初中数学22有理数与无理数

合集下载

无理数与有理数的区别

无理数与有理数的区别

无理数与有理数的区别数学作为一门严谨的科学,一直以来都是人们探究自然界,解决实际问题的重要工具和理论基础。

数学中的“数”,既是我们日常生活、工作以及各种学科中最基本的元素,也是数学自身研究的核心和基础。

然而,人们在研究数的过程中,常常会遇到两种不同的数:有理数和无理数。

这两者在数的性质、表示和应用方面都有很明显的区别,下面就让我们来深入探讨一下有理数和无理数的区别。

一、有理数有理数是指可以表示为两个整数的比值的数,比如:1/3,-4/5,0.25等。

有理数包括整数和分数两种,其中整数是分母为1的分数,是一类可以用正整数表示的数,而分数则在整数基础上扩充了数学领域,成为了更为广泛、灵活的数学概念。

有理数具有以下性质:1.有理数的加、减、乘、除仍是有理数。

2.有理数可以表示成无限循环小数,如1/3=0.333…,1/7=0.142857142857…等。

3.任何一组有理数都存在着最大公因数和最小公倍数。

4.有理数可以按照大小排列,并且可以用数轴表示出来。

5.对于有理数a,必定有其相反数-b,且它们在数轴上关于0对称。

由此可见,有理数是一类可以用分数表示的数,具有较为固定的表示形式、较强的计算性质和可测量的大小关系,这些使得有理数在我们生活和学习中具有广泛的实用价值。

二、无理数无理数则是指不能表示为两个整数比值的数,例如:$\sqrt{2}$, $\pi$等。

由于无理数不符合有理数的定义,因此在古代希腊哲学家毕达哥拉斯最初的整数学说中,他们认为一切数都可以表示为整数或其比值,但事实上这一假设是不成立的。

正是由于这一缺陷,毕达哥拉斯学派才被迫放弃了这一理论,将数学引向了更加广阔、深刻的发展领域。

无理数的特点是:1.无理数不能表示为两个整数的商。

2.无理数是无限不循环小数,如$\pi$, $\sqrt{2}$等。

3.无理数的十进制表示是没有规则可循的。

4.任何有理数的某个近似值都可以给出一个无限接近它的无理数。

七年级数学上册2.2有理数与无理数一起走近无理数

七年级数学上册2.2有理数与无理数一起走近无理数

一起走近无理数在前面的学习中,我们认识了负数,使数的范围扩展到有理数.现在我们又开始学习无理数,把数的范围扩展到了实数.刚开始学习无理数,认为无理数不像有理数那样直观易懂,总有一种虚幻的感觉.那么该怎样学习无理数呢?一、明确无理数的存在无理数并不是“无理”,也不是人们臆想出来的,而是实实在在的存在.如:(1)两条直角边都为1的等腰直角三角形,它的斜边为2;(2)任何一个圆,它的周长和直径之比为常数π.像2、π这样的数在我们的身边还有很多.二、弄清无理数的定义及常见无理数无理数是指无限不循环小数,这说明无理数可以化为具有两个特征的小数:一是小数的位数时无限的,二是不循环的.我们比较常见的无理数往往具备以下几种表现形式:1.某些含有π的数,如:π,π3等;2.开方开不尽得到的数,如:3、5等;3.依某种规律构造的无限不循环小数,如0.1010010001…(两个1之间依次多一个0).三、了解无理数的性质1.所有的无理数都可以用数轴上唯一的一个点来表示,并且右边的无理数总比左边的大;2.在有理数中的互为相反数的定义、绝对值得定义、大小比较法则及运算法则、运算律等,对于无理数仍然适用,如52-的相反数是25-,因为052<-,所以52-的绝对值是25-.四、澄清一些模糊认识1.无理数包括正无理数、0、负无理数0是一个整数,故它是有理数,因此无理数只能分为正无理数和负无理数两类.2.带根号的数就是无理数 由于像4、38-这样的数通过计算可以化为2和-2,因此它们是有理数,可见带根号的不一定是无理数.特别是π,它是无理数但并不是用根号形式表示的.3.无理数的数量比有理数少有些同学认为1、2、3、4、5这五个数,它们都是有理数,而开平方后得到的无理数只有2、3、5323334、35等无理数,如果再开四次方、五次方……还可以产生更多的无理数.因此无理数并不比有理数少.4.有些无理数是分数因为分数属于有理数,且无理数与有理数是两类不同的数,所以无理数不可能写成分数.当然,有些无理数可以借助分数线来表示,如32,但不能因为它具备了分数的形式就认为它是分数.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列四个实数中最大的是()A B.0C.1D.2【答案】A【解析】根据实数的大小比较法则排列大小,得到答案.【详解】-2<0<1故选:A.【点睛】本题考查的是实数的大小比较,任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.2.将一个各面涂成红色的正方体,分割成同样大小的27个小正方体,从这些正方体中任取一个恰有3个面涂成红色的概率是()A.1927B.1227C.23D.827【答案】D【解析】首先确定三面涂有红色的小正方体的个数在27个小正方体中占的比例,根据这个比例即可求出有3个面涂有红色的概率.【详解】将一个各面涂有红色的正方体,分割成同样大小的27个小正方体,从这些正方体中任取一个,恰有3个面涂有红色的小正方体只能在大正方体的8个角上,共8个,故恰有3个面涂有红色的概率是827.故选:D.【点睛】此题考查几何概率,解题关键在于掌握概率公式计算法则.3.将点P(3,﹣1)向左平移2个单位,向下平移3个单位后得到点Q,则点Q坐标为()A.(1,﹣4)B.(1,2)C.(5,﹣4)D.(5,2)【答案】A【解析】利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.【详解】解:根据题意,3-2=1,-1-3=-4,∴点Q的坐标是(1,-4).故答案为:A.【点睛】本题考查了平移与坐标与图形的变化,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.4.如图,将纸片沿折叠,则()A.B.C.D.【答案】D【解析】根据翻折不变性和三角形的内角和定理及角平分线的性质解答.【详解】解:延长BD,CE交于点F,如下图:由折叠可知,△ADE≌△FDE,∴∠A=∠F,∠ADE=∠FDE=,∠AED=∠FED=∵∠1+∠ADF=180°,∠2+∠AEF=180°∴∠1+∠2=360°2∠FDE-2∠FED∴∠1+∠2=∴∠1+∠2=2∠F∴∠A=故选择:D.【点睛】本题考查了折叠的性质,邻补角的性质,三角形内角和定理,关键是把∠1+∠2看作整体,对角的和进行转化.5.下列调查中,最适合采用全面调查(普查)方式的是()A.对宜春市居民日平均用水量的调查B.对宜春一套《民生直通车》栏目收视率的调查C.对一批LED节能灯使用寿命的调查D.对某校七年级(1)班同学的身高情况的调查【答案】D【解析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A、对宜春市居民日平均用水量的调查适合抽样调查;B、对宜春一套《民生直通车》栏目收视率的调查适合抽样调查;C、对一批LED节能灯使用寿命的调查适合抽样调查;D、对某校七年级(1)班同学的身高情况的调查适合全面调查;故选:D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(-40,-30)表示,那么(10,20)表示的位置是( )A.点A B.点B C.点C D.点D【答案】B【解析】由题意知(10,20)表示向东走10米,再向北走20米,故为B点.A.﹣a<﹣b B.a﹣3>b﹣3 C.1﹣a>1﹣b D.a+3<b+2【答案】C【解析】根据不等式的3个性质找到变形正确的选项即可.【详解】解:A、由a<b,可得:-a>-b,错误;B、由a<b,可得:a-3<b-3,错误;C、由a<b,可得:1-a>1-b,正确;D、由a<b,可得:a+3<b+3,错误;故选C.【点睛】考查不等式性质的应用;用到的知识点为:不等式的两边加上或减去同一个数或式子,不等号的方向不变;乘以或除以同一个不为0的正数,不等号的方向不变;乘以或除以同一个不为0的负数,不等号的方向改变.8.在3.14,227,3,364,π,2.01001000100001这六个数中,无理数有( )A.1个B.2个C.3个D.4个【答案】B【解析】根据无理数是无限不循环小数,可得答案.【详解】解:在3.14,227,-3,364,π,2.010010001……这六个数中,-3,π是无理数,共2个,故选B.【点睛】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.9.将一张长与宽的比为2:1的长方形纸片按如图①、②所示的方式对折,然后沿图③中的虚线裁剪,得到图④,最后将图④的纸片再展开铺平,则所得到的图案是()A.B.C.D.【答案】A【解析】根据图示的裁剪方式,由折叠的性质,可知此图最后剪去了两个角和一边的中间被剪,因此答案为A.故选A10.如图所示,在长方形纸片ABCD 中,E ,G 为AB 边上两点,且AE EG GB ==;F ,H 为CD 边上两点,且DF FH HC ==.沿虚线EF 折叠,使点A 落在点G 上,点D 落在点H 上;然后再沿虚线GH 折叠,使B 落在点E 上,点C 落在点F 上.叠完后,剪一个直径在EF 上的半圆,再展开,则展开后的图形为( )A .B .C .D .【答案】B 【解析】可按照题中的要求动手操作或通过想象,进而得出结论.【详解】把一个矩形三等分,标上字母,严格按上面方法操作,剪去一个半圆,或者通过想象,得到展开后的图形实际是从原矩形最左边的一条三等分线处剪去一个圆,从矩形右边上剪去半个圆,选项B 符合题意,故选B .【点睛】本题考查图形的展开,主要训练学生的动手操作能力或空间想象能力.二、填空题题11.如图,ABC MDE ∆∆≌,BC 的延长线交DA 于F ,交DE 于G ,25D ∠=︒,105E ∠=︒,16DAC ∠=︒,则DGB ∠的度数为_________.【答案】66°【解析】根据全等三角形对应角相等可得ACB E ∠=∠,再求出ACF ∠,然后根据三角形的内角和定理列式计算即可得解.【详解】解:ABC ADE ∆≅∆,105ACB E ∴∠=∠=︒,18010575ACF ∴∠=︒-︒=︒,即251675DGB ︒+∠=︒+︒,解得66DGB ∠=︒.故答案为:66︒.【点睛】本题考查了全等三角形的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.12.当m =_____时,关于x 的分式方程4133x m x x -=--会产生增根. 【答案】-1【解析】分式方程去分母转化为整式方程,由分式方程有增根求出x 的值,代入整式方程计算即可求出m 的值.