回顾
一元函数微分 学
多元函数微分 学
重积分与曲线 积分
1. 极限与连续 2. 导数与微分 3. 函数的极值与最值 4. 高阶导数与泰
勒公式
1. 偏导数与全微分 2. 多元函数的极
值与条件极值 3. 隐函数与参数方程 4. 方向导数和梯度
《高数课总复习下册》 PPT课件
本PPT课件旨在对《高数课总复习下册》进行全面复习,提供课程目标、大 纲、重要知识点回顾、典型例题解析、解题技巧与策略、应试技巧与注意事 项,以及总结和复习策略。
课程目标
1 深入理解知识点
帮助学生全面理解下册的重要数学知识点,掌握核心概念。
2 提高解题能力
培养学生的解题思维和分析问题的能力,增强解决实际问题的能力。
1. 重积分的概念 和性质
2. 累次积分的计 算方法
3. 曲线积分的概 念和计算方法
4. 曲面积分的概 念和计算方法
无穷级数
1. 数列的极限和 收敛性
2. 函数的连续性 和可积性
3. 幂级数和傅里 叶级数
4. 泰勒级数和麦 克劳林级数
高数下知识点复习
高数下知识点复习一、导数与微分1.导数的定义导数是描述函数变化率的概念,表示函数在某一点的瞬时变化率。
导数的定义为:$$f'(x)=\lim_{\Delta x \to 0}{\frac{f(x+\Delta x)-f(x)}{\Delta x}}$$2.导数的性质导数具有如下的性质:(1) 导函数存在的充要条件是函数在该点可导。
(2) 导函数的值表示函数的斜率。
(3) 导函数具有线性性质,即对于常数a和b,有$(af(x)+bg(x))'=af'(x)+bg'(x)$。
(4) 导函数的导数为二阶导数,记作$f''(x)$。
3.微分的定义与性质微分是导数的一种几何解释,表示函数在某一点附近的变化量。
微分的定义为:$$df(x) = f'(x)dx$$微分满足的性质包括:(1) $\Delta f = f(x+\Delta x)-f(x) \approx df$(2) 微分的四则运算:若函数f(x)和g(x)可导,则$$d(f\pm g) = df \pm dg$$$$d(f \cdot g) = g(df) + f(dg)$$$$d\left(\frac{f}{g}\right) = \frac{g(df) - f(dg)}{g^2}$$二、极限与连续1.数列极限数列极限是描述数列趋向某一值的概念。
数列的极限定义为:对于任意给定的正数$\varepsilon$,存在正整数N,使得当$n>N$时,有$|a_n-L|<\varepsilon$。
2.函数极限函数极限是描述函数趋向某一值的概念。
函数的极限定义为:对于任意给定的正数$\varepsilon$,存在正数$\delta$,使得当$0<|x-a|<\delta$时,有$|f(x)-L|<\varepsilon$。
3.极限的性质极限具有如下的性质:(1) 唯一性:如果极限存在,则极限是唯一的。
高数下册复习知识
下册(一):多元函数的微积分:将上册的一元函数微积分的概念拓展到多元函数最典型的是二元函数极限:二元函数与一元函数要注意的区别,二元函数中两点无限接近的方式有无限多种(一元函数只能沿直线接近),所以二元函数存在的要求更高,即自变量无论以任何方式接近于一定点,函数值都要有确定的变化趋势连续:二元函数和一元函数一样,同样是考虑在某点的极限和在某点的函数值是否相等导数:上册中已经说过,导数反映的是函数在某点处的变化率(变化情况),在二元函数中,一点处函数的变化情况与从该点出发所选择的方向有关,有可能沿不同方向会有不同的变化率,这样引出方向导数的概念沿坐标轴方向的导数若存在,称之为偏导数通过研究发现,方向导数与偏导数存在一定关系,可用偏导数和所选定的方向来表示,即二元函数的两个偏导数已经足够表示清楚该函数在一点沿任意方向的变化情况高阶偏导数若连续,则求导次序可交换微分:微分是函数增量的线性主要部分,这一本质对一元函数或多元函数来说都一样。
