八年级二次根式测试题及答案

合集下载

八年级数学下册《二次根式》综合练习题含答案

八年级数学下册《二次根式》综合练习题含答案

八年级数学下册《二次根式》综合练习题测试1 二次根式学习要求掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.a +1表示二次根式的条件是______. 2.当x ______时,12--x 有意义,当x ______时,31+x 有意义. 3.若无意义2+x ,则x 的取值范围是______. 4.直接写出下列各式的结果: (1)49=_______;(2)2)7(_______; (3)2)7(-_______;(4)2)7(--_______; (5)2)7.0(_______;(6)22])7([- _______. 二、选择题5.下列计算正确的有( ).①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=-A .①、②B .③、④C .①、③D .②、④6.下列各式中一定是二次根式的是( ). A .23-B .2)3.0(-C .2-D .x7.当x =2时,下列各式中,没有意义的是( ). A .2-xB .x -2C .22-xD .22x -8.已知,21)12(2a a -=-那么a 的取值范围是( ).A .21>aB .21<a C .21≥a D .21≤a 三、解答题9.当x 为何值时,下列式子有意义? (1);1x -(2);2x -(3);12+x (4)⋅+-xx2110.计算下列各式:(1);)23(2 (2);)1(22+a(3);)43(22-⨯-(4).)323(2-综合、运用、诊断一、填空题11.x 2-表示二次根式的条件是______. 12.使12-x x有意义的x 的取值范围是______. 13.已知411+=-+-y x x ,则x y 的平方根为______. 14.当x =-2时,2244121x x x x ++-+-=________. 二、选择题15.下列各式中,x 的取值范围是x >2的是( ).A .2-xB .21-xC .x -21D .121-x16.若022|5|=++-y x ,则x -y 的值是( ). A .-7B .-5C .3D .7三、解答题17.计算下列各式:(1);)π14.3(2- (2);)3(22--(3);])32[(21-(4).)5.03(2218.当a =2,b =-1,c =-1时,求代数式aacb b 242-±-的值.拓广、探究、思考19.已知数a ,b ,c 在数轴上的位置如图所示:化简:||)(||22b b c c a a ---++-的结果是:______________________.20.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC 的c 边的长.测试2 二次根式的乘除(一)学习要求会进行二次根式的乘法运算,能对二次根式进行化简.课堂学习检测一、填空题1.如果y x xy ⋅=24成立,x ,y 必须满足条件______.2.计算:(1)=⨯12172_________;(2)=--)84)(213(__________; (3)=⨯-03.027.02___________.3.化简:(1)=⨯3649______;(2)=⨯25.081.0 ______;(3)=-45______. 二、选择题4.下列计算正确的是( ). A .532=⋅ B .632=⋅C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么( ).A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时,2x 的值是( ). A .±3 B .3 C .-3 D .9三、解答题7.计算:(1);26⨯(2));33(35-⨯- (3);8223⨯(4);1252735⨯ (5);131aab ⋅(6);5252ac c b b a ⋅⋅(7);49)7(2⨯- (8);51322-(9).7272y x8.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.综合、运用、诊断一、填空题9.定义运算“@”的运算法则为:,4@+=xy y x 则(2@6)@6=______.10.已知矩形的长为cm 52,宽为cm 10,则面积为______cm 2.11.比较大小:(1)23_____32;(2)25______34;(3)-22_______-6. 二、选择题12.若b a b a -=2成立,则a ,b 满足的条件是( ).A .a <0且b >0B .a ≤0且b ≥0C .a <0且b ≥0D .a ,b 异号13.把4324根号外的因式移进根号内,结果等于( ). A .11- B .11C .44-D .112三、解答题14.计算:(1)=⋅x xy 6335_______;(2)=+222927b a a _______;(3)=⋅⋅21132212_______; (4)=+⋅)123(3_______.15.若(x -y +2)2与2-+y x 互为相反数,求(x +y )x 的值.拓广、探究、思考16.化简:(1)=-+1110)12()12(________;(2)=-⋅+)13()13(_________.测试3 二次根式的乘除(二)学习要求会进行二次根式的除法运算,能把二次根式化成最简二次根式.课堂学习检测一、填空题1.