七年级数学上册第三章单元测试题及答案

合集下载

七年级上册数学第三单元测试卷【含答案】

七年级上册数学第三单元测试卷【含答案】

七年级上册数学第三单元测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 10厘米C. 23厘米D. 17厘米3. 一个长方体的长、宽、高分别是10厘米、6厘米和4厘米,那么它的体积是多少?A. 240立方厘米B. 120立方厘米C. 60立方厘米D. 48立方厘米4. 下列哪个数是偶数?A. 101B. 102C. 103D. 1045. 下列哪个图形是平行四边形?A. 正方形B. 长方形C. 梯形D. 圆形二、判断题(每题1分,共5分)1. 两个质数相乘的结果一定是合数。

()2. 一个等腰三角形的两个底角相等。

()3. 一个长方体的六个面都是长方形。

()4. 0是最小的自然数。

()5. 平行四边形的对边相等且平行。

()三、填空题(每题1分,共5分)1. 最大的两位数是______。

2. 一个等边三角形的三个角都是______度。

3. 一个长方体的体积是长×宽×______。

4. 6是______和______的公倍数。

5. 两条平行线的特点是对边______且______。

四、简答题(每题2分,共10分)1. 请简述质数和合数的区别。

2. 请解释等腰三角形的特点。

3. 请列举三个不同的长方体物品。

4. 请简述平行四边形的性质。

5. 请解释因数和倍数的概念。

五、应用题(每题2分,共10分)1. 一个长方体的长是10厘米,宽是6厘米,高是4厘米,求它的体积。

2. 一个等腰三角形的底边长是8厘米,腰长是10厘米,求它的周长。

3. 一个数的因数有1、2、3、4、6,请找出这个数。

4. 两个质数相乘,积是35,请找出这两个质数。

5. 一个平行四边形的对边分别是8厘米和12厘米,求它的面积。

六、分析题(每题5分,共10分)1. 请分析一个长方体和正方体的相同点和不同点。

第三章 整式及其加减 单元测试(含答案) 2024-2025学年北师大版数学 七年级上册

第三章 整式及其加减 单元测试(含答案) 2024-2025学年北师大版数学 七年级上册

第三章整式及其加减(单元测试)2024-2025学年七年级上册数学北师大版一、单选题1.将化简得( )A .B .C .D .2.下列运算中,正确的是( )A .B .C .D .3.如图1所示,一块瓷砖表面有四条分割线,由分割线可构成一个正方形图案.图2由两块瓷砖铺成,分割线可构成3个正方形.图3由四块瓷砖铺成,分割线可构成9个正方形.若用十二块瓷砖铺成长方形,则由分割线可构成的正方形数最多是( )A .33B .34C .35D .364.下列式子:,,,,,中,整式的个数是( )A .3B .4C .5D .65.如果,那么代数式的值为( )A .B .C .D .6.多项式2x 2﹣x ﹣3的项分别是( )A .x 2,x ,3B .2x 2,﹣x ,﹣3C .2x 2,x ,﹣3D .2x 2,x ,37.下列说法正确的是( )A .单项式的系数是,次数是B .多项式的是二次三项式C .单项式的次数是1,没有系数D .单项式的系数是,次数是8.下列各题正确的是( )A .B .()()2x y x y +-+x y +x y --+x y x y--23325x x x +=235x x +=2222ab b a -=()222a b a b--=-+3x 3a c32d +32y --034a 2a b +=-18762a b a b ⎛⎫+--- ⎪⎝⎭3113-11-25xy π-15-422231x y x -+-a 2-xy z 1-4336x y xy +=0x x --=C .D .9.如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1,5,12,22…为五边形数,则第7个五边形数是( )A .62B .70C .84D .10810.多项式按字母的降幂排列正确的是( )A .B .C .D .二、填空题11.有一列数:1,3,2,,…,其规律是:从第二个数开始,每一个数都是其前后两个数之和,根据此规律,则第2023个数是12.已知a 是最小的正整数,b 是最大的负整数,c 是立方为的数,则 .13.单项式次数是 ,系数是 .14.已知,则.15.如图,点是线段上的一点,分别以、为边在的同侧作正方形和正方形,连接、、,当时,的面积记为,当,的面积记为,,以此类推,当时,的面积记为,则的值为 .16.已知两个代数式的和是,其中一个代数式是,则另一个为.17.用大小相同的棋子按如下规律摆放图形,第2022个图形的棋子数为 .396y y y -=22990a b ba -=2323573x y xy x y +--x 3232537x y x y xy -+-+2323537x y xy x y --+2323753x y xy x y +--2233735xy x y x y-+-1-27-abc =3213a bc -()2760m n ++-=()20m n +=C AB AC BC AB ACDE CBFG EG BG BE 1BC =BEG 1S 2BC =BEG 2S ⋯BC n =BEG n S 20232022S S -25412a a -+236a -18.如图,第(1)个多边形由正三角形“扩展”而来,边数记为,第(2)个多边形由正方形“扩展”而来,边数记为,…,依此类推,由正边形“扩展”而来的多边形的边数记为,则 .三、解答题19.先化简,再求值:(1)(6a ﹣3ab )+(ab ﹣2a )﹣2(ab +b ),其中a ﹣b =9,ab =6;(2)x ﹣2(x ﹣)+(﹣),其中|x +2|+(y ﹣1)2=0.20.先化简,再求值:,其中,.21.如图,在数轴上,三个有理数从左到右依次是:,x ,.(1)利用刻度尺或圆规,在数轴上画出原点;(2)直接写出x 的符号为______.(填“正号”或“负号”)22.七年级新学期,两摞规格相同准备发放的数学课本整齐地叠放在课桌面上,小英对其高度进行了测量,请根据图中所给出的数据信息,解答下列问题:312a =420a =n ()3n a n ≥10a =2312213y 23123x y +22221322212222a b ab ab a b ab ab ⎡⎤⎛⎫----+++ ⎪⎢⎥⎝⎭⎣⎦3a =-2b =1-1x +(1)每本数学课本的厚度是 cm ;(2)若课本数为(本),整齐叠放在桌面上的数学课本顶部距离地面的高度的整式为 (用含的整式表示);(3)现课桌面上有48本此规格的数学课本,整齐叠放成一摞,若从中取出13本,求余下的数学课本距离地面的高度.23.为了参加校园文化艺术节,书画社计划买一些宣纸和毛笔,现了解情况如下:甲、乙两家文具商店出售同样的毛笔和宣纸,毛笔每支20元,宣纸每张4元.甲商店的优惠办法是:买1支毛笔送1张宣纸;乙商店的优惠办法是:全部商品按定价的9折出售.书画社想购买毛笔10支,宣纸x 张.(1)若到甲商店购买,应付_____________元;若到乙商店购买,应付_____________元(用含x 的代数式表示);(2)若时,去哪家商店购买较合算?请计算说明;(3)若时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并求出此时需付多少元?24.如图是一组有规律的图案,它们是由边长相等的等边三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形…照此规律摆下去:(1)照此规律,摆成第5个图案需要______个三角形.(2)照此规律,摆成第n 个图案需要______个三角形.(用含n 的代数式表示)(3)照此规律,摆成第2022个图案需要几个三角形?x x (10)x >30x =30x =参考答案:1.D2.D3.C4.B5.A6.B7.D8.D9.B10.A11.112.13.14.115.16.17.606918.11019.(1)2a ﹣2b ﹣3ab ,0;(2)﹣3x +y 2,7.20.,21.(1)略;(2)正号22.(1);(2);(3)23.(1),(2)到甲商店购买较为合算(3)先到甲商店购买10支毛笔,送10张宣纸,再到乙商店购买张宣纸,费用为272元24.(1)16;(2);(3)6067个3613-4045222418a a -+2ab -18-0.5850.5x +102.5cm()4160x +()3.6180x +20(31)n +。

人教版七年级数学上册《第三章代数式》单元测试卷及答案

人教版七年级数学上册《第三章代数式》单元测试卷及答案

人教版七年级数学上册《第三章代数式》单元测试卷及答案【主干体系建】思维导图扫描考点【中考层级练】真题链接实战演练基础知识的应用1.用代数式表示:a与3的差的2倍.下列表示正确的是( )A.2a-3B.2a+3C.2(a-3)D.2(a+3)2.(2023·泰州中考)若2a-b+3=0,则2(2a+b)-4b的值为.3.为了丰富班级的课余活动,班级预购置5副羽毛球拍和20个羽毛球,一家文具店刚好有促销活动:买一副球拍送2个羽毛球,已知球拍每副a元,羽毛球每个b元.经过还价,在原有的促销基础上羽毛球拍每副降价20%,其他不变,最后一共要花元.基本技能(方法)、基本思想的应用4.(2023·常德中考)若a2+3a-4=0,则2a2+6a-3= ( )A.5B.1C.-1D.05.(2023·牡丹江中考)观察下面两行数:1,5,11,19,29,…;1,3,6,10,15,….取每行数的第7个数,计算这两个数的和是( )A.92B.87C.83D.786.(2023·重庆中考)用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,…,按此规律排列下去,则第⑧个图案用的木棍根数是 ( )A .39B .44C .49D .547.(2023·娄底中考)从n 个不同元素中取出m (m ≤n )个元素的所有组合的个数,称从n 个不同元素中取出m 个元素的组合数,用符号C n m 表示,C n m =n(n -1)(n -2)…(n -m+1)m(m -1)…1(n ≥m ,n ,m 为正整数);例如:C 52=5×42×1,C 83=8×7×63×2×1,则C 94+C 95= ( )A .C 96B .C 104 C .C 105D .C 106 8. (2023·广元中考)在我国南宋数学家杨辉所著的《详解九章算法》(1261年)一书中,用如图的三角形解释二项和的乘方规律,因此我们称这个三角形为“杨辉三角”,根据规律第八行从左到右第三个数为 .实际生活生产中的应用9.(2024·潍坊期末)某商店去年12月份利润为a 元,今年1月份利润预计比去年12月份增加50%还多1 000元,则今年1月份利润预计为 ( )A .50%(a +1 000)元B .(50%a +1 000)元C .(150%a +1 000)元D .150%(a +1 000)元10.(2024·贵阳南明区期末)吕阿姨买了一套新房,她准备将地面全铺上地板砖,这套新房的平面图如图所示(单位:m),请解答下列问题:(1)用含a ,b 的代数式表示这套新房的面积;(2)若每铺1 m 2地板砖的费用为90元,当a =5,b =6时,求这套新房铺地板砖所需的总费用.参考答案【中考层级练】真题链接实战演练基础知识的应用1.用代数式表示:a与3的差的2倍.下列表示正确的是(C)A.2a-3B.2a+3C.2(a-3)D.2(a+3)2.(2023·泰州中考)若2a-b+3=0,则2(2a+b)-4b的值为-6.3.为了丰富班级的课余活动,班级预购置5副羽毛球拍和20个羽毛球,一家文具店刚好有促销活动:买一副球拍送2个羽毛球,已知球拍每副a元,羽毛球每个b元.经过还价,在原有的促销基础上羽毛球拍每副降价20%,其他不变,最后一共要花(4a+10b)元.基本技能(方法)、基本思想的应用4.(2023·常德中考)若a2+3a-4=0,则2a2+6a-3= (A)A.5B.1C.-1D.05.(2023·牡丹江中考)观察下面两行数:1,5,11,19,29,…;1,3,6,10,15,….取每行数的第7个数,计算这两个数的和是(C)A.92B.87C.83D.786.(2023·重庆中考)用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,…,按此规律排列下去,则第⑧个图案用的木棍根数是 (B)A .39B .44C .49D .547.(2023·娄底中考)从n 个不同元素中取出m (m ≤n )个元素的所有组合的个数,称从n 个不同元素中取出m 个元素的组合数,用符号C n m 表示,C n m =n(n -1)(n -2)…(n -m+1)m(m -1)…1(n ≥m ,n ,m 为正整数);例如:C 52=5×42×1,C 83=8×7×63×2×1,则C 94+C 95= (C)A .C 96B .C 104 C .C 105D .C 106 8. (2023·广元中考)在我国南宋数学家杨辉所著的《详解九章算法》(1261年)一书中,用如图的三角形解释二项和的乘方规律,因此我们称这个三角形为“杨辉三角”,根据规律第八行从左到右第三个数为 21 .实际生活生产中的应用9.(2024·潍坊期末)某商店去年12月份利润为a 元,今年1月份利润预计比去年12月份增加50%还多1 000元,则今年1月份利润预计为 (C)A .50%(a +1 000)元B .(50%a +1 000)元C .(150%a +1 000)元D .150%(a +1 000)元10.(2024·贵阳南明区期末)吕阿姨买了一套新房,她准备将地面全铺上地板砖,这套新房的平面图如图所示(单位:m),请解答下列问题:(1)用含a ,b 的代数式表示这套新房的面积;(2)若每铺1 m 2地板砖的费用为90元,当a =5,b =6时,求这套新房铺地板砖所需的总费用.【解析】(1)由题图可得,新房的面积为(a2+2a+4b)m2. (2)当a=5,b=6时a2+2a+4b=52+2×5+4×6=25+10+24=59(m2)所以这套新房铺地板砖所需的总费用为59×90=5 310(元).。

人教版七年级数学上册第三章《一元一次方程》单元测试题(含答案)

人教版七年级数学上册第三章《一元一次方程》单元测试题(含答案)

人教版七年级数学上册第三章《一元一次方程》单元测试题(含答案)姓名: 考号: 分数:一、单选题(共 24 分)1 .下列各选项是一元一次方程的是( )A .3x 2 + 4 = 5B .m + 2n = 0C .2y +1 = 一3D .4x + 2 > 3 2 .下列运用等式的性质,变形不正确的是( )A .若a = b ,则 a + c = b + cB .若a = b ,则 a 一 3 = b + 3C .若a = b ,则 a 尝 5 = b 尝 5D .若a = b ,则 一2a = 一2b3 .已知方程(k 一 4)x |k|一3 + 5 = 6 是关于x 的一元一次方程,则k 的值为( )A .4B .一4C .4 或一4D .11 4 .如果单项式 x 2m y 与2x 4 y n +3 是同类项,那么n m = ( )A .一9B .9C .一4D .45 .已知x = 1 是关于 x 的方程ax + 2x 一 3 = 0 的解,则 a 的值为( )A .一1B .1C .一3D .36 .若代数式 —1一2x 的值是 1,则 x 的值是( ) 3A .一1B .0C .1D .27 .将一个周长为 42cm 的长方形的长减少 3cm ,宽增加 2cm ,能得到一个正方形.若设长 方形的长为 x cm ,根据题意可列方程为( )A .x + 2 = (42 一 x )一 3B .x 一 3 = (42 一 x )+ 2C .x + 2 = (21一 x )一 3D .x 一 3 = (21一 x )+ 28 .一套仪器由一个 A 部件和三个 B 部件构成,用1m 3 钢材可做 40 个 A 部件或 240 个 B 部 件。

现要用6m 3 钢材制作这种仪器,为了使制作的 A 、B 部件恰好配套,设应用xm 3 钢材制 作 A 部件,则可列方程为( )A .40x 根 3 = 240 根 (6 一 x )B .40x = 240 根 (6 一 x )根 3C .4=40 根 (6 一 x )根 3 = 240xD .40 根 (6 一 x )= 240x 根 33二、填空题(共24 分)9 .若x = 1 是关于x 的方程2x + a = 1 的解,则a = .10 .若代数式2(x - 3) 的值与9 - x 的值互为相反数,x 的值为.11 .如果a + 1 + b - 2 = 0 ,则a -(-b)= .12 .用符号※定义一种新运算a※b =ab+2(a﹣b),若3※x =2021,则x 的值为.13 .已知a:b:c=2:3:5 ,a -b + c = 36 ,则2a +b - 2c = .14 .若方程2x-m =1 和方程3x =2(x-1)的解相同,则m 的值为.15 .某商品标价100 元,现在打6 折出售仍可获利25% ,则这件商品的进价是元.16 .两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是30 千米/时,3 小时后甲船能比乙船多航行60 千米,设水流速度是x 千米/时,则可列方程.__________三、解答题(共72 分)17 .解下列方程:(1)16x - 40 = 9x +16 ;(2)4x = 20 x + 16 ;3(3)2(3 - x) = -4(x + 5) ;(4)3(-2x - 5) + 2x = 9 ;(5)1(x - 4) - (3x + 4) = -15;(6)x - 7 - 5x + 8 = 1 .2 2 4 318 .已知 x =2 是方程6x mx + 4 = 0 的解,求m 2 2m 的值.19 .若方程2x 1 = 3 和方程4x a = 2 的解相同,求 a 的值.20 .关于 x 的方程1 ax = 2x + 2a 的解比方程2x 3 =1 的解小 3,求 a 的值.3x 121 .关于 x 的一元一次方程 ── + m = 3 ,其中 m 是正整数.2 (1)当m =2 时,求方程的解;(2)若方程有正整数解,求 m 的值.22 .把一些图书分给某班学生阅读,如果每人分 3 本则剩余 20 本;如果每人分 4 本,则还缺 25 本.这个班有多少学生?23.制作一张桌子需要一个桌面和四个桌腿,1m3 木材可制作20 个桌面或制作400 条桌腿,现有12m3 的木材,应怎样计划才能使桌面和桌腿刚好配套?能制成多少套桌椅?24 .某校为承办县初中学校内涵建设,需制作一块活动展板,请来师徒两名工人.已知师傅单独完成需4 天,徒弟单独完成需6 天.(1)两个人合作需要多少天完成?(2)现由徒弟先做1 天,师徒两人再合作完成这项工作,问:徒弟共做了几天?25 .如图,在数轴上点A 表示数a ,点B 表示数b ,并且a ,b 满足a +13 +(5 -b)2 = 0 .(1)求点A ,B 之间的距离;(2)点C 在点A 的右侧,点D 在点B 的左侧,AC 为15 个单位长度,BD 为8 个单位长度,求点C ,D 之间的距离;(3)动点P 以3 个单位长度/秒的速度从点A 出发沿数轴正方向运动,同时点Q 以2 个单位长度/秒的速度从点 B 出发沿数轴负方向运动,则它们几秒钟相遇?相遇点E 表示的数是多少?参考答案1 .C2 .B3 .B4 .D5 .B6 .A7 .D8 .A9 ._110 ._311 .112 .201513 ._2714 .-515 .4816 .3(30 + x)_ 3 (30 _ x)= 60317 .(1)x = 8 ;(2)x = _6 ;(3)x = _13 ;(4)x = _6 ;(5)x = ;(6)518 .4819 .a = 620 .321 .(1) x=1(2) m=222 .这个班有45 名学生.23 .用10 立方米做桌面,用2 立方米做桌腿,可以配成200 套桌椅.1224 .(1)两个人合作需要—天完成5(2)3 天25 .(1)18(2)518 (3) 5 ;11565x = _ -17。