【详解】解:去分母得:4x-x+3=-m ,由分式方程有增根,得到x-3=0,即x=3,把x=3代入整式方程得:m=-1,故答案为:-1.【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.13.不等式组212x x m-≥⎧⎨+⎩<有三个整数解,则m 的取值范围是__. 【答案】7<m≤8【解析】把m 当成已知数求解不等式即可.【详解】解不等式组可得3≤x <m -2因为不等式组有三个整数解3,4,5,所以5<m -2≤6,求得7<m ≤8.【点睛】了解m -2的取值范围是解题的关键,注意端点处是否有等号,要单独考虑.14.小明、小辉两家所在位置关于学校中心对称.如果小明家距学校2公里,那么他们两家相距__________公里.【答案】1【解析】根据中心对称图形的性质,得出小明、小辉两家到学校距离相等,即可得出答案.【详解】解:∵小明、小辉两家所在位置关于学校中心对称,∴小明、小辉两家到学校距离相等,∵小明家距学校2公里,故答案为1.【点睛】此题主要考查了中心对称图形的性质,根据已知得出小明、小辉两家到学校距离相等是解决问题的关键.15.有一个数值转换器,原理如下:当输入x为4时,输出的y的值是_____.2【解析】根据程序即可进行求解.【详解】解:∵x=4时,它的算术平方根是2又∵2是有理数∴取22∴y2【点睛】此题主要考查算术平方根的定义,解题的关键是熟知算术平方根的性质.16.如果x2+kx+1是一个完全平方式,那么k的值是___________.【答案】k=±1.【解析】试题分析:这里首末两项是x和1这两个数的平方,那么中间一项为加上或减去x的系数和常数1的积的1倍,故k=±1.解:中间一项为加上或减去x的系数和常数1的积的1倍,∴k=±1.故答案为k=±1.17.如图,已知△ABC中,点D在AC边上(点D与点A,C不重合),且BC=CD,连接BD,沿BD折叠△ABC使A落在点E处,得到△EBD.请从下面A、B两题中任选一题作答:我选择_____题.A.若AB=AC,∠A=40°,则∠EBC的度数为______°.B.若∠A=α°,则∠EBC的度数为_______°(用含α的式子表示)【答案】A 或B 40 α【解析】根据AB =AC ,∠A =40°得出70ABC ACB ∠=∠=︒,因为 BC =CD ,所以55CBD CDB ∠=∠=︒,再根据轴对称性质得知ABD EBD ∠=∠即可求解. 【详解】AB =AC ,∠A =40°,70ABC ACB ∴∠=∠=︒,BC =CD55CBD CDB ∴∠=∠=︒,△EBD 沿BD 折叠△ABC 而来,705515ABD EBD ∴∠=∠=︒-︒=︒,551540EBC A ∴∠=∠=︒-︒=︒【点睛】本题主要考查等腰三角形性质,轴对称性质等知识,熟悉掌握是关键.三、解答题18.(1)解分式方程:3433x x x -=--; (2)解二元一次方程组234311x y x y +=⎧⎨-=⎩【答案】(1)原方程无解;(2)21x y =⎧⎨=-⎩ 【解析】(1)根据去分母、去括号、移项、合并同类项、系数化为1求出方程的解,最后进行检验; (2)运用加减消元法解二元一次方程组即可.【详解】(1)去分母,得:()433x x --=,整理得:39x -=-;3x =检验:当3x =时,3x -=03x =是增根,舍去;原方程无解;代入4311x y -=,得:()433211x x --=整理,得:1020x =解得:2x =代入23x y +=,得:223y ⨯+=解得:1y =-∴21x y =⎧⎨=-⎩【点睛】此题主要考查了二元一次方程组的解法,要熟练掌握,注意加减消元法的应用.同时此题还考查了解分式方程.19.先化简,再求值:()()()2232a b ab b b a b a b --÷-+-,其中12a =,1b =-. 【答案】2ab -,1.【解析】先用平方差公式和用多项式除以单项式的法则进行计算,然后去括号,合并同类项化简,最后代入求值.【详解】解:()()()2232a b ab b b a b a b --÷-+-, ()22222a ab b a b =----,22222a ab b a b =---+,2ab =-, 当12a =,1b =-时, 原式()12112=-⨯⨯-=. 【点睛】本题考查整式的化简求值,掌握多项式除以单项式法则及平方差公式,正确计算是本题的解题关键. 20.如图所示,点C 在线段BE 上,AB CD ∥,B D ∠=∠,则DAE ∠与E ∠相等吗?阅读下面的解答过程,并填空.解:DAE E =∠∠∵AB CD ∥(已知)∴B ∠=______(______)∵B D ∠=∠(已知)∴D ∠=______(等量代换)∴____________(______)∴DAE E =∠∠(______)【答案】见解析【解析】由AB CD ∥得到∠B =∠DCE ,再加上B D ∠=∠即可得到∠D =∠DCE ,从而证明AD //BE,再由平行线的性质得到结论.【详解】DAE E =∠∠∵AB CD ∥(已知)∴B ∠=_∠DCE_____(_两直线平行,同位角相等_____)∵B D ∠=∠(已知)∴D ∠=_∠DCE _(等量代换)∴__AD //BE____(_内错角相等,两直线平行_____)∴DAE E =∠∠(_两直线平行,内错角相等_)【点睛】考查了平行线的性质和判定,关键是找准两条直线被第三条直线所截而形成的同位角、内错角. 21.计算与求解: 3987325-. (2)已知32x y =⎧⎨=-⎩是方程组37ax by bx ay +=⎧⎨+=-⎩的解,求a 、b 的值. 【答案】(1)﹣4257(2)13a b =-⎧⎨=-⎩. 【解析】(1)原式利用平方根、立方根定义,以及绝对值的代数意义计算即可求出值;(2)把x 与y 的值代入方程组求出a 与b 的值即可.【详解】(1)原式=﹣2+35﹣7﹣4257(2)把32x y ==⎧⎨-⎩代入方程组得:323327a b b a -⎧⎨--⎩=①=②, ①×3+②×2 得:5a=﹣5, 解得:a=﹣1, 把 a=﹣1 代入①得:b=﹣3,则13a b =-⎧⎨=-⎩. 【点睛】此题考查了二元一次方程组的解,以及实数的运算,熟练掌握运算法则是解本题的关键.22.在平面直角坐标系xOy 中,对于给定的两点P ,Q ,若存在点M ,使得MPQ ∆的面积等于1,即1MPQ S ∆=,则称点M 为线段PQ 的“单位面积点”.解答下列问题:如图,在平面直角坐标系xOy 中,点P 的坐标为()1,0.(1)在点()1,2A ,()1,1B -,()1,2C --,()2,4D -中,线段OP 的“单位面积点”是______.(2)已知点()1,2Q -,()0,1H -,点M ,N 是线段PQ 的两个“单位面积点”,点M 在HQ 的延长线上,若2HMN PQN S S ∆∆=,直接写出点N 纵坐标的取值范围.【答案】(1)A ,C ;(2)y N ⩽2y N ⩾−2y N ⩽2y N ⩾−2【解析】(1)根据“单位面积点”的定义和点的坐标即可得结果;(2)根据“单位面积点”的定义,可得点M 、N 的横坐标,再根据2HMN PQN S S ∆∆=,即可求得点N 的坐标的取值范围.【详解】(1)∵点P 的坐标为(1,0),点O 的坐标为(0,0),∴线段OP 的“单位面积点”的纵坐标为2或−2,∵点A(1,2),B(−1,1),C(−1,−2),D(2,−4),∴线段OP 的“单位面积点”是A. C .故答案为A ,C ;(2)∵点Q(1,−2),点P 的坐标为(1,0),点M ,N 是线段PQ 的两个“单位面积点”,∴点M ,点N 的横坐标为0或2,∵点M 在HQ 的延长线上,∴点M 的横坐标为2,当x=0时,设点N 的坐标为(0,y N ),∵HMN PQN S ∆∆=,∴12×2×|−1−y N |解得y N ⩽y N ⩾−当x=2时,设点N 的坐标为(2,y N ),∵HMN PQN S ∆∆=,∴12×2×|−3−y N |解得y N ⩽y N ⩾−【点睛】此题考查三角形的面积,坐标与图形的性质,解题关键在于注意“单位面积点”的定义和分类讨论思想的应用.23.计算题(1)()23-(2)6- ()32+-【答案】(1)12(2)-2【解析】分析:(1)先根据乘方的意义和立方根的意义化简,然后按有理数的加减法计算即可; (2)先根据绝对值的意义和乘方的意义化简,然后按有理数的加减法计算即可.详解:(1)解:(﹣3)2+=9+3=12(2)解:原式 = 6 – 8= -2点睛:本题考查了实数的运算,熟练掌握乘方的意义、立方根的意义、绝对值的意义是解答本题的关键. 24.为迎接省运会,宝应县绿化部门计划购买甲、乙两种树苗共计n棵对体育休闲公园及周边道路进行绿化,有关甲、乙两种树苗的信息如表所示.甲种树苗乙种树苗单价(元/棵)60 90成活率92% 96%(1)当n=500时,如果购买甲、乙两种树苗共用33000元,那么甲、乙两种树苗各买了多少棵?(2)实际购买这两种树苗的总费用恰好为33000元,其中甲种树苗买了m棵.①写出m与n满足的关系式;②要使这批树苗的成活率不低于95%,求m的最大值.【答案】(1)甲、乙两种树苗各买了400棵,1棵(2)①m=3n-11②1【解析】(1)根据题意可以列出相应的一元一次方程,从而可以解答本题;(2)①根据题意可以得到m与n关系式;②根据题意可以得到关于m的不等式,从而可以求得m的取值范围,进而求得m的最大值.【详解】(1)设甲种树苗买了x棵,则乙种树苗买了(500-x)棵,60x+90(500-x)=33000,解得,x=400,500-x=1,答:甲、乙两种树苗各买了400棵,1棵;(2)①甲种树苗买了m棵,则乙种树苗买了(n-m)棵,60m+90(n-m)=33000,化简,得m=3n-11,即m与n满足的关系式是m=3n-11;②由题意可得,m×92%+(n-m)×96%≥95%n,∵m=3n-11,∴n=m11003+,∴92%m+96%(m11003+-m)≥95%•m11003+,解得,m≤1,答:m的最大值是1.【点睛】本题考查一元一次不等式的应用、函数关系式,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和不等式的性质解答.25.已知在平面直角坐标系中,三角形ABC的位置如图所示.(1)请写出A、B、C三点的坐标;(2)将三角形ABC向右平移6个单位, 再向上平移2个单位,请在图中作出平移后的三角形A'B'C',并写出三角形A'B'C'各点的坐标;(3)求出三角形A'B'C'的面积.【答案】(1)A(-1,2),B(-2,-1),A(2,0);(2)图见解析,A'(5,4),B'(4,1),C'(8,2);(3)5.5【解析】(1)根据直角坐标系直接写出;(2)先把各顶点进行平移,再依次连接得到三角形A'B'C',再根据直角坐标系写出坐标;(3)根据割补法即可求出面积.