圆的旋转问题(一)

合集下载

以旋转为载体的几何综合问题

以旋转为载体的几何综合问题

以旋转为载体的几何综合问题旋转作为一种几何操作,常常被用来求解各种几何综合问题。

在这篇文章中,我们将介绍几个以旋转为载体的几何综合问题,并详细讨论它们的解法。

1.旋转体的体积设有一个半径为r的圆,围绕其直径旋转一周形成一个旋转体。

如何求解这个旋转体的体积呢?首先,我们可以将旋转体看作一系列的微元,每个微元都是一个小的圆柱体。

根据圆柱体的体积公式,每个微元的体积可表示为πr²dx,其中dx是微元的宽度。

接下来,我们可以利用积分的概念来计算这些微元的体积之和。

旋转体的体积V可以表示为V = ∫(0 to h) πr²dx其中h是旋转体的高度。

将圆的半径表示为y=f(x),则dx和dy 之间有如下关系:dx = dy / f'(x)将上述关系代入体积公式中,我们可以得到一个新的体积公式:V = ∫(0 to h) πy² / f'(x) dy利用这个公式,我们可以求解各种形状的旋转体的体积。

2.旋转体的表面积除了体积,我们还可以求解旋转体的表面积。

同样地,我们可以将旋转体看作一系列的微元,每个微元都是一个小的圆柱体。

根据圆柱体的表面积公式,每个微元的表面积可表示为2πr*dx,其中dx是微元的宽度。

类似地,我们可以利用积分的概念来计算这些微元的表面积之和。

旋转体的表面积S可以表示为S = ∫(0 to h) 2πr dx将半径表示为y=f(x),则dx和dy之间有如下关系:dx = dy / f'(x)将上述关系代入表面积公式中,我们可以得到一个新的表面积公式:S = ∫(0 to h) 2πy / f'(x) dy利用这个公式,我们可以求解各种形状的旋转体的表面积。

3.旋转体的惯性矩除了体积和表面积,我们还可以求解旋转体的惯性矩。

惯性矩刻画了物体对于转动的惯性特性。

在旋转体的例子中,我们主要关注二阶惯性矩,也称为转动惯量。

设旋转体的质量分布为ρ(x);则转动惯量计算公式为:I = ∫(0 to h) ρ(x)r² dx根据转动惯量的定义,我们可以将每个微元的转动惯量表示为ρ(x)r²*dx。

粒子源问题

粒子源问题

一、旋转圆问题在磁场中向垂直于磁场的各个方向发射速度大小相同的带电粒子时,带电粒子的运动轨迹是围绕发射点旋转的半径相同的动态圆,用这一规律可快速确定粒子的运动轨迹。

例1.如图8所示,S为电子源,它在纸面360°度范围内发射速度大小为v0,质量为m,电量为q的电子(q<0),MN是一块足够大的竖直挡板,与S的水平距离为L,挡板左侧充满垂直纸面向外的匀强磁场,磁感应强度大小为mv0/qL,求挡板被电子击中的范围为多大?例2.如图10所示,在0≤x≤A.0≤y≤范围内有垂直于xy平面向外的匀强磁场,磁感应强度大小为B。

坐标原点O处有一个粒子源,在某时刻发射大量质量为m、电荷量为q的带正电粒子,它们的速度大小相同,速度方向均在xy平面内,与y轴正方向的夹角分布在0~90°范围内。

己知粒子在磁场中做圆周运动的半径介于a/2到a之间,从发射粒子到粒子全部离开磁场经历的时间恰好为粒子在磁场中做圆周运动周期的四分之一。

求最后离开磁场的粒子从粒子源射出时的:(1)速度大小;(2)速度方向与y轴正方向夹角正弦。

强化训练:1.如图所示,S处有一电子源,可向纸面内任意方向发射电子,平板MN垂直于纸面,在纸面内的长度L=9.1cm,中点O与S间的距离d=4.55cm,MN与SO直线的夹角为θ,板所在平面有电子源的一侧区域有方向垂直于纸面向外的匀强磁场,磁感应强度B=2.0×10-4T,电子质量m=9.1×10-31kg,电量e=-1.6×10-19C,不计电子重力。

电子源发射速度v=1.6×106m/s的一个电子,该电子打在板上可能位置的区域的长度为l,则A.θ=90°时,l=9.1cmB.θ=60°时,l=9.1cmC.θ=45°时,l=4.55cm D.θ=30°时,l=4.55cm2、3、如图所示,以直角三角形AOC 为边界的有界匀强磁场区域,磁感应强度为B ,∠A =60°,AO =a 。

圆的概念和有关性质-知识总结和例题

圆的概念和有关性质-知识总结和例题

圆的概念和有关性质 知识总结和例题圆的旋转定义:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点所形成的图形叫做圆.以点O 为圆心的圆,记作“⊙O ”,读作“圆O ”固定的端点O 叫做圆心,线段OA 叫做半径,一般用r 表示. 确定一个圆的要素:一是圆心,圆心确定其位置;二是半径,半径确定其大小. 同心圆:圆心相同,半径不同 等圆 : 圆心相同,半径不同圆的集合定义:圆心为O 、半径为r 的圆可以看成是所有到定点O 的距离等于定长r 的点的集合. 弦:连接圆上任意两点的线段叫做弦.经过圆心的弦叫做直径 注意:1.弦和直径都是线段.2. 直径是弦,是经过圆心的特殊弦,是圆中最长的弦,但弦不一定是直径.弧: 圆上任意两点间的部分叫做圆弧,简弧.以A 、B 为端点的弧记作 ,读作“圆弧AB ”或“弧AB ”. 半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆 劣弧与优弧:小于半圆的弧叫做劣弧. ;小于半圆的弧叫做劣弧. ; 等弧:等弧仅仅存在于同圆或者等圆中.1.一点和⊙O 上的最近点距离为4cm,最远的距离为10cm, 则这个圆的半径是2.下面3个命题:①半径相等的两个圆是等圆;②长度相等的弧是等弧;③一条弦把圆分成两条弧,这两条弧不可能是等弧.其中真命题的个数为( )A .0个B .1C .2个D .3个3 .如图,MN 是半圆O 的直径,正方形ABCD 的顶点A 、D 在半圆上,顶点B 、C 在直径MN 上,求证:OB=OC.图4DB O NMAC图5DBONM AC(3) (4) (5) (6)4.如图,在扇形MON 中,=45MON ,半径MO=NO=10,,正方形ABCD 的顶点B 、C 、D 在半径上,顶点A 在圆弧上,求正方形ABCD 的边长5.如图,AB ,AC 为⊙O 的弦,连接CO ,BO 并延长,分别交弦AB ,AC 于点E ,F ,∠B =∠C.求证:CE =BF.6,如图,过A ,C ,D 三点的圆的圆心为E ,过B ,F ,E 三点的圆的圆心为D ,∠A =63°,求∠B 的度数.圆的对称性:圆是轴对称图形,任意一条直径所在直线都是圆的对称轴.垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