只不过若是二元函数,所选取的线性近似部分应该是两个方向自变量增量的线性组合,然后再考虑误差是否是自变量增量的高阶无穷小,若是,则微分存在仅仅有偏导数存在,不能推出用线性关系近似表示函数增量后带来的误差足够小,即偏导数存在不一定有微分存在若偏导数存在,且连续,则微分一定存在极限、连续、偏导数和可微的关系在多元函数情形里比一元函数更为复杂极值:若函数在一点取极值,且在该点导数(偏导数)存在,则此导数(偏导数)必为零所以,函数在某点的极值情况,即函数在该点附近的函数增量的符号,由二阶微分的符号判断。
对一元函数来说,二阶微分的符号就是二阶导数的符号,对二元函数来说,二阶微分的符号可由相应的二次型的正定或负定性判断。
级数敛散性的判别思路:首先看通项是否趋于零,若不趋于零则发散。
若通项趋于零,看是否正项级数。
若是正项级数,首先看能否利用比较判别法,注意等比级数和调和级数是常用来作比较的级数,若通项是连乘形式,考虑用比值判别法,若通项是乘方形式,考虑用根值判别法。
高数下册总复习知识点归纳
第八、九章向量代数与空间解析几何总结○1定义:四步法——分割、代替、求和、取极限;○2性质:对积分的范围具有可加性,具有线性性;○3对坐标的积分,积分区域对称与被积函数的奇偶性。
第十二章总结无穷级数常数项级数傅立叶级数幂级数一般项级数正项级数用收敛定义,nns∞→lim存常数项级数的基本性质常数项级数的基本性质○若级数收敛,各项同乘同一常数仍收敛?○两个收敛级数的和差仍收敛?注:一敛、一散之和必发散;两散和、差必发散.○去掉、加上或改变级数有限项?不改变其收敛性?○若级数收敛?则对这级数的项任意加括号后所成的级数仍收敛,且其和不变。
推论?如果加括号后所成的级数发散?则原来级数也发散?注:收敛级数去括号后未必收敛.莱布尼茨判别法若1+≥nnuu且0lim=∞→nnu,则∑∞=--11)1(nnn u收敛nu∑和nv∑都是正项级数,且nnvu≤.若nv∑收敛,则nu∑也收敛;若nu∑发散,则nv∑也发散.比较判别法比较判别法的极限形式nu∑和nv∑都是正项级数,且lvunnn=∞→lim,则○1若+∞<<l0,nu∑与nv∑同敛或同散;○2若0=l,nv∑收敛,nu∑也收敛;○3如果+∞=l,nv∑发散,nu∑也发比值判别法根值判别法nu∑是正项级数,ρ=+∞→nnn uu1lim,ρ=∞→nnnulim,则1<ρ时收敛;1>ρ(ρ=+∞)时发散;1=ρ时可能收敛也可能发收敛性和函数展成幂级数nnnxa∑∞=0,ρ=+∞→nnn aa1lim,1,0;,0;0,.R R Rρρρρ=≠=+∞===+∞缺项级数用比值审敛法求收敛半径)(xs的性质○在收敛域I上连续;○在收敛域),(RR-内可导,且可逐项求导;○和函数)(xs在收敛域I上可积分,且可逐项积分.(R不变,收敛域可能变化).直接展开:泰勒级数间接展开:六个常用展开式⎰-=πππnxdxxfancos)(1⎰-=πππnxdxxfbnsin)(1收敛定理x是连续点,收敛于)(xf;x是间断点,收敛于)]()([21+-+xfxf周期延拓)(xf为奇函数,正弦级数,奇延拓;)(xf为偶函数,余弦级数、偶延拓.交错级数。
高数下册总复习知识点.pptx
F ( x, G( x,
y, z) y, z)
0 ,
0
(取 x为参数)
i jk
取T Fx Fy Fz
切线方程为
Gx Gy Gz M