把下列各式化成最简二次根式:(1)=12______;(2)=x 18______;(3)=3548y x ______;(4)=xy______; (5)=32______;(6)=214______;(7)=+243x x ______;(8)=+3121______. 2.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:23 与.2(1)32与______; (2)32与______;(3)a 3与______; (4)23a 与______; (5)33a 与______. 二、选择题 3.xx x x -=-11成立的条件是( ). A .x <1且x ≠0 B .x >0且x ≠1C .0<x ≤1D .0<x <14.下列计算不正确的是( ). A .471613= B .xy x x y 63132= C .201)51()41(22=-D .x x x3294= 5.把321化成最简二次根式为( ). A .3232B .32321C .281D .241三、计算题 6.(1);2516 (2);972(3);324 (4);1252755÷-(5);1525(6);3366÷(7);211311÷(8).125.02121÷综合、运用、诊断一、填空题7.化简二次根式:(1)=⨯62________(2)=81_________(3)=-314_________ 8.计算下列各式,使得结果的分母中不含有二次根式: (1)=51_______(2)=x 2_________(3)=322__________(4)=y x 5__________ 9.已知,732.13≈则≈31______;≈27_________.(结果精确到0.001) 二、选择题 10.已知13+=a ,132-=b ,则a 与b 的关系为( ). A .a =b B .ab =1C .a =-bD .ab =-111.下列各式中,最简二次根式是( ).A .yx -1B .ba C .42+x D .b a 25三、解答题12.计算:(1);3b a ab ab ⨯÷ (2);3212y xy ÷(3)⋅++ba b a13.当24,24+=-=y x 时,求222y xy x +-和xy 2+x 2y 的值.拓广、探究、思考14.观察规律:,32321,23231,12121-=+-=+-=+……并求值.(1)=+2271_______;(2)=+10111_______;(3)=++11n n _______.15.试探究22)(a 、a 与a 之间的关系.测试4 二次根式的加减(一)学习要求掌握可以合并的二次根式的特征,会进行二次根式的加、减运算.课堂学习检测一、填空题1.下列二次根式15,12,18,82,454,125,27,32化简后,与2的被开方数相同的有______,与3的被开方数相同的有______,与5的被开方数相同的有______.2.计算:(1)=+31312________; (2)=-x x 43__________.二、选择题3.化简后,与2的被开方数相同的二次根式是( ). A .10B .12C .21 D .61 4.下列说法正确的是( ).A .被开方数相同的二次根式可以合并B .8与80可以合并C .只有根指数为2的根式才能合并D .2与50不能合并5.下列计算,正确的是( ). A .3232=+B .5225=-C .a a a 26225=+D .xy x y 32=+ 三、计算题6..48512739-+7..61224-+8.⋅++3218121 9.⋅---)5.04313()81412(10..1878523x x x +- 11.⋅-+xx x x 1246932综合、运用、诊断一、填空题12.已知二次根式b a b +4与b a +3是同类二次根式,(a +b )a 的值是______.13.3832ab 与b a b 26无法合并,这种说法是______的.(填“正确”或“错误”) 二、选择题14.在下列二次根式中,与a 是同类二次根式的是( ).A .a 2B .23aC .3aD .4a三、计算题 15..)15(2822180-+-- 16.).272(43)32(21--+ 17.⋅+-+bb a b a a124118..21233ab bb a aba bab a-+-四、解答题19.化简求值:y y xy xx 3241+-+,其中4=x ,91=y .20.当321-=x 时,求代数式x 2-4x +2的值.拓广、探究、思考21.探究下面的问题:(1)判断下列各式是否成立?你认为成立的,在括号内画“√”,否则画“×”.①322322=+( ) ②833833=+( ) ③15441544=+( ) ④24552455=+( ) (2)你判断完以上各题后,发现了什么规律?请用含有n 的式子将规律表示出来,并写出n 的取值范围.(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.测试5 二次根式的加减(二)学习要求会进行二次根式的混合运算,能够运用乘法公式简化运算.课堂学习检测一、填空题1.当a =______时,最简二次根式12-a 与73--a 可以合并. 2.若27+=a ,27-=b ,那么a +b =______,ab =______.3.合并二次根式:(1)=-+)18(50________;(2)=+-ax xax45________. 二、选择题4.下列各组二次根式化成最简二次根式后的被开方数完全相同的是( ). A .ab 与2abB mn 与nm 11+ C .22n m +与22n m - D .2398b a 与4329b a5.