人教版七年级数学上册第三章《一元一次方程》单元测试(含答案)

人教版七年级数学上册第三章《一元一次方程》单元测试(含答案)

人教版七年级数学上册第三章《一元一次方程》单元测试一、选择题(本题共计 10 小题,每题 3 分,共计30分,)1. 已知x=1是方程x−2k3=12−32x的解,则k的值是()A.−2B.2C.0D.−12. 某商品打七折后价格为a元,则原价为( )A.a元B.107a元 C.30%a元 D.710a元3. 在①2x+1;②1+7=15−8+1;③1−12x=x−1;④x+2y=3中,方程共有()A.1个B.2个C.3个D.4个4. 若关于x的方程3x+(2a+1)=x−(3a+2)的解为x=0,则a的值等于( )A.15B.35C.−15D.−355. 将一根长为acm的铁丝首尾相接围成一个正方形,若要将它按如图所示的方式向外等距扩大1cm得到新的正方形,则这根铁丝需增加()A.4cmB.8cmC.(a+4)cmD.(a+8)cm6. 七年级(1)班有30人会下象棋或围棋,已知会下象棋的人数比会下围棋的人数多5人,两种棋都会下的有17人,问只会下围棋的有多少人?设只会下围棋的有x人,可得方程()A.x+(x−5)+17=30B.x+(x+5)+17=30C.x+(x−5)−17=30D.x+(x+5)−17=307. 如图是某月份的日历表,任意框出同一列上的三个数,则这三个数的和不可能是()A.39B.43C.57D.668. 解方程x3−x−12=1时,去分母后,正确的是( )A.3x−2(x−1)=1B.2x−3(x−1)=1C.3x−2(x−1)=6D.2x−3(x−1)=69. 运用等式性质进行的变形,正确的是()A.如果a=b,那么a+c=b−cB.如果ac =bc,那么a=bC.如果a=b,那么ac =bcD.如果a2=3a,那么a=310. 已知x=2是方程5Xm+10=30的解,则m的值为( )A.2B.4C.6D.10二、填空题(本题共计 4 小题,每题 4 分,共计16分,)11. 当代数式2x−2与3+x的值相等时,x=________.12. 已知:(m−2)x−1=0是关于x的一元一次方程,则m________.13. 在等式5x−8=7−9x的两边同时________,得14x=15,这是根据________.14. 李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔的承包地去年甲种蔬菜有________亩.三、解答题(本题共计 5 小题,共计74分,)15.(20分) 解下列方程:(1)8(a+1)−2(3a−4)=13;(2)2x−13=2x+16−1;(3)y−y−12=2−y+25;(4)2x0.3+223=1.4−3x0.2.16.(12分) 列方程.(1)甲班有学生58人,乙班有学生46人,要使甲、乙两班的人数相等,应如何调动?(2)某推销员,卖出全部商品的2后,得到400元,卖出全部商品共得到多少元?517. (14分) “五一”期间,某电器城按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元,该电器的成本价为多少元?(只列方程)18. (14分)一个长方形的周长为28cm,将此长方形的长减少2cm,宽增加4cm,就可成为一个正方形,那么原长方形的长和宽分别是多少?19.(14分) 某公园门票价格规定如下表:某校七年级(1)(2)两个班共102人去游园,其中(1)班有40多人,不足50人.经计算,如果两个班都以班为单位购票,则一共应付1320元.问:(1)如果两班联合起来,作为一个团体购票,可省多少钱?(2)两班各有多少名学生?参考答案与试题解析一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】B【考点】一元一次方程的解【解析】把x=1代入方程,即可得出一个关于k的一元一次方程,求出方程的解即可.【解答】把x=1代入方程x−2k3=12−32x得:1−2k3=12−32×1,解得:k=2,2.【答案】B【考点】一元一次方程的应用——打折销售问题【解析】此题暂无解析【解答】解:设该商品原价为:x元,∵ 某商品打七折后价格为a元,∵ 0.7x=a,则x=107a(元),故选B.3.【答案】B方程的定义【解析】方程是含有未知数的等式,是等式但不含未知数不是方程,含未知数不是等式也不是方程.【解答】(1)2x+1,含未知数但不是等式,所以不是方程.(2)1+7=15−8+1,是等式但不含未知数,所以不是方程.x=x−1,是含有未知数的等式,所以是方程.(3)1−12(4)x+2y=3,是含有未知数的等式,所以是方程.故有所有式子中有2个是方程.故选:B.4.【答案】D【考点】方程的解【解析】此题暂无解析【解答】解:∵ x=0是方程3x+(2a+1)=x−(3a+2)的解,∵ 2a+1=−(3a+2),,解得:a=−35故选D.5.【答案】B【考点】一元一次方程的应用——其他问题列代数式根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案.【解答】解:∵ 原正方形的周长为acm,cm,∵ 原正方形的边长为a4∵ 将它按图的方式向外等距扩1cm,+2)cm,∵ 新正方形的边长为(a4+2)=(a+8)(cm),则新正方形的周长为4(a4因此需要增加的长度为a+8−a=8(cm).故选B.6.【答案】B【考点】由实际问题抽象出一元一次方程【解析】设只会下围棋的有x人,则只会下象棋的有(x+5)人,根据该班有30人会下象棋或围棋且两种棋都会下的有17人,即可得出关于x的一元一次方程,此题得解.【解答】设只会下围棋的有x人,则只会下象棋的有(x+5)人,依题意,得:x+(x+5)+17=30.7.【答案】B【考点】一元一次方程的应用——其他问题解一元一次方程【解析】可设中间的数为x,根据竖列上相邻的数相隔7可得其余2个数,相加等于各选项中数字求解即可.【解答】解:A、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=39,解得:x=13,故此选项错误;B、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=43,解得:x=433,故此选项符合题意;C、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=57,解得:x=19,故此选项错误;D、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=66,解得:x=22,故此选项错误;故选B.8.【答案】D【考点】解一元一次方程【解析】方程两边乘以6去分母得到结果,即可做出判断.【解答】解:方程x3−x−12=1,等式两边同时乘6得:2x−3(x−1)=6.故选D.9.【答案】B【考点】等式的性质【解析】利用等式的性质对每个等式进行变形即可找出答案.【解答】解:A、利用等式性质1,两边都加c,得到a+c=b+c,所以A不成立,故A选项错误;B、利用等式性质2,两边都乘以c,得到a=b,所以B成立,故B选项正确;C、成立的条件c≠0,故C选项错误;D、成立的条件a≠0,故D选项错误.故选B.10.【答案】A【考点】解一元一次方程【解析】把X=2代入方程得到一个关于m的方程,求出方程的解即可【解答】解得:m=2,故选A.二、填空题(本题共计 4 小题,每题 4 分,共计16分)11.【答案】5【考点】解一元一次方程【解析】此题暂无解析【解答】解:由已知得:2x−2=3+x,移项合并得:x=5,故答案为:5.12.【答案】m≠2【考点】一元一次方程的定义【解析】依据一元一次方程的定义可知m−2≠0,从而可求得m的取值范围.【解答】解:∵ (m−2)x−1=0是关于x的一元一次方程,∵ m−2=0.∵ m≠2.故答案为:m≠2.13.【答案】9x+8,等式的性质1【考点】等式的性质【解析】根据等式的基本性质即可解答.【解答】解:两边同时加上9x得:5x+9x−8=7,两边再同时加上8得:14x=5,故5x−8=7−9x两边同时加上9x+8,得到14x=15,根据是:等式的性质1.故答案是:9x+8,等式的性质1.14.【答案】6【考点】一元一次方程的应用——工程进度问题【解析】可设甲种蔬菜种植了x亩,则乙种蔬菜种植了(10−x)亩,等量关系为:甲种蔬菜总获利+乙种蔬菜总获利=18000.【解答】解:设甲种蔬菜种植了x亩,则乙种蔬菜种植了(10−x)亩,依题意得2000x+1500(10−x)=18000,解得x=6,答:甲种蔬菜种植了6亩.故答案为6.三、解答题(本题共计 5 小题,共计74分)15.【答案】去括号得:8a+8−6a+8=13,移项得:8a−6a=13−8−8,合并得:2a=−3,解得:a=−1.5;去分母得:2(2x−1)=2x+1−6,去括号得:4x−2=2x+1−6,移项得:4x−2x=1−6+2,合并得:2x=−3,解得:x=−1.5;去分母得:10y−5(y−1)=20−2(y+2),去括号得:10y−5y+5=20−2y−4,移项得:10y−5y+2y=20−4−5,合并得:7y=11,解得:y=117;方程整理得:20x3+83=7−15x,去分母得:20x+8=21−45x,移项得:20x+45x=21−8,合并得:65x=13,解得:x=0.2.【考点】解一元一次方程【解析】(1)方程去括号,移项合并,把a系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把y系数化为1,即可求出解;(4)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】去括号得:8a+8−6a+8=13,移项得:8a−6a=13−8−8,合并得:2a=−3,解得:a=−1.5;去分母得:2(2x−1)=2x+1−6,去括号得:4x−2=2x+1−6,移项得:4x−2x=1−6+2,合并得:2x=−3,解得:x=−1.5;去分母得:10y−5(y−1)=20−2(y+2),去括号得:10y−5y+5=20−2y−4,移项得:10y−5y+2y=20−4−5,合并得:7y=11,解得:y=117;方程整理得:20x3+83=7−15x,去分母得:20x+8=21−45x,移项得:20x+45x=21−8,合并得:65x=13,解得:x=0.2.16.【答案】解:(1)设从甲班调x人到乙班,则:58−x=46+x;(2)设卖出全部商品共得到x元,则:25x=400.【考点】由实际问题抽象出一元一次方程【解析】(1)根据要使甲、乙两班的人数相等,表示出两班的人数即可得出等式;后,得到400元”,得出等式即可.(2)根据“卖出全部商品的25【解答】解:(1)设从甲班调x人到乙班,则:58−x=46+x;(2)设卖出全部商品共得到x元,则:2x=400.517.【答案】解:设该电器的成本价为x元,依题意有x(1+30%)×80%=2080.【考点】由实际问题抽象出一元一次方程【解析】设该电器的成本价为x元,根据成本价×(1+30%)×80%=售价为2080元可列出方程.【解答】解:设该电器的成本价为x元,依题意有x(1+30%)×80%=2080.18.【答案】长方形的长为10cm,宽为4cm.【考点】一元一次方程的应用——工程进度问题【解析】设长方形的长是xcm,根据正方形的边长相等即可列出方程求解.【解答】解:设长方形的长是xcm,则宽为(14−x)cm,根据题意得:x−2=(14−x)+4,解得:x=10,14−x=14−10=4.19.【解析】(1)根据题意得出两个班联合购票比分别购票的差值即可;(2)设(1)班有xx人,根据题意列出方程解答即可.【解答】解:(1)(1)1320−102×10=1320−102×10=300300(元)答:两个班联合购票比分别购票要省300300元.(2)(2)设(1)(1)班有xx人,因为(1)(1)班有4040多人,不足5050人,所以(2)(2)班人数必定大于5050,则:14x+12(102−x)=132014x+12(102−x)=1320,解得:x=48x=48,102−48=54102−48=54.答:(1)(1)班有4848人,(2)(2)班有5454人.【答案】解:(1)(1)1320−102×10=1320−102×10=300300(元)答:两个班联合购票比分别购票要省300300元.(2)(2)设(1)(1)班有xx人,因为(1)(1)班有4040多人,不足5050人,所以(2)(2)班人数必定大于5050,则:14x+12(102−x)=132014x+12(102−x)=1320,解得:x=48x=48,102−48=54102−48=54.答:(1)(1)班有4848人,(2)(2)班有5454人.。

北师大版七年级数学上册《第三章整式及其加减》单元测试卷(带答案)

北师大版七年级数学上册《第三章整式及其加减》单元测试卷(带答案)

北师大版七年级数学上册《第三章整式及其加减》单元测试卷(带答案)一、选择题1.小明比小强大2岁,比小华小4岁.如果小强y 岁.则小华( ) A .(y −2)岁B .(y +2)岁C .(y +4)岁D .(y +6)岁2.下列代数式中,是次数为3的单项式的是( ) A .−m 3nB .3C .4t 3−3D .x 2y 23.对于多项式−3x −2xy 2−1,下列说法中,正确的是( ) A .一次项系数是3 B .最高次项是2xy 2 C .常数项是−1D .是四次三项式4.下列各组单项式中,不是同类项的是( ) A .−2y 2a 3与12ay 2B .12x 3y 与−12xy 3 C .6a 2bn 与−a 2nbD .23与325.按如图所示的程序运算,如果输入x 的值为12,那么输出的值为( )A .3B .0C .−1D .−36.下列运算中,正确的是( ) A .3a +2b =5abB .2a 3+3a 2=5a 5C .5a 2−4a 2=1D .3a 2b −3ba 2=07.若关于x 的代数式2x 2+ax +b −(2bx 2−3x −1)的值与x 无关,则a −b 的值为( ) A .2B .4C .−2D .−48.观察下列关于m ,n 的单项式的特点:12m 2n ,23m 2n 2,34m 2n 3,45m 2n 4,56m 2n 5,……,按此规律,第n 个单项式是( ) A .nn+1m 2n n B .nn+1m n n nC .n−1nm 2n nD .n−1nm n n n二、填空题9.一支钢管需要a 元,一本管记本需要b 元,现买5支钢笔和8本笔记本共需要 元. 10.若x P +4x 3+qx 2+2x +5是关于x 的五次四项式,则qp = . 11.已知2x 6y 2和−x 3m y n 是同类项,则2m +n 的值是 .12.一种商品成本为a 元/件,商场在成本的基础上增加20%作为售价出售,现搞活动促销,按原售价的九折出售.设售出m件该商品时,总利润为元.13.已知a是−5的相反数,b比最小的正整数大4,c是相反数等于它本身的数,则a+b+c的值是.三、计算题14.计算:(1)4b−3a−3b+2a(2)(3x2−y2)−3(x2−2y2)+m2−3cd+5m的值.15.若a、b互为相反数,c、d互为倒数,|m|=3,求a+b4m四、解答题16.已知代数式A=x2+ax−2a(1)求2A−B;(2)若2A−B的值与x的取值无关,求a的值.17.如图,在一个直角三角形休闲广场的直角处设计一块四分之一圆形花坛,若圆形的半径为r米,广场一直角边长为2a米,另一直角边长为b米.(1)列式表示广场空地的面积(用含π的式子表示);(2)若a=150米,b=50米,r=20米,求广场空地的面积(π取3.14).18.滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价 1.8元/公里0.45元/分钟0.4元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算:时长费按行车的实际时间计算;远途费的收取方式为:行车里程10公里以内(含10公里)不收远途费,超过10公里的,超出部分每公里收0.4元.(1)若小东乘坐滴滴快车,行车里程为15公里,行车时间为20分钟,则需付车费多少元?(2)若小明乘坐滴滴快车,行车里程为a公里,行车时间为b分钟,则小明应付车费多少元(用含a、b的代数式表示,并化简)?(3)小王与小张各自乘坐滴滴快车,行车里程分别为9.5公里与14.5公里,但下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差多少分钟?参考答案1.D2.D3.C4.B5.C6.D7.D8.A9.(5a+8b)10.011.612.0.08am13.1014.(1)解:4b−3a−3b+2a=(4−3)b+(2−3)a=b−a(2)解:(3x2−y2)−3(x2−2y2)=3x2−y2−3x2+6y2=5y215.解:依题意得a+b=0,cd=1,m=±3.当m=3时,原式=0+32−3×1+5×3=9−3+15=21.当m=−3时,原式=0+(−3)2−3×1+5×(−3)=9−3−15=−9. 因此值为21或-9.16.(1)解:原式=4ax-x-4a+1(2)解:a=1417.(1)解:四分之一圆的面积为:14πr2;直角三角形的面积为:12×2a×b=ab;所以,广场空地的面积为:ab−14πr2;(2)解:当a=150米,b=50米,r=20米,π=3.14时ab−14πr2=150×50−14×3.14×202=7186(平方米)18.(1)解:1.8×15+0.45×20+0.4×(15−10)=38(元)答:需付车费38元.(2)解:当a≤10时,小明应付费(1.8a+0.45b)元;当a>10时,小明应付费1.8a+0.45b+0.4(a−10)=(2.2a+0.45b−4)元;(3)解:小王与小张乘坐滴滴快车分别为x分钟、y分钟1.8×9.5+0.45x=1.8×14.5+0.45y+0.4×(14.5−10)整理,得:0.45x−0.45y=10.8∴x−y=24因此,这两辆滴滴快车的行车时间相差24分钟.。