x x0 y y0 z z0 ,
Fy Fz
Fz Fx
Fx Fy
Gy Gz M Gz Gx M Gx Gy M
法平面方程为
Fy Gy
Fz Gz
M
(x
x0 )
它们距离为
M1M2 x2 x1 2 y2 y1 2 z2 z1 2
2、数量积 (点积、内积)
a
b
|
a
||
b
|
cos
其中
为a
与b
的夹角
数量积的坐标表达式 a b axbx a yby azbz
两向量夹角余弦的坐标表示式
cos
ab
axbx a yby azbz
ax2
函数连续
函数可导
有极限
函数可微 偏导数连续
4、多元复合函数求导法则
中间变量均为一元函数的情形
定理1 若函数
在点t处可导,z f (u, v)
在点 处偏导连续, 则复合函数 z f ( (t), (t))
在点 t 可导, 且有链式法则
dz z du z dv dt u dt v dt
z
u v
1
旋 转 椭 球 面
z
o
y
x
(1)球面 (2)圆锥面 (3)旋转双曲面
x2 y2 z2 1
x2 y2 z2
( x x0 )2 ( y y0 )2 (z z0 )2 R2
x2 a2
y2 a2
z2 c2
高等数学下期末总复习
证 在 (0,o)处 连 但 导 存 明 点 不 续 偏 数 在 二、偏导数 1、偏导数定义极限式及应用
2、偏导数求法: 1)多元复命函数的导法则(注意:抽象复合求导) 2)隐函数求导——公式 2f (x, y) 2 2 练习: 1)设 f (x + y, x − y) = 2x(x − y ),求 2x 2)设 u(x, y) 为二元可导函数,已知 则 u(x, y) =_______ 3)设 u(x, y) 具有二阶连续偏导 且 u′′ (t,t) = a2,u′′ (t,t) = −ab,u′′ (t,t) =b2, xx xy yy 则 F(t) =u(t,t)的二阶导数 3、求全微分 dz 练习:已知 x2 + y2 + z2 = f [x, f (x, y)] ,其中 f (u,v) 具有连续偏导,求 dz 。
求体积:1)曲顶柱体,用二重积分
V = ∫∫ 顶 dxdy
底
顶:z = f (x, y) 代入积分方程
2)立体用三重积分
V = ∫∫∫ dv
Ω
第十章
曲线与曲面积分
掌握: 1、第一类、第二类曲线积分 ——化为定积分的计算方法; 2、格林公式及其应用; 3、高斯公式及其应用。 注意一种特殊情况: 被积函数=1的曲线,曲面积分 1、P60—4 ∫ L(3x2 +4y2)ds =12a ∫ Lds =L 的周长
kx2 kx2 k lim 2 2 2 = lim 2 = x→ x +k x 0 x→ x ( +k2) 0 1 1+k2
随着k取不同的值,极限取得不同的值 ∴极限不存在 3、多元函数的连续性 例设
xy 2 2 2 2 x + y ≠0 f (x, y) = x + y x2 + y2 =0 0
高等数学下册期末复习相关知识点
4 若z = f (u), u = u(x, y)
z dz u x du x
z dz u y du y
z
u
x y型
一. 空间曲线的切线与法平面
x x(t),
1、曲线
的参数方称为
y
y(t ),
z z(t),
当 t = t 0 时, 曲线 上的对应点为 M0(x0 , y0 , z0).
x 0
s(t
)dt
x
(
0
ant n
ann0x n1 .
n0 n 1
)dt
x 0
ant
n
dt
n0
(收敛半径不变)
(3)幂级数 an x n 的和函数 s( x) 在收敛区间(-R, R)
n0
内可导, 并可逐项求导任意次.