下列计算正确的是( ). A .b a b a b a -=-+2))(2( B .1239)33(2=+=+C .32)23(6+=+÷D .641426412)232(2-=+-=-6.)32)(23(+-等于( ). A .7 B .223366-+- C .1D .22336-+三、计算题(能简算的要简算) 7.⋅-121).2218( 8.).4818)(122(+-9.).32841)(236215(-- 10.).3218)(8321(-+11..6)1242764810(÷+-12..)18212(2-综合、运用、诊断一、填空题13.(1)规定运算:(a *b )=|a -b |,其中a ,b 为实数,则=+7)3*7(_______.(2)设5=a ,且b 是a 的小数部分,则=-ba a ________.二、选择题14.b a -与a b -的关系是( ). A .互为倒数 B .互为相反数C .相等D .乘积是有理式15.下列计算正确的是( ).A .b a b a +=+2)(B .ab b a =+C .b a b a +=+22D .a aa =⋅1三、解答题 16.⋅+⋅-221221 17.⋅--+⨯2818)212(218..)21()21(20092008-+19..)()(22b a b a --+四、解答题20.已知,23,23-=+=y x 求(1)x 2-xy +y 2;(2)x 3y +xy 3的值.21.已知25-=x ,求4)25()549(2++-+x x 的值.拓广、探究、思考22.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个代数式互为有理化因式.如:a 与a ,63+与63-互为有理化因式.试写下列各式的有理化因式: (1)25与______; (2)y x 2-与______; (3)mn 与______; (4)32+与______; (5)223+与______; (6)3223-与______. 23.已知,732.13,414.12≈≈求)23(6-÷.(精确到0.01)答案与提示第二十一章 二次根式测试11.a ≥-1.2.<1, >-3.3.x <-2.4.(1)7; (2)7; (3)7; (4)-7; (5)0.7; (6)49.5.C . 6.B . 7.D . 8.D .9.(1)x ≤1;(2)x =0;(3)x 是任意实数;(4)x ≤1且x ≠-2.10.(1)18;(2)a 2+1;(3);23- (4)6. 11.x ≤0. 12.x ≥0且⋅=/21x 13.±1. 14.0. 15.B . 16.D . 17.(1)π-3.14;(2)-9;(3);23 (4)36. 18.21-或1. 19.0. 20.提示:a =2,b =3,于是1<c <5,所以c =2,3,4.测试21.x ≥0且y ≥0.2.(1);6 (2)24;(3)-0.18.3.(1)42;(2)0.45;(3).53- 4.B . 5.B . 6.B .7.(1);32 (2)45; (3)24; (4);53 (5);3b (6);52 (7)49; (8)12; (9)⋅y xy 263 8..cm 62 9..72 10.210.11.(1)>;(2)>;(3)<. 12.B . 13.D .14.(1);245y x (2);332b a + (3) ;34 (4)9. 15.1.16.(1);12- (2).2测试31.(1);32 (2);23x (3);342xy y x (4);xxy (5) ;36 (6);223 (7);32+x x (8)630. 2..3)5(;3)4(;3)3(;2)2(;3)1(a a3.C . 4.C . 5.C .6..4)8(;322)7(;22)6(;63)5(;215)4(;22)3(;35)2(;54)1(-7.⋅-339)3(;42)2(;32)1( 8.⋅y y x x x 55)4(;66)3(;2)2(;55)1( 9.0.577,5.196. 10.A . 11.C . 12..)3(;33)2(;)1(b a x bab + 13..112;2222222=+=+-y x xy y xy x14..1)3(;1011)2(;722)1(n n -+-- 15.当a ≥0时,a a a ==22)(;当a <0时,a a -=2,而2)(a 无意义.测试41..454,125;12,27;18,82,32 2.(1).)2(;33x3.C . 4.A . 5.C . 6..33 7..632+ 8.⋅827 9..23+ 10..214x 11..3x12.1. 13.错误. 14.C . 15..12+16.⋅-423411 17..321b a + 18.0. 19.原式,32y x +=代入得2. 20.1. 21.(1)都画“√”;(2)1122-=-+n nn n nn (n ≥2,且n 为整数);(3)证明:⋅-=-=-+-=-+111)1(1223222n n n n n n n n n n n n 测试51.6. 2..3,72 3.(1);22 (2) .3ax -4.D . 5.D . 6.B . 7.⋅66 8..1862-- 9..3314218- 10.⋅417 11..215 12..62484- 13.(1)3;(2).55-- 14.B . 15.D .16.⋅-41 17.2. 18..21- 19.ab 4(可以按整式乘法,也可以按因式分解法).20.(1)9; (2)10. 21.4.22.(1)2; (2)y x 2-; (3)mn ; (4)32-; (5)223-; (6)3223+(答案)不唯一. 23.约7.70.。