人教版七年级数学上册第三章《一元一次方程》单元测试题(含答案)

人教版七年级数学上册第三章《一元一次方程》单元测试题(含答案)

人教版七年级数学上册第三章《一元一次方程》单元测试题(含答案)一、单选题1.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店( )A .不盈不亏B .盈利20元C .亏损10元D .亏损30元2.下列方程中,一元一次方程一共有( )①9x+2;②12x =;③(1-x)(1+x)=3;④()1113352x x x -=- A .1个 B .2个 C .3个 D .4个3.(古代数学问题)今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:几个人一起去买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?设有x 人,则根据题意列出方程正确的是( ) A .8x+3=7x ﹣4B .8x ﹣3=7x+4C .8x ﹣3=7x ﹣4D .8x+3=7x+44.下图是某超市中“飘柔”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请帮忙第一算,该洗发水的原价是:( )A .22元B .23元C .24元D .25元5.若关于x 的方程321(32)x a x a ++=-+的解是0,则a 的值为( )A .15B .35C .15- D .356.下列方程:21126740.343492x x x x x x x +=-=+=-=①;②;③;④;0x =⑤;328x y -=⑥;112x =⑦;12x=⑧中是一元一次方程的个数是( ) A .6个 B .5个 C .4个 D .3个7.下列运用等式的性质,变形正确的是( )A .若x ﹣m =y +m ,则x =yB .若a =b ,则ac =bcC .若x =y ,则x ﹣m =y +mD .若ac =bc ,则a =b8. 下列方程中,属于一元一次方程的是( ).A .021=+xB .2y 432=+x C .22x 3x =+x D .x 31232=++x x9.某书店把一本新书按标价的八折出售,仍获利20%,若该书进价为20元,则标价( ) A .24元 B .26元 C .28元 D .30元10.方程3x ﹣6=0的解是( )A .x =3B .x =﹣3C .x =2D .x =﹣2第II 卷(非选择题)二、填空题11.关于x 的方程a 2x+x=1的解是__.12.某学校组织八年级6个班参加足球比赛,如果采用单循环制,一共安排______场比赛 13.某商品进价为40元,若按标价的8折出售仍可获利20%,则按标价出售可获利______元.14.当x=4时,式子5(x+b )﹣10与bx+4x 的值相等,则b=_____.15.我国古代数学著作《孙子算经》中记载了这样一个有趣的数学问题“今有五等诸侯,共分橘子60颗,人别加三颗,问五人各得几何?”题目大意是:诸侯5人,共同分60个橘子,若后面的人总比前一个人多分3个,问每个人各分得多少个橘子?若设中间的那个人分得x 个,依题意可列方程得_____.16.一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数是____.17.若293x +=2,且x y =94,则x =______,y =_______. 18.当a =____时,关于x 的方程314x -=-与方程562a x -=-的解相同.三、解答题19.解方程:x ﹣3=﹣12x ﹣4. 20.解方程:(1)5(x-1)+2=3-x(2)2121 1=63x x-+ -21.某纺织厂收购某种特色棉花,若直接转卖这种特色棉花,则每吨可获得的利润为500元.若经过B级加工再转卖,则每吨可获得的利润为1000元;若经过A级加工再转卖,则每吨可获得的利润为2000元.已知该纺织厂对棉花进行B级加工,每天可加工16吨;进行A级加工,每天可加工6吨,且这两种等级的加工不能同时进行.若该纺织厂收购了140吨这种特色棉花,决定15天内加工完,且有如下三种可行方案:方案一:将所收购的特色棉花直接转卖.方案二:将尽可能多的特色棉花进行A级加工,余下的部分直接转卖.方案三:一部分进行A级加工,另一部分进行B级加工,恰好15天完成.若你是该纺织厂负责人,想要获利最多,你决定使用哪套方案?请说明理由.22.一列客车和一列货车同时从甲、乙两个城市相对开出,已知客车每小时行55千米,客车速度与货车速度的比是11:9,两车开出后5小时相遇,甲、乙两城市间的铁路长多少千米?23.阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是(A,B)的好点.例如,如图1,点A表示的数为-1,点B表示的数为2,表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的好点,但点D是(B,A)的好点.知识运用:(1)如图2,M,N为数轴上两点,点M所表示的数为-2,点N所表示的数为4.①在点M和点N中间,数_______所表示的点是(M,N)的好点:②在数轴上,数________和数_________所表示的点都是(N,M)的好点;(2)如图3,A、B为数轴上两点,点A所表示的数为-20,点B所表示的数为40,现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动,到达点A停止,当t为何值时,P,A和B中恰有一个点为其余两点的好点?24.某电影院某日某场电影的票价是:成人票30元,学生票15元,满40人可以购买团体票(不足40人可按40人计算,票价打9折).某班在4位老师带领下去电影院看电影,学生人数为x人.(1)若学生人数为31人,该班买票至少应付多少元?(2)若学生人数为32人,该班买票至少应付多少元?(3)请用含x的代数式表示该班买票至少应付多少元.25.小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了______条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.26.一队学生去校外进行军事野营训练,他们以6千米/时的速度行进,在他们走了一段时间后,学校要将一个紧急通知传给队长,通讯员从学校出发,以10千米/时的速度按原路追上去,用了15分钟追上了学生队伍,问通讯员出发前,学生走了多少时间?27.如图,已知A、B、C是数轴上的三点,点C表示的数为6,BC=4,AB=14,动点P、Q分别从A、C同时出发,点P以每秒3个单位的速度沿数轴向右匀速运动,点Q以每秒1个单位的速度沿数轴向左匀速运动,M为AP的中点,点N在线段CQ上,且CQ=3CN.设运动的时间为t(t>0)秒.(1)写出点A表示的数,点B表示的数;(2)求MN的长(用含t的式子表示);(3)t为何值时,原点O恰为线段PQ的中点.参考答案1.C2.A3.B4.C5.D6.C7.B8.C9.D10.C11.211a.12.1513.2014.615.(x﹣6)+(x﹣3)+x+(x+3)+(x+6)=60.16.45.17.-32218.-319.x=-2320.(1)x=1;(2)x=5621.选方案二.理由见解析22.500.23.①2,②0或-8;(2)10秒、15秒或20秒24.(1)585;(2)594;(3)若0<x≤31时,该班买票至少应付(120+15x)元;若32≤x≤36时,该班买票至少应付594元;若x>36时,该班买票至少应付(108+13.5x)元.25.(1)8;(2)答案见解析:(3)200000立方厘米26.1627.(1)A:-12,B:2;(2) 18−116t;。

七年级上册数学第三单元测试卷及答案

七年级上册数学第三单元测试卷及答案

七年级上册数学第三单元测试卷及答案人教版七年级数学上册第三单元测试题一、填空题(每题2分,共32分)1.在① ;② ;③ ;④ 中,等式有_______,方程有_______.(填入式子的序号)2.如果,那么a=,其根据是.3.方程的解是 _______.4.当x=时,代数式的值是 .5.已知等式是关于x的一元一次方程,则m=____________.6.当x=时,代数式与代数式的值相等.7.根据“ 的倍与的和比的小”,可列方程为______ _.8.若与有相同的解,那么 _______.9.关于方程的解为___________________________.10.若关于x的方程的解是,则代数式的值是_________.11.代数式与互为相反数,则 .12.已知三个连续奇数的和是,则中间的那个数是_______.13.某工厂引进了一批设备,使今年单位成品的成本较去年降低了 .已知今年单位成品的成本为元,则去年单位成品的成本为_______元.14.小李在解方程 (x为未知数)时,误将看作,解得方程的解,则原方程的解为___________________________.15.假定每人的工作效率都相同,如果个人天做个玩具熊,那么个人做个玩具熊需要______天.16.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/小时,水速为2千米/时,则A港和B港相距______千米.二、解答题(共68分)17.解下列方程(每题2分,共8分)(1) ;Com](2)(3)(4)18.(6分)老师在黑板上出了一道解方程的题,小明马上举手,要求到黑板上做,他是这样做的:…………………①………………………②………………………③…………………………………④…………………………………⑤老师说:小明解一元一次方程的一般步骤都知道却没有掌握好,因此解题时有一步出现了错误,请你指出他错在_________(填编号);然后,你自己细心地解下面的方程:(1) (2)19.(3分)如果方程的解是,求的值.20. (3分)已知等式是关于的一元一次方程(即未知),求这个方程的解.21.(4分)初一学生王马虎同学在做作业时,不慎将墨水瓶打翻,使一道作业只能看到:甲、乙两地相距160千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/时,_________________________________?请你将这道作业题补充完整并列出方程解答.22.( 4分)某人共收集邮票若干张,其中是2000年以前的国内外发行的邮票,是2001年国内发行的,是2002年国内发行的,此外尚有不足100张的国外邮票.求该人共有多少张邮票.23.(4分)某商场在元旦期间,开展商品促销活动.将某型号的电视机按进价提高后,打折另送元路费的方式销售,结果每台电视机仍获利元,问每台电视机的进价是多少元?24.(6分)某文艺团体为“希望工程”募捐组织了一场义演,共售出1000张票,筹出票款6920元,且每张成人票8元,学生票5元.(1)问成人票与学生票各售出多少张?(2)若票价不变,仍售出1000张票,所得的票款可能是7290元吗?为什么?25.(6分)你坐过出租车吗?请你帮小明算一算.杭州市出租车收费标准是:起步价( 千米以内) 元,超过千米的部分每千米元,小明乘坐了千米的路程.(1)请写出他应该去付费用的表达式;(2)若他支付的费用是元,你能算出他乘坐的路程吗?26.(6分)公园门票价格规定如下表:购票张数 1~50张 51~100张 100张以上每张票的价格 13元 11元 9元某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足5 0人.]经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?27.(9分)有一些相同的房间需要粉刷,一天3傅去粉刷8个房间,结果其中有40m2墙面未来得及刷;同样的时间内5名徒弟粉刷了9个房间的墙面.每傅比徒弟一天多刷30m2的墙面.(1)求每个房间需要粉刷的墙面面积;(2)张老板现有36个这样的房间需要粉刷,若请1傅带2名徒弟去,需要几天完成?(3)已知每傅,徒弟每天的工资分别是85元,65元,张老板要求在3天内完成,问如何在这8个人中雇用人员,才合算呢?28.(9分)某原料供应商对购买其原料的顾客实行如下优惠办法:(1)一次购买金额不超过1万元,不予优惠;(2)一次购买金额超过1万元,但不超过3万元,全部9折优惠;(3)一次购买的超过3万元,其中3万元9折优惠,超过3万元的部分8折优惠.某人因库容原因,第一次在供应商处购买原料付7800元,第二次购买付款26100元,如果他是一次购买同样数量的原料,则应付款多少元?可少付款多少元?人教版七年级数学上册第三单元测试题参考答案一、填空题1.②③④,②④2.,等号两边同时加3,等式仍然成立3.4.25.6.7.8.9.或10.11.12.1713.9.614.15.16.21二、解答题17.(1);(2);(3);(4)18.①,(1);(2)19.720.21.略22.152张23.1200元24.(1)成人票640张,学生票360张;(2)不可能25.(1);(2)13千米26:(1):初一(1)班48人,初一(2)班56人;(2):304元;(3):多买3张27.(1)50平方米;(2)5天;(3)师傅2人,徒弟6人28.应付32440元,少付1460元。

人教版七年级数学上册《第三章代数式》单元测试卷-附答案

人教版七年级数学上册《第三章代数式》单元测试卷-附答案

人教版七年级数学上册《第三章代数式》单元测试卷-附答案一、单选题1.下列各式中,符合代数式书写规则的是( )A .5x ⨯B .112xy C .2.5t D .1x y -÷2.当2m =-,5n =时,代数式()3m n -+的值是( )A .6B .6-C .9D .9-3.代数式()55y -的正确含义是( )A .5乘y 减5B .y 的5倍减去5C .y 与5的差的5倍D .5与y 的积减去54.小明家距离学校m p ,小明从家出发骑车h t 可到学校,若要提前1h 到校(1t >),则每小时需行驶( )A .1m p t ⎛⎫+ ⎪⎝⎭B .1m pt ⎛⎫- ⎪⎝⎭ C .m 1pt - D .m 1pt +5.已知5x =,2y =且x y x y +=--,则x y -的值为( )A .3±B .3±或7±C .3-或7D .3-或7-6.当2x =时,代数式31px qx ++的值为2024,则当2x =-时,代数式31px qx ++的值为( ) A .2022 B .2022- C .2021 D .2021-7.按如图所示的运算程序,能使运算输出的结果为1的是( )A .3x = 4y =B .=1x - 1y =-C .2x = 1y =-D .2x =- 3y =8.已知x ,y ()22310x y --=,则下列式子的值最大的是( ).A .x y +B .x y -C .xyD .y x9.如图所示的正方形是由四个等腰直角三角形拼成的,则阴影部分的面积为( )A .22m n +B .22m n -C .2mnD .4mn10.已知四个不同的整数a b c d 、、、满足等式()()()()2015122479a b c d ----=,则+++a b c d 的值为( )A .0B .2015C .2058D .2067二、填空题11.小明买单价p 元的商品3件,给卖家q 元,应找回 元.12.设a b 、互为相反数,、c d 互为倒数,则()2024a b cd +-值是 .13.学校买来20个足球,每个a 元,又买来b 个篮球,每个58元.2058a b +表示 ;当45a = 10b = 则2058a b += 元.14.如图,一个瓶身为圆柱体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的 .三、解答题15.线段AB 上有一点C ,AC 的长度是BC 的3倍少2,若BC 的长度用x 表示,则表示出AB 的长度.16.已知有理数a ,b ,c ,d ,e 其中a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为2,求1325c d ab e +++的值.17.若||2a =,b 既不是正数也不是负数,c 是最大的负整数.(1)分别求出a 、b 、c 的值;(2)求2022a b c +-的值.18.如图,是由长方形、正方形、三角形及圆组成的图形(长度单位:m ).(1)用式子表示图中阴影部分的面积:(2)按照图所示的尺寸设计并画出一个新的图形,使其面积等于参考答案1.C2.D3.C4.C5.D6.B7.D8.A9.C10.C11.()3q p -12.1-13. 买20个足球和b 个篮球一共的价钱 1480 14.a a b +/a b a + 15.42x -16.162或152- 17.(1)2a =± 0b = 1c =-;(2)3或1 18.(1)(2)。

七年级数学上册第三章 代数式 单元测试卷(人教版 2024年秋)

七年级数学上册第三章 代数式  单元测试卷(人教版 2024年秋)