【详解】(1)A(-1,2),B(-2,-1),A(2,0);(2)如图,三角形A'B'C'为所求,A'(5,4),B'(4,1),C'(8,2);(3)三角形A'B'C'的面积为4×3-12×4×1-12×1×3-12×3×2=5.5.【点睛】此题主要考查直角坐标系的图形平移,解题的关键是熟知坐标平移的特点.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下图是某公司2018年度每月收入与支出情况折线统计图,下列说法中正确的是( )A .该公司12月盈利最多B .该公司从10月起每月盈利越来越多C .该公司有4个月盈利超过200万元D .该公司4月亏损了【答案】D 【解析】实线表示收入,虚线表示支出,当两条线之间的距离最大的时候就是节约最多的时候,据此解答即可.【详解】解:A .该公司1月盈利最多,故A 错误;B .该公司从十月起盈利越来越少,故B 错误;C .盈利超过200万的有1月份、10月份、11月份共3个月,故C 错误;D .四月份支出高于收入,所以亏损了,故D 正确.故选D .【点睛】本题是复式折线统计图,要通过坐标轴以及图例等读懂本图,根据图中所示的数量解决问题. 2.已知三角形三边长分别为2,5,x ,则x 的取值范围是( )A .17x <<B .37xC .35x <<D .25x << 【答案】B【解析】根据三角形的三边关系,列出式子即可得到答案.【详解】解:∵三角形三边长分别为2,5,x ,根据三角形的三边关系(三角形两边之和大于第三边,两边只差小于第三边),得到:5252x -<<+,即:37x ,故选B .【点睛】本题主要考查了三角形的三边关系:三角形两边之和大于第三边,两边只差小于第三边;掌握三角形三边关系是解题的关键.3.下列调查中,适合采用全面调查(普查)方式的是()A.对温泉河水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.节能灯厂家对一批节能灯管使用寿命的调查D.对某班50名学生视力情况的调查【答案】D【解析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A、对巢湖水质情况的调查适合抽样调查,故A选项错误;B、对端午节期间市场上粽子质量情况的调查适合抽样调查,故B选项错误;C、节能灯厂家对一批节能灯管使用寿命的调查适合抽样调查,故C选项错误;D、对某班50名学生视力情况的调查,适于全面调查,故D选项正确.故选:D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.下列式子从左到右变形是因式分解的是()A.12xy2=3xy•4y B.(x+1)(x﹣3)=x2﹣2x﹣3C.x2﹣4x+1=x(x﹣4)+1 D.x3﹣x=x(x+1)(x﹣1)【答案】D【解析】根据因式分解的定义逐个判断即可.【详解】A、不是因式分解,故本选项不符合题意;B、不是因式分解,故本选项不符合题意;C、不是因式分解,故本选项不符合题意;D、是因式分解,故本选项符合题意;故选:D.【点睛】此题考查因式分解的定义,能熟记因式分解的定义的内容是解题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.5.某校为了了解七年级女同学的800米跑步情况,随机抽取部分女同学进行800米跑测试,按照成绩分为优秀、良好、合格、不合格四个等级,绘制了如图所示统计图. 该校七年级有400名女生,则估计800米跑不合格的约有( )A .2人B .16人C .20人D .40人【答案】C 【解析】先求出800米跑不合格的百分率,再根据用样本估计总体求出估值.【详解】400×2201216102=+++人. 故选C .【点睛】考查了频率分布直方图,以及用样本估计总体,关键是从上面可得到具体的值.6.在下列各式中,正确的是( )A 2(2)2-=±B .30.080.2-=-C 33(2)2-=-D .233(2)(2)0-+= 【答案】C【解析】根据二次根式的性质分别计算各选项,然后对比即可得出答案.【详解】解:A 2(2)2-,故选项不正确;B 330.080.080.2-=--,故选项不正确;C 33(2)2-=-,故选项正确;D 、233(2)(2)4-+=,故选项不正确;故选C.【点睛】此题考查了二次根式的性质,立方根的定义,属于基础题,难度一般.7.下列说法中,正确的是( )A B .0是正整数 C .227是有理数 D【答案】C【解析】根据分数,整数,有理数,无理数的定义即可解答.【详解】解:A B 、0既不是正整数,也不是负整数.故本选项错误;C 、227是分数,属于有理数,故本选项正确;D 4故选:C .【点睛】本题考查分数,整数,有理数,无理数的定义,熟悉掌握是解题关键.8.为了调查班级中对新班主任老师的印象,下列更具有代表性的样本是( )A .调查前十名的学生B .调查后十名的学生C .调查单号学生D .调查全体男同学【答案】C【解析】根据随机抽样的意义分析即可,随机抽样应使总体中每个个体都有相同的被抽取机会.【详解】A 、B 、D 都不具有随机性,故不具有代表性;C 具有随机性,每个同学都可能被抽调,故C 具有代表性.故选C.【点睛】本题考查了随机抽样,为了获取能够客观反映问题的结果,通常按照总体中每个个体都有相同的被抽取机会的原则抽取样本,这种抽样的方法叫做随机抽样.样本的选取应具有随机性、代表性、容量应足够大. 9.如图,在平面直角坐标系内有点A (1,0),点A 第一次跳动至点A 1(﹣1,1),…,第四次向右跳动5个单位至点A 4(3,2),…,依此规律跳动下去,点A 第100次跳动至点A 100的坐标是( )A.( 48,47) B.(49,48) C.(50,49) D.(51,50)【答案】D【解析】通过图象可知,当跳到A2n时,坐标为(n+1,n)可得.【详解】解:由图象可知,点A每跳两次,纵坐标增加1,A2、A4、A6、A8…各点坐标依次为(2,1)、(3,2)、(4,3)、(5,4)则A2n横坐标为:n+1,纵坐标为n,则A100坐标为(51,50).故选D.【点睛】本题为平面直角坐标系中的点坐标规律探究题,解答时注意分别观察横纵坐标的变化规律.10.下列说法正确的是()A.等于-2 B.±等于3C.﹙-5﹚³的立方根是5 D.平方根是±2【答案】D【解析】根据算术平方根、平方根、立方根的定义逐项分析即可.【详解】A. 等于2,故不正确;B. ±等于±3,故不正确;C. ﹙-5﹚³的立方根是-5,故不正确;D. 平方根是±2,正确;故选D.【点睛】本题考查了算术平方根、平方根、立方根的定义,正确掌握定义是解答本题的关键.二、填空题题11.如图,四边形ABCD中,点M,N分别在AB,BC上,∠C=80°,按如图方式沿着MN折叠,使FN ∥CD ,此时量得∠FMN =40°,则∠B 的度数是_____.【答案】100°【解析】根据两直线平行,同位角相等求出∠BNF ,再根据翻折的性质求出∠BMN 和∠BNM ,然后利用三角形的内角和定理列式计算即可得解.【详解】∵FN ∥DC ,∴∠BNF=∠C=80°,∵△BMN 沿MN 翻折得△FMN ,∴∠BMN=∠FMN=40°,∠BNM=12∠BNF=12×80°=40°, 在△BMN 中,∠B=180°﹣(∠BMN+∠BNM )=180°﹣(40°+40°)=180°﹣80°=100°.故答案为100°.【点睛】本题考查了平行线的性质,用到的知识点是两直线平行,同位角相等的性质,翻折变换的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.12.如图,下面每个图形中的四个数都是按相同的规律填写的,根据此规律确定x 的值为______.【答案】1.【解析】试题分析:观察可得左下角数字为偶数,右上角数字为奇数,所以2n=20,m=2n ﹣1,解得n=10,m=19,又因右下角数字:第一个:1=1×2﹣1,第二个:10=3×4﹣2,第三个:27=5×6﹣3,由此可得第n个:2n (2n ﹣1)﹣n ,即可得x=19×20﹣10=1. 考点:数字规律探究题.13.(1)如图,在平面直角坐标系中,点A (1,1),以原点O 为圆心,OA 为半径画半圆与x 轴交于点P 20)和Q (n ,0). 则n 的值为________;(2)若a 、b 满足37a b =,2s a b =,则s 的取值范围是____________.【答案】2 14-73s ≤≤ 【解析】(1)由圆的性质得到:2,OP OQ ==从而可得答案,(2)分别用含有b a s ,利用b a【详解】解:(1)由题意得:2,OP OQ = Q 在数轴上原点的左边,0,n ∴<2,n ∴=- 故答案为: 2.-(2) 37a b =,73,b a ∴=-∴ 22(73)57,s a b a a a ==-=0,50,a a ≥≥577,a ∴≥-即:7,s ≥- 37a b =,7,3b a -= 14231452,333bbbs a b --∴==-= 0,b ≥50,3b ∴-≤14514.33b -∴≤ 即:14,3s ≤综上:14-73s ≤≤, 故答案为:14-73s ≤≤. 【点睛】本题考查的是数轴上利用距离相等来表示点对应的数,同时考查了利用非负数的非负性求解代数式的最大值与最小值,掌握以上知识是解题的关键.142,那么y 的值是_____.【答案】1【解析】根据算术平方根的定义解答即可.=2,∴y 的值是:1.故答案为1.【点睛】本题考查了算术平方根的知识,正确把握算术平方根的定义是解题关键.15.一组数据的最大值与最小值的差为2.8cm ,若取相距为0.4cm ,应将数据分_________组.【答案】8【解析】根据组数确定方法即可解答.【详解】∵2.8÷04.=7,7+1=8.∴应将这组数据分8组.故答案为:8.【点睛】本题考查的是组数的有关知识,熟知组数的判定方法是解决问题的关键.16.若点()1,36P a a -+位于第二象限,则的a 取值范围是__.【答案】21a -<<【解析】根据第二象限的点的特点列出不等式组求解即可.【详解】∵点()1,36P a a -+位于第二象限∴10360a a -<⎧⎨+>⎩10a -<1a <360a +>36a >-2a >-∴21a -<<故答案为:21a -<<.【点睛】本题考查了解一元一次不等式组的问题,掌握象限的性质、解一元一次不等式组的方法是解题的关键. 17.如图所示,计划把河水引到水池A 中,先作AB ⊥CD ,垂足为B ,然后沿AB 开渠,能使所开的渠道最短,这样设计的依据是________________________________。