八年级二次根式练习题及答案

八年级二次根式练习题及答案

一、单选题1、当x≥3时,化简二次根式√(3−x)2的结果是( ) A. 3-x B. 3+x C. x-3 D. -3-x参考答案: C 【思路分析】考查含字母的根式化简。

本考点主要是化简含字母的二次根式,熟练掌握二次根式的性质是解决问题的关键。

【解题过程】 解:∵x≥3, ∴3-x≤0,∴√(3−x)2=|3-x|=x-3。

故选C 。

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2、比较二次根式的大小:2−√3( )√3−√2。

A. < B. > C. = D. ≤参考答案: B 【思路分析】先将两数分母有理化,而后再利用分子进行比较,都为正时分子大的数大,都为负时分子大的数小,正数永远大于负数。

【解题过程】解:2−√3=2+√3>0,√3−√2=√3+√2>0,∴2+√3>√3+√2∴12−√3>1√3−√2故选B 。

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -3、比较二次根式的大小:√15−√14( )√13−√12 A. < B. >C. =D. ≤参考答案: A 【思路分析】此题考查运用分子有理化法对二次根式大小的比较,运用分子有理化法时需注意:都是正数时分母大的,原二次根式反而小。

【解题过程】先将两数分子有理化,然后比较分母。

都是正数时分母大的,原二次根式小。

解:√15−√14=√15+√14>0, √13−√12=√13+√12>0, ∵√15+√14>√13+√12, ∴√15+√14<√13+√12 ∴√15−√14<√13−√12 故选A 。

二次根式初二练习题及答案

二次根式初二练习题及答案

二次根式初二练习题及答案一、选择题1. 将下列二次根式化简,得出最简形式:a) $\sqrt{8}$b) $\sqrt{75}$c) $\sqrt{27}$d) $\sqrt{50}$A) $2\sqrt{2}$ B) $3\sqrt{5}$ C) $6\sqrt{3}$ D) $5\sqrt{2}$2. 根据题意,判断下列等式是否成立:a) $\sqrt{16} = 4$b) $\sqrt{82} = 9$c) $\sqrt{5^2} = 5$d) $\sqrt{11^2} = -11$A) 是 B) 否3. 将下列二次根式化成标准形式:a) $3\sqrt{2} + \sqrt{8}$b) $5\sqrt{3} - 2\sqrt{12}$c) $4\sqrt{5} + 2\sqrt{20}$d) $2\sqrt{3} - 3\sqrt{6}$A) $5\sqrt{2}$ B) $3\sqrt{3}$ C) $6\sqrt{5}$ D) $-3\sqrt{3}$4. 计算:a) $\sqrt{25} + \sqrt{9}$b) $2\sqrt{49} - \sqrt{64}$c) $3\sqrt{36} + 4\sqrt{16}$d) $5\sqrt{81} - 2\sqrt{64}$A) 20 B) 4 C) 12 D) 85. 填空:a) $\sqrt{4} =$ ________b) $\sqrt{100} =$ ________c) $\sqrt{121} =$ ________d) $\sqrt{144} =$ ________A) 2 B) 10 C) 11 D) 12二、解答题1. 将下列各式化简为最简形式:a) $\sqrt{18}$b) $\sqrt{32}$c) $\sqrt{50}$d) $\sqrt{98}$2. 简化下列二次根式:a) $2\sqrt{27} - 3\sqrt{48}$b) $5\sqrt{15} + 3\sqrt{20}$c) $\sqrt{45} - 2\sqrt{12}$d) $4\sqrt{80} + 2\sqrt{45}$三、综合运用1. 解方程:$2x^2 - 18 = 0$2. 一个正方形的边长为$x$,则它的对角线长为多少?3. 某正方形面积等于某长方形面积的五分之一,且长方形的宽为$y$,则长方形的长是多少?四、答案选择题答案:1. A) $2\sqrt{2}$ 2. A) 是 3. B) $3\sqrt{3}$ 4. C) 12 5. A) 2解答题答案:1. a) $3\sqrt{2}$ b) $4\sqrt{2}$ c) $5\sqrt{2}$ d) $7\sqrt{2}$2. a) $\sqrt{6}$ b) $4\sqrt{5}$ c) $\sqrt{45} - \sqrt{8}$ d) $6\sqrt{5} + 3\sqrt{2}$三、综合运用答案1. 解方程:$x = 3$ 或 $x = -3$2. 对角线长为$x\sqrt{2}$3. 长方形的长为$5y$通过以上练习题的训练,相信同学们对初二阶段的二次根式有了更深的理解和掌握。