即 s( x) ( an xn )
若z = f (u, v) , u = φ(x), v = ψ(x)
u z
v
x
dz z du z dv
dx u dx v dx
若 z = f (u, v, w), u = u(x), v = v(x), w = w(x),
u
z
v
w
x
dz z du z dv z dw dx u dx v dx w dx
u
z
v
w
x z z u z v z w x u x v x w x
y z z u z v z w y u y v y w y
3 若若z = f (u, v, w),
高数下册复习要点
高等数学下册知识点
1 向量的数量积、垂直与平行的充要条件、向量间夹角公式
2 求平面与直线的位置关系
3 求直线与平面方程
4 空间曲线的切向量及切线方程
5 空间曲面的切平面方程
6 计算一阶偏导数及二阶偏导数
7 求方程所确定的隐函数的偏导数
8 抽象函数的偏导数
9 求极值、利用拉格郎日乘数法求最值
10 求方向导数、梯度
11 利用直角坐标和极坐标计算二重积分
12 交换积分次序
13 计算立体的体积(二重积分或三重积分)
14 曲线积分与路径无关条件
15 计算对弧长的曲线积分
16 利用格林公式计算对坐标的曲线积分
17 利用高斯公式计算对坐标的曲面积分
18 正项级数的审敛法(比较审敛法及其极限形式、比值审敛法)
19 常见的几种级数(几何级数、调和级数、p级数)的敛散性
20 交错级数的莱布尼兹审敛法,绝对收敛和条件收敛
21 幂级数的收敛域和和函数的确定
22 傅里叶级数的展开式及系数计算公式、傅里叶级数的收敛定理。
高等数学下知识点总结6篇
高等数学下知识点总结6篇高等数学下知识点总结6篇借鉴经验和教训,对自己的工作和生活进行反思和总结,从而不断进步。
深入学习,专攻某一领域有利于个人成长和职业发展。
下面就让小编给大家带来高等数学下知识点总结,希望大家喜欢!高等数学下知识点总结1第一,函数与导数。
主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
第二,平面向量与三角函数、三角变换及其应用。
这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
第三,数列及其应用。
这部分是高考的重点而且是难点,主要出一些综合题。
第四,不等式。
主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。
是高考的重点和难点。
第五,概率和统计。
这部分和我们的生活联系比较大,属应用题。
第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。
第七,解析几何。
是高考的难点,运算量大,一般含参数。
高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。
针对数学高考强调对基础知识与基本技能的考查我们一定要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能。
以不变应万变。
对数学思想和方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时与数学知识相结合。
对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,所有数学考试最终落在解题上。
考纲对数学思维能力、运算能力、空间想象能力以及实践能力和创新意识都提出了十分明确的考查要求,而解题训练是提高能力的必要途径,所以高考复习必须把解题训练落到实处。
训练的内容必须根据考纲的要求精心选题,始终紧扣基础知识,多进行解题的回顾、总结,概括提炼基本思想、基本方法,形成对通性通法的认识,真正做到解一题,会一类。
高数下册期末总复习第七版
切线方程为 x − x0 = y − y0 = z − z0 ; x′(t0 ) y′(t0 ) z′(t0 )
法平面方程为 x′(t0 ) ⋅ (x − x0 ) + y′(t0 ) ⋅ ( y − y0 ) + z′(t0 ) ⋅ (z − z0 ) = 0
第5页共5页
5
b、
若曲线
Γ
的方程为:
三元方程组确定两个一元隐函数:
⎧ F ( x, ⎨⎩G ( x,
y, y,
z) z)
= =
0 0
⎨ ⎩
z=
z
(
x
)
⇒
对x求导
dy dx
,
dz dx
⎧u=u ( x, y )
{ ⇒ 四元方程组可确定两个二元隐函数:
F ( x, y,u,v)=0 G( x, y,u,v)=0
⎨⎩v=v( x, y )
对x (或y )求偏导,视y (或x )为常量,得
G 2)点法式方程:法向量 n = ( A, B,C) ,点 M (x0 , y0 , z0 ) ∈ Π ,则 A(x − x0 ) + B( y − y0 ) + C(z − z0 ) = 0 .