旋转中的最值问题方法

旋转中的最值问题方法

旋转中的最值问题方法一、三角形旋转中的最值问题。

题目1:在等腰直角三角形ABC中,∠ ACB = 90^∘,AC = BC=√(2),将ABC绕点C逆时针旋转角α(0^∘<α<90^∘)得到A'B'C,连接A'B。

求A'B的最小值。

解析:1. 因为ABC绕点C旋转得到A'B'C,所以CA = CA'=√(2)。

2. 在A'CB中,根据余弦定理:A'B^2=A'C^2+BC^2- 2A'C· BC·cos(∠ A'CB)。

3. 由于∠ A'CB=∠ ACB+α = 90^∘+α,A'C = AC=√(2),BC=√(2)。

4. 则A'B^2=2 + 2-2×√(2)×√(2)cos(90^∘+α)=4 + 4sinα。

5. 因为0^∘<α<90^∘,当sinα = 0(即α = 0^∘)时,A'B^2取得最小值4,所以A'B的最小值为2。

题目2:已知等边三角形ABC的边长为2,点D是边BC的中点,将ABD绕点A逆时针旋转得到ACE。

求线段DE的最大值。

解析:1. 因为ABD绕点A逆时针旋转得到ACE,所以AD = AE,∠ DAE=∠ BAC = 60^∘,所以ADE是等边三角形。

2. 点D是边BC的中点,在等边三角形ABC中,AD⊥ BC,根据勾股定理可得AD=√(3)。

3. 因为ADE是等边三角形,所以DE = AD=√(3),DE的最大值就是√(3)。

题目3:在ABC中,AB = 3,AC = 4,∠ BAC = 60^∘,将ABC绕点A旋转,得到AB'C'。

求BC'的最大值。

解析:1. 由余弦定理可得BC=√(AB^2)+AC^{2-2AB· AC·cos∠ BAC}- 把AB = 3,AC = 4,∠ BAC = 60^∘代入可得:BC=√(9 + 16-2×3×4×frac{1){2}}=√(13)。

圆的旋转知识点总结

圆的旋转知识点总结

圆的旋转知识点总结在数学中,圆是一个非常重要的几何图形,它有许多有趣和复杂的特性。

圆的旋转是圆的一个重要属性,它在几何、物理和工程领域中都有着重要的应用。

本文将对圆的旋转进行详细的介绍和总结,包括圆的基本概念、旋转的定义和性质、旋转的应用等方面。

一、圆的基本概念圆是一个平面上所有点到一个固定点距离相等的集合。

这个固定点称为圆心,到圆心的距离称为半径。

圆的直径是通过圆心的两个点之间的线段,直径的长度是半径的两倍。

圆的周长是圆上一点到另一点的距离的总和,也就是圆的外周的长度。

圆的面积是圆内部的所有点构成的区域的大小。

二、旋转的定义和性质旋转是指一个物体或几何图形绕某个固定点或轴进行旋转运动的过程。

在圆的旋转中,固定点就是圆心,旋转轴就是围绕圆心旋转的线段。

圆的旋转有一些基本的性质:1. 当一个圆绕其圆心旋转时,圆的形状和大小保持不变。

这是因为圆的所有点都与圆心的距离相等,所以无论怎样旋转,这个距离不会改变。

2. 圆的旋转可以分为两种:顺时针旋转和逆时针旋转。

这两种旋转方向可以通过右手定则来确定,当右手握住旋转轴的方向时,大拇指所指的方向就是旋转的方向。

3. 圆的旋转可以产生许多有趣的几何图形,如旋转体、圆锥、圆柱等。

这些几何图形在工程和建筑中都有着广泛的应用。

4. 圆的旋转还可以产生许多数学问题和定理,如圆的面积和周长的计算、圆的体积和表面积的计算等。

这些问题和定理都是圆的旋转性质的重要应用。

三、旋转的应用圆的旋转在现实生活中有着广泛的应用,下面列举了一些典型的应用:1. 工程领域:圆的旋转在机械制造和加工中有着重要的应用,如车床加工、铣床加工等。

在这些加工过程中,工件通过旋转轴绕自身旋转,切削工具则在不同的方向上进行切削,从而形成所需的零件。

2. 建筑领域:圆的旋转在建筑设计和施工中也有着重要的应用,如旋转体结构的设计、旋转柱的施工等。

这些应用可以通过对圆的旋转性质和公式的应用,来解决具体的问题。

初中数学旋转的六大模型,初中几何旋转经典例题

初中数学旋转的六大模型,初中几何旋转经典例题

初中数学旋转的六大模型,初中几何旋转经典例题标题:初中数学旋转的六创作者,初中几何旋转经典例题在初中的数学学习中,旋转是一个重要的概念,它不仅在几何学中占据着核心地位,还在代数学、统计学等其他领域有着广泛的应用。

本文将详细介绍初中数学旋转的六创作者,并通过经典例题来深化理解。

旋转是指一个图形绕着某一点转动一定的角度。

在这个过程中,图形上任意一点所经过的路径形成一个圆,这个圆叫做旋转圆,点叫做旋转中心。

旋转的角度一般用角度或者弧度来表示。

中心对称旋转:图形以旋转中心为对称中心,旋转角度为偶数倍的180度。

绕固定点旋转:图形围绕一个固定点旋转,这个固定点称为旋转中心。

旋转对称图形:图形可以通过旋转得到,这种图形称为旋转对称图形。

旋转角相等:如果两个图形可以通过旋转互相得到,那么它们的旋转角必然相等。

旋转角互补:如果两个图形的一条边和另一条边的延长线组成一个平角,那么这两个图形的旋转角互补。

旋转改变形状:旋转可以改变图形的形状,但不会改变图形的面积。

例1:在正方形ABCD中,E是BC的中点,F是AC上一点,且CF=2AF。

求证:EF平分∠AEB。

证明:我们可以通过旋转证明。

把△ABE绕B点按逆时针方向旋转60°,得到△CBG,则BG//AE,所以∠FGB=∠FEA。

因为CF=2AF,所以FG=2FE。

所以可以得出∠FEB=∠FGB+∠GBF=∠FEA+∠AEB+∠ABE=∠FEA+∠AEB+∠EAB=180°即∠FEA+∠AEB=180°-∠EAB=∠BEF所以∠BEF = ∠FEA即 EF平分∠AEB。

例2:在Rt△ABC中,∠C=90°,D是AB的中点,E、F分别在AC和BC上,且DE⊥DF。

求证:EF^2=AE^2+BF^2。

证明:把Rt△ABC绕D点按顺时针方向旋转90°得到Rt△AB’C’,则可知:△ABC≌△AB’C’,所以可知DE=DF,因为DE⊥DF,所以可知四边形DECF’是正方形。