有理数与无理数

有理数与无理数

谈谈有理数与无理数实数通常分为有理数和无理数两类。

这两类数的性质,对于九年义务教育阶段的初中学生来说,知道得较少。

本文试图对初中数学中关于有理数和无理数的知识作一个梳理和拓展,以此帮助初中读者加深对实数的认识。

关于有理数,我们知道得较多,其特征有:1、由于实数实际上就是小数,因此有理数是指那些有限小数和无限循环小数;m2、每个有理数都可以写成分数的形式,即,其中m和n都是整数,且nn≠0。

利用这一特征很容易证明:任意两个有理数进行加、减、乘、除(除数不为0)四则运算所得的结果仍是有理数。

我们不加证明地给出关于有理数的一条结论:m当有理数的分母n能分解质因数为2α×5β(其中α、β为自然数)nm时,有理数能化成有限小数;否则,化为无限循环小数。

(关于有理数与小n数的互化问题,有兴趣的同学请可阅读相关书籍,不再赘述)2无理数是指那些无限不循环小数。

大家熟悉的无理数很多,、e、π等等都是。

与有理数相比,无理数不具备那样好的性质。

譬如,两个无理数的四2则运算结果不一定是无理数,象π-π=0,=1。

2根据有理数和无理数之间的相互关系,可以得到如下两条性质,它们在处理与有理数无理数有关的问题时,起着基本的作用:1、任何有理数≠任何无理数;2、设是a有理数,b是无理数,则a+b,a-b,a·b(a≠0),a/b(a≠0)都是无理数。

下面着重介绍实数无理性的判定方法。

在现行初中数学范围内所遇到的无理数主要有这样几种类型:与开方运算2311有关,如,;与对数值有关,如log23;与三角函数值有关,如cos20°,sin1°;此外还有象e(自然对数的底)、π(圆周率)这样的特殊值。

判定实数无理性的方法很多,但都有一个共同的特点,即采用反证法的技巧。

原因有二:第一、无理数的概念通常以“不是有理数的实数称为无理数”这一否定方式给出的;第二、当反设要判定的实数α不是无理数时,由有理数m和无理数的关系,α就是有理数,故α=(n≠0),于是就得到一个具体的n等式,这为我们导出矛盾提供了一个直观的工具。

七级数学上册 2.2 有理数与无理数 什么是有理数?有理数分哪几类?素材 (新版)苏科版

七级数学上册 2.2 有理数与无理数 什么是有理数?有理数分哪几类?素材 (新版)苏科版

什么是有理数?有理数分哪几类?
难易度:★★★★
关键词:有理数分类
答案:
正整数、0、负整数统称为整数;正分数和负分数统称为分数;整数和分数统称为有理数。

分类如下:
有理数或有理数
【举一反三】
典例:把下列各数分别填入相应的括号里:
5,,-0.3,28,,+8,-19,3.7,,0,-102,
正整数集合;负分数集合;
正有理数集合;整数集合
思路导引:正整数和正分数都是正有理数,正分数的前面添上“-”号就是负分数,因小数和分数可以互化,因此小数也叫分数;正整数的前面添上“-”号就是负整数;0既不是正数也不是负数。