七年级数学上册第三章代数式单元测试卷(人教版2024年秋)一、选择题(每题3分,共30分)1.下列代数式书写规范的是()A.b×12B.4÷(a+b)C.225xD.3n 2.[母题教材P71例2]用语言叙述式子“a-12b”所表示的数量关系,下列说法正确的是()A.a与b的差的12B.a与b的一半的积C.a与b的12的差D.a比b大123.[2024·成都武侯区期末]某商店举办促销活动.促销的方法是将原价为x元/-7元/-7的含义的描述正确的是()A.原价打8折后再减去7元B.原价减去7元后再打8折C.原价减去7元后再打2折D.原价打2折后再减去7元4.当a=-1,b=3时,式子2a2+ab+b的值是()A.-5B.-2C.2D.65.[母题教材P75练习T2]下列各说法中的两个量之间的关系属于反比例关系的有()①当路程一定时,汽车行驶的平均速度与行驶时间之间的关系;②当商品的进价一定时,利润与售价之间的关系;③当长方形的面积一定时,长方形的长与宽之间的关系;④计划从A地到B地铺设一段2400米长的铁轨,每日铺设长度与铺设天数之间的关系.A.1个B.2个C.3个D.4个6.某商品原来的价格为a元,前期在销售时连续两次降价10%.后期由于成本价格上涨,商店决定在两次降价的基础上提价20%,提价后商品的价格为()A.a元B.0.918a元C.0.972a元D.0.96a元7.[2023·雅安]若m2+2m-1=0,则2m2+4m-3的值是()A.-1B.-5C.5D.-38.学校礼堂的房间窗户装饰物如图所示,该装饰物由两个四分之一圆组成(半径相同),则窗户中能射进阳光的部分的面积为()A.ab-π16b2B.ab-π8b2C.ab-π4b2D.ab-π2b29.[新视角·2023·济宁改编·规律探究题]已知一列均不为1的数a1,a2,a3,…,a n满足如下关系:a2=1+11-1,a3=1+21-2,a4=1+31-3,…,a n+1=1+1-,若a1=2,则a2025的值是()A.-12B.13C.-3D.210.如图,下面图形是用棋子按照一定规律摆成的,按照这种摆法,第n个图形中共有棋子()A.2n枚B.(n2+1)枚C.n(n-1)枚D.n(n+1)枚二、填空题(每题3分,共18分)11.下列各式中,是代数式的是.(填序号)①2x-1;②a=1;③S=πR2;④π;⑤72m;⑥12>13. 12.[新视角·2024·北京丰台区期末·结论开放题]对于式子“m+n”可以赋予其实际意义:一个篮球的价格是m元,一个足球的价格是n 元,体育老师购买一个篮球和一个足球共需要付款(m+n)元,请你给式子“2a”赋予一个实际意义:.13.[情境题生活应用]房间面积一定时,每块砖的面积和铺砖的块数(填“满足”或“不满足”)反比例关系.14.把一个两位数m放在一个三位数n的前面,组成一个五位数,这个五位数可表示为.15.[2024·南京期末]如果|m|=2,那么代数式1-m+2m2的值为.16.将长为30cm的长方形白纸,按如图所示的方法黏合起来,黏合部分的宽为2cm.(1)3张白纸黏合后的总长度为cm;(2)x张白纸黏合后的总长度为cm.(用含x的代数式表示)三、解答题(共72分)17.(6分)用代数式表示:(1)m的3倍与n的一半的和;(2)比a与b的积的2倍小5的数;(3)x,y两数的平方和减去它们积的2倍.18.(8分)已知a,b互为相反数,c,d互为倒数,m的绝对值等于3,求+2+cd-m的值.19.(10分)列式表示并求值.(1)超市购进一批上衣,标价为a元/件,后降价20%进行销售,小明购买了2件该上衣,一共花费了多少元?当a=120时,小明一共花费了多少元?(2)甲、乙两地相距b km,一辆汽车以v km/h的速度从甲地向乙地行驶,行驶t h后,汽车与乙地之间的距离为多少千米?当b=200,v=80,t=1.5时,汽车与乙地之间的距离为多少千米?20.(10分)一个水池内原有水500升,现在以20升/分钟的速度向水池内注水,35分钟可注满水池.(1)水池的容积是多少升?(2)若水池为空的,用Q(单位:升/分钟)表示注水的速度,用T表示注满水池需要的时间,用式子表示T与Q的关系,T与Q成什么比例关系?21.(12分)[2024·扬州江都区期中]如图,在一块长为3x,宽为y(3x >y)的长方形铁皮的四个角上,分别截去半径都为2的圆的14.(1)试计算剩余铁皮的面积(阴影部分面积).(2)当x=4,y=8时,剩余铁皮的面积是多少?(π取3)22.(12分)某种杯子的高度是15cm,两个以及三个这样的杯子叠放时的高度如图所示.(1)n个这样的杯子叠放在一起的高度是cm.(用含n的式子表示)(2)20个这样的杯子叠放在一起的高度是多少?23.(14分)[立德树人节约资源]为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的.该市自来水收费的价目表如下(注:水费按月份结算):每月用水量单价不超出6m3的部分2元/m3超出6m3不超出10m3的部分4元/m3超出10m3的部分8元/m3已知李老师家某月用水量为x m3.(1)若6<x≤10,则李老师当月应交水费多少元?(用含x的式子表示,并化简)(2)若x>10,则李老师当月应交水费多少元?(用含x的式子表示,并化简)答案一、1.D 2.C 3.A4.C 【点拨】因为a =-1,b =3,所以2a 2+ab +b =2×(-1)2+(-1)×3+3=2.5.C6.C 【点拨】由题意得提价后商品的价格为a (1-10%)×(1-10%)(1+20%)=a ×0.9×0.9×1.2=0.972a (元).7.A 【点拨】因为m 2+2m -1=0,所以m 2+2m =1.所以2m 2+4m =2.所以2m 2+4m -3=2-3=-1.8.B 【点拨】由题意得窗户中能射进阳光的部分的面积为ab -2×14π×=ab -π8b 2.9.D 【点拨】因为a 1=2,所以a 2=1+21-2=-3,所以a 3=1-31+3=-12,所以a 4=1-121+12=13a 5=1+131-13=2,…,由此可得这列数按2,-3,-12,13循环出现.因为2025÷4=506……1,所以a 2025=a 1=2.10.D 【点拨】第1个图形中有2枚棋子,2=1×2;第2个图形中有6枚棋子,6=2×3;第3个图形中有12枚棋子,12=3×4;第4个图形中有20枚棋子,20=4×5;…,所以第n 个图形中有n (n +1)枚棋子.二、11.①④⑤12.一个篮球的价格是a 元,购买2个篮球共需付款2a 元(答案不唯一)13.满足14.1000m+n15.7或11【点拨】因为|m|=2,所以m=±2.当m=2时,1-m+2m2=1-2+2×22=7;当m=-2时,1-m+2m2=1-(-2)+2×(-2)2=11.综上所述,代数式1-m+2m2的值为7或11.16.(1)86(2)(28x+2)三、17.【解】(1)3m+12n.(2)2ab-5.(3)x2+y2-2xy.18.【解】根据题意,得a+b=0,cd=1,m=±3,当m=3时,+2+cd-m=032+1-3=-2,当m=-3时,+2+cd-m=0(−3)2+1-(-3)=4.综上,+2+cd-m的值为-2或4.19.【解】(1)一共花费了2a(1-20%)=1.6a(元).当a=120时,1.6a=1.6×120=192.故当a=120时,小明一共花费了192元.(2)汽车与乙地之间的距离为(b-vt)km.当b=200,v=80,t=1.5时,b-vt=200-80×1.5=80.故当b=200,v=80,t=1.5时,汽车与乙地之间的距离为80km.20.【解】(1)水池的容积是500+20×35=1200(升).(2)依题意得TQ=1200或T=1200,T与Q成反比例关系.21.【解】(1)由题意可知S阴影=3xy-=3xy-π4y2,所以剩余铁皮的面积是3xy-π4y2.(2)当x=4,y=8时,S阴影=3×4×8-34×82=48.答:当x=4,y=8时,剩余铁皮的面积是48.22.【解】(1)(3n+12)(2)当n=20时,3n+12=3×20+12=72.答:20个这样的杯子叠放在一起的高度是72cm.23.【解】(1)若6<x≤10,则李老师当月应交水费2×6+(x-6)×4=12+4(x-6)=4x-12(元).(2)若x>10,则李老师当月应交水费2×6+4×(10-6)+(x-10)×8=12+16+8(x-10)=28+8(x-10)=8x-52(元).。

北师大版七年级数学上册《第三章整式及其加减》单元测试卷(附带参考答案)

北师大版七年级数学上册《第三章整式及其加减》单元测试卷(附带参考答案)

北师大版七年级数学上册《第三章整式及其加减》单元测试卷(附带参考答案)学校:___________班级:___________姓名:___________考号:___________一、选择题1.一列长a米的队伍以每分钟60米的速度向前行进,队尾一名同学用1分钟从队尾走到队头,这位同学走的路程是()米.A.a B.60 C.60a D.a+602.十位数字是a,个位数字是b的两位数是()A.ab B.a+10b C.ba D.10a+b3.多项式23+7x+4y的次数为多少()A.5次B.3次C.2次D.1次4.在代数式﹣2x,x+1,π,2m−3m ,0,12mn中是单项式的有()个.A.1 B.2 C.3 D.45.若a2+3a=1,则代数式2a2+6a−2的值为()A.0B.1C.2D.36.下列计算正确的是()A.a2+a2=a4 B.4a﹣3a=1C.3a2b﹣4ba2=﹣a2b D.3a2+2a3=5a57.已知关于x的多项式(m+3)x3−x n+x−mn为二次三项式,则当x=−1时,这个二次三项式的值是()A.7 B.6 C.4 D.38.若4x3m-1y3与-3x5y2n+1的和是单项式,则2m+3n的值是()A.6 B.7 C.8 D.9二、填空题9.已知单项式﹣3x3y n与5x m+4y3是同类项,则m﹣n的值为.10.若多项式2x2- 3x+b与多项式x2-bx+1的和不含一次项(b为常数),则两个多项式的和为11.若关于x、y的多项式x5-m+5y2-2x2+3的次数是3,则式子m2-3m的值为.12.已知a+22ab=−8,b2+2ab=14则a2−b2=.13.如图是一组有规律的图案,它们是由大小相同的“×”图案组成的,依此规律,第10个图案中有“×”图案个.三、解答题14.计算:(1)x2+5+x2−1(2)2a2+3ab+b2−a2−ab−2b215.先化简,再求值:(x2﹣y2﹣2xy)﹣(﹣3x2+4xy)+(x2+5xy),其中x=﹣1,y=2.x m+1y2+2xy2−4x3+1是六次四项式,单项式26x2n y5−m的次数与该多项式的次数相16.已知多项式15同,求(−m)3+2n的值.17.已知关于x,y的式子(2x2+mx−y+3)−(3x−2y+1−nx2)的值与字母x的取值无关,求式子(m+ 2n)−(2m−n)的值.18.某次课堂上李老师给出了一道整式求值的题目,李老师把要求的整式(7a3−6a3b+3a2b)−(−3a3−6a3b+3a2b+10a3−3)写完后,让王红同学顺便给出一组a,b的值,老师自己说答案.当王红说完:“a= 65,b=−2022”后,李老师不假思索,立刻就说出答案“3”.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误,”亲爱的同学,你相信吗?请说出其中的道理.参考答案1.D2.D3.D4.D5.A6.C7.C8.B9.-410.3x2-211.-212.-2213.5114.(1)解:x2+5+x2−1=x2+x2+5−1=2x2+4(2)解:2a2+3ab+b2−a2−ab−2b2=2a2−a2+3ab−ab+b2−2b2=a2+2ab−b215.解:原式=x2﹣y2﹣2xy+3x2﹣4xy+x2+5xy=5x2﹣xy﹣y2当x=﹣1,y=2时原式=5×(﹣1)2﹣(﹣1)×2﹣22=5+2﹣4=3.16.解:由于多项式是六次四项式,所以m+1+2=6解得:m=3单项式26x2n y5−m应为26x2n y2,由题意可知:2n+2=6解得:n=2所以(−m)3+2n =(−3)3+2×2=−23.17.解:原式=2x 2+mx −y +3−3x +2y −1+nx 2=(2+n)x 2+(m −3)x +y +2由题可得,多项式的值与字母x 无关∴{2+n =0m −3=0解得{n =−2m =3∴(m +2n)−(2m −n)=m +2n −2m +n=3n −m代入n =−2,m =3可得:3×(−2)−3=−6−3=−9 故代数式(m +2n)−(2m −n)的值为:−9.18.解:(7a 3−6a 3b +3a 2b)−(−3a 3−6a 3b +3a 2b +10a 3−3) =7a 3−6a 3b +3a 2b +3a 3+6a 3b −3a 2b −10a 3+3=(7a 3+3a 3−10a 3)+(−6a 3b +6a 3b)+(3a 2b −3a 2b)+3 =3.∵结果为常数3∴原式的结果与字母a ,b 的取值无关∴李老师能够准确地说出代数式的值为3.。

北师大版七年级数学上册《第三章 整式及其加减》单元测试卷及答案

北师大版七年级数学上册《第三章 整式及其加减》单元测试卷及答案

北师大版七年级数学上册《第三章整式及其加减》单元测试卷及答案学校:___________姓名:___________班级:___________考号:___________一、选择题1.如图是同一时刻北京时间和莫斯科时间.若现在北京时间是x,则同一时刻莫斯科的时间可以表示为()A.x+6B.x−6C.x+5D.x−52.单项式﹣5x2y的系数是()A.3 B.5 C.﹣3 D.﹣53.用a,b分别表示两个一位正整数,在这两个数之间添上两个零就构成一个四位数,且a在b的左边,则该四位数可表示为()A.a+100+b B.1000a+b C.100a+b D.10a+b4.下列说法正确的有()(1)√3a不是整式;(2)2+b2是单项式;(3)34是整式;(4)x+1x是多项式;(5)abπ是单项式;(6)x2+2x+1=0是多项式A.1个B.2个C.3个D.4个5.下列各组中的两个单项式,是同类项的是()A.a2与2a B.−0.5ab与12baC.a2b与ab2D.a与b6.已知x-3y=6,那么代数式x-3y-3(y-x)-2(x-3)的值为()A.16 B.17 C.18 D.197.下列计算中正确的是()A.2a+3b=5ab B.3y2−2y2=1C.32ab−1.5ba=0D.3x3+2y2=5x58.将一列有理数 -1、2、-3、4、-5、6、…按如图所示的方式进行排列,则-2023应排在()A.A位置B.B位置C.D位置D.E位置二、填空题9.“a的立方与b的平方的差”用代数式表示为:.10.多项式4x2−πxy22−13x+1的三次项系数是.11.加上5x2−3x−5等于3x2−5的多项式是.12.当x=2时,代数式px3+qx+1的值为2 023,则当x=-2时,代数式px3+qx+1的值为13.下列图形都是由同样大小的实心圆点按一定规律组成的,其中第1个图形一共有5个实心圆点,第2个图形一共有8个实心圆点,第3个图形一共有11个实心圆点,….按此规律排列下去,第n个图形中实心圆点的个数为(用含n的代数式表示).三、解答题14.化简(1)3(2xy−y)−2xy(2)−14(2k3−4k2−28)+12(k3−2k2+4k)15.已知3x m y3与−2y n x2是同类项,求代数式m−2n−mn的值.16.先化简,再求值:(2y+3x2)−(x2−y)−x2,其中x=−2,y=13.17.已知a、b互为相反数c、d互为倒数,x等于-2的2次方,求式子a+b5+12cd+x2的值.18.放置在水平地面上两个无盖(朝上的面)的长方体纸盒,大小、形状如图.小长方体的长、宽、高分别为:a(cm)、b(cm)、c(cm);大长方体的长、宽、高分别为:1.5a(cm)、2b(cm)、2c(cm).(1)做这两个纸盒共需要材料多少平分厘米?(2)做一个大的纸盒比做一个小的纸盒多多少平分厘米材料参考答案1.D2.D3.B4.(1)B5.B6.C7.C8.A9.a3−b210.−π211.−2x2+3x12.-202113.3n+214.(1)4xy−3y(2)7+2k15.−10.16.x2+3y5..17.161218.(1)解:小长方体纸盒所需材料:ab+2ac+2bc大长方体纸盒所需材料:3ab+6ac+8bc所以一共所需材料:ab+2ac+2bc+3ab+6ac+8bc=4ab+8ac+10bc (2)解:(3ab+6ac+8bc)−(ab+2ac+2bc)=2ab+4ac+6bc。

七年级上册《数学》第三章测试卷(含答案)

七年级上册《数学》第三章测试卷(含答案)

七年级上册《数学》第三章测试卷(时间:45分钟,满分:100分)一、选择题(本大题共8小题,每小题4分,共32分.下列各题给出的四个选项中,只有一项符合题意)1.若2(a+3)的值与4互为相反数,则a 的值为( ) A.1B.-72C.-5D.122.下列说法错误的是( ) A.如果ax=bx,那么a=b B.如果a=b,那么a c 2+1=bc 2+1C.如果a=b,那么ac-d=bc-dD.如果x=3,那么x 2=3x 3.下列方程变形正确的是( ) A.方程3x-2=2x+1,移项,得3x-2x=-1+2 B.方程3-x=2-5(x-1),去括号,得3-x=2-5x-1 C.方程23t=32,未知数系数化为1,得t=1D.方程x-10.2−x 0.5=1化成3x=64.“六一”国际儿童节期间,某商店将单价标为130元的书包按8折出售可获利30%,该书包每个的进价是( ) A.65元 B.80元 C.100元 D.104元5.方程2x+32-x=9x-53+1去分母得( )A.3(2x+3)-x=2(9x-5)+6B.3(2x+3)-6x=2(9x-5)+1C.3(2x+3)-x=2(9x-5)+1D.3(2x+3)-6x=2(9x-5)+66.如图①,天平呈平衡状态,其中左侧盘中有一袋玻璃球,右侧盘中也有一袋玻璃球,还有2个各20 g的砝码.现将左侧袋中一颗玻璃球移至右侧盘,并拿走右侧盘中的1个砝码,天平仍呈平衡状态,如图②.则移动的玻璃球的质量为()A.10 gB.15 gC.20 gD.25 g7.为确保信息安全,信息需要加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密).已知加密规则为:明文a,b,c对应密文a+1,2b+4,3c+9.例如明文1,2,3对应密文2,8,18.如果接收方收到密文7,18,15,那么解密得到的明文为()A.4,5,6B.6,7,2C.7,2,6D.2,6,78.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x人,所列方程正确的是()A.5x-45=7x-3B.5x+45=7x+3C.x+455=x+37D.x-455=x-37二、填空题(本大题共4小题,每小题4分,共16分)9.已知x=2是关于x的方程ax-5x-6=0的解,则a=.10.对于有理数a,b,c,d,现规定一种新的运算|a bc d|=ad-bc.则满足等式|x2x+1321|=1的x的值为.11.当m=时,单项式15x2m-1y2与-8x m+3y2是同类项.12.某赛季中国职业篮球联赛第11轮前四名球队积分榜如下:(1)若一个队胜m 场,则该队的总积分为 ;(2)某队的胜场总积分能否等于它的负场总积分?你的观点是: . 三、解答题(本大题共5小题,共52分) 13.(16分)解下列方程: (1)2x-13−10x-16=2x+14-1;(2)x 0.7−0.17-0.2x 0.03=1.14.(8分)当m 为何值时,式子2m-5m-13的值与式子7-m 2的值的和等于5?15.(8分)一架飞机在两个城市之间飞行,风速为24千米/时,顺风飞行要2小时50分,逆风飞行要3小时,求飞机在静风中的速度.16.(10分)(2020·四川泸州中考)某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?(2)若购买乙种奖品的件数不超过甲种奖品件数的3倍.如何购买甲、乙两种奖品,使得总花费最少?17.(10分)某市为促进节约用水,提高用水效率,建设节水型城市,将自来水划分为“家居用水”和“非家居用水”.根据新规定,“家居用水”用水量不超过6 t,按每吨1.2元收费;如果超过6 t,那么未超过部分仍按每吨1.2元收费,而超过部分则按每吨2元收费.如果某用户5月份水费平均为每吨1.4元,那么该用户5月份应交水费多少元?七年级上册《数学》第三章测试卷答案一、选择题1.C2.A3.D4.B设该书包每个的进价为x元,根据题意列方程,得130×80%-x=30%x,解得x=80.5.D6.A7.B由题意,得a+1=7,2b+4=18,3c+9=15,解得a=6,b=7,c=2.8.B二、填空题9.810.-10根据题意,得x2−2(x+1)3=1,解得x=-10.11.4根据同类项的定义,相同字母的指数相同,得2m-1=m+3,解得m=4.12.(1)m+11(2)不能(1)胜一场得分:2211=2(分),负一场得分:21-10×2=1(分).若一个队胜m场,则总积分为2m+(11-m)=2m+11-m=m+11.(2)设一个队胜了x场,则负了(11-x)场.若这个队的胜场总积分等于负场总积分,则有方程2x-(11-x)=0,解得x=113.其中x(胜场)的值必须是整数,故x=113不符合实际,由此可以判定没有哪个队的胜场总积分等于负场总积分.三、解答题13.解:(1)去分母,得4(2x-1)-2(10x-1)=3(2x+1)-12.去括号,得8x-4-20x+2=6x+3-12.移项、合并同类项,得-18x=-7.系数化为1,得x=718.(2)原方程可转化为10x 7−17-20x 3=1.去分母,得30x-7(17-20x)=21. 去括号,得30x-119+140x=21. 移项、合并同类项,得170x=140. 系数化为1,得x=1417.14.解:根据题意,得2m-5m-13+7-m 2=5.解这个方程,得m=-7.因此当m=-7时,式子2m-5m-13的值与式子7-m 2的值的和等于5.15.解 设飞机在静风中的速度为x 千米/时,则 (x+24)×256=(x-24)×3,解得x=840.答:飞机在静风中的速度是840千米/时.16.解:(1)设甲种奖品购买了x 件,乙种奖品购买了(30-x)件,根据题意,得30x+20(30-x)=800,解得x=20,则30-x=10. 答:甲种奖品购买了20件,乙种奖品购买了10件.(2)设甲种奖品购买了x 件,乙种奖品购买了(30-x)件,设购买两种奖品的总费用为w 元,根据题意,得30-x ≤3x,解得x ≥7.5,w=30x+20(30-x)=10x+600.∵10>0,∴w 随x 的增大而增大,∴x=8时,w 有最小值,为w=10×8+600=680. 答:当购买甲种奖品8件、乙种奖品22件时,总花费最小,最小费用为680元.17.解:设该用户5月份用水x t,根据题意,得1.4x=6×1.2+2(x-6). 解这个方程,得x=8. 所以8×1.4=11.2(元).答:该用户5月份应交水费11.2元.。