初三数学图形的旋转知识点与圆的知识点

初三数学图形的旋转知识点与圆的知识点

初三数学图形的旋转知识点与圆的知识点初三数学的图形学习无非就是常规图形,难度比较高的就是圆,这里的知识点大家要用心学习好,小编在这里整理了相关资料,希望能帮助到您。

初三数学图形的旋转知识点1、定义把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。

2、性质(1)对应点到旋转中心的距离相等。

(2)对应点与旋转中心所连线段的夹角等于旋转角。

二、中心对称1、定义把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

2、性质(1)关于中心对称的两个图形是全等形。

(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。

3、判定如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。

4、中心对称图形把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。

5、坐标系中对称点的特征1、关于原点对称的点的特征两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)2、关于x轴对称的点的特征两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y)3、关于y轴对称的点的特征两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)初三数学圆的知识点一圆的定理1.1不共线的三点确定一个圆经过一点可以作无数个圆经过两点也可以作无数个圆,且圆心都在连结这两点的线段的垂直平分线上定理:过不共线的三个点,可以作且只可以作一个圆推论:三角形的三边垂直平分线相交于一点,这个点就是三角形的外心三角形的三条高线的交点叫三角形的垂心1.2垂径定理圆是中心对称图形;圆心是它的对称中心圆是周对称图形,任一条通过圆心的直线都是它的对称轴定理:垂直于弦的直径平分这条弦,并且评分弦所对的两条弧推论1:平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧推论2:弦的垂直平分弦经过圆心,并且平分弦所对的两条弧推论3:平分弦所对的一条弧的直径,垂直评分弦,并且平分弦所对的另一条弧1.3弧、弦和弦心距定理:在同圆或等圆中,相等的弧所对的弦相等,所对的弦的弦心距相等二圆与直线的位置关系2.1圆与直线的位置关系如果一条直线和一个圆没有公共点,我们就说这条直线和这个圆相离如果一条直线和一个圆只有一个公共点,我们就说这条直线和这个圆相切,这条直线叫做圆的切线,这个公共点叫做它们的切点定理:经过圆的半径外端点,并且垂直于这条半径的直线是这个圆的切线定理:圆的切线垂直经过切点的半径推论1:经过圆心且垂直于切线的直线必经过切点推论2:经过切点且垂直于切线的直线必经过圆心如果一条直线和一个圆有两个公共点,我们就说,这条直线和这个圆相交,这条直线叫这个圆的割线,这两个公共点叫做它们的交点直线和圆的位置关系只能由相离、相切和相交三种2.2三角形的内切圆如果一个多边形的各边所在的直线,都和一个圆相切,这个多边形叫做圆的外切多边形,这个圆叫做多边形的内切圆定理:三角形的三个内角平分线交于一点,这点是三角形的内心三角形一内角评分线和其余两内角的外角评分线交于一点,这一点叫做三角形的旁心。

高中物理旋转圆技巧

高中物理旋转圆技巧

高中物理旋转圆技巧
在解决高中物理问题时,经常需要处理旋转圆的问题。

以下是一些常用的技巧和步骤:
1. 确定旋转中心:首先需要确定旋转的中心点,这个中心点可以是圆心,也可以是圆外或圆内的一点。

2. 确定旋转角度:确定旋转的角度,可以是顺时针或逆时针旋转。

常见的旋转角度有90度、180度和360度等。

3. 使用旋转公式:对于一个点(x,y)绕旋转中心点(a,b)顺时针旋转θ角度后的新坐标(x',y')的计算公式为:x' = (x - a) cosθ - (y - b) sinθ + a
y' = (x - a) sinθ + (y - b) cosθ + b
4. 分析物理问题:在解决具体问题时,需要仔细分析题目中给出的条件和要求,确定需要使用哪些物理知识和公式。