标准答案:
正整数集合5,28,+8 ;
负分数集合-0.3,;
正有理数集合5,28,+8,3.7,;
整数集合5, 28,,+8,-19, 0,-102,。

七年级数学上册数学 2.2 有理数与无理数(五大题型)(解析版)

七年级数学上册数学 2.2 有理数与无理数(五大题型)(解析版)

2.2有理数与无理数分层练习考察题型一有理数的识别1.在5-,0,1.3 ,2.121121112⋯(每两个2之间多一个1),3.1415926中,有理数的个数有()A .5个B .4个C .3个D .2个【详解】解:在5-,0,1.3 ,2.121121112⋯(每两个2之间多一个1),3.1415926中,有理数有:5-,0,1.3,,3.1415926,共4个.故本题选:B .2.在0.010010001,0.3333⋯,227-,0,2π-,43%-,0.313113111⋯(每两个3之间依次多一个1)中,有理数有()A .4个B .5个C .6个D .7个【详解】解:在0.010010001,0.3333⋯,227-,0,2π-,43%-,0.313113111⋯(每两个3之间依次多一个1)中,有理数有:0.010010001,0.3333⋯,227-,0,43%-,共5个.故本题选:B .考察题型二有理数的分类1.在下列数π,1+,6.7,15-,0,722,1-,25%中,属于整数的有()A .2个B .3个C .4个D .5个【详解】解:在数π,1+,6.7,15-,0,722,1-,25%中,整数的有:1+,15-,0,1-,共4个.故本题选:C .2.在10.1-,25,3.14,2π, 1.53- ,2.4224222422224⋯中,正分数有()A .4个B .3个C .2个D .1个【详解】解:在10.1-,25,3.14,2π, 1.53- ,2.4224222422224⋯中,正分数有:25,3.14,共2个.故本题选:C .3.在数12-,π, 3.4-,0,3+,73-中,属于非负整数的个数是()A .4B .3C .2D .1【详解】解:12-、 3.4-、73-为负数,不属于非负整数;π不属于整数;0,3+属于非负整数.故本题选:C .4.下列各数:452,1,8.6,7,0,,4,101,0.05,9563---+--中,()A .只有1,7-,101+,9-是整数B .其中有三个数是正整数C .非负数有1,8.6,101+,0D .只有42,453--,0.05-是负分数【详解】解:由题意可知:A 、整数包括:1,7-,0,101+,9-,故本选项错误;B 、正整数包括:1和101+,故本选项错误;C 、非负数包括:1,8.6,101+,0,56,故本选项错误;D 、负分数包括:45-,243-,0.05-,故本选项正确.故本题选:D .5.把下列各数填入相应的集合中:6+,0.75,3-,0, 1.2-,8+,245,13-,9%,正分数集合:{}⋯;正整数集合:{}⋯;整数集合:{}⋯;有理数集合:{}⋯.【详解】解:正分数集合:{0.75,245,9%,}⋯;正整数集合:{6+,8+,}⋯;整数集合:{6+,3-,0,8+,}⋯;有理数集合:{6+,0.75,3-,0, 1.2-,8+,245,13-,9%,}⋯.6.把下列将数填入相应的集合中:23-,0.5,23-,28,0,4,135, 5.2-.【详解】解:如图所示:.7.将数分类:2-,0,0.1314-,11,227,143-,0.03,2%.正数:{};非负数:{};负分数:{};非负整数:{}.【详解】解:正数有:11,227,0.03,2%,非负数有:0,11,227,0.03,2%,负分数有:0.1314-,143-,非负整数有:0,11.8.把下列各数填在相应的集合内:3-,4,2-,15-,0.58-,0, 3.4- ,0.618,139,3.14.整数集合:{}⋯;分数集合:{}⋯;负有理数集合:{}⋯;非正整数集合:{}⋯.【详解】解:整数集合:{3-,4,2-,0}⋯;分数集合:1{5-,0.58-, 3.4- ,0.618,139,3.14}⋯;负有理数集合:{3-,2-,15-,0.58-, 3.4}-⋯;非正整数集合:{3-,2-,0}⋯.考察题型三有理数的概念辨析1.下列关于0的说法错误的是()A.任何情况下,0的实际意义就是什么都没有B.0是偶数,也是自然数C.0不是正数也不是负数D.0是整数也是有理数【详解】解:A、0的实际意义不是什么都没有,符合题意;B、0是偶数,也是自然数,不合题意;C、0不是正数也不是负数,不合题意;D、0是整数也是有理数,不合题意.故本题选:A.2.下面是关于0的一些说法:①0既不是正数也不是负数;②0是最小的自然数;③0是最小的正数;④0是最小的负数;⑤0既不是奇数又不是偶数.其中正确说法的个数是()个.A.0B.1C.2D.3【详解】解:①0是正数与负数的分界,所以0既不是正数也不是负数,故原说法正确;②0和正整数都是自然数,所以0是最小的自然数,故原说法正确;③0既不是正数也不是负数,故原说法错误;④0既不是正数也不是负数,故原说法错误;⑤整数按能否被2整除分为奇数与偶数,0属于偶数,故原说法错误;综上,①②正确.故本题选:C.3.下列说法错误的是()A.负整数和负分数统称负有理数B.正整数,0,负整数统称为整数C.正有理数与负有理数组成全体有理数D.3.14是小数,也是分数【详解】解:负整数和负分数统称负有理数,A正确,不合题意;整数分为正整数,0,负整数,B正确,不合题意;正有理数,0,负有理数组成全体有理数,C错误,符合题意;3.14是小数,也是分数,小数是分数的一种表达形式,D正确,不合题意.故本题选:C.4.下列说法正确的是()A.正整数、负整数统称为整数B.正分数、负分数统称为分数C.正数、0、负数统称为有理数D.整数、分数、小数都是有理数【详解】解:A.正整数、0、负整数统称为整数,故本选项错误;B.正分数、负分数统称为分数,故本选项正确;C.正有理数、0、负有理数统称为有理数,故本选项错误;D.无限不循环小数不是有理数,故本选项错误.故本题选:B.5.下列说法中正确的是()A.非负有理数就是正有理数B.有理数不是正数就是负数C.正整数和负整数统称为整数D.整数和分数统称为有理数【详解】解:A、非负有理数就是正有理数和0,故A选项不正确;B、0既不是正数也不是负数,是有理数,故B选项不正确;C、正整数、0、负整数统称为整数,故C选项不正确;D、整数和分数统称有理数,故D选项正确.故本题选:D.6.下列说法:(1) 3.56既是负数、分数,也是有理数;(2)正整数和负整数统称为整数;(3)0是非正数;(4)2023-既是负数,也是整数,但不是有理数;(5)自然数是整数.其中正确的个数是()A.1个B.2个C.3个D.4个【详解】解:(1)正确;(2)错误,还有0;(3)正确;(4)错误,2023-是有理数;(5)正确.正确的有3个,故本题选:C.7.下列说法中,正确的是()A.在有理数集合中,有最大的正数B.在有理数集合中,有最小的负数C.在负数集合中,有最大的负数D.在正整数集合中,有最小的正整数【详解】解:A、在有理数集合中,没有最大的正数,故A选项错误;B、在有理数集合中,没有最小的负数,故B选项错误;C、在负数集合中,没有最大的负数,故C选项错误;D、在正整数集合中,有最小的正整数1,故D选项正确.故本题选:D.8.下面说法中正确的有()A.非负数一定是正数B.有最小的正整数,有最小的正有理数C.a-一定是负数D.0既不是正数,也不是负数【详解】解: 非负数包括0和正数,A∴选项不合题意;∴选项不合题意;没有最小的正有理数,B若a是负数,则a∴选项不合题意;-是正数,C∴选项符合题意.既不是正数,也不是负数,D故本题选:D.9.下列说法正确的是()A.最小的正有理数是1B.最小的正整数是1C.0是最小的有理数D.有理数由正数和负数组成【详解】解:A.没有最小的有理数,故本选项不合题意;B.最小的正整数是1,故本选项符合题意;C.有最小的有理数,故本选项不合题意;D.有理数由正有理数,0,负有理数组成,故本选项不合题意.故本题选:B.10.有下列说法:①最小的自然数为1;②最大的负整数是1-;③没有最小的负数;④最小的整数是0;⑤最小非负整数为0,其中,正确的说法有()A.2个B.3个C.4个D.5个【详解】解:①最小的自然数为0,故①不正确;②最大的负整数是1-,故②正确;③没有最小的负数,故③正确;④没有最小的整数,故④不正确;⑤最小非负整数为0,故⑤正确;综上,正确的说法有3个.故本题选:B.考察题型四数感问题1.有两个正数a,b,且a b<,把大于等于a且小于等于b所有数记作[a,]b,例如大于等于1且小于等于4的所有数记作[1,4].如果m在[5,15]内,n在[20,30]内,那么nm的一切值中属于整数的有()A.1,2,3,4,5B.2,3,4,5,6C.2,3,4D.4,5,6【详解】m在[5,15]内,n在[20,30]内,515m∴,2030n,∴2030155nm,即463nm,∴nm的一切值中属于整数的有2,3,4,5,6.故本题选:B.2.设有三个互不相等的有理数,既可表示为1-,a b+,a的形式,又可表示为0,ba-,b的形式,则ab 的值为.【详解】解: 三个互不相等的有理数,既可表示为1-,a b +,a 的形式,又可表示为0,b a,b 的形式,∴这两个数组的数分别对应相等,a b ∴+与a 中有一个是0,b a-与b 中有一个是1-,若0a =,则b a无意义,0a ∴≠,0a b +=,∴a b =-,即1b a =-,b a-1=,∴1b =-,1a =,ab ∴的值为1-.故本题答案为:1-.考察题型五无理数的识别1.在数2021-,0.777⋯⋯,2π,833-,3.1415926,3π-中,无理数的个数是()A .2个B .3个C .4个D .5个【详解】解:在数2021-,0.777⋯⋯,2π,833-,3.1415926,3π-中,无理数有:2π,3π-,共2个.故本题选:A .2.下列八个数:8-,2.7,2-,2π,0.6 ,0,132,0.8080080008⋯⋯(每两个8之间逐次增加一个0),无理数的个数有()A .0个B .1个C .2个D .3个【详解】解:在实数8-,2.7,2-,2π,0.6 ,0,132,0.8080080008⋯⋯(每两个8之间逐次增加一个0)中,无理数有:2π,0.8080080008⋯⋯(每两个8之间逐次增加一个0),共2个.故本题选:C .3.介于3和π之间的一个无理数是()A .32π+B .3.15C .3.1D .0.15π-【详解】解:介于3和π之间的一个无理数是32π+.故本题选:A .4.(1)请你写出一个比1大且比2小的无理数,该无理数可以是;(2)两个无理数,它们的和为1,这两个无理数可以是.【详解】解:(1)无理数为:2π-,故本题答案为:2π-(答案不唯一);(2)(1)1ππ+-=,故本题答案为:π,1π-(答案不唯一).1.循环小数0.15可化分数为.【详解】解:设0.15x ⋅⋅=,则10015.15x ⋅⋅=,15.15150.15⋅⋅⋅⋅∴=+,10015x x ∴=+,解得:533x =.故本题答案为:533.2.已知有A ,B ,C 三个数集,每个数集中所包含的数都写在各自的大括号内,{2A =-,3-,8-,6,7},{3B =-,5-,1,2,6},{1C =-,3-,8-,2,5},请把这些数填在图中相应的位置.【详解】解:如图所示:.3.10个互不相等的有理数,每9个的和都是“分母为22的既约真分数(分子与分母无公约数的真分数)”,则这10个有理数的和为()A.12B.1118C.76D.59【详解】解:由题意可得:这10个有理数,每9个相加,一共得出另外10个数,原10个有理数互不相等,∴它们相加后得出的另外10个数也是互不相等的,而这10个数根据题意都是分母22的既约真分数,而满足这个条件的真分数恰好正好有10个,∴这10项分别是:1/22,3/22,5/22,7/22,9/22,13/22,15/22,17/22,19/22,21/22, 它们每一个都是原来10个有理数其中9个相加的和,∴如果再把这10个以22为分母的真分数相加,得出来的结果必然是原来的10个有理数之和的9倍.∴10个真分数相加得出结果为5,故所求的10个有理数之和为5/9.故本题选:D.。