人教版七年级数学上册《第三章一元一次方程》单元测试题(有答案)

人教版七年级数学上册《第三章一元一次方程》单元测试题(有答案)

人教版七年级数学上册《第三章一元一次方程》单元测试题一.选择题(共10小题)1.下列方程中,不是一元一次方程的为()A.3x+2=6B.4x﹣2=x+1C.x+1=0D.5x+6y=12.若(m﹣2)x|2m﹣3|=6是一元一次方程,则m等于()A.1B.2C.1或2D.任何数3.把方程﹣=1去分母后,正确的是()A.3x﹣2(x﹣1)=1B.3x﹣2(x﹣1)=6C.3x﹣2x﹣1=12D.3x﹣2(x﹣1)=124.为了提倡节约用水,采用“阶梯水价”收费办法:每户用水不超过5方,每方水费x元,超过5方,超过部分每方加收2元,小张家今年3月份用水11方共交水费56元,根据题意列出关于x的方程,正确的是()A.5x+6(x﹣2)=56B.5x+6(x+2)=56C.11(x+2)=56D.11(x+2)﹣6×2=565.关于x的一元一次方程2x a﹣2+m=4的解为x=1,则a+m的值为()A.9B.8C.5D.46.下列等式变形错误的是()A.若a=b,则B.若a=b,则3a=3bC.若a=b,则ax=bxD.若a=b,则7.下列解方程去分母正确的是()A.由,得2x﹣1=3﹣3xB.由,得2x﹣2﹣x=﹣4C.由,得2 y﹣15=3yD.由,得3(y+1)=2 y+68.已知某座桥长800米,现有一列火车从桥上通过,测得火车从开始上桥到完全通过共用了1分钟,这列火车完全在桥上的时间为40秒,则火车的速度和车长分别是()A.20米/秒,200米B.18米/秒,180米C.16米/秒,160米D.15米/秒,150米9.某品牌服装店一次同时售出两件上衣,每件售价都是135元,若按成本计算,其中一件盈利25%,另一件亏损25%,则这家商店在这次销售过程中()A.盈利为0B.盈利为9元C.亏损为8元D.亏损为18元10.甲车队有汽车100辆,乙车队有汽车68辆,根据情况需要甲车队的汽车是乙车队的汽车的两倍,则需要从乙队调x辆汽车到甲队,由此可列方程为()A.100﹣x=2(68+x)B.2(100﹣x)=68+xC.100+x=2(68﹣x)D.2(100+x)=68﹣x二.填空题(共8小题)11.已知3m﹣11与5m﹣7是互为相反数,则m=.12.对于任意四个有理数a,b,c,d,可以组成两个有理数对(a,b)与(c,d).我们规定:(a,b)※(c,d)=ac﹣bd.例如:(1,2)※(3,4)=1×3﹣2×4=﹣5.若有理数对(2x,﹣3)※(1,x+1)=8,则x=.13.当x时,式子x+1与2x+5的值互为相反数.14.已知x=3是关于x方程mx﹣8=10的解,则m=.15.若关于x的方程(m﹣4)x|m|﹣3﹣2=0是一元一次方程,则m=.16.从一个内径为12cm的圆柱形茶壶向一个内径为6cm、内高为12cm的圆柱形茶杯中倒水,茶杯中的水满后,茶壶中的水下降了cm.17.五一期间,青年旅行社组织一个团;老师和学生共50人组成的旅行团到凤凰古城旅游,景区门票售票标准是:成人门票50元/张,学生门票20元/张,该旅行团购买门票共花费1800元,若设该团购买成人门票x张,则可列方程为:.18.有2020个数排成行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是1,那么前6个数的和是0,这2020个数的和是.三.解答题(共8小题)19.解方程(1)x﹣2(x﹣4)=3(1﹣x)(2)1﹣=20.有一组互相咬合的齿轮.(1)大齿轮有140个齿,小齿轮齿数是大齿轮齿数的,小齿轮有多少个齿?(2)大齿轮每分钟转80周,比小齿轮每分钟转的周数少,小齿轮每分钟转多少周?21.已知(m2﹣1)x2﹣(m﹣1)x+8=0是一元一次方程.(1)求代数式200(m+x)(x﹣2m)﹣18m的值;(2)求关于y的方程m|y﹣2|=x的解.22.学校要购入两种记录本,预计花费460元,其中A种记录本每本3元,B种记录本每本2元,且购买A种记录本的数量比B种记录本的2倍还多20本.(1)求购买A和B两种记录本的数量;(2)某商店搞促销活动,A种记录本按8折销售,B种记录本按9折销售,则学校此次可以节省多少钱?23.定义:若关于x的一元一次方程ax=b的解为b+a,则称该方程为“和解方程”,例如:2x=﹣4的解为x=﹣2,且﹣2=﹣4+2,则该方程2x=﹣4是和解方程.(1)判断﹣3x=是否是和解方程,说明理由;(2)若关于x的一元一次方程5x=m﹣2是和解方程,求m的值.24.列方程解应用题(1)某车间有24名工人,每人每天平均生产螺栓12个或螺母18个,两个螺栓配三个螺母.为了使每天的产品刚好配套,应该分配多少名工人生产螺栓,多少名工人生产螺母?(2)某校举行元旦汇演,七(01)、七(02)班各需购买贺卡70张,已知贺卡的价格如下:购买贺卡数不超过30张30张以上不超过50张50张以上每张价格3元 2.5元2元(ⅰ)若七(01)班分两次购买,第一次购买24张,第二次购买46张,七(02)班一次性购买贺卡70张,则七(01)班、七(02)班购买贺卡费用各是多少元?哪个班费用更节省?省多少元?(ⅱ)若七(01)班分两次购买贺卡共70张(第二次多于第一次),共付费150元,则第一次、第二次分别购买贺卡多少张?25.为了鼓励节约用电,电业局规定:如果每月每户用电不超过150度,那么每度电0.5元;如果该月用电超过150度,那么超过部分每度电0.8元.(1)如果小明家一个月用电128度,那么这个月应缴纳电费多少元?(2)如果小明家一个月用电a度(a>150),那么这个月应缴纳电费多少元?(用含a 的代数式表示)(3)如果这个月小明家缴纳电费为87.8元,那么他们家这个月用电多少度?26.如图1,数轴上点A分别表示的数为﹣3,点B表示的数为3,若在数轴上存在点P,使得AP+BP=m,则称点P为点A和B的“m级精致点”,例如,原点O表示的数为0,则AO+BO=3+3=6,则称点O为点A和点B的“6级精致点”,根据上述规定,解答下列问题:(1)若点C在数轴上表示的数为﹣5,点C为点A和点B的“m级精致点”,则m=;(2)若点D是数轴上点A和点B的“8级精致点”,求点D表示的数;(3)如图2,数轴上点E和点F分别表示的数是﹣2和4,若点G是点E和点F的“m 级精致点”,且满足GE=3GF,求m的值.参考答案与试题解析一.选择题(共10小题)1.解:A.3x+2=6是一元一次方程;B.4x﹣2=x+1是一元一次方程;C.x+1=0是一元一次方程;D.5x+6y=1含有2个未知数,不是一元一次方程;故选:D.2.解:根据一元一次方程的特点可得,解得m=1.故选:A.3.解:去分母得:3x﹣2(x﹣1)=12,故选:D.4.解:依题意,得:5x+(11﹣5)×(x+2)=56,即5x+6(x+2)=56.故选:B.5.解:因为关于x的一元一次方程2x a﹣2+m=4的解为x=1,可得:a﹣2=1,2+m=4,解得:a=3,m=2,所以a+m=3+2=5,故选:C.6.解:根据等式的性质可知:A.若a=b,则=.正确;B.若a=b,则3a=3b,正确;C.若a=b,则ax=bx,正确;D.若a=b,则=(m≠0),所以原式错误.故选:D.7.解:A、由,得2x﹣6=3﹣3x,此选项错误;B、由,得2x﹣4﹣x=﹣4,此选项错误;C、由,得5y﹣15=3y,此选项错误;D、由,得3(y+1)=2y+6,此选项正确;故选:D.8.解:设火车的速度是x米/秒,根据题意得:800﹣40x=60x﹣800,解得:x=16,即火车的速度是16米/秒,火车的车长是:60×16﹣800=160(米),故选:C.9.解:设盈利的那件上衣的成本价为x元,亏损的那件上衣的成本为y元,依题意,得:135﹣x=25%x,135﹣y=﹣25%y,解得:x=108,y=180,∴(135﹣x)+(135﹣y)=(135﹣108)+(135﹣180)=﹣18(元).故选:D.10.解:设需要从乙队调x辆汽车到甲队,由题意得100+x=2(68﹣x),故选:C.二.填空题(共8小题)11.解:根据题意,得:3m﹣11+5m﹣7=0,则3m+5m=11+7,∴8m=18,解得m=,故答案为:.12.解:根据题中的新定义得:2x+3(x+1)=8,去括号得:2x+3x+3=8,解得:x=1,故答案为:113.解:根据题意得:x+1+2x+5=0,解得:x=﹣2,即当x=﹣2时,式子x+1与2x+5的值互为相反数,故答案为:=﹣2.14.解:将x=3代入mx﹣8=10,∴3m=18,∴m=6,故答案为:615.解:∵关于x的方程(m﹣4)x|m|﹣3﹣2=0是一元一次方程,∴|m|﹣3=1且m﹣4≠0,解得:m=﹣4.故答案为:﹣4.16.解:设茶壶中水的高度下降了xcm.9π×12=36π×x,解得x=3,∴茶壶中水的高度下降了3cm.故答案为:3.17.解:设该团购买成人门票x张,由题意得:50x+20(50﹣x)=1800,故答案为:50x+20(50﹣x)=1800.18.解:由题意可得,这列数为:0,1,1,0,﹣1,﹣1,0,1,1,…,∴前6个数的和是:0+1+1+0+(﹣1)+(﹣1)=0,∵2020÷6=336…4,∴这2020个数的和是:0×336+(0+1+1+0)=2,故答案为:2.三.解答题(共8小题)19.解:(1)去括号得:x﹣2x+8=3﹣3x,移项合并得:2x=﹣5,解得:x=﹣2.5;(2)去分母得:4﹣3x+1=6+2x,移项合并得:﹣5x=1,解得:x=﹣0.2.20.解:(1)140×=28(个),答:小齿轮有28个;(2)设小齿轮每分钟转x周,x(1﹣)=80,解得,x=400答:小齿轮每分钟转400周.21.解:(1)由题意可知:m2﹣1=0,m﹣1≠0,∴m=﹣1,将m=﹣1代入原方程可得:2x+8=0,∴x=﹣4,(1)将x=﹣4,m=﹣1代入原式可得:原式=200×(﹣5)×2﹣18×(﹣1)=2018.(2)当m=﹣1,x=﹣4时,∴﹣1|y﹣2|=﹣4,∴y=6或y=﹣2.22.解:(1)设购买B种记录本x本,则购买A种记录表(2x+20)本,依题意,得:3(2x+20)+2x=460,解得:x=50,∴2x+20=120.答:购买A种记录本120本,B种记录本50本.(2)460﹣3×120×0.8﹣2×50×0.9=82(元).答:学校此次可以节省82元钱.23.解:(1)∵﹣3x=,∴x=﹣,∵﹣3=﹣,∴﹣3x=是和解方程;(2)∵关于x的一元一次方程5x=m﹣2是和解方程,∴m﹣2+5=,解得:m=﹣.故m的值为﹣.24.解:(1)设分配x名工人生产螺栓,则分配(24﹣x)名工人生产螺母,依题意,得:=,解得:x=12,∴24﹣x=12.答:应该分配12名工人生产螺栓,12名工人生产螺母.(2)(i)七(01)班购买贺卡费用为3×24+2.5×46=187(元),七(02)班购买贺卡费用为2×70=140(元).187>140,187﹣140=47(元).答:七(01)班购买贺卡费用为187元,七(02)班购买贺卡费用为140元,七(02)班费用更节省,省47元.(ii)设第一次购买贺卡m张,则第二次购买贺卡(70﹣m)张.当0<m<20时,3m+2(70﹣m)=150,解得:m=10;当20<m≤30时,3m+2.5(70﹣m)=150,解得:m=﹣50(不合题意,舍去);当30<m<35时,2.5m+2.5(70﹣m)=175≠150,无解.答:第一次购买贺卡10张,第二次购买贺卡60张.25.解:(1)0.5×128=64(元)答:这个月应缴纳电费64元;(2)0.5×150+0.8(a﹣150)=75+0.8a﹣120=0.8a﹣45答:这个月应缴纳电费(0.8a﹣45)元;(3)∵87.8>150×0.5∴所用的电超过了150度设此时用电a度,根据题意得:0.5×150+0.8(a﹣150)=87.8∴75+0.8a﹣120=87.8∴a=166答:他们家这个月用电166度.26.解:(1)∵A表示的数为﹣3,B表示的数为3,点C在数轴上表示的数为﹣5,∴AC=﹣3﹣(﹣5)=2,BC=3﹣(﹣5)=8,∴m=AC+BC=2+8=10.(2)如图所示:∵点D是数轴上点A和点B的“8级精致点”,∴AD+BD=8,∵AB=3﹣(﹣3)=6,∴D在点A的左侧或在点A的右侧,设点D表示的数为x,则AD+BD=8,∴﹣3﹣x+3﹣x=8或x﹣3+x﹣(﹣3)=8,x=﹣4或4,∴点D表示的数为﹣4或4;(3)分三种情况:①当点G在FE延长线上时,∵不能满足GE=3GF,∴该情况不符合题意,舍去;②当点G在线段EF上时,可以满足GE=3GF,如下图,m=EG+FG=EF=4﹣(﹣2)=6;③当点G在EF延长线上时,∵GE=3GF,∴FG=EF=3,∴点E表示的数为7,∴n=EG+FG=9+3=12,综上所述:m的值为6或12.故答案为:10.11。