5. 建立物理模型:根据题目描述和要求,建立合适的物理模型,例如质点、刚体、电磁场等。

6. 数学计算:根据建立的物理模型和已知条件,进行数学计算,求解出问题的答案。

7. 验证答案:最后需要验证所得答案的正确性,可以通过计算或实验等方式进行验证。

总之,解决高中物理旋转圆问题需要综合运用物理知识和数学工具,通过仔细分析、建立模型、计算和验证等步骤,逐步推导出正确的答案。

[初中教育][初三数学]圆及图形的旋转

[初中教育][初三数学]圆及图形的旋转

小班辅导教案知识点一圆的有关概念1.在同一平面内,线段OP绕它一个端点O旋转,另一端点P所经过的叫做圆,定点O叫做,西那段OP(不论转到什么位置)叫做圆的 .以点O为圆心的圆,记做“”读作“圆O”.连结圆上任意两点的叫做弦,经过的弦叫做直径.2.圆上任意两点间的部分叫做,简称 .圆的任意一条的两个端点分圆成两条弧,每一条弧都叫做半圆,小于半圆的弧叫做,大于半圆的弧叫做 .半径相等的两个圆能够完全重合,我们把半径相等的两个圆叫做,类似地,我们把能够重合的圆弧称为 .3.一般地,如果用r表示圆的半径,d表示同一平面内点到圆心的距离,则有d>r↔点在圆;d=r↔点在圆;d<r↔点在圆;4.圆上各点到圆心的距离都等于 .5.下列结论正确的有 .①弦是直径;②直径是弦;③弧是半圆;④半圆是弧;⑤弧是直径;⑥过圆点的线段是直径.6.圆内最长的弦长为6cm,则圆的半径()A.小于3cmB.等于3cmC.大于3cmD.不能确定7.过圆上一点可以作出圆的最长弦有()A.1条B.2条C.3条D.无数条题型一点与圆的位置关系例1:在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2,则下列说法中不正确的是()A.当a<5时,点B在⊙A内 B. 当1<a<5时,点B在⊙A内C. 当a<1时,点B在⊙A外D. 当a>5时,点B在⊙A外巩固练习1:⊙O的半径为13,圆心O到直线L的距离d=OD=5.在直线L上有三点P,Q,R,且PD=12,QD=11,RD=13,则点P在⊙O ,点Q在⊙O ,点R在⊙O .题型二与原有关的计算与证明例2:如图,已知CD是⊙O的直径,∠EOD=57°,AE交⊙O于点B,且AB=OC,求∠A的度数.巩固练习2:如图,已知两个同心圆,大圆的弦AB交小圆于点C,D.求证:AD=BC.知识点二确定圆的条件和三角形的外接圆1. 的三个点确定一个圆.2. 经过三角形各个顶点的圆叫做,这个外接圆的圆心叫做,三角形叫做 .三角形的外心是三角形的交点.3.经过一点的圆有个,经过两点的圆有个.4.若平面上A,B,C三点能够确定一个圆,那么A,B,C三点所满足的条件是 .5.下列条件可以确定一个圆的是()A.已知圆心B.已知两个点C.已知三个点D.已知直径6.下列关于外心的说法正确的是()A.外心是三角形三个角的平分线的交点B. 外心是三角形三条高线的交点C. 外心是三角形三条中线交点D. 外心是三角形三边垂直平分线的交点题型一三角形的外接圆的有关概念例1:下列命题中,正确的是()A.三角形的外心是三角形的三条高线的交点B. 等腰三角形的外心一定在它的内部C. 三角形的外心到三角形的三个顶点的距离都相等D.锐角三角形的外心可能在三角形的外部,钝角三角形的外心可能在三角形的内部巩固练习1:下列说法正确的是()A.经过三个点一定可以作圆B.任意一个圆一定有内接三角形,并且只有一个内接三角形C.任意一个三角形一定有一个外接圆,并且只有一个外接圆D.三角形的外心到三角形各边的距离都相等题型二三角形的外接圆的有关计算例2:如图,在△ABC中,AB=AC=10,BC=12,求△ABC的外接圆半径.巩固练习2:已知一个三角形的三边长分别为6cm,8cm,10cm,则这个三角形的外接圆面积等于cm2.知识点三图形的旋转1.一个图形变为另一个图形,在运动的过程中,原图形上的所有点都绕一个固定的定,按,转动,这样的图形运动叫做图形的 .这个固定的点叫做 .2.图形旋转的性质:图形旋转所得的图形与原图形全等.对应点到的距离相等.任何一对对应点与旋转中心连线所成的角度等于 .3.将数字“6”旋转180°,得到数字“9”,将数字“9”旋转180°,得到数字“6”,现将数字“69”旋转180°,得到的数字是()A.96B.69C.66D.994.如图所示,将一个含30°角的直角三角板ABC绕点A旋转,使得点B,A,C′在同一直线上,则三角板ABC旋转的角度是()A.60°B.90°C.120°D.150°(4)(5)5.如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′等于()A.2B.3C.4D.1.5题型一图形的运动例1:如图,在方格纸中,△ABC经过运动得到△DEF,正确的运动是()A.把△ABC绕点C逆时针方向旋转90°,再向下平移2格B. 把△ABC绕点C顺时针方向旋转90°,再向下平移2格C. 把△ABC向下平移4格,再绕点C逆时针方向旋转90°D. 把△ABC向下平移5格,再绕点C顺时针方向旋转90°巩固练习1:以下三组两个图形之间的运动分别属于()A.平移、旋转、旋转B. 平移、轴对称、轴对称C. 平移、轴对称、旋转D. 平移、旋转、轴对称题型二旋转作图与应用旋转的性质求线段之间的数量与位置关系例2:如图,在正方形ABCD中作∠EAF=45°,分别交边BC,CD于点E,F(不与顶点重合),把△ABE绕点A逆时针旋转90°,落在△ADG的位置.(1)请你在图中画出△ADG(不写作法);(2)试说明线段BE,DF与EF之间存在怎样的数量关系.巩固练习2:如图,在单位长度为1的正方形网格中,已知Rt△DAE,∠A=90°,将△DAE绕点D逆时针旋转90°后得到△DCF (∠C=90°),再将△DCF沿DA向左平移6个单位长度后得到△ABH(∠B=90°).(1)画出△DCF及△ABH;(2)AH与DE有怎样的位置关系?请证明你的结论.1.正方形ABCD的边长是1,对角线AC,BD相交于点O.若以O为圆心作圆,要使点A在⊙O外,则所选取的半径可能是()A.12B.√22C.√32D.22.如图,O为锐角三角形ABC的外心,四边形OCDE为正方形,其中E点在△ABC的外部,下列叙述正确的是()A.O是△AEB的外心,O是△AED的外心B. O是△AEB的外心,O不是△AED的外心C. O不是△AEB的外心,O是△AED的外心D. O不是△AEB的外心,O不是△AED的外心3.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连结A A′.若∠1=20°,则∠B的度数是()A.55°B.60°C.65°D.70°4.已知在△ABC中,∠C=90°,AC=3,BC=4,P是线段AB上一点,⊙C经过P点,且半径为r,则r的取值范围是 .5.如图,在△ABC中,∠BCA=90°,AC=2,BC=3,M为AB的中点.(1)以C为圆心,2为半径作⊙C,则点A,B,M与⊙C的位置关系如何?(2)若以C为圆心,作⊙C,使A,B,M三点至少有一点在⊙C内,且至少有一点在⊙C外,则⊙C的半径r的取值范围是什么?6.在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点D是以点A为圆心4为半径的原上一点,连结BD,点M为BD中点,求线段CM长度的最大值.7.如图,△ABC内接于⊙O,根据下列条件分别求∠BOC和∠OBC的度数.(1)∠BAC=70°;(2)∠BAC=n°.8.如图,已知四边形ABCD是正方形,△DCE绕点D顺时针旋转后与△DAF重合,问:(1)旋转角至少是多少度?(2)连结EF后,△DEF是什么三角形?(3)若AB=5cm,那么,四边形BEDF的面积是多少?ACBO1.我们知道,“两点之间线段最短”,“直线外一点与直线上各点连结的所有线段中,垂线段最短”,在此基础上,人们定义了点与点的距离,点到直线的距离,类似地,若P是⊙O外一点(如图),则点P与⊙O的距离定义为()A.线段PO的长度 B.线段PA的长度 C.线段PB的长度 D.线段PC的长度2.已知AB为⊙O的直径,C为⊙O上一点,过点C作CD⊥AB,垂足为D,延长CD至点E,使DE=CD,那么点E的位置是()A.在⊙O内B.在⊙O上C.在⊙O外D.不能确定3.如图,直线l1//l2,点A在直线l1上,以点A为圆心,适当长为半径画弧,分别交直线l1,l2于B,C两点,连结AC,BC,若∠ABC=54°,则∠1的大小为()A.36°B.54°C.72°D.73°4.如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连结B1B,取B1B的中点D,连结A1D,则A1D的长度是()A.√7B.2√2C.3D.2√35.如图,已知直线L外的两点A,B,且A,B在直线L的两旁,则经过A,B两点且圆心在直线L上的圆有()A.0个B.1个C.无数个D.1个或无数个(D5)(D6)6.如图,点A,D,G,M在半圆上,四边形ABOC,DEOF,HMNO均为矩形.设BC=a,EF=b,NH=c,则下列各式中正确的是()A.a>b>cB.a=b=cC.c>a>bD.b>c>a7.已知⊙A的半径为6.5,圆心A的坐标为(-6,0),点B的坐标是(0,3),则点B与⊙A的位置关系是 .8.若等腰直角三角形外接圆的半径为3,则这个三角形三边的长分别为 .9.如图,AB是⊙O的直径,点C在⊙O上,CD⊥AB,垂足为D.已知CD=4,OD=3,则AB的长是 .(D9)(D10)10.如图,将△ABC绕点C按顺时针方向旋转至△A′B′C,使点A′落在BC的延长线上.已知∠A=27°,∠B=40°,则∠AC B′= 度.11.已知A,B,C三点,根据下列条件,试说明A,B,C三点能否确定一个圆.若能,请求出其半径;若不能,请说明理由.(1)AB=1cm,BC=2cm,AC=3cm;(2)AB=3cm,BC=4cm,AC=5cm;(3)AB=AC=5cm,BC=6cm.12.已知:△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°.连结AD,BC,点H为BC中点,连结OH.(1)如图1所示,易证:OH=1AD且OH⊥AD,请说明理由.2(2)将△COD绕点O旋转到图2,图3所示位置时,线段OH与AD又有怎样的关系,并选择一个图形证明你的结论.。