八年级初二数学数学二次根式试题含答案

八年级初二数学数学二次根式试题含答案

一、选择题1.下列运算中,正确的是 ( )A . 3B .×=6C . 3D .2.下列计算正确的是( )A =B 3=C =D .21=3.a b =--则( )A .0a b +=B .0a b -=C .0ab =D .220a b +=4.已知44220,24,180x y x y >+=++=、.则xy=( ) A .8 B .9 C .10D .11 5.下列计算正确的是( )A .+=B .()322326a b a b -=-C .222()a b a b -=-D .2422a ab a a b a -+⋅=-++6.2= ) A .3 B .4 C .5D .6 7.下列二次根式是最简二次根式的是( )AB C D8. A .﹣3 B .3 C .﹣9 D .99.下列各组二次根式中,能合并的一组是( )A B 和C D10.在实数范围内有意义,则x 的取值范围是( )A .x >0B .x >3C .x ≥3D .x ≤3二、填空题11.2==________.12.若a ,b ,c 是实数,且10a b c ++=,则2b c +=________.13.观察下列等式:第1个等式:a11=,第2个等式:a 2=,第3个等式:a 3,第4个等式:a 42=, … 按上述规律,回答以下问题:(1)请写出第n 个等式:a n =__________.(2)a 1+a 2+a 3+…+a n =_________14.)30m -≤,若整数a 满足m a +=a =__________.15的最小值是______.16.14+⋅⋅⋅=的解是______.17.===据上述各等式反映的规律,请写出第5个等式:___________________________.18.如果2y ,那么y x =_______________________.19.观察分析下列数据:0,,-3,的规律得到第10个数据应是__________.20.能合并成一项,则a =______.三、解答题21.小明在解决问题:已知a2a 2-8a +1的值,他是这样分析与解答的:因为a=2,所以a -2所以(a -2)2=3,即a 2-4a +4=3.所以a 2-4a =-1.所以2a 2-8a +1=2(a 2-4a)+1=2×(-1)+1=-1. 请你根据小明的分析过程,解决如下问题:(1)计算:= - .(2)… (3)若a,求4a 2-8a +1的值.【答案】 ,1;(2) 9;(3) 5【分析】(11==;(2)根据例题可得:对每个式子的分子和分母中同时乘以与分母中的式子相乘符合平方差公式的根式,去掉分母,然后合并同类项二次根式即可求解;(3)首先化简a ,然后把所求的式子化成()2413a --代入求解即可.【详解】(1)计算:1=; (2)原式)1...11019=++++==-=;(3)1a ===, 则原式()()224213413a a a =-+-=--,当1a =时,原式2435=⨯-=.【点睛】 本题考查了二次根式的化简求值,正确读懂例题,对根式进行化简是关键.22.先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中1x =..【分析】 根据分式的运算法则进行化简,再代入求解. 【详解】原式=221(1)12(3)232(3)3(1)1x x x x x x x x x ---+⎛⎫⎛⎫÷=⋅= ⎪ ⎪+++--⎝⎭⎝⎭.将1x ==【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.23.计算(1(2)(()21-【答案】(1)2;(2)24+ 【分析】(1)先将各二次根式化为最简二次根式,再进行合并即可得到答案;(2)原式运用平方差公式和完全平方公式把括号展开后,再合并同类二次根式即可得到答案.【详解】解:(1=2+=(2-+=2(2)(()21-=22(181)---=452181--+=24+.【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则和运算顺序是解答此题的关键.24.先化简,再求值:2443(1)11m m m m m -+÷----,其中2m =.