北师大版七年级数学上册《第三章整式及其加减》单元测试卷及答案

北师大版七年级数学上册《第三章整式及其加减》单元测试卷及答案

北师大版七年级数学上册《第三章整式及其加减》单元测试卷及答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.形如121121n n n a a a a a a a ⋯--的自然数(其中 n 为正整数121n n a a a a ≤≤⋯≤≤- 1120a a a >⋯,,,n a 为019⋯,,,中的数字)称为“单峰回文数”,不超过5位的“单峰回文数”的个数是( )A .273B .219C .429D .1292.下列说法正确的是( )A .多项式221x x y ++是二次三项式;B .多项式3242x x -+-的常数项是2;C .0是单项式;D .单项式23x y π-的系数是3-. 3.下列说法中,正确的是( )A .0是单项式B .32abc - 的系数是3-,次数是3C .2mn 不是整式 D .多项式22x y xy -是五次二项式4.下列计算正确的是( )A .5533a a -=B .25a a a +=C .5552a a a +=D .22332x y xy x y += 5.已知数a b c ,,在数轴上的对应点如图所示,则下列说法:0a b +<① 0abc >② a b >③ a b b c a b c b -++-++=-④ 其中说法正确的序号是( )A .①①B .①①C .①①①D .①①①①6.如图,张老师要在足够大的磁性黑板上展示数张形状、大小均相同的长方形作业,将这些作业排成一个长方形(作业不完全重合).现需要在每张作业的四个角落都放上磁性贴,如果作业有角落相邻,那么相邻的角落共享一枚磁性贴(例如,4张作业可用9枚磁性贴固定在磁性黑板上).若有25枚磁性贴可供选用,则最多可以展示( )张作业.A .12B .14C .15D .167.化简5(23)4(32)x x +--的结果为( )A .23x +B .23x -C .183x +D .183x -8.按一定规律排列的式子:23456,,,,246810x x x x x ---…,则第n 个式子为( ) A .2nn x - B .2n x n - C .()112n n x n +- D .()112n n nx +- 9.按一定规律排列的单项式:x - 23x 35x - 47x 59x -…第2024个单项式是( )A .20244047xB .20254049x -C .20242023x -D .20252025x10.代数式20.3y x - 012x + 213x 213ab 12- 232a b c -中单项式有( ) A .7个 B .4个 C .5个 D .6个二、填空题11.在某月的月历内有一正方形方框. 已知方框里有4个数字,分别为a ,b ,c ,n ,这四个数字在方框内的位置如图所示,若用数字n 分别表示a ,b ,c 则a b c ++= (用含有n 的式子表示结果).12.若()2320a b ++-=,则()2024a b += .13.如图,将一根细长的绳子沿中间对折,再沿对折后的绳子的中间对折1次,这样连续对折n 次,最后用剪刀沿对折n 次后的绳子的中间将绳子剪断,此时绳子将被剪成 段.14.观察下列各式:21342+== 313593++== 21357164+++==按此规律:()135721n ++++⋯⋯++的和为15.x 平方的3倍与5的差,用代数式表示为 ,当1x =-时,代数式的值为 .16.观察一列数:1234562510172637,,,,,根据规律,请你写出第12个数是 . 17.观察下列关于x 的单项式,探究其规律:35791113468101214x x x x x x ---⋯⋯,,,,,,按照上述规律,第2023个单项式是 .18.下图是一组有规律的图案,它们是由边长相同的小正方形组成的,其中部分小正方形涂有阴影,依此规律,第n 个图案中有m 个涂有阴影的小正方形,那么m 与n 的函数关系式为 .三、解答题19.先化简,再求值:(1)3m 2-(5m -3+3m 2),其中m =4.(2)﹣2x 2﹣[3y 2﹣(x 2﹣y 2)+6],其中|x +1|+(y ﹣1)2=0.20.如图,数轴上有a ,b ,c 三点.(1)用“<”将a ,b ,c 连接起来;(2)c b -_____0,c a -_____0(填“>”“<”或“=”);(3)化简1c b c a a ---+-.21.化简(1)2235231m m m m --+- (2)2222132832a b ab a b ab +--22.按照“双减”政策,丰富课后托管服务内容,学校准备订购一批篮球和跳绳,经过市场调查后发现篮球每个定价120元,跳绳每条定价20元.某体育用品商店提供A 、B 两种优惠方案:A 方案:买一个篮球送一条跳绳;B 方案:篮球和跳绳都按定价的90%付款.已知要购买篮球50个,跳绳x 条(50x >).(1)若按A 方案购买,一共需付款 元;(用含x 的代数式表示),若按B 方案购买,一共需付款 元;(用含x 的代数式表示)(2)当150x =时,请通过计算说明此时用哪种方案购买较为合算?(3)当150x =时,你能给出一种更为省钱的购买方案吗?请写出你的购买方案,并计算需付款多少元?23.如图,长方形ABCD 的长AB m =,宽AD n =,E 为DC 的中点.(1)请用字母m ,n 表示图中阴影部分面积;(2)若10m =,8n =图中阴影部分面积是多少?参考答案1.A2.C3.A4.C5.C6.D7.C8.C9.A10.D11.316n -/-16+3n12.113.()21n +14.()21n +/221n n ++15. 235x - 2-16.1214517.4048x 404718.m =4n +119.(1)-5m +3,-17;(2)-x 2-4y 2-6,-1120.(1)c a b <<;(2)<,<;(3)1b -21.(1)221m m --;(2)22766a b ab -- 22.(1)()()500020,540018x x ++(2)购买150根跳绳时,A 种方案所需要的钱数为8000元,B 种方案所需要的钱数为8100元(3)按A 方案买50个篮球,剩下的100条跳绳按B 方案购买,付款7800元23.(1)12mn ;(2)40。

人教版七年级上册数学第三章一元一次方程单元测试题(含答案)

人教版七年级上册数学第三章一元一次方程单元测试题(含答案)

人教版七年级上册数学第三章一元一次方程单元测试题一、单选题1.方程32x =-的解是( )A .1x =-B .=1xC .5x =-D .=5x 2.已知(1)310a a x -+=是一元一次方程,则a 的值为( )A .1B .0C .﹣1D .±1 3.下列方程:①32x y -=;①120x x ++=;①12x =;①=0x ;①315x -≥;①2230x x --=;①21136x x +=.其中一元一次方程有( ) A .5个B .4个C .3个D .2个 4.小马虎在做作业,不小心将方程中的一个常数污染了,被污染的方程是()123x x --=+■,怎么办呢?他想了想便翻看书后的答案,方程的解是=10x ,请问这个被污染的常数是( )A .1B .2C .3D .4 5.将方程1.20.310.30.2x x =+-中分母化为整数,正确的是( ) A .101231032x x =+- B .1231032x x =+- C .10123132x x =+- D .123132x x =+- 6.在解关于y 的方程21132y y a -+=-时,小明在去分母的过程中,右边的“1-”漏乘了公分母6,因而求得方程的解为=4y ,则方程正确的解是( )A .1y =-B .2y =-C .=1yD .=2y 7.如图,现有3?3的方格,每个小方格内均有不相同的个位数字,要求方格内每一行每一列以及每一条对角线上的三个数字之和均相等,记三个数字之和为P ,则P 的值为( )A .21B .24C .27D .158.参加某次数学竞赛的女生和男生人数的比是1:3,这次竞赛的平均成绩是82分,其中男生的平均成绩是80分,女生的平均成绩是( )A .82分B .86分C .87分D .88分二、填空题9.若代数式532x +与1713x +-的值相等,则x =___________. 10.航模兴趣小组有30人,比美术兴趣小组多15,美术兴趣小组有____________人.11.有一列数,按一定规律排成1,2,4,8,16,32,---…,其中某三个相邻数的和是3072,则这三个数中最小的数是______________.12.已知方程10x y +-=,用含y 的代数式表示x 为_________.13.关于x 的方程()2130k x ++=是一元一次方程,则k 取值范围___________. 14.若+1a 与5-互为相反数,则a =______.15.小明的身高是1.7米,他的影长是2米,同一时刻学校旗杆的影长是10米.则旗杆的高度是______16.若方程2x +a ﹣4=0的解是x =2,则a 等于 _____.三、解答题17.解方程 (1)52692x x -=- (2)9355y y -=+18.若定义一种新的运算“*”,规定有理数2a b ab *=,如2322312*=⨯⨯=.(1)求()34*-的值;(2)若()2212x *-=,求x 的值.19.某商店进了一批商品,以高出进价的30%后标价,又以8折卖出,结果仍获利200元,这种商品的进价为多少元?20.甲乙两人承包铺地砖任务,若甲单独做需20小时完成,乙单独做需要12小时完成.甲乙二人合做6小时后,乙有事离开,剩下的由甲单独完成.问甲还要几个小时才可完成任务?21.某市出租车的收费标准是:起步价8元(即行驶距离不超过3km都需付8元车费),超过3km以后,每增加1km加收1.5元(不足1km按1km收费).(1)乘坐这种出租车行驶6km,应该付多少钱?(2)某人乘坐这种出租车一次,付费17元,他经过的这段路程的最大值为多少km?22.某市为更有效地利用水资源,制定了居民用水收费标准:如果一户每月用水量不超过15立方米,每立方米按2.8元收费;如果超过15立方米,超过部分按每立方米3.3元收费.(1)若某户一月份用水量为11立方米,求该户一月份支付水费多少元?(2)若某户二月份共支付水费58.5元,求该户二月份用水量.23.某校组织七年级师生去秋游,如果单独租用45座客车若干辆,刚好坐满;如果单独租用60座客车,可少租一辆,且有15个座位空位.(1)请问这次参加秋游的人数是多少?(2)已知租用45座的客车费用为每辆550元,租用60座的客车费用为每辆600元,请问单独租用哪种客车更合算?24.在数轴上点A表示的数是4,点B位于点A的左侧,与点A的距离是10个单位长度.(1)点B表示的数是_______.(2)动点P从点B出发,沿着数轴的正方向以每秒3个单位长度的速度运动.经过多少秒点P与点A的距离是2个单位长度?(3)在(2)的条件下,点P出发的同时,点Q也从点A出发,沿着数轴的负方向,以1个单位每秒的速度运动.经过多少秒,点Q到点B的距离是点P到点A的距离的2倍?参考答案:1.D2.C3.C4.C5.C6.A7.C8.D9.13-10.2511.2048-12.1x y =-13.12k ≠-14.415.8.5米16.017.(1)6x =- (2)12y =18.(1)24-(2)519.这种商品进价为5000元20.甲还要4个小时后可完成任务.21.(1)应付12.5元(2)9km22.(1)30.8元(2)20立方米23.(1)225(2)租用60座的客车更合算些24.(1)6(2)经过83秒或4秒点P与点A的距离是2个单位长度(3)经过2秒或307秒,点Q到点B的距离是点P到点A的距离的2倍。

人教版七年级数学上册《第3章 一元一次方程》单元测试题(有答案)

人教版七年级数学上册《第3章 一元一次方程》单元测试题(有答案)

人教版七年级数学上册第3章一元一次方程单元测试题一.选择题(共10小题)1.在①2x+1;②1+7=15﹣8+1;③;④x+2y=3中,方程共有()A.1个B.2个C.3个D.4个2.下列方程中,是一元一次方程的是()A.=3 B.x2+1=5 C.x+2y=3 D.x=03.x=2满足下列方程的是()A.x2=2 B.x2=4 C.x2=8 D.x2=164.x=a是关于x的方程2a+3x=﹣5的解,则a的值是()A.﹣1 B.1 C.﹣5 D.55.方程3x+7=x﹣1的解是()A.x=3 B.x=C.x=﹣4 D.x=﹣6.下列等式变形,正确的是()A.如果x=y,那么=B.如果ax=ay,那么x=yC.如果S=ab,那么a=D.如果x=y,那么|x﹣3|=|3﹣y|7.对方程=﹣1﹣进行去分母,正确的是()A.4(7x﹣5)=﹣1﹣3(5x﹣1)B.3(7x﹣5)=﹣12﹣4(5x﹣1)C.4(7x﹣5)=﹣12+3(5x﹣1)D.4(7x﹣5)=﹣12﹣3(5x﹣1)8.某电视台组织知识竞赛,共设有20道选择题,各题分值相同,每题必答.下表记录了3个参赛者的得分情况,如果参赛者F得76分,则他答对的题数为()A.16题B.17题C.18题D.19题9.为迎军运会,武汉市对城区主干道进行绿化,计划把某一段公路的两侧全部栽上银杏树,要求每两棵树的间隔相等,并且路的每一侧的两端都各栽一棵,如果每隔4米栽一棵,则还差102棵;如果每隔5米栽一棵,则多出102棵,设公路长x米,有y棵树,则下列方程中:①2(+1)﹣102=2(+1)+102;②﹣102=+102;③4(﹣1)=5(﹣1);④4(﹣1)=5(﹣1)其中正确的是()A.①③B.②③C.①④D.①10.某商品进价200元,标价300元,打n折(十分之n)销售时利润率是5%,则n的值是()A.5 B.6 C.7 D.8二.填空题(共8小题)11.方程x=﹣1是关于x的一元一次方程mx﹣10=0的解,则m=.12.有一批树苗.若每人种10棵,则余下6棵;若每人种12棵则缺6棵.参与种树的人数是.13.已知:x﹣4与2x+1互为相反数.则:x=.14.当x=时,式子x﹣和7﹣的值相等.15.某商店在某时刻以每件60元的价格卖出一件衣服,盈利25%,则这件衣服的进价是.16.父亲和女儿的年龄之和是54,当父亲的年龄是女儿现在年龄的3倍时,女儿的年龄正好是父亲现在年龄的,则女儿现在的年龄是.17.甲乙两城市相距400千米,摩托车与轿车分别从甲乙两城市同时出发,相向而行.已知摩托车每小时行35千米,轿车每小时行65千米,两车相遇时距甲城市千米.18.汽车以15米/秒的速度在一条笔直的公路上匀速行驶,开向寂静的山谷,司机按一下喇叭,2秒后听到回响,问按喇叭时汽车离山谷多远?已知空气中声音传播速度为340米/秒,设按喇叭时,汽车离山谷x米,根据题意列方程为.三.解答题(共8小题)19.解方程:①2﹣(4﹣x)=6x﹣2(x+1)②﹣1=20.小莹在解关于x的方程5a+x=13时,误将+x看作﹣x,得方程的解为x=﹣2,求原方程的解为多少?21.我们定义一种新运算:a*b=2a+ab(等号右边为统筹意义的运算):(1)若,求x的值;(2)若(﹣3)*(2*x)=x+24,求x的值.22.【概念学习】:若a+b=2,则称a与b是关于1的平衡数;【初步探究】:(1)5与是关于1的平衡数,与﹣1是关于1的平衡数;灵活运用:(2)若m=﹣3x2+2x﹣6,n=5x2﹣2(x2+x﹣4),试判断m,n是不是关于1的平衡数?并说明理由.23.一般情况下+=不成立,但有些数可以使得它成立,例如m=n=0.我们称使得+=成立的一对数m,n为“相伴数对”,记为(m,n).(1)试说明(1,﹣4)是相伴数对;(2)若(x,4)是相伴数对,求x的值.24.一个旅游团共26人去参观一个景点,已知成人票每张120元,儿童票每张80元,经预算,共需要门票钱2640元.(1)求这个旅游团成人和儿童的数量各是多少人?(2)到了售票窗口得知,购买两张成人票将会赠送一张儿童票,请计算共需门票钱多少元?25.某市区自2019年1月起,居民生活用水开始实行阶梯式计量水价,该阶梯式计量水价分为三级(如下表所示):例:某用户的月用水量为32吨,按三级计量应缴交水费为:1.6×20+2.4×10+3.2×2=62.4(元)(1)如果甲用户的月用水量为12吨,则甲需缴交的水费为元;(2)如果乙用户缴交的水费为39.2元,则乙月用水量吨;(3)如果丙用户的月用水量为a吨,则丙用户该月应缴交水费多少元?(用含a的代数式表示,并化简)26.已知点M、N在数轴上,点M对应的数是﹣3,点N在点M的右边,且距点M4个单位长度.(1)直接写出点N所对应的有理数;(2)点P是数轴上一动点,请直接写出点P到点M和点N的距离和的最小值;(3)若点P到点M、N的距离之和是6个单位长度:①求点P所对应的有理数是多少?②如果点Q从点N出发,沿数轴正方向以每秒1个单位长度的速度运动,同时点P以每秒3个单位长度的速度沿数轴正方向运动,t秒后P、Q两点相距4个单位长度,求t.参考答案与试题解析一.选择题(共10小题)1.解:(1)2x+1,含未知数但不是等式,所以不是方程.(2)1+7=15﹣8+1,是等式但不含未知数,所以不是方程.(3),是含有未知数的等式,所以是方程.(4)x+2y=3,是含有未知数的等式,所以是方程.故有所有式子中有2个是方程.故选:B.2.解:A、是分式方程,故A错误;B、是一元二次方程,故B错误;C、是二元一次方程,故C错误;D、是一元一次方程,故D正确;故选:D.3.解:A、当x=2时,左边=4≠右边,即x=2不满足该方程,故本选项不符合题意.B、当x=2时,左边=4=右边,即x=2满足该方程,故本选项符合题意.C、当x=2时,左边=4≠右边,即x=2不满足该方程,故本选项不符合题意.D、当x=2时,左边=4≠右边,即x=2不满足该方程,故本选项不符合题意.故选:B.4.解:把x=a代入方程,得2a+3a=﹣5,所以5a=﹣5解得a=﹣1故选:A.5.解:3x+7=x﹣1,3x﹣x=﹣1﹣7,2x=﹣8,x=﹣4,故选:C.6.解:A、a=0时,两边都除以a2,无意义,故A错误;B、a=0时,两边都除以a,无意义,故B错误;C、b=0时,两边都除以b,无意义,故C错误;D、如果x=y,那么x﹣3=y﹣3,所以|x﹣3|=|3﹣y|,故D正确;故选:D.7.解:方程=﹣1﹣进行去分母得:4(7x﹣5)=﹣12﹣3(5x﹣1),故选:D.8.解:答对一题得100÷20=5(分),答错一题得94﹣5×19=﹣1(分).设参赛者F答对了x道题目,则答错了(20﹣x)道题目,依题意,得:5x﹣(20﹣x)=76,解得:x=16.故选:A.9.解:设公路长x米,有y棵树,根据题意,得①2(+1)﹣102=2(+1)+102,③4(﹣1)=5(﹣1);故选:A.10.解:商品是按标价的n折销售的,根据题意列方程得:(300×0.1n﹣200)÷200=0.05,解得:n=7.则此商品是按标价的7折销售的.故选:C.二.填空题(共8小题)11.解:把x=﹣1代入方程mx﹣10=0得:﹣m﹣10=0,解得:m=﹣10,故答案为:﹣10.12.解:设参与种树的人数为x,∴10x+6=12x﹣6,∴x=6,故答案为:613.解:根据题意得:x﹣4+2x+1=0,移项合并得:3x=3,故答案为:114.解:根据题意得:x﹣=7﹣,去分母得:15x﹣5(x﹣1)=105﹣3(x+3),去括号得:15x﹣5x+5=105﹣3x﹣9,移项得:15x﹣5x+3x=105﹣9﹣5,合并同类项得:13x=91,把x的系数化为1得:x=7,故答案为:7.15.解:设这件衣服的进价为x元,由题意得,x+25%x=60解得x=48,故答案为:48.16.解:设女儿现在年龄是x岁,则父亲现在的年龄是(54﹣x)岁,根据题意得:54﹣x﹣x=3x﹣(54﹣x),解得:x=12.答:女儿现在的年龄是12岁.故答案为:12.17.解:设两车经过x小时相遇,由题意得,35x+65x=400,解得x=4,∴两车相遇时距甲城市的距离为35×4=140(千米),故答案为:140.18.解:设按喇叭时,汽车离山谷x米,根据题意列方程为 2x﹣2×15=340×2.故答案为:2x﹣2×15=340×2.三.解答题(共8小题)19.解:①去括号得:2﹣4+x=6x﹣2x﹣2,移项合并得:﹣3x=0,②去分母得:3x+3﹣12=4x﹣2,移项合并得:﹣x=7,解得:x=﹣7.20.解:把x=﹣2代入方程5a﹣x=13,得:5a+2=13,解得:a=,即原方程为11+x=13,解得:x=2,原方程的解为x=2.21.解:(1)3*x=2×3+3x=6+3x*x=2×+x=1+x,∴6+3x=1+x,∴x=2;(2)∵2*x=2×2+2x=4+2x,∴﹣3*(2*x)=2(﹣3)+(﹣3)(4+2x)=﹣6﹣12﹣6x=﹣18﹣6x,∴﹣18﹣6x=x+24,∴x=﹣622.解:(1)∵a+b=2,∴5与﹣3是关于1的平衡数,3与﹣1是关于1的平衡数.故答案为:﹣3,3.(2)m与n是关于1的平衡数,理由如下:∵m+n=(﹣3x2+2x﹣6)+[5x2﹣2(x2+x﹣4)]=﹣3x2+2x﹣6+5x2﹣2x2﹣2x+8=2.∴a与b是关于1的平衡数.23.解:(1)由题意可知:m=1,n=﹣4,∴+=,=,∴(1,﹣4)是相伴数对;(2)由题意可知: +=,解得:x=﹣224.解:(1)设旅游团成人的数量是x人,则儿童的数量是(26﹣x)人,由题意得:120x+80(26﹣x)=2640解得x=1426﹣x=26﹣14=12答:这个旅游团成人的数量是14人,儿童的数量是12人;(2)2640﹣14÷2×80=2080(元)答:共需门票2080元.25.解:(1)甲用户的月用水量为12吨,则甲需缴交的水费为12×1.6=19.2元;答:甲需缴交的水费为12×1.6=19.2元(2)设用水量为x吨,当20<x≤30时,如果乙用户缴交的水费为39.2元,∴1.6×20+2.4(x﹣20)=39.2,∴x=23答:乙月用水量23吨;(3)①当0<a≤20时,丙应缴交水费=1.6a(元);②当20<a≤30时,丙应缴交水费=1.6×20+2.4(a﹣20)=2.4a﹣16(元);③当a>30时,丙应缴交水费=1.6×20+2.4×10+3.2×(a﹣30)=3.2a﹣40(元).26.解:(1)﹣3+4=1.故点N所对应的数是1;(2)当点P在点M和点N之间时,点P到点M和点N的距离和的最小,最小值为PM+PN=4.(3)①设P点表示的数是x,(a)当点P在点M的左边,∵PM+PN=6,∴1﹣x﹣3﹣x=6,解得x=﹣4,∴点P表示的数是﹣4,(b)当点P在点N的右边,同理可得x﹣1+x+3=6,解得x=2,∴点P表示的数是2,综合以上可得点P表示的数是2或﹣4;(3)点P、Q同时出发向右运动,设运动时间为t秒,当P对应的数是2时,∵点P运动速度大于点Q的运动速度,∴只存在一种情况,∴2﹣1+3t=t+4,解得t=,故分为两种情况讨论:当P对应的数是﹣4时,(a)未追上时:(5+t)﹣3t=4,解得:t=;(b)追上且超过时:3t﹣(5+t)=4,解得:t=.答:经过秒或秒或秒后,P、Q两点相距4个单位长度.。