第5讲 圆的概念及旋转 教师版

第5讲    圆的概念及旋转 教师版

第5讲圆的概念及旋转(一)、夯实基础一.圆的基本概念(1)圆的定义定义①:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆,记作“⊙O”,读作“圆O”.定义②:圆可以看做是所有到定点O的距离等于定长r的点的集合.(2)与圆有关的概念弦.直径.半径.弧.半圆.优弧.劣弧.等圆.等弧等.连接圆上任意两点的线段叫弦,经过圆心的弦叫直径,圆上任意两点间的部分叫圆弧,简称弧,圆的任意一条直径的两个端点把圆分成两条弧,每条弧都叫做半圆,大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.(3)圆的基本性质:①轴对称性.②中心对称性.二.点与圆的位置关系(1)点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔d>r②点P在圆上⇔d=r③点P在圆内⇔d<r(2)点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.(3)符号“⇔”读作“等价于”,它表示从符号“⇔”的左端可以得到右端,从右端也可以得到左端.三.确定圆的条件不在同一直线上的三点确定一个圆.注意:这里的“三个点”不是任意的三点,而是不在同一条直线上的三个点,而在同一直线上的三个点不能画一个圆.“确定”一词应理解为“有且只有”,即过不在同一条直线上的三个点有且只有一个圆,过一点可画无数个圆,过两点也能画无数个圆,过不在同一条直线上的三点能画且只能画一个圆.四.三角形的外接圆与外心(1)外接圆:经过三角形的三个顶点的圆,叫做三角形的外接圆.(2)外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.(3)概念说明:①“接”是说明三角形的顶点在圆上,或者经过三角形的三个顶点.②锐角三角形的外心在三角形的内部;直角三角形的外心为直角三角形斜边的中点;钝角三角形的外心在三角形的外部.③找一个三角形的外心,就是找一个三角形的两条边的垂直平分线的交点,三角形的外接圆只有一个,而一个圆的内接三角形却有无数个.五.图形的旋转(1)图形旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前.后的图形全等.(2)旋转三要素:①旋转中心;②旋转方向;③旋转角度.注意:三要素中只要任意改变一个,图形就会不一样.(二)、题型训练考点一.圆的基本概念【例1】(☆)如图,在⊙O中,半径有,直径有,弦有,劣弧有,优弧有.答案:略【例2】(☆☆)判断下列语句那些是正确的序号有①③⑥⑧。

人教版九年级数学上册:旋转与圆 期末复习讲义(含解析)

人教版九年级数学上册:旋转与圆 期末复习讲义(含解析)

教师辅导讲义( 画竹必先成竹于胸!)题型一:中心对称与中心对称图形1、1、下列四个图形中,不是中心对称图形的是(C )A.B. C.D.2、下列图形中,是中心对称图形的是( B )知识典例C 专题——旋转复习题型二:旋转的基本性质1、如图,△ODC是由△OAB绕点O顺时针旋转30°后得到的图形,若点D恰好落在AB上,且∠AOC的度数为100°,则∠DOB的度数是(A)A. 40°B. 30°C. 38°D. 15°2、如图所示,边长为的正三角形的边在轴上,将绕原点逆时针旋转得到三角形,则点的坐标为( B )A. B. C. D.3、如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为(C)A.35°B.40°C.50°D.65°4、如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B的大小是(C)A.32° B.64°C.77°D.87°5、如图,已知Rt△ABC中,∠C=90∘,∠ABC=30∘,AB=6cm,将△ABC绕着点B顺时针旋转至△A′BC′的位置,且A、B、C′三点在同一条直线上,则点C经过的路线的长度是(C)A. 12cmB. 5π2cmC. 5√3π2cmD. 2√33cm6、如图,在△ABC 中,∠ACB=90°,∠ABC=30°,AB=2.将△ABC 绕直角顶点C 逆时针旋转60°得△A ′B ′C ′,则点B 转过的路径长为 ___33π___ .题型三:作图题1、如图,△ ABC 三个顶点的坐标分别为 A(-2,3), B(-3,1), C(-1,2).(1)将△ABC 向右平移4个单位,画出平移后的△A 1B 1 C 1;(2)画出△ABC 关于x 轴对称的△A 2B 2C 2;(3)将△ABC 绕原点O 旋转180°,画出旋转后的△A 3B 3C 3;2、如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(2,﹣4),B(4,﹣4),C(1,﹣1).(1)画出△ABC关于y轴对称的△A1B1C1,直接写出点A1的坐标;(2)画出△ABC绕点O逆时针旋转90°后的△A2B2C2;(3)在(2)的条件下,求线段BC扫过的面积(结果保留π).题型四:旋转证明1、四边形ABCD是正方形,△ABE绕点A逆时针旋转一定角度后得到△ADF,且点F,A,B在同一直线上(如图所示),如果AF=4,AB=7。