江苏省无锡市七年级数学《2.2 有理数与无理数》课件 苏科版

江苏省无锡市七年级数学《2.2 有理数与无理数》课件 苏科版
D.3.14不是有理数
练习7.下列说法正确的是( B)
A.一个数不是正数就是负数 B.整数和分数统称有理数
C.有理数中没有最小的非负整数
D. π是有理数
…} …}
试一试
把下列各数填入相应的集合中:
4 ,2 0, 0 3 .1 5 ,0 4 ,2,2 5 .2, 31, 9% 5
7
8
正整数集合 负分数集合
练习2:把下列各数填入相应的集合中:
1 .2, 3 2 , 1,0 5 ,3 ,2,2.0 0, 2 10 , 2 0 2, 0 .51
7
3
正整数集合 负分数集合
π =3.1493238462643383279539 93751592328253421170679 ···
它是一个无限不循环小数
无限不循环小数叫做无 理数。
请同学们拿出准备好的一个边长为1 的小正方形和剪刀,将小正方形沿着图 中对角线剪开,同桌两位同学合作,将 你们的图形拼在一起,重新拼成一个大 正方形.
练习3:把下列各数填入相应的集合中
1.2, 32,1,0 5,3,2,2.0, 222
7
3
正数集合
整数集合
练习4.
下列说法中正确的有( A)个
①- 4 是负分数;
7
②1.5不是分数; ③非负有理数不包括0; ④0是最小的数
A.1 B.2 C.3 D.4
小结:
1.通常,有理数有哪两种分类原则? 它们是怎样分类的?
2.1 有理数与无理数
议一议
1.如果要将2,3,22 ,10,2 7 1,0,5
73
7
分成两类,你会怎样分?是这怎样的两类?
2.如果再增加 0.53,0.3 两数 ,你

无理数与有理数的区别与应用

无理数与有理数的区别与应用

无理数与有理数的区别与应用无理数和有理数是数学中的两个重要概念,它们有着不同的特点和应用。

在本文中,将详细探讨无理数与有理数的区别,并介绍它们在实际生活和数学领域的应用。

一、无理数的定义和特点无理数是指不能写成两个整数的比值的实数。

无理数的定义最早可以追溯到古希腊数学家毕达哥拉斯提出的“不能用整数比值表示为根号2的实数”。

无理数的代表性例子是根号2、圆周率π等。

与有理数不同,无理数的十进制表示是无限不循环小数。

以根号2为例,它的十进制表示为1.41421356...,小数位数无限不循环。

无理数也无法用分数形式表示,例如π即使近似地写成几个分数的和,也无法精确表示。

无理数的特点使得它们无法用简单的数形式表示,为数学的发展提出了新的要求和挑战。

在实际生活中,无理数的应用广泛存在于几何学、物理学等学科中。

二、有理数的定义和特点有理数是可以表示为两个整数的比值的实数。

它包括所有整数、分数以及小数形式中有限循环小数。

有理数的代表性例子有2、-5、1/2、0.75等。

与无理数不同,有理数可以用分数形式精确地表示。

例如,1/2就是一个有理数,可以写成0.5的小数形式。

有理数的十进制表示要么是有限位数的小数,要么是有限位数的循环小数。

有理数具有可以进行四则运算以及整除等性质,因此在数学中的应用较为广泛。

同时,有理数在现实生活中也有着广泛的应用,例如计算、财务管理、测量等方面。

三、无理数与有理数的区别1. 表示形式:无理数不能用分数形式表示,是无限不循环的十进制小数;而有理数可以用分数形式表示,是有限或有限循环的十进制小数。

2. 数学性质:无理数无法通过四则运算得到精确结果,只能通过近似值表示;而有理数可以进行精确的四则运算,得到精确结果。

3. 数学概念:无理数是不能写成整数的比值的实数;而有理数是可以写成两个整数的比值的实数。

四、无理数与有理数的应用1. 几何学中的应用:无理数广泛应用于几何学中的长度计算。

例如,在勾股定理中,根号2被广泛用于计算直角三角形的斜边长度。

2.2 有理数与无理数1

2.2  有理数与无理数1
有限小数、无限循环小数都可以化成分数,因此它
们都是 有理数
归纳:
• 有理数总可以用有限小数或无限循环小数表示。
• 反之,任何有限小数或无限循环小数也都是有理数。
整数和分数统称为有理数.
正整数
整数 零 负整数
有理数
分数