3)截距式方程: x + y + z = 1 abc
4)平面束方程:过直线
⎧ ⎨ ⎩
A1x A2 x
+ +
附录——平面曲线的情形
(1)
若平面曲线 C
:
⎧ ⎨ ⎩
x y
= =
x(t) y(t)
,t
=
t0
↔
M0
∈C
,则
JG 切向量T = (x′(t0 ), y′(t0 )) ,
高数下册总复习PPT课件
m
n
p
则
L
//
s
n
Am Bn Cp 0
L在 上 Am Bn Cp 0, ( x0, y0, z0 )
L
s
//
n
ABC
mn p
sin
| Am Bn Cp |
,
A2 B2 C 2 m2 n2 p2
0 ,
2
第1页/共47页
(3)曲面在某点处的法线方程的确定
要点:I:曲面在某点处的法线方程的确定
要点:I、方向导数与梯度的计算 II :二元抽象函数的二阶偏导数的计算;
III :隐函数的偏导数的计算;
IV :多元函数极值(条件极值和无条件极值);
例1:设 z 1 f ( xy) y( x y) , 求 2z .
x
xy
答案: 2z y f ( xy) ( x y) y( x y)
xy
D
其中 D 由直线 y = x , y = 1 , 及x = 1 所围平面区域
第25页/共47页
( 2 ) 3
例 4 计算 ( x2 y2 )dxdy ,其 D 为由圆
D
x2 y2 2 y, x2 y2 4 y及直线 x 3y 0,
所确定的二元函数,求
dz,
2z .
xy
解:两边取全微分 e x yd( xy) 2dz ezdz 0,
整理并解得
dz
ye xy ez 2
dx
x ez
dy, 2
z x
ye xy ez 2
,
2z xy
y
(
ye xy ez 2
)
(
ye
xy
)'y
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学下册总复习资料(工科)广东工业大学华立学院增城,2008-2-20目录目录〈一〉内容提要 (1)第八章多元函数微分法及其应用 (1)第九章重积分 (5)第十章曲线积分与曲面积分 (9)第十一章无穷级数 (12)第十二章微分方程................................................................................错误!未定义书签。
〈二〉强化训练 . (18)(Ⅰ)04、05、06期末试卷 (18)2004—2005学年第二学期期末考试试卷 (18)2005—2006学年第二学期期末考试试卷 (22)2006—2007学年期末考试试卷 (24)(Ⅱ)自测训练 (27)试卷一 (27)附参考答案: (30)试卷二 (30)附参考答案: (33)试卷三 (35)附参考答案: (38)2005-2006学年第二学期期末考试试卷(2005级快班试卷) (39)2006-2007学年第二学期期末考试(2006级快班试卷) (42)试卷四 (45)参考答案及提示 (50)试卷五 (54)参考答案及提示: (58)高等数学下册总复习资料1高等数学下册总复习〈一〉内容提要第八章 多元函数微分法及其应用一、基本概念 1.多元函数(1)知道多元函数的定义n 元函数:),,,(21n x x x f y(2)会求二元函数的定义域1°:分母不为0; 2°:真数大于0;3°:开偶次方数不小于0;4°:u z arcsin 或u arccos 中||u ≤1 (3)会对二元函数作几何解释 2.二重极限A y x f y y x x ),(lim 0这里动点),(y x 是沿任意路线趋于定点),(00y x 的.(1) 理解二重极限的定义(2) 一元函数中极限的运算法则对二重极限也适用,会求二重极限; (3) 会证二元函数的极限不存在(主要用沿不同路径得不同结果的方法). 3.多元函数的连续性(1)理解定义:)()(lim 00P f P f P P .(2)知道一切多元初等函数在其定义域内连续的结论;(3)知道多元函数在闭区域上的最大最小值定理、介值定理。