(完整版)圆盘上的圆周运动问题-教师用卷 带解析 圆周运动专题一

(完整版)圆盘上的圆周运动问题-教师用卷  带解析 圆周运动专题一

圆盘上的圆周运动问题圆周运动专题一题号一二三总分得分一、单选题(本大题共7小题,共28.0分)1.两个质量分别为2m和m的小木块a和可视为质点放在水平圆盘上,a与转轴的距离为L,b与转轴的距离为2L,a、b之间用长为L的强度足够大的轻绳相连,木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g。

若圆盘从静止开始绕转轴缓慢地加速转动,开始时轻绳刚好伸直但无张力,用表示圆盘转动的角速度,下列说法正确的是()A. a比b先达到最大静摩擦力B。

a、b所受的摩擦力始终相等C. 是b开始滑动的临界角速度D. 当时,a所受摩擦力的大小为【答案】D【解析】【分析】木块随圆盘一起转动,静摩擦力提供向心力,而所需要的向心力大小由物体的质量、半径和角速度决定。

当圆盘转速增大时,提供的静摩擦力随之而增大,当需要的向心力大于最大静摩擦力时,物体开始滑动。

因此是否滑动与质量无关,是由半径大小决定.本题的关键是正确分析木块的受力,明确木块做圆周运动时,静摩擦力提供向心力,把握住临界条件:静摩擦力达到最大,由牛顿第二定律分析解答.【解答】A.木块随圆盘一起转动,静摩擦力提供向心力,由牛顿第二定律得:木块所受的静摩擦力,a和b的质量分别是2m和m,而a与转轴的距离为L,b与转轴的距离为2L,所以开始时a和b受到的摩擦力是相等的;b受到的静摩擦力先达到最大,故A错误;B。

在b的摩擦力没有达到最大前,静摩擦力提供向心力,由牛顿第二定律得:木块所受的静摩擦力,a 和b的质量分别是2m和m,而a与转轴的距离为L,b与转轴的距离为2L,所以开始时a和b受到的摩擦力是相等的;当b受到的静摩擦力达到最大后,b受到的摩擦力与绳子的拉力的和提供向心力,即:,而a的受力:,联立得:,可知二者受到的摩擦力不一定相等,故B错误;C。

当b刚要滑动时,有,解得:,故C错误;D。

当时,此时b所受摩擦力已达最大,a所受摩擦力的大小为:,故D正确。

故选D。

圆的旋转问题(二)

圆的旋转问题(二)

圆的旋转问题(二)1、取8枚大小相同的硬币,摆成下图形状,最上端那个硬币(圆A )顺着排成圈的6个硬币滚动一周。

硬币A 自己一共旋转了几圈?解:由于硬币A 滚动一周时,绕着B 、C 、D 、E 、F 、G 这六个硬币分别滚动了各个硬币一半的弧长。

根据圆的旋转问题(一)的第三题可知,硬币A 在每个硬币上都旋转了一圈。

所以,硬币A 一共旋转了6×1=6圈。

2、如图所示,如果圆O 的周长为20π厘米,有两个同样大小的圆A 、B ,其半径为2厘米,小圆A 沿圆O 的内壁滚动,小圆B 沿圆O 的外壁滚动,小圆B 转到几圈后回到原来的位置?小圆A 转到几圈后回到原来的位置?解:圆O 的半径为20π÷π÷2=10厘米,当小圆B 沿圆O 的外壁滚动再回到原来位置时,小圆B 的圆心所经过的轨迹为“以O 为圆心,以(10+2)厘米为半径的圆。

”这个轨迹长度为2×12×π,而这个长度也等于小圆B 的圆周滚过的长度,而小圆B 自己转一圈的长度为2×2×π,(2×12×π)÷(2×2×π)=6圈。

小圆A 沿圆O 内壁滚动再回到原来位置时,小圆A 的圆心的运动轨迹为“以O 为圆心,以(10-2)厘米为半径的圆。

” 这个轨迹长度为2×8×π,而这个长度也等于小圆A 的圆周滚过的长度,而小圆A 自己转一圈的长度为2×2×π,(2×8×π)÷(2×2×π)=4圈。

3、如图所示,直径5厘米的圆板沿着直径10厘米的圆周无滑动滚动,请你虚线所示的三个位置中,画上圆板A 的眼睛、鼻子和嘴。

解:圆板A 转到右边第一个虚线所示的位置时,旋转了的周数是:(10+5)×41⨯π÷)5(π=43,其它位置上的圆板A 旋转的周数也可依此类推。

人教版九年级数学上册圆课件

人教版九年级数学上册圆课件

F
优弧:AFC, AFB,ADE,ADF.
B
E
(2)请写出以点A为端点的弦及直径.
弦AF,AB,AC,AD.其中弦AD是直径. C
D
(3)请任选一条弦,写出这条弦所对的弧.
答案不唯一,如:弦AF,它所对的弧是 AF、ADF .
练习、判断下列说法的正误,并说明理由或举反例. (1)弦是直径;
(2)半圆是弧; (3)过圆心的线段是直径; (4)过圆心的直线是直径; (5)半圆是最长的弧; (6)直径是最长的弦; (7)长度相等的弧是等弧.
确定一个圆的要素
一是圆心,圆心确定其位置;二是半径,半径确定其大小.
O
同心圆
圆心相同,半径不同
等圆
半径相同,圆心不同
问题1:圆也可以看成是由多个 2、平面上到定点的距离等于 点组成的,这些点有什么规律?定长的点都在同一个圆上吗?
·r O
A
圆可以看成到定点距离等于 定长的所有点组成的.
想一想:从画圆的过程可以看出什么呢? (1)圆上各点到定点(圆心O)的距离都等于定长r. (2)到定点的距离等于定长的点都在 同一个圆上.
圆的集合定义 圆心为O、半径为r的圆可以看成
是所有到定点O的距离等于定长r的点 的集合.
圆的基本性质 同圆半径相等
D
r
A
C
r O· r
r r
E
典例精析
例1 矩形ABCD的对角线AC、BD相交于O,求证:A、B、 C、D在以O为圆心的同一圆上。
证明:∵四边形ABCD是矩形,
A
OA OC 1 AC,OB OD 1 BD,
顶点A在圆弧上,求正方形ABCD的边长.
N
A
D