【答案】22m m-+ 1. 【解析】分析:先根据分式的混合运算顺序和运算法则化简原式,再将m 的值代入计算可得.详解:原式=221m m --()÷(31m -﹣211m m --)=221m m --()÷241m m -- =221m m --()•122m m m --+-()() =﹣22m m -+ =22m m-+当m ﹣2时,原式===﹣1+=1.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.25.(1|5-+;(2)已知实数a 、b 、c 满足|3|a +=,求2(b a +的值.【答案】(1)5;(2)4【分析】(1)先利用二次根式的乘法法则和绝对值的意义计算,再进行回头运算即可;(2)先根据二次根式有意义的条件确定b 的值,再根据非负数的和的意义确定a ,c 的值,然后再计算代数式的值即可.【详解】解:(15-+5)=+5=+5=(2)由题意可知:5050b b -≥⎧⎨-≥⎩, 解得5b =由此可化简原式得,30a +=30a ∴+=,20c -=3a ∴=-,2c =22((534b a ∴+=--=【点睛】可不是考查了二次根式的混合运算以及二次根式的化简求值,熟练掌握运算法则和运算顺序是解答此题的关键.26.计算(1(2)21)-【答案】(1)4;(2)3+【分析】(1)先把各根式化为最简二次根式,再去括号,合并同类项即可;(2)利用平方差公式和完全平方公式计算即可.【详解】解:(1)解:原式=4=+4=-(2)解:原式()22161=---63=-+3=+【点睛】本题考查了二次根式的混合运算,注意先化简,再进一步利用计算公式和计算方法计算.27.已知x²+2xy+y²的值.【答案】16【解析】分析:(1)根据已知条件先计算出x+y=4,再利用完全平方公式得到x²+2xy+y²=(x+y )²,然后利用整体代入的方法计算.本题解析:∵x² +2xy+y² =(x+y)²,∴当∴x²+2xy+y²=(x+y)²=(2−=16.28.计算:(1)13⎛+-⨯ ⎝⎭(2))()2221+.【答案】(1)6-;(2)12-【分析】(1)原式化简后,利用二次根式乘法法则计算即可求出值;(2)原式利用平方差公式,以及完全平方公式计算即可求出值.【详解】解:(1)原式=1(233⨯⨯-⨯=3-⨯=⨯⎭=6-;(2)原式=3﹣4+12﹣=12﹣.【点睛】此题考查了二次根式的混合运算,以及平方差公式、完全平方公式,熟练掌握运算法则及公式是解本题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据二次根式的加减法对A 、D 进行判断;根据二次根式的乘法法则对B 进行判断;根据二次根式的除法法则对C 进行判断.【详解】A 、A 选项错误;B 、×=12,所以B 选项错误;C、3,所以C选项正确;D、,不能合并,所以D选项错误;故选:C.【点睛】本题考查了二次根式的混合运算,正确掌握运算法则是解题关键.2.A解析:A【分析】分别进行二次根式的乘除法、加减法运算,然后选择正确答案.【详解】解:======,原式计算错误;D. 2220=-=,原式计算错误;故应选:A【点睛】本题考查了二次根式的乘除法和加减法,掌握运算法则是解答本题的关键.3.C解析:C【分析】直接利用二次根式的性质,将已知等式左边化简,可以得到a与b中至少有一个为0,进而分析得出答案即可.【详解】=--,解:∵a b∴a-b=-a-b,或b-a=-a-bab=.∴a= -a,或b=-b, ∴a=0,或b=0, ∴ab=0, ∴0故选:C.【点睛】本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.4.D解析:D【分析】利用完全平方公式、平方差公式化简第二个等式即可.【详解】44180+=配方得22222180⎡⎤+-+⋅=⎣⎦ 222180⎡⎤⎡⎤+=⎣⎦⎣⎦222()180x y +-=22162(2)180xy x xy y +-+=22122()180xy x y ++=将2224x y +=代入得:12224180xy +⨯=计算得:11xy =故选:D.【点睛】本题考查了完全平方公式、平方差公式的综合应用,熟记公式是解题关键,这两个公式是常考点,需重点掌握.5.D解析:D【分析】分别运用二次根式、整式的运算、分式的运算法则逐项排除即可.