二、偏导数与全微分 1.偏导数(1)理解偏导数的定义(二元函数)x y x f y x x f x zx ),(),(lim 00000 yy x f y y x f y zy ),(),(lim 00000 (2)知道偏导数的几何意义以及偏导数存在与连续的关系. (3)求偏导数法则、公式同一元函数. 2.高阶偏导数(1)理解高阶偏导数的定义.广东工业大学华立学院公共基础部高等数学教研室2(2)注意记号与求导顺序问题.(3)二元函数有二阶连续偏导数时,求导次序无关:xy zy x z 22. 3.全微分(1)知道全微分的定义若),(),(0000y x f y y x x f z 可表示成)( o y B x A ,则),(y x f z 在点),(00y x 处可微;称y B x A 为此函数在点),(00y x 处的全微分,记为y B x A dz .(2)知道二元函数全微分存在的充分必要条件:函数可微,偏导数必存在;(xzA,y z B ;dy y z dx x z dz) 偏导数存在,不一定可微(dz z 是否为)( o ). 偏导数连续,全微分必存在.方向导数、梯度,只对快班要求.三、多元复合函数与隐函数求导法则 1.多元复合函数的求导法则 (1)x v v z x u u z x z yv v z y u u z y z (2)对于函数只有一个中间变量的二元函数或多个中间变量的一元函数(全导数)的求导法要熟练掌握.(3)快班学生要掌握多元复合函数(主要是两个中间变量的二元函数)的二阶偏导数的求法.2.隐函数的求导公式 (1)一个方程的情形若0),( y x F 确定了)(x y y ,则yx F F dx dy; 若0),,( z y x F 确定了),(y x z z ,则z x F F x z ,zy F F y z. (2)方程组的情形高等数学下册总复习资料3若0),,(0),,(z y x G z y x F 能确定 )()(x z z x y y ,则由0dx dz G dx dy G G dxdz F dx dy F F z y x z y x可解出dx dy 与dxdz;若0),,,(0),,,(v u y x G v u y x F 确定了),(y x u u ,),(y x v v ,象上边一样,可以求出x u ,x v及y u ,yv. 四、多元函数微分法的应用 1.几何应用(1)空间曲线的切线与法平面方程1°:曲线 :)(t x ,)(t y ,)(t z ,0t t 时, 上相应点),,(000z y x 处的切线方程:)()()(000000t z z t y y t x x法平面方程:0))(())(())((000000 z z t y y t x x t2°:曲线 :)()(x z x y ,则点),,(000z y x 处的切线方程:000001()()x x y y z z x x法平面方程:00000()()()()()0x x x y y x z z3°:曲线 :0),,(0),,(z y x G z y x F ,则点),,(000z y x P 处的切线方程为Pyx y x Pxz x z Pzy z y G G F F z z G G F F y y G G F F x x 000法平面方程:0)()()(000z z G G F F y y G G F F x x G G F F Pyx yx Px zxzP z y z y(2)空间曲面的切平面与法线方程1°:曲面 :0),,( z y x F ,点),,(000z y x 处的切平面方程为:广东工业大学华立学院公共基础部高等数学教研室40)(),,()(),,()(),,(000000000000 z z z y x F y y z y x F x x z y x F z y x法线方程:zy x F z z F y y F x x 000 2°:曲面:),(y x f z ,在点),,(000z y x 处的切平面方程为:)(),()(),(0000000y y y x f x x y x f z z y x法线方程为:100 z z f y y f x x y x 2.极值应用(1)求一个多元函数的极值(如),(y x f z ):先用必要条件 00yz xz,求出全部驻点,再用充分条件求出驻点处的xx z ,yy z 与xyz ;02 B AC ,0 A 时有极大值,0 A 时有极小值; 02 B AC 时无极值.(2)求最值1°:纯数学式子时,区域内驻点处的函数值与区域边界上的最值比较; 2°:有实际意义的最值问题. (3)条件极值求一个多元函数在一个或m 个条件下的极值时,用拉格朗日乘数法.