高中物理 专题06 平移圆、放缩圆、旋转圆问题 学习和解析

高中物理 专题06 平移圆、放缩圆、旋转圆问题 学习和解析

高中物理解题能力提升 平移圆、放缩圆、旋转圆问题题型1 平移圆问题1.适用条件(1)速度大小一定,方向一定,入射点不同但在同一直线上粒子源发射速度大小、方向一定,入射点不同但在同一直线上的带电粒子进入匀强磁场时,它们做匀速圆周运动的半径相同,若入射速度大小为v 0,则圆周运动半径R =mv 0qB,如图所示(图中只画出粒子带负电的情景)。

(2)轨迹圆圆心共线带电粒子在磁场中做匀速圆周运动的圆心在同一直线上,该直线与入射点的连线平行。

2.界定方法将半径为R =mv 0qB 的圆进行平移,从而探索粒子的临界条件,这种方法叫“平移圆法”。

[例1] (多选)利用如图所示装置可以选择一定速度范围内的带电粒子。

图中板MN 上方是磁感应强度大小为B 、方向垂直纸面向里的匀强磁场,板上有两条宽度分别为2d 和d 的缝,两缝近端相距为L 。

一群质量为m 、电荷量为q 、速度不同的粒子,从宽度为2d 的缝垂直于板MN 进入磁场,对于能够从宽度为d 的缝射出的粒子,下列说法正确的是( )A .射出粒子带正电B .射出粒子的最大速度为qB (3d +L )2mC .保持d 和L 不变,增大B ,射出粒子的最大速度与最小速度之差增大D .保持d 和B 不变,增大L ,射出粒子的最大速度与最小速度之差增大题型2 放缩圆问题1.适用条件(1)速度方向一定,大小不同粒子源发射速度方向一定、大小不同的带电粒子进入匀强磁场时,这些带电粒子在磁场中做匀速圆周运动的轨迹半径随速度的变化而变化。