第3章 实数 浙教版数学七年级上册单元综合测试卷(含答案)

第3章 实数 浙教版数学七年级上册单元综合测试卷(含答案)

第3 章综合测试卷 实数班级学号得分姓名一、选择题(本大题有10 小题,每小题3分,共30分)1.数轴上的点表示的一定是()A. 整数B. 有理数C. 无理数D. 实数2.下列各式正确的是()A .16=±4B .3―27=―3C .―9=―3D .2519=5133.下列说法正确的是()A. 无限小数都是无理数 B .―1125没有立方根C. 正数的两个平方根互为相反数D. -(-13)没有平方根4. 已知一个数的立方根是―12,那么这个数是()A .―32B 14 c 18D .―185.81的平方根是()A. ±3B. 3C. ±9D. 96.如图,数轴上点P 表示的数可能是()A 7B .―7C. —3.2 D .―107.如果一个实数的算术平方根等于它的立方根,那么满足条件的实数有()A. 0个B. 1个C. 2个D. 3个8.|6―3|+|2―6|的值为()A. 5 B .5―26 C. 1 D .26―19. 若a 2=9,3b =―2,则a+b=()A. -5B. —11C. -5或-11D. ±5或±1110. 如图,面积为5 的正方形 ABCD 的顶点A 在数轴上,且表示的数为1,若 AD=AE ,则数轴上点 E 所表示的数为()A .―5B .1―5C .―1―52D .32―5二、填空题(本大题有6 小题,每小题4分,共24分)11.1―6的相反数是,绝对值是.12. x +3=2,那么(x +3)²=.13. 已知m 与n 互为相反数,c 与d 互为倒数,a 是5的整数部分,则cd+2(m +n)—a 的值是.14. 如图,数轴上的点A 和点B 之间的整数点表示的数分别为.15. 如图所示,化简|a ―3|―|b +3|的结果是.16. 有四个实数分别是||―3|,π2,9,4π,请你计算其中有理数的和与无理数的积的差,其计算结果是.三、解答题(本大题有8小题,共66分)17.(6分)计算.(1)2+32―52;(2)|2―3|+2(3―1);(3)16―9+3―27.18. (6分)把下列各数分别填在相应的括号内.―12,0,0.16,312,3,―235,π3,16,―22,―3.14.有理数:{};无理数:{};负实数:{}.19.(6分)如图,一只蚂蚁从点 A 沿数轴向右爬行2个单位长度到达点 B,再爬行到C点停止.已知点 A 表示―2,点 C 表示 2,设点 B 所表示的数为m.(1)求m的值;(2)求 BC的长.20.(8分)一段圆钢,长2分米,体积为10π立方分米,已知1立方分米钢的质量是7.8千克,那么这段圆钢横截面的半径是多少分米? 这段圆钢重多少千克(保留π)?21.(8分)已知实数a,b,c在数轴上对应点的位置如图所示,a2―|a+b|+(c―a)2+|b―c|.22. (10分)大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,但是由于1<2<2,所以2的整数部分为1,将2减去其整数部分1,所得的差2―1就是其小数部分.根据以上内容,解答下面的问题:(1)5的整数部分是,小数部分是;(2)1+2的整数部分是,小数部分是;(3)若设2+3的整数部分是x,小数部分是y,求x―3y的值.23. (10分)如图是4×4的方格图,每个小正方形的边长都为1,利用这个4×4的方格图作出面积为5的正方形,然后在数轴上表示实数5和―5.24. (12分)先填写下表,观察后再回答问题.a0.0000010.00010.011100100001000000(1)被开方数a的小数点位置移动和它的算术平方根的小数点位置移动有无规律? 若有规律,请写出它的移动规律;(2)已知:a=1800,― 3.24=―1.8,你能求出a的值吗?第3 章综合测试卷实数1. D 2. B 3. C 4. D 5. A 6. B 7. C8. C 解析:原式=3―6+6―2=1.故选 C.9. C 10. B11.6—16—1 12. 16 13. -1 14. -1,0,1,15. -a-b 16. 4 17. 解:(1)原式=(1+3―5)2=―2.(2)原式=2-3+23―2=3.(3)原式:=4-3-3=-2.18.―12,0,0.16,312,16,―3.143,―235,π3,―22―12,―235,―22,―3.1419. 解:(1)m―2=―2,m=2―2. (2)BC=|2-(2-2)|=|2―2+2|=2.20. 解:设这段圆钢半径为r分米,则2πr²=10π,r²=5,r=5(分米),10π×7.8=78π(千克).21. 解:由题图,得c<b<0<a,且|a|=|b|,则a+b=0,c-a<0,b-c>0,故原式=a-0+a-c+b-c=2a+b-2c.22. 解:(1)25―2解析:∵2<5<3,:5的整数部分是2,小数部分是5―2.(2)22―1解析:∵1<2<2,∴2<1+2<3.∴1+2的整数部分是2,小数部分若1+2―2= 2―1.(3)∵1<3<2,∴3<2+3<4.∴x=3,y=2+3―3=3―1.∴x―3y=3―3(3―1)=3.23. 解:面积为5的正方形如图所示(所画图形合理即可).这个正方形的边长为5,,可用圆规截得长5的线段,找到表示5和―5的点,并画到数轴上(如图).24. 解:依次填:0.0010.01 0.1 1 10 100 1000(1)有规律,当被开方数的小数点每向左(或向右)移动2位时,算术平方根的小数点向左(或向右)移动 1 位.(2)观察1.8和1800,小数点向右移动了3位,则a 的值为3.24的小数点向右移动6位后的数,即a=3240000.。