如:),,(z y x f u 在条件0),,(1 z y x 与0),,(2 z y x 下的极值时,取),,(),,(),,(),;,,(221121z y x z y x z y x f z y x F解方程组000021 z y x F F F ,求出x ,y ,z则),,(z y x 就是可能的极值点;再依具体问题就可判定),,(z y x 为极大(或极小)值点.高等数学下册总复习资料5第九章 重积分一、 二重积分 1. 定义:ni iiin Df d y x f 1)(0),(lim ),(2. 几何意义:当),(y x f ≥0时,Dd y x f ),(表示以曲面),(y x f z 为顶,以D 为底的曲顶柱体体积.物理意义:以),(y x f 为密度的平面薄片D 的质量. 3. 性质1°: DDd y x f k d y x kf ),(),(2°:DDDd y x g d y x f d y x g y x f ),(),()],(),([3°:若21D D D ,则 21),(),(),(D D Dd y x f d y x f d y x f4°:1),( y x f 时,D Dd y x f),(5°:若在D 上),(y x ≥),(y x ,则Dd y x ),(≥ Dd y x),( Dd y x f ),(≥(,)Df x y d6°:若),(y x f 在闭区域D 上连续,且m ≤),(y x f ≤M ,则D m ≤ Dd y x f ),(≤D M7°:(中值定理)若),(y x f 在闭区域D 上连续,则必有点D ),( ,使DDf d y x f),(),(4. 二重积分的计算法 (1)在直角坐标系中1°:若积分区域D 为 X 型区域D :)()(21x y x b x a 则化为先y 后x 的二次积分:广东工业大学华立学院公共基础部高等数学教研室6D 极点在外D 极点在的边界上rOD 极点在内bax x Ddyy x f dx dxdy y x f )()(21),(),(2°:若积分区域D 为 Y 型区域D :)()(21y x y d y c 则化为先x 后y 的二次积分:d cy y Ddx y x f dy dxdy y x f )()(21),(),((2)在极坐标系中)sin ,cos (),( r r f y x f , rdrd d1°:极点在D 外:D :)()(21r 则有)()(21)sin ,cos (),(rdr r r f d d y x f D2°:极点在D 的边界上:D :)(0r 则有)(0)sin ,cos (),(rdr r r f d d y x f D3°:极点在D 内:D :)(020r 则有20)(0)sin ,cos (),(rdr r r f d d y x f D在计算二重积分时要注意:1°:选系:是直角坐标系还是极坐标系;若积分区域是圆域、环域或它们的一部分;被积式含有22y x 或两个积分变量之高等数学下册总复习资料7y),y ),yy比xy 、y x时,一般可选择极坐标系. 2°:选序:当选用直角坐标系时,要考虑积分次序,选错次序会出现复杂或根本积不出的情况(二次积分换次序). 3°:积分区域的对称性与被积函数的奇偶性要正确配合,如:D 关于x 轴(或y 轴)对称时,应配合被积函数对于y (或x )的奇偶性. 4°:若)()(),(21y f x f y x f ,积分区域D : dy c bx a ,则二重积分可化为两个定积分的乘积. 二、 三重积分 1. 定义:ni iiiin vf dv z y x f 1)(0),,(lim ),,(2. 物理意义:以),,(z y x f 为密度的空间体 的质量. 3. 性质(与二重积分类同). 4. 