正分数
负分数
有限小数和无限循环小数属于分数.
是不是所有的数都是有理数呢?
当希勃索斯提出他的发现之后,毕达哥 拉斯大吃一惊,原来世界上真的有“另类数” 存在。 15世纪意大利著名画家达.芬奇称之 为“无理的数”,17世纪德国天文学家开普 勒称之为“不可名状”的数。这一发现使该 学派领导人惶恐、恼怒,认为这将动摇他们 在学术界的统治地位。希勃索斯因此被囚禁, 受到百般折磨,最后竞遭到沉舟身亡的惩处。
将两个边长为1的小正方形,沿图中红线剪开,重新拼成 一个大正方形,它的面积为2.
a
a
a
a
如果设它的边长为 a ,那么 a2 2 . a是有理数吗?
因为 12 1, 22 4 ,所以 a 是大于1而小于2的数.
因为
33 9 2 22 4
,所以
a 不是
3 2

因为 4 4 16 2 ,所以 a 不是 4 .
33 9
3
因所以
a
不是
5 3.
事实上, a 不能化为分数的形式,a是一个无限不循环 小数,它的值是1.414 213 562 373
a
无限不循环小数叫做无理数.
小学学过的圆周率π是无限不循环小数,它的值
是3.141 592 653 589…,π是无理数.
正整数
整数 零 负整数

数学中的有理数和无理数

数学中的有理数和无理数

数学中的有理数和无理数数学是一门严谨而又深奥的学科,其中有理数和无理数是数学中的两个重要概念。

有理数是可以表示为两个整数的比值的数,而无理数则是不能被有理数表示的数。

本文将从不同角度探讨有理数和无理数的性质和应用。

一、有理数的性质有理数包括整数、分数和小数。

整数是没有小数部分的数,可以是正数、负数或零。

分数是两个整数的比值,可以用分子和分母表示。

小数是有限或无限循环的十进制数。

有理数的性质之一是可以进行四则运算。

对于任意两个有理数a和b,可以进行加、减、乘、除等运算,得到的结果仍然是有理数。

这是因为有理数的定义本身就包含了四则运算的封闭性。

另一个有理数的性质是可以进行有限的准确表示。

例如,对于分数1/3,可以用小数表示为0.3333...,其中小数点后的数字无限重复。

这种无限循环的小数可以用有限的位数表示,但不等于任何有理数。

这就引出了无理数的概念。

二、无理数的性质无理数是指不能表示为两个整数的比值的数。

最著名的无理数是π(pi)和√2(根号2)。

π是一个无限不循环的小数,它的近似值为3.14159...。

√2是一个无法用有限的小数表示的数,它的近似值为1.41421...。

无理数的性质之一是无限不循环的小数表示。

无理数的小数部分是无限的,且没有重复的模式。

这使得无理数无法用有限的位数表示,只能通过近似值来表示。

另一个无理数的性质是无理数之间的运算结果仍然是无理数。

例如,对于任意两个无理数a和b,它们的和、差、乘积和商都是无理数。

这是因为有理数和无理数之间的运算结果总是无理数。

三、有理数和无理数的应用有理数和无理数在数学中有着广泛的应用。

在几何学中,无理数经常用于描述线段的长度。

例如,对于一个边长为1的正方形,它的对角线的长度是√2,这是一个无理数。

在物理学中,有理数和无理数经常用于描述实际问题。

例如,物体的速度可以是有理数,但是物体的加速度可能是无理数。

这些数值的计算和分析需要运用到有理数和无理数的性质。

有理数和无理数的概念

有理数和无理数的概念

有理数和无理数的概念有理数和无理数的概念,听起来可能有点复杂,但其实它们就在我们生活中。

咱们每天用的数字,大多数是有理数,而无理数则像是隐藏在数学世界里的小精灵,等着你去发现。

一、有理数的定义1.1 什么是有理数?有理数,顾名思义,就是可以用分数表示的数。

比如说,1/2、3/4、甚至是-2,都是有理数。

它们可以是正的、负的,甚至是零。

你只要能找到两个整数,一个在上,一个在下,组成的分数就是有理数。

1.2 有理数的特性有理数的特性很简单。

它们可以在数轴上精确地定位。

想象一下,走在一条笔直的路上,你每走一步,脚下的每一个点都对应着一个有理数。

你永远不会迷路,因为你能准确知道自己的位置。

再比如说,0.75,它可以写成3/4,大家都能看得懂。

二、无理数的定义2.1 无理数的神秘无理数呢,就有点特别了。

它们不能用简单的分数表示。

比如说,最著名的无理数是π(圆周率)和√2。

试着把√2写成分数,你会发现,无论你怎么努力,总是无法找到两个整数,做出一个精准的分数。

这种神秘感,恰恰是无理数的魅力所在。

2.2 无理数的性质无理数在数轴上也有自己的位置。

可是它们就像是美丽的星星,分散得很,不容易找到。

它们的十进制表示是无限不循环的,想想看,√2的十进制展开是1.41421356……,这个数字一直延续下去,根本没完没了。

2.3 无理数的日常应用无理数在我们的生活中也有很多应用。

建筑设计中,常常需要用到无理数来计算角度和长度。

艺术作品中,黄金比例就是一个典型的无理数,它使得作品看起来更加和谐美观。

这些小细节,虽然不容易被注意,却在潜移默化中影响着我们的生活。

三、有理数与无理数的关系3.1 互为补充有理数和无理数其实就像一对好搭档,互相补充。

有理数代表了我们日常生活中常见的数量,而无理数则为我们的思维提供了更深层次的理解。

无论是做数学题,还是解决实际问题,两者都是不可或缺的。

3.2 数学的美妙数学的世界就是这样奇妙。

有理数和无理数共同构成了实数。

苏科版七年级上册数学2.2有理数与无理数

苏科版七年级上册数学2.2有理数与无理数

2.2有理数与无理数1. 0是 ( )A .最小的正数B .最大的负数C .最小的有理数D .整数 2.下列说法正确的是( )A. 0.555…是分数B. -5是负分数C.3.8不是分数D.自然数一定是正数 3.下列说法:①有限小数是有理数;②无限小数都是无理数;③无理数都是无限小数;④有理数是有限小数中错误的个数是 ( ) A.1 B.2 C.3 D.4 4.下列说法正确的是( )A.整数包括正整数和负整数B.零是整数,但不是正数,也不是负数C.分数包括正分数、负分数和零D.有理数不是正数就是负数 5.以下各正方形的边长是无理数的是( )A.面积为25的正方形B.面积为16的正方形C.面积为3的正方形D.面积为1.44的正方形 6.在下列各数中:0,-3.14,722,0.101 001 0001…,3π,有理数有( ) A.1个 B.2个 C.3个 D.4个7.整数和分数统称为__________数,无限不循环小数是___________数.8.在-2,+3.5,0,-32,-0.7,11,-5π,-0.23 223 2223…,-••31.0中,负分数是__________.9.写出一个比-3大的无理数是___________.10.如图,两个圈分别表示负数集合、整数集合,请从-1,5,-80%,-7,0,-0.2,72,-10这些数中,选择适当的数填在这两个圈的重叠部分为__________.11.有6个数:0.123,-1.5,3.1416,722,π-,0.102 002 0002,若其中无理数的个数是x ,整数的个数是y ,非负数的个数是z ,则x+y+z=_________. 12.我们知道,无限循环小数都可以转化成分数.如:0.333…转化为分数时,可设0.333…=x , 则x x 1013.0+=,解得31=x ,即0.333…=31.仿此方法,将0.454545…化为分数得_____.13.将下列各数分类:5.1,-3.14, ,0,0.222…,1.696696669,1.696696669…,0.5, -0.210有理数有________________________________; 无理数有________________________________.14.将下列各数填入相应的括号内:11.将下列各数填入相应的括号内:-6,9.3, 17 ,42,0,-0.33,0.333…,1.41421356,-2 ,3.3030030003…,-3.1415926,2π,0.58588588858888….正数集合{ …} 负数集合{ …} 有理数数集合{ …} 无理数数集合{ …} 15.把下列各数填在相应的大括号中-311,-10%,722,0.3,π,0,-1.7,21,-2,1.01001,1.2020020002…,+6 有理数集合{ …} 无理数集合{ …} 正数集合{ …} 负数集合{ …} 整数集合{ …} 分数集合{ …} 非负有理数集合{ …} 16.漠漠做数学:假设抽到牌的点数为x ,漠漠猜中的结果为y ,则y 等于 ( ) A.2 B.3 C.6 D.x+2参考答案 1.D 2.A 3.B 4.B 5.C 6.C7.有理数,无理数 8.-2,-32,-0.7,-9.-0.23 2232223… 10.-7,-10 11.6 12.45/9913.有理数有5.1,-3.14,0,0.222…,1.696696669,0.5, -0.210无理数有 ,1.696696669…14.正数集合{ 9.3, 17,42 ,0.333…,1.41421356, 3.3030030003…,2π ,0.58588588858888…. …}负数集合{ -6,-0.33,-2 , -3.1415926 …}有理数数集合{ -6,9.3, 17,42,0,-0.33,0.333…,1.41421356,-2 ,-3.1415926, …}无理数数集合{ 3.3030030003…,2π,0.58588588858888…. …} 15.-311,-10%,722,0.3,π,0,-1.7,21,-2,1.01001,1.2020020002…,+6有理数集合{15.-311,-10%,722,0.3,0,-1.7,21,-2,1.01001,+6 …}••31.0无理数集合{ π, 1.2020020002… …} 正数集合{722,0.3,π, 21,1.01001,1.2020020002…,+6 …} 负数集合{-311,-10%, -1.7 , -2 …}整数集合{0, 21, -2, +6 …}分数集合{ -311,-10%,722,0.3,-1.7, -2,1.01001 …}非负有理数集合{ 15. 722,0.3,0,21,1.01001,+6 …} 16.2初中数学试卷灿若寒星 制作。