(2)轨迹圆圆心共线如图所示(图中只画出粒子带正电的情景),速度v 越大,运动半径也越大。

带电粒子沿同一方向射入磁场后,它们运动轨迹的圆心在垂直初速度方向的直线PP ′上。

2.界定方法以入射点P 为定点,圆心位于PP ′直线上,将半径放缩做轨迹,从而探索出临界条件,这种方法称为“放缩圆法”。

[例2] (多选)如图所示,垂直于纸面向里的匀强磁场分布在正方形abcd 区域内,O 点是cd 边的中点。

3.1图形的旋转(一)(教案)-2023-2024学年数学六年级下册

3.1图形的旋转(一)(教案)-2023-2024学年数学六年级下册

3.1 图形的旋转(一)(教案) 20232024学年数学六年级下册在上一节课,我们已经学习了图形的平移,这节课我们将学习图形的旋转。

旋转是物体围绕一个点或一个轴做圆周运动。

这节课我们将通过具体例子来学习图形的旋转。

教学目标是让学生理解旋转的概念,学会如何旋转图形,并能够应用旋转解决实际问题。

在教学过程中,我将通过一个实际例子引入旋转的概念,然后通过讲解和示范,让学生掌握旋转的性质和旋转的计算方法,通过随堂练习,让学生巩固所学知识。

在板书设计上,我会用图形和文字相结合的方式,清晰地展示旋转的性质和计算方法。

对于作业设计,我会布置一些有关图形旋转的练习题,让学生通过练习进一步理解和掌握旋转的知识。

这节课的教学难点是学生对旋转的理解和应用,重点是学生能够掌握旋转的性质和计算方法。

教具和学具准备方面,我需要准备一些图形和计算器,学生则需要准备一本笔记本和一支笔。

课后反思和拓展延伸方面,我会让学生回顾这节课所学的知识,思考如何应用旋转解决实际问题,并鼓励学生进行拓展延伸,探索旋转在现实生活中的应用。

通过这节课的学习,我希望学生能够理解和掌握旋转的概念,并能够应用旋转解决实际问题。

重点和难点解析:在上述教案中,有几个重点和难点需要我们特别关注。

旋转的概念和性质是本节课的核心内容,学生需要理解并掌握旋转的定义、特点以及旋转对图形的影响。

旋转的计算方法是学生难以理解和掌握的部分,需要通过讲解和示范,让学生清晰地理解旋转的计算过程。

如何应用旋转解决实际问题是本节课的重点,学生需要通过实际例子,将所学的理论知识运用到实际问题中。

在讲解旋转的计算方法时,我会通过具体的步骤和示范,让学生理解旋转的计算过程。

我会从最简单的旋转开始,逐步增加难度,让学生逐步理解和掌握旋转的计算方法。

同时,我会鼓励学生动手尝试,通过实际操作,加深对旋转计算方法的理解。

对于如何应用旋转解决实际问题,我会设计一些实际例子,让学生通过思考和计算,找到解决问题的方法。

个性化练习【培优2】圆的应用

个性化练习【培优2】圆的应用

旋转一、旋转问题1.如图,将一长为8cm、宽为6cm的长方形ABCD的四边沿直线向右滚动(不滑动),当长方形滚动一周时,点A经过的路线长为()cm.A.12πB.16πC.8πD.10π2.(2011•兰州)已知一个半圆形工件,未搬动前如图所示,直径平行于地面放置,搬动时为了保护圆弧部分不受损伤,先将半圆作如图所示的无滑动翻转,使它的直径紧贴地面,再将它沿地面平移50米,半圆的直径为4米,则圆心O所经过的路线长是__________米.3.如图,将半径为2、圆心角为60°的扇形纸片AOB,在直线l上向右作无滑动的滚动至扇形A'O'B'处,则顶点O经过的路线总长为_________.4.(2010•昌平区二模)如图,将半径为1的圆形纸板,沿长、宽分别为8和5的矩形的外侧滚动一周并回到开始的位置,则圆心所经过的路线长度是()A.13 B.26 C.13+π D.26+2π5.如图,将半径为1cm的圆形纸板,沿着三边AB、BC、CA分别长9cm、7cm、4cm的三角形ABC的外侧无滑动地滚动一周并回到开始的位置,则圆心O 所经过的路线的长度是_____6.一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所示,AB与CD是水平的,BC与水平面的夹角为60°,其中AB=60cm,CD=40cm,BC=40cm,那么该小朋友将园盘从A点滚动到D点其圆心所经过的路线长为________cm.7.(2013•遵义)如图,将边长为1cm的等边三角形ABC沿直线l向右翻动(不滑动),点B 从开始到结束,所经过路径的长度为()A.32πcm B.(2+32π)cm C.43πcm D.3cm8.(2013•六盘水)把边长为1的正方形纸片OABC放在直线m上,OA边在直线m上,然后将正方形纸片绕着顶点A按顺时针方向旋转90°,此时,点O运动到了点O1处(即点B处),点C运动到了点C1处,点B运动到了点B1处,又将正方形纸片AO1C1B1绕B1点,按顺时针方向旋转90°…,按上述方法经过4次旋转后,顶点O经过的总路程为_____,经过61次旋转后,顶点O经过的总路程为________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆的旋转问题(一)
1、一个圆的周长等于一个正方形的边长,将此圆绕着正方形外周滚动一周时,圆转了几周? 解题思路:圆在多边形外边的转动不同于圆在一条直线上的转动,计算其旋转的周数时还要考虑圆从一条边转到另一条边自身转动的角度。

解:圆在正方形外周滚动的状态可以下图来表示
根据“一个圆的周长等于一个正方形的边长”可知,圆成了
在正方形的一条边的滚动,圆旋转了一周,要完成
滚动到图3的位置上时,圆自身旋转了90度角。

考虑到正方形有4个角,所以圆共需自转90X 4= 360 (度),即自转一周。

所以:此圆绕着正方形外周滚动一周时,圆转了4+ 1 = 5 (周)。

2、如果一个圆的周长等于一个正三角形的边长,将此圆绕着三角形外周滚动一周,圆自转了几周?解题思路:圆绕着正三角形外周滚动与圆绕正方形外周滚动一周的相似,计算其旋转的周数
时还要考虑圆从一条边转动到另一条边自身转动的角度。

成了在正三角形的一条边的滚动,圆旋转了一周,要完成3条边的滚动则要旋转3周。

从图
2滚动到图3的位置上时,圆自身旋转了180-60= 120 (度)。

考虑到正三角形有3个角,
所以圆共需自转120X 3 = 360 (度),即自转一周。

所以:此圆绕着正三角形外周滚动一周时,圆转了3+ 1 = 4 (周)。

综合以上两题,我们可以发现当一个圆的周长等于一个正方形或者正三角形的边长时,这
个圆在这个正多边形的外周滚动一周,圆旋转的周数都等于边的条数加1。

这个结论我们还可以应用与解决圆在其它的正多边形外周滚动的问题,即一个圆的周长等于一个正n边形的边长时,这个圆在这个正多边形的外周滚动一周,圆旋转的周数等于n + 1。

3、甲、乙两枚大小相同的硬币,现将硬币甲固定,让硬币乙沿硬币甲的周围滚动,当硬币
4条边的滚动则要旋转4周。

从图2 解:圆在三角形外周滚动的状态可以下图来表示
乙滚动一周,回到原来的位置,硬币乙旋转了几圈
?
解题思路:此题如果不仔细分析的话很容易会将其同我们用滚动法沿着直尺测量圆的周长等
同起来,认为乙也只是转动了一周。

此题中的滚动,不单包含了乙围绕甲的转动,也包含了
乙自身的转动。

我们可以通过以下两种方法来得出答案。

解:方法1硬币乙绕硬币甲的周围进行滚动,包括了两种运动形式。

一方面硬币乙沿着由
硬币甲的圆周所“拉直”的线段做旋转运动,因为两个硬币大小相同,所以硬币乙要旋转 1 圈;另一方面这条“拉直”的线段又要围成一个圆周,因而使得硬币乙上的各点也要围绕其中心旋转1圈,所以硬币乙一共要旋转2圈。

方法2、如图1,假设硬币甲、乙的圆心分别是0“ 02,把硬币乙上的圆周分为4个等份,
等分点依次是B1、B2、B3、B4。

开始时硬币乙上的B1点和硬币甲相接触,线段O1B1O2处于竖直位置。

硬币乙贴住硬币甲滚动,如图2,从B1点滚动到B2点。

这时硬币乙所滚动过
1 的弧长等于圆周长的四分之一,半径O2B1和初始位置相比转过了180°,即硬币乙旋转了一
2
1
圈。

根据对称性,可以得到硬币乙绕硬币甲旋转一周,硬币乙旋转了X 4=2 (圈)。

2
4、一个圆在正五角形外侧A处开始与正五角形的边相切滚动,如果BC的长度等于圆周长,
解题思路:本题要区分清楚圆在正五角形外侧滚动是,遇到不同的角时圆所转动的角度是不
同的。

当圆处从点A所在的边转动到点B所在的边上时,圆不需要自转,且从点B到点C 港号转了1圈;当通过/ C转到另一条边时,圆必须要自传144度后才能继续滚动。

在正五角形中,像/ C这样的角共有5个,所以圆共需自转144X 5= 720度。

解:当此圆滚回原出发点A处时,它转的圈数是1 X 10+ 144X 5- 360= 12圈。

答:略。



图1
H1
M3
5、一个小圆在一个大圆内不停地滚动,大圆的半径是小圆的直径。

小圆滚动一周回到原来的位置时,小圆自己旋转了几周?
解题思路:如下图,圆和这条直线相切于A点,这个圆从A点开始沿着直线滚动一周后再和这条直线相切于A点,这时圆心所经过路径长度为线段OO i的长度,圆周所滚过的路径长度为线段AA的长度,这两个长度是一样的。

因为“圆是到定点(圆心)的距离等于定长
(半径)的点的轨迹”,圆上的点前进多少,圆心也会前进多少。

因此,不管圆怎样滚动,
圆心所经过轨迹的长度一定会等于圆周所滚动过的长度。


解:设小圆的半径为r,因为大圆的半径是小圆的直径,所以小圆圆心到大圆圆心的距离也为r。

所以这个小圆滚动一周回到原来的位置时,圆心所经过轨迹的长度刚好是2n r,即一
个小圆的周长。

所以这个小圆旋转了1周。

【下载本文档,可以自由复制内容或自由编辑修改内容,更多精彩文章,期待你的好评和关注,我将一如既往为您服务】。

相关文档
最新文档