三重积分的计算法 (1)在直角坐标系中 1°:若 为:),(),(),(21y x z z y x z D y x xy此处xy D 为 在xOy 面上的投影, ),(1y x z z 与),(2y x z z 分别为 的下界面和上界面方程,则xyDy x z y x z dxdy dz z y x f dxdydz z y x f ),(),(21),,(),,(2°:若 为:0),,(0201z D z y x C z C此处0z D 为用平面0z z 截 则21),,(),,(C C D z z y x f dz dxdydz z y x f(2)在柱面坐标系下广东工业大学华立学院公共基础部高等数学教研室8若 为:),(),()()(2121 r z z r z r ,则),(),()()(2121),sin ,cos (),,(r z r z dz z r r f rdr d dxdydz z y x f(3)在球面坐标系中若 为:),(),(212121 z ,则212121),(),(2sin )cos ,sin sin ,cos sin (),,(d f d d dxdydz z y x f 注:1°:柱面坐标、球面坐标对普通班不要求;2°:三重积分的计算也有选系、选序的问题;3°:积分区域的对称性与被积函数的奇偶性要正确配合;4°:若 是长方体:f z e d y c b x a ,而)()()(),,(321z f y f x f z y x f ,则三重积分化为三个定积分的乘积. 三、 重积分的应用 1. 几何应用(1) 求面积: DD d(2) 求体积:Dd y x f ),(,dv(3) 求曲面面积:若 :),(y x f z , 在xOy 面上的投影为xy D ,则 的面积为:xyD dxdy y z x z A 221 2. 物理应用(1) 求质量:Dd y x m ),(;dv z y x m ),,((2) 求重心:D d y x x m x ),(1; Dd y x y m y ),(1在均匀情况下,重心公式可变形为: DDxd x 1;DDyd y 1同理,可得到空间体 的重心坐标.高等数学下册总复习资料9(3) 求转动惯量:Dx d y x y J ),(2; Dy d y x x J ),(2;y x o J J J同理可有空间体对坐标面、坐标轴的转动惯量.第十章 曲线积分与曲面积分一、曲线积分 1.定义:(1)第一类曲线积分(对弧长的曲线积分):ni iiiLs f ds y x f 1),(lim ),((ni iiiiLs f ds z y x f 1),,(lim ),,()物理意义:曲线的质量.(2)第二类曲线积分(对坐标的曲线积分):ni i i i iiiLy Q x P dy y x Q dx y x P 1),(),(lim ),(),(ni i i i i i i i i i i i i Lz R y Q x P dzz y x R dy z y x Q dx z y x P 1),,(),,(),,(lim ),,(),,(),,(物理意义:变力沿曲线所作的功. 2.性质: (1)21L L L(21L L L )(2)第一类:L L ds y x f ds y x f ),(),(第二类:L L(3)两类曲线积分的联系LLds Q P Qdy Pdx )cos cos (其中 cos , cos 是曲线上点),(y x 处切线的方向余弦. (LLds R Q P Rdz Qdy Pdx )cos cos cos ( )3.计算法(化线积分为定积分)L :)()(t y t x , ≤t ≤ ,则10dt t t t t f ds y x f L)()()(),(),(22dt t t t Q t t t P dy y x Q dx y x P L)()(),()()(),(),(),(注意:L 为)(x f y 时,取L 为 )(x f y xx ,a ≤x ≤b4.格林公式及其应用 (1)格林公式:D Ldxdy y P x Q Qdy Pdx注意:1°:P ,Q 在D 上具有一阶连续偏导数;2°:L 是单连域D 的正向边界曲线;3°:若D 为多连域,先引辅助线,后再用格林公式.(2)平面上曲线积分与路径无关的条件设P ,Q 在单连域G 内有一阶连续偏导数,A ,B 为G 内任意两点,则以下四个命题等价:1°:ABL Qdy Pdx 与路径L 无关;2°:对于G 内任意闭曲线C 有0CQdy Pdx ; 3°:在G 内,Qdy Pdx 为某函数),(y x u 的全微分;4°:yPx Q 在G 内处处成立. (3°中有:),(),(00),(),(),(y x y x dy y x Q dx y x P y x u )二、曲面积分 1.定义:(1)第一类曲面积分(对面积的曲面积分)ni iiiiS f dS z y x f 1),,(lim ),,(物理意义:曲面 的质量。