有理数与无理数的关系

有理数与无理数的关系

有理数与无理数的关系有理数和无理数是数学中的两个重要概念。

它们之间存在紧密的联系和区别。

在本文中,我们将探讨有理数与无理数的关系,以及它们在数轴上的表现形式。

一、有理数与无理数的定义有理数是可以表示为两个整数的比例的数。

例如,分数1/2、小数0.75等都属于有理数。

有理数的特点是可以用整数的比值表示,或是有限小数、无限循环小数。

无理数则是不能用两个整数的比例来表示的数。

无理数通常以无限不循环小数的形式出现,而且不能化成简单的分数或整数。

例如,π (pi) 和√2 (根号2) 都是无理数。

二、有理数与无理数的区别有理数和无理数的最大区别是可以用分数表示的整数特性。

有理数可以精确地表示为两个整数的比值,而无理数则无法用有限的整数比例来表示。

此外,有理数的小数形式要么有限,要么是无限循环小数,而无理数的小数形式则是无限不循环的。

另一个区别是有理数可以进行四则运算,并且运算结果也是有理数。

但是,无理数与有理数进行运算的结果通常是无理数。

例如,将一个有理数与一个无理数相加,结果仍然是无理数。

三、有理数与无理数的连接尽管有理数和无理数之间存在着明显的区别,但它们在数轴上是相互连接的。

数轴是一个水平直线,用来表示各种实数。

有理数和无理数都可以在数轴上找到对应的位置。

有理数可以精确地表示为两个整数之间的比率,因此它们在数轴上的位置是可以准确标识的。

例如,数轴上的整数点和分数点都是有理数的位置。

无理数则无法用简单的比值来表示,但它们仍然存在于数轴上的特定位置。

例如,根号2 (√2) 在数轴上处于一个无限不循环的位置,但我们可以用近似值来表示它的位置。

在数轴上,有理数和无理数之间存在着无数个实数。

这些实数包括所有的有理数和无理数。

有理数和无理数的连接展示了实数全集的完整性。

四、实际应用有理数和无理数在实际生活中都有广泛的应用。

有理数常被用于计算和精确度要求较高的场合,例如工程测量和金融交易等。

无理数则在几何学和物理学等领域中扮演重要角色,例如圆的周长和对角线长度等。

有理数与无理数的门当户对原理

有理数与无理数的门当户对原理

有理数与无理数的门当户对原理【原创实用版】目录一、引言二、有理数与无理数的定义与分类1.有理数的定义与分类2.无理数的定义与分类三、有理数与无理数的关系1.门当户对原理2.实例分析四、结论正文一、引言在数学领域,有理数和无理数是实数的两种基本类型。

有理数是指可以表示为两个整数之比的数,包括整数、分数和小数(有限小数和循环小数)。

而无理数则是指不能表示为两个整数之比的数,其小数形式为无限不循环小数。

本文将从有理数与无理数的定义和分类入手,探讨它们之间的关系,进而介绍门当户对原理。

二、有理数与无理数的定义与分类1.有理数的定义与分类有理数是可以表示为两个整数之比的数,包括整数、分数和小数(有限小数和循环小数)。

例如,-3、2/3、-1.5、0.6666…等都是有理数。

2.无理数的定义与分类无理数是不能表示为两个整数之比的数,其小数形式为无限不循环小数。

例如,圆周率π、开方 2、自然对数 e 等都是无理数。

三、有理数与无理数的关系1.门当户对原理在数学中,门当户对原理指的是有理数与无理数在某种程度上是相互对应的。

具体来说,有理数可以看作是无理数的一种特殊情况,而无理数则可以看作是有理数的一种推广。

这种对应关系在数学的许多领域都有体现,例如在实数域、函数域、拓扑等领域。

2.实例分析以圆周率π为例,它是一个无理数,但可以表示为有理数列的极限:π = 3 + 1/(6 + 3 + 5 × 3 + …)。

这个表示方式将无理数π转化为有理数的形式,从而展现了有理数与无理数之间的联系。

四、结论有理数与无理数作为实数的两种基本类型,在数学领域具有广泛的应用。

初一数学有理数无理数题目

初一数学有理数无理数题目

初一数学有理数无理数题目【实用版】目录一、有理数与无理数的概念二、有理数与无理数的性质三、有理数与无理数的运算规则四、初一数学有理数无理数题目的解题方法与技巧五、总结正文一、有理数与无理数的概念有理数指的是可以表示为两个整数之比的数,包括整数、分数和小数(有限小数和循环小数)。

而无理数指的是不能表示为两个整数之比的数,它的小数部分既不是有限小数也不是循环小数,例如圆周率π和自然对数的底数 e 等。

二、有理数与无理数的性质有理数具有如下性质:1) 有理数可以表示为分数形式,即 a/b(a、b 为整数,b≠0);2) 有理数可以表示为小数形式,包括有限小数和循环小数;3) 有理数可以进行加、减、乘、除等运算。

无理数具有如下性质:1) 无理数不能表示为分数形式,即无法表示为 a/b(a、b 为整数,b≠0);2) 无理数的小数部分既不是有限小数也不是循环小数;3) 无理数可以进行加、减、乘、除等运算。

三、有理数与无理数的运算规则有理数与无理数的运算规则与实数的运算规则相同,包括加法、减法、乘法、除法。

在运算过程中,需要注意以下几点:1) 运算顺序,先乘除后加减;2) 同号相乘为正,异号相乘为负;3) 除数不能为零。

四、初一数学有理数无理数题目的解题方法与技巧在初一数学中,有理数与无理数的题目主要涉及有理数的大小比较、有理数的混合运算、无理数的估算等。

解题时,可以采用以下方法与技巧:1) 利用数轴进行有理数大小比较;2) 将有理数混合运算转化为简单的加减运算;3) 利用近似值估算无理数的大小;4) 注意运算过程中的符号和精度。

五、总结有理数与无理数是初中数学中的基本概念,掌握它们的性质和运算规则对于解决相关题目至关重要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学学科第二章第2节
2.2《有理数与无理数》学讲预案
一、自主先学
1. 所有的整数都可以化成分母为1的分数,如5 =_____,—3 =______.
一些小数也可以化成分数,如0.6 =_______,—1.5 =________,=________.
2. 能够写成分数形式_________ ( )的数叫做有理数.
3. _______________________无理数.请举一个无理数:__________.
二、合作助学
4.有理数如何分类: ,还有其它分法吗?
5.如图,将两个边长为1的小正方形,沿图中虚线剪开,重新拼成一个大正方形,它的面积为2. 如果设大正方形的边长为a ,那么a 2 = ______,a 是有理数吗?
(第5题)
三、拓展导学
6. 有一个面积为5π的圆的半径为x ,x 是有理数吗?说说你的理由.
(第6题)
四、检测促学
7. 下列各数π,,0 ,—1中,无理数是 ( )
A . π
B .
C . 0
D . —1
8. 下列说法错误的是 ( )
A . 负整数和负分数统称负有理数
B . 正整数、0、负整数统称为整数
分数 正分数
负分数
______
正整数
负整数 ______ 有理数
C.正有理数与负有理数组成全体有理数
D. 3.14是小数,也是分数
9.下列说法正确的个数( )
①无理数一定是无限小数;③无限小数一定是无理数;④是无理数;②π是无理数;⑤ 0是无理数.
A. 1个
B. 2个
C. 3个
D. 4个
10.写一个大于1小于2的无理数是________.
11.已知正数m满足m2 =15,则m的整数部分是_________.
12. 把下列各数填入对应的括号中:,3,2.012,,,,0,8π,,
5.3133133313333….
正数集合:;
整数集合:;
无理数集合:;
负分数集合:.
五、反思悟学
13.写出5个数,同时满足以下三个条件:(1) 其中3个数属于非正数集合;(2) 其中3个数属于非负数集合;(3)
5个数属于整数集合.。

相关文档
最新文档