七年级数学上册《第三章代数式》单元测试卷及答案

七年级数学上册《第三章代数式》单元测试卷及答案

七年级数学上册《第三章代数式》单元测试卷及答案学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列各式符合代数式书写规范的是( )A .a bB .1a -C .2y x ÷D .3123xy 2.a 是一个两位数,b 是一个三位数,如果把b 放在a 的左边组成一个五位数,这个五位数是( ) A .ba B .b a + C .100b a + D .1000b a +3.一个矩形的周长为30,若矩形的一边长用字母x 表示,则此矩形的面积为( )A .(15)x x -B .(30)x x -C .(302)x x -D .(15)x x +4.c 是a 的16,c 是b 的18,那么a 与b 的比是( ) A .11:68 B .4:3 C .3:4 D .5:75.已知5m +和52n -互为相反数,则2m n +的值为( ) A .5- B .52- C .52 D .06.已知关于y 的多项式237n y y -+与3245my y +-的次数相同,那么25n -的值是( )A .80B .80-C .80-或54-D .45-或20- 7.如果()32a =--,()33b =-和223c ⎛⎫=- ⎪⎝⎭,那么a bc +的值为( ) A .4- B .4C .20D .20-8.如图,将第1个图中的正方形剪开得到第2个图,第2个图中共有4个正方形;将第2个图中一个正方形剪开得到第3个图,第3个图中共有7个正方形;将第3个图中一个正方形剪开得到第4个图,第4个图中共有10个正方形……如此下去,则第2024个图中共有正方形的个数为( )A .2024B .2022C .6069D .60709.某学校楼阶梯教室,第一排有m 个座位,后面每一排都比前面一排多2个座位,则第n 排座位数是( ) A .2m + B .2(1)m n +- C .2(1)n m +- D .2m n +10.根据图中数字的列规律,在第⑥个图中,a b c --的值是( )A .190-B .66-C .62D .34-二、填空题11.a 的15%减去70可以表示为 .12.某淘宝网店去年的营业额为m 万元,今年比去年增加15%,今年的营业额是 万元. 13.从大拇指开始,按照大拇指→食指→中指→无名指→小指→无名指→中指→食指→大拇指→食指……的顺序,依次数整数1,2,3,4,5,6,7,……当数到2022时,对应的手指为 ;当第n 次数到食指时,数到的数是 (用含n 的代数式表示).14.已知||5a =,||3b =且||a b b a -=-,则a b += .15.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是40km/h ,水流速度是km/h a ,则2h 后两船相距 千米.三、解答题16.下列表述中,字母各表示什么?(1)正方形的周长为4a ;(2)买单价为5元的毛巾,花了5a 元钱;(3)某班女生比男生多1人,女生共有(x +1)人.17.已知:()21102a b -++=,c 是最小的自然数,d 是最大负整数. (1)求a ,b ,c ,d 的值:(2)试求代数式()()328b a c d -+-的值.18.渠县同心百货、繁鑫文印两家惠民文具商店出售同样的毛笔和宣纸,毛笔每支20元,宣纸每张4元.为促销,同心百货商店推出的优惠方案是:买1支毛笔送2张宜纸,繁鑫文印商店的优惠方案是:按总价的九折优惠.小丽同学想购买5支毛笔,x 张宜纸()10x ≥.(1)用含x 的代数式填空:①若到同心百货商店购买,应付_______元;①若到繁鑫文印商店购买,应付______元;(2)若小丽同学要买50张宣纸,选择哪家文具商店购买更划算?请说明理由.若购买200张呢? 19.点A ,B 在数轴上的位置如图所示,其对应的数分别是a 和b .(1)把,,,a b a b -这四个数用“<”连接起来: ;(2)用“>”或“<”填空:a b +______0,a b -______0;(3)化简:a b a b +--= ;(4)若3,4,2a b c d ==、互为相反数,m n 、互为倒数,求()22023c d mn a b +-++的值.20.111111111111,,,122232334344545=-=-=-=-=⨯⨯⨯⨯(1)第5个式子是_______;第n 个式子是_______.(2)从计算结果中找规律,利用规律计算:111111223344520202021+++++=⨯⨯⨯⨯⨯_______; (3)计算:(由此拓展写出具体过程): ①111113355799101++++⨯⨯⨯⨯; ①1111126129900-----. 21.学校需要到印刷厂印刷x 份材料,甲印刷厂提出:每份材料收0.2元印刷费,另收400元制版费;乙印刷厂提出:每份材料收0.4元印刷费,不收制版费.(1)两印刷厂的收费各是多少元?(用含x 的代数式表示)(2)学校要印刷2400份材料,不考虑其他因素,选择哪家印刷厂比较合算?试说明理由.22.如图是一组有规律的图案,它们是由边长相等的等边三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形…照此规律摆下去:(1)照此规律,摆成第5个图案需要_____________个三角形;(2)照此规律,摆成第n 个图案需要_____________个三角形(用含n 的代数式表示);(3)照此规律,摆成第2021个图案需要几个三角形?23.若干个1与1-排成一行:1,1,1,1,1,1,1,1,1,------规则是:先写一行1,再在第k 个1与第1k +个1之间插入k 个()11,2,3,k -=.(1)第2012个数是1还是1-?(2)前2012个数的和是多少?参考答案1.A【分析】本题考查了代数式.根据书写规则,数字应在字母前面,分数不能为假分数,不能出现除号,对各项的代数式进行判定,即可求出答案.【详解】解:A 、a b书写形式正确,故本选项符合题意; B 、正确书写形式为a -,故本选项不符合题意;C 、正确书写形式为2y x个,故本选项不符合题意; D 、正确书写形式为373xy ,故本选项不符合题意. 故选:A .2.C【分析】本题考查列代数式,由题意得,把新的五位数中b 扩大100倍,即可求解.【详解】解:由题意得,这个五位数是100b a +故选:C .3.A【分析】根据已知表示出矩形的另一边长,进而利用矩形面积求法得出答案.此题主要考查了列代数式,根据题意表示出矩形的另一边长是解题关键.【详解】解:一个矩形的周长为30,矩形的一边长为x∴矩形另一边长为:15x -故此矩形的面积为:(15)x x -.故选:A .4.C【分析】本题考查了比的代数式表示式,根据题意将a 与b 转化为c 的倍数,相比即可解题.【详解】解:c 是a 的16,c 是b 的18 6a c ∴= 8b c =:6:83:4a b c c ∴==故选:C .5.D【分析】本题主要考查了绝对值的非负性、相反数的定义、代数式求值等知识点,根据绝对值的非负性和相反数的定义求出m 与n 的值成为解题的关键.根据绝对值的非负性和相反数的定义求出m 与n 的值,再代入2m n +计算即可.【详解】解:①5m +和52n -互为相反数 ①5025m n ++-= 又①50m +≥502n -≥ ①50m += 502n -= ①552m n =-=, ①2550m n +=-+=故选:D .6.D【分析】本题考查多项式的次数,多项式的每一项都有次数,其中次数最高的项的次数,就是这个多项式的次数,分0m =与0m ≠两种情况,根据两个多项式的次数相同,求出n 的值,代入求解即可. 【详解】解:当0m =时3224545my y y +-=-,次数为2;当0m ≠时3245my y +-次数为3;多项式237n y y -+的次数为n多项式237n y y -+与3245my y +-的次数相同∴当0m =时 2n = 2255220n -=-⨯=-当0m ≠时 3n = 2255345n -=-⨯=-∴25n -的值是45-或20-.故选D .7.A【分析】本题考查有理数的乘方,有理数的混合运算,求代数式的值,分别求出a 、b 、c 并代入a bc +计算即可.掌握相应的运算法则是解题的关键.【详解】解:①()328a =--=()3327b =-=-①()827481249a bc ⨯=-+=+=-- ①a bc +的值为4-.故选:A .8.D 【分析】本题主要考查图形规律,由前4个图形总结得到第n 的图形的规律,即可得到第2024个图形含有的正方形数量.【详解】解:第1个图中有正方形1个第2个图中有正方形413=+个第3个图中有正方形7123=+⨯个第4个图中有正方形10133=+⨯个所以第n 个图中有正方形13(1)(32)n n +-=-个.当2024n =时,图中有3 2 02426070⨯-=个正方形.故选:D .9.B【分析】本题主要考查了列代数式,理解题意是解题的关键.根据题意列出代数式即可.【详解】解:由题意可知,第一排有m 个座位第二排有(21)m +⨯个座位第三排有(22)m +⨯个座位第四排有(23)m +⨯个座位...故第n 排座位数是2(1)m n +-故选B .10.D【分析】本题考查了图形中有关数字的变化规律,通过观察图形,得到()1?2n n a =- ()1?22nn b =-+ ()11?22n n c =⨯- 把6n =代入求出a b c 、、的值,再把a b c 、、的值代入到a b c --计算即可求解,仔细观察图形找到规律是解题的关键.【详解】解:通过观察可得规律:左边三角形上的数字 ()1?2n n a =- 右边三角形上的数字()1?22n n b =-+ 下面三角形上的数字()11?22n n c =⨯- ①当6n =时()661?264a =-= 64266b =+= 164322c =⨯= ①64663234a b c --=--=-故选:D .11.0.1570a -/15%70a -【分析】由已知,先列出a 的15%为0.15a ,再表示它减70即可.【详解】解:a 的15%为0.15a ,再减70则表示为0.1570a -.故答案为:0.1570a -.【点睛】此题是考查学生列代数式为题.值得注意的是a 的15%应列为0.15a ,要求规范列代数式. 12.1.15m【分析】本题考查了列代数式,根据今年的营业额()115%=+⨯去年的营业额列式求解即可.【详解】解:根据题意,得:今年的营业额是()115% 1.15m m +=故答案为:1.15m .13. 无名指 ()812n -+或()818n -+【分析】本题考查规律型数字的变化类问题,解题的关键是从一般到特殊探究规律、发现规律、利用规律解决问题,属于中考常考题型.先探究规律,发现规律后利用规律即可解决问题.【详解】解:如题意可知,八次为一个循环体重复出现202282526÷=⋯⋯当数到2022时,对应的手指与第6次对应的一样为:无名指;第一个循环体出现食指时,数到的数是:()8112-+ ()8118-+;第二个循环体出现食指时,数到的数是:()8212-+ ()8218-+;第三个循环体出现食指时,数到的数是:()8312-+ ()8318-+;⋯当第n 次数到食指时,数到的数是()812n -+ ()818n -+故答案为:无名指,()812n -+或()818n -+.14.8-或2-/−2或−8【分析】本题考查代数式求值,绝对值的意义,根据绝对值的意义,得到0a b -<,进而求出,a b 的值,再代入代数式计算即可.【详解】解:①||5a = ||3b =①5,3a b ①||a b b a -=-①0a b -<①5,3a b =-=±①538a b +=--=-或532a b +=-+=-;故答案为:8-或2-.15.160【分析】本题主要考查列代数式,根据:2h 后甲、乙间的距离=甲船行驶的路程+乙船行驶的路程即可得,掌握船顺流航行时的速度与逆流航行的速度公式是解题的关键.【详解】解:解:2h 后两船间的距离为:2(40)2(40)160a a ++-=千米;故答案为:16016.(1)a 表示正方形的边长(2)a 表示毛巾的数量(3)x 表示男生的人数【分析】(1)根据正方形的周长=边长×4即可得出答案;(2)根据总价=单价×数量即可得出答案;(3)根据女生比男生多1人即可得出答案.【详解】(1)解:根据题意可得,a 表示正方形的边长;(2)解:根据题意可得,a 表示毛巾的数量;(3)解:根据题意可得,x 表示男生的人数.【点睛】本题考查了代数式,熟练掌握各代数式的意义是解题的关键.17.(1)11,2a b ==- 0,1c d ==- (2)8-【分析】本题考查了非负数的性质和求代数式的值,解题关键是根据题意求出字母的值.(1)根据非负数的性质及有理数相关概念求出a 、b 、c 、d 的值即可;(2)将求出的a 、b 、c 、d 的值代入代数式求值即可.【详解】(1)解:21102a b 110,02a b 11,2a b c 是最小的自然数,d 是最大负整数0,1c d ;(2)解:11,2a b0,1c d ==- 328b a c d 32181012 18118 9818918=-.18.(1)()460x + ()3.690x +(2)若小丽同学要买50张宣纸,选择同心商店购买更划算;若小丽同学要买50张宣纸,选择繁鑫文印商店购买更划算,理由见解析:【分析】(1)根据所给的两个商店的优惠标准列式求解即可;(2)根据(1)所求分别代入50x =,200x =求出两个商店的费用即可得到答案.【详解】(1)解:由题意得,若到同心百货商店购买,应付()()520410460x x ⨯+-=+元;若到繁鑫文印商店购买,应付()()95204 3.69010x x ⨯+⨯=+ 故答案为:()460x + ()3.690x +;(2)解:若小丽同学要买50张宣纸,选择同心商店购买更划算;若小丽同学要买200张宣纸,选择繁鑫文印商店购买更划算,理由如下:当50x =时46045060260x +=⨯+= 3.690 3.65090270x +=⨯+=①260270<①若小丽同学要买50张宣纸,选择同心商店购买更划算;当200x =时460420060860x +=⨯+= 3.690 3.620090810x +=⨯+=①810860<①若小丽同学要买200张宣纸,选择繁鑫文印商店购买更划算.【点睛】本题主要考查了列代数式和代数式求值,正确理解题意是解题的关键.19.(1)b a a b <-<<(2)<,>(3)2a - (4)214【分析】(1)由数轴可知3,3,03,3,30b b a a a -<<<-<-<,即可解答;(2)由数轴可知3,3,03,b b a a b -<<<,进而完成解答;(3)先利用(2)的结论去绝对值,然后再运算即可;(4)由数轴可知0,0b a <>从而确定a 、b 的值,再根据相反数、倒数的性质代入计算即可.【详解】(1)解:由数轴可知3,3,03,3,30b b a a a -<<<-<-<,即b a a b <-<<. 故答案为:b a a b <-<<.(2)解:由数轴可得:3,3,03,b b a a b -<<<,则0a b 0a b -.故答案为:<,>(3)解:①0a b 0a b -①()()2a b a b a b a b a b a b a +--=-+--=---+=-.故答案为:2a -.(4)解:由数轴可知0,0b a <>①3,4,2a b c d ==、互为相反数,m n 、互为倒数 ①3,4,0,12a b c d mn ==-+== ①()22203525211411202320232244c d mn a b +⎛⎫⎛⎫-++=-+-=-+-=-+= ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题主要考查了数轴、去绝对值、相反数、倒数代数式求值等知识点,掌握数轴的应用成为解题的关键.20.(1)1115656=-⨯;()111n n 1n n 1=-++ (2)20202021(3)①50101;①1100【分析】此题主要考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.(1)观察一系列等式得到一般性规律,写出第5个式子与第n 个式子即可;(2)原式利用得出的规律化简,计算即可得到结果;(3)①原式变形为9139111111123501⎛⎫-+-+⋯+- ⎪⎝⎭,利用得出的规律化简,计算即可得到结果; ①原式变形为1223349910011111-----⨯⨯⨯⨯,利用得出的规律化简,计算即可得到结果. 【详解】(1)解:①111122=-⨯ 1112323=-⨯ 1113434=-⨯ 1114545=-⨯ ①第5个式子是:1115656=-⨯; 第n 个式子是()111n n 1n n 1=-++; 故答案为:1115656=-⨯ ()111n n 1n n 1=-++; (2)解:111111223344520202021+++++⨯⨯⨯⨯⨯ 111111112233420202021⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+⋯+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭111111112233420202021=-+-+-+⋯+-112021=- 20202021=; (3)解:①111113355799101++++⨯⨯⨯⨯ 1111111233599101⎛⎫=-+-+⋯+- ⎪⎝⎭ 1112101⎛⎫=- ⎪⎝⎭50101=. ①1111126129900----- 0111122334911190=⨯---⨯-⨯-⨯ 1112233499101110⎛⎫=⎪++- ⨯⨯++⨯⨯⎝⎭ 1111111122334199100⎛⎫=⎪-+-+-++-- ⎝⎭ 111100⎛⎫=-- ⎪⎝⎭111100=-+1100=. 21.(1)甲:()0.2400x +元,乙:0.4x 元(2)选择甲印刷厂比较合算,见解析【分析】本题考查了列代数式、求代数式的值,理解题意,正确列出代数式是解此题的关键. (1)根据甲、乙两厂的收费方式列出代数式即可;(2)把2400x =代入(1)中所求的代数式,分别计算出甲、乙两厂的费用,比较即可得出答案.【详解】(1)解:由题意得:甲印刷厂的收费为:()0.2400x +元乙印刷厂的收费为:0.4x 元;(2)解:当2400x =时甲印刷厂的收费为:0.24000.22400400880x +=⨯+=(元).乙印刷厂的收费为:0.40.42400960x =⨯=(元)因为880960<所以选择甲印刷厂比较合算.22.(1)16(2)31n +(3)6064【分析】本题考查了规律型:图形的变化类以及列代数式,根据各图案所需三角形个数的变化,找出变化规律“31n a n =+”是解题的关键.(1)根据前4个图案所需三角形的个数,可得出每个图案所需三角形的个数比前一个图形多3个,再结合4a 的值即可求出5a 的值;(2)由(1)的结论“每个图案所需三角形的个数比前一个图形多3个”,可得出21324311()()()()31n n n a a a a a a a a a a n -=-+-+-+⋯+-+=+;(3)代入2021n =即可求出结论.【详解】(1)解:设摆成第n (n 为正整数)个图案需要n a 个三角形.①1234471013a a a a ====,,,①2132433a a a a a a -=-=-=①54316a a =+=.故答案为:16;(2)解:由(1)可知:21324311()()()()31n n n a a a a a a a a a a n -=-+-+-+⋯+-+=+.故答案为:31n +;(3)解:当2021n =时20213202116064a =⨯+=①摆成第2021个图案需要6064个三角形.23.(1)第2012个数为1-.(2)1888-【分析】本题主要考查了数字规律,理解并应用数字规律是解题的关键.(1)根据规则可知第1k -行共有数字个数为()()()21111122k k k k k +--++-=-,由于62k =时,数字个数为1953个,63k =时,数字个数为2016个,从而得出第2012个数;(2)由(1)可知2012个数在62行,则共有62个1,其余均为1-,然后据此求和即可.【详解】(1)解:排列规律如下:1行:1,1-2行:1,1,1--3行:1,1,1,1---………k 行①到第1k -行共有数字个数为()212341122k k k k k +++++⋯+=-=- 由于62k =时219532k k +=,63k =时220162k k +=. ①第2012个数为1-.(2)解:设前2012个数的和为S由(1)可得:2012个数在62行,则共有62个1,其余均为1-.则()()62112012621888S =⨯+-⨯-=-.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学上册第三章单元测试题及答案
TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】
第三章《字母表示数》
单元测试卷
班级 姓名 学号 得分
温馨提示:亲爱的同学们,经过这段时间的学习,相信你已经拥有了许多代数式的知识财富!下面这套试卷是为了展示你在本章的学习效果而设计的,只要你仔细审题,认真作答,遇到困难时不要轻易言弃,就一定会有出色的表现!一定要沉着应战,细心答题哦!本试卷共120分,用100分钟完成,制卷人:周杰
一、耐心填一填:(每题3分,共30分)
1、32x y 5
-的系数是
2、当x= __________时,
的值为自然数;
3
12
-x 3、a 是13的倒数,b 是最小的质数,则21
a b
-= 。

4、三角形的面积为S ,底为a ,则高h= __________
5、去括号:-2a 2 - [3a 3 - (a - 2)] = __________
6、若-7x m+2y 与-3x 3y n 是同类项,则m n +=
7、化简:3(4x -2)-3(-1+8x )=
8、y 与10的积的平方,用代数式表示为________
9、当x=3时,代数式
________1
3
2的值是--x x 10、当x=________时,|x|=16;当y=________时,y 2=16;
二、精心选一选:(每小题3分,共30分.请将你的选择答案填在下表中.)
1、 a 的2倍与b 的3
1的差的平方,用代数式表示应为( )
A 22
312b a - B b a 3122- C 2
312⎪⎭⎫ ⎝⎛-b a D 2
312⎪⎭

⎝⎛-b a
2、下列说法中错误的( )
A x 与y 平方的差是x 2-y 2
B x 加上y 除以x 的商是x+
x
y C x 减去y 的2倍所得的差是x-2y D x 与y 和的平方的2倍是2(x+y)2
3、已知2x 6y 2和321
,9m - 5mn -173m n x y -是同类项则的值是 ( )
A -1
B -2
C -3
D -4
4、已知a=3b, c=) (c
b a c
b a ,2a 的值为则-+++
A 、712
D 611C 115B 511、、、
5、已知:a<0, b>0,且|a|>|b|, 则|b+1|-|a-b|等于( ) A 、2b-a+1 +a
6、上等米每千克售价为x 元,次等米每千克售价为y 元,取上等米a 千克和次等米b 千克,混合后的大米每千克售价为( ) A a b x y ++ B ax by ab + C ax by a b
++ D x y
2+ 7、
小华的存款是x 元小林的存款比小华的一半还多2元,则小林的存款是( ) A )2(21+x B )2(2
1-x C 221+x D 221
-x
8、m-[n-2m-(m-n)]等于( )
A -2m
B 2m
C 4m-2n
D 2m-2n 9、若k 为有理数,则|k|-k 一定是( )
A 0
B 负数
C 正数
D 非负数
10、已知长方形的周长是45㎝,一边长是a ㎝,则这个长方形的面积是( )
A 、
平方厘米、平方厘米245a
B 2)45(a a -
C 、平方厘米、平方厘米-a)-245a(
D a)245(
三、化简题(每小题4分,共24分)
1、2222(835)(223)a ab b a ab b ----+
2、)23
1
(34x xy xy -+-
3、)(2)2(333c b a c b a b a ---+
4、 ()⎪⎭

⎝⎛++-+--13431354b a b a
5、2223[723()1]a a a a a ----+
6、
2222(876)[8()]x y xy xy xy x y y x -+---+
四、化简求值(共16分)
1、523531411
()[2()()][()()]2323x y x y x y x y x y +++-+-+-+,其中3x y += (5
分)
2、2225[(53)6()]a a a a a a -+---,其中1
2a =- (5分)
3、已知:2(2)10x y +++=,求222225{2[3(42)]}xy xy xy xy x y ----的值。

(6分)
五、解答题
1、(5分)某空调器销售商,今年四月份销出空调1a -台,五月份销售空调比四月份的2倍少1台,六月份销售空调比前两个月的总和的4倍还多5台. (1)用代数式表示该销售商今年第二季度共销售空调多少台? (2)若a=220,求第二季度销售的空调总数.
2、(5分)树的高度与树生长的年数有关,测得某棵树的有关数据如下表:(树苗原
高100厘米) (1)填出
第4
年树
苗可
能达到的高度; (2) 请用含a 的代数式表示高度h :_______
(3) 用你得到的代数式求生长了10年后的树苗可能达到的高度。

3、(5分)用字母表示图中阴影部分的面积:
六、探索规律(6分)
某城市大剧院地面的一部分为扇形,观众席的座位按下列
方式设置:
排数 1 2 3 4 座位数
50
53
56
59
按这种方式排下去,
(1) 第5、6排各有多少个座位? (2)第n 排有多少个座位?
(3)在(2)的代数式中,当第n 排为28时,有多少个座位?
第三单元《字母表示数》 单元测试卷卷参考答案
一、耐心填一填:
年数 1 2 3 4 …… 高度h(单位:cm) 115 130 145 ……
1、25-
2、4,56,7,9,15
3、172
4、2s
a
5、23232a a a --+-
6、2
7、123x --
8、2100y
9、3 10、16;4x y =±=±
1、解:原式 = 2222835223a ab b a ab b ---+-
2、解:原式 = 46xy xy x -+-
= 2268a ab b -- = 36xy x -- 3、解:原式 = 333222a b a b c a b c +--+ 4、 解:原式 =
20443a b a b -+-++
= 0 = 2183a b -++ 5、解:原式 = 22372331a a a a a -++-- =21a a ---
6、解:原式 = 22228768x y xy xy xy x y y x -+--++
=28148xy xy -+ 四
1、解:523531411
()[2()()][()()]2323x y x y x y x y x y +++-+-+-+
=523531411
()2()()()()2323
x y x y x y x y x y +++-+-+++ =232()()x y x y +-+ 当3x y +=时
232()()x y x y +-+=23233⨯-=-9
2、解:2225[(53)6()]a a a a a a -+--- =2225(53)6()a a a a a a ---+- =22255366a a a a a a --++- =2a 当1
2
a =-时
2a =1
2()2
⨯-
=1-
3、解:∵2(2)10x y +++=
∴20x += ∴2x =-
∵222225{2[3(42)]}xy xy xy xy x y ---- =2222252[3(42)]xy xy xy xy x y -+-- =222233(42)xy xy xy x y +-- =222642xy xy x y -+ =2222xy x y +
当2x =-,1y =-时,
2222xy x y +=222(2)(1)2(2)(1)⨯-⨯-+⨯--
=12- 五、解答题
1、解:(1)根据题意 得:
=12(1)14(1)4[2(1)1]5a a a a -+--+-+--+ =7(1)4[2(1)1]4a a -+--+
=7(1)8(1)44a a -+--+ =15(1)a -
=1515a -
(2)由(1)可知第二季度销售的空调总数为1515a - 当220a =时,
1515a -=1522015⨯- =3285 答:(略)
2、解:(1)160 (2)10015h a =+ (3)当10a =时 =1001510+⨯ =250 答:(略)
3、解:根据题意 得:
= 21
8
ab b π-
六、探索规律
解:(1) 第5、6排各有62、65个座位 (2)第n 排有347n +个座位 (3)当第n 排为28时,
347n +=32847⨯+=121。

相关文档
最新文档