【详解】解:A. =A 选项错误;B. ()()()33322363228a b a b a b -=-=-,故B 选项错误; C. 222()2a b a ab b -=-+,故C 选项错误; D. ()()2224222a a a ab a b a a b a a b a +--++⋅=⋅=-++++,故D 选项正确. 故答案为D .【点睛】本题考查了二次根式、整式的运算、分式的运算,掌握相关运算法则是解答本题的关键.6.C解析:C【解析】2=,2222251510x x =-=--+=,5=.故选C.7.B解析:B【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】解:A、被开方数含分母,故A错误;B、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故B正确;C、被开方数含能开得尽方的因数,故C错误;D、被开方数含分母,故D错误;故选B.【点睛】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.8.B解析:B【分析】利用二次根式的性质进行化简即可.【详解】﹣3|=3.故选B.9.B解析:B【分析】先化简,再根据同类二次根式的定义解答即可.【详解】解:A、是最简二次根式,被开方数不同,不是同类二次根式;BCD故选B.【点睛】本题考查的知识点是同类二次根式的定义,解题关键是熟记同类二次根式的定义.10.C解析:C【详解】解:根据题意得:x-3≥0解得:x≥3故选C.二、填空题11.【解析】【分析】用换元法代替两个带根号的式子,得出m、n的关系式,解方程组求m、n的值即可.【详解】设m=,n=,那么m−n=2①,m2+n2=()2+()2=34②.由①得,m=2解析:13【解析】【分析】用换元法代替两个带根号的式子,得出m、n的关系式,解方程组求m、n的值即可.【详解】设m n那么m−n=2①,m2+n2=2+2=34②.由①得,m=2+n③,将③代入②得:n2+2n−15=0,解得:n=−5(舍去)或n=3,因此可得出,m=5,n=3(m≥0,n≥0).n+2m=13.【点睛】此题考查二次根式的减法,本题通过观察,根号里面未知数的系数为相反数,可通过换元法求解.12.21【分析】结合态,根据完全平方公式的性质,将代数式变形,即可计算得,,的值,从而得到答案.【详解】∵∴∴∴∴∴∴∴.【点睛】本题考查了二次根式、完全平方公式的知识;解题的解析:21【分析】结合态,根据完全平方公式的性质,将代数式变形,即可计算得a ,b ,c 的值,从而得到答案.【详解】∵10a b c ++=∴100a b c ---=∴2221490⎡⎤⎡⎤⎡⎤-+-+-=⎣⎦⎣⎦⎣⎦∴2221)2)3)0++=∴123=== ∴111429a b c -=⎧⎪-=⎨⎪-=⎩∴2511a b c =⎧⎪=⎨⎪=⎩∴2251121b c +=⨯+=.【点睛】本题考查了二次根式、完全平方公式的知识;解题的关键是熟练掌握二次根式、完全平方公式、一元一次方程的性质,从而完成求解.13.【分析】(1)由题意,找出规律,即可得到答案;(2)由题意,通过拆项合并,然后进行计算,即可得到答案.【详解】解:∵第1个等式:a1=,第2个等式:a2=,第3个等式:=1-【分析】(1)由题意,找出规律,即可得到答案;(2)由题意,通过拆项合并,然后进行计算,即可得到答案.【详解】解:∵第1个等式:a 11=,第2个等式:a 2=,第3个等式:a 3,第4个等式:a 42=, ……∴第n==(2)123(21)(32)(23)(1)n a a a a n n +++=-+-+-+++-=121n +++=1-;1-.【点睛】本题考查了二次根式的加减混合运算,以及数字规律问题,解题的关键是掌握题目中的规律,从而进行解题14.【分析】先根据确定m 的取值范围,再根据,推出,最后利用来确定a 的取值范围.【详解】解:为整数为故答案为:5.【点睛】本题考查的知识点是二次根式以及估算无理数的大小,利用解析:5【分析】)30m -≤确定m 的取值范围,再根据m a +=32a ≤≤,最后利用78<<来确定a 的取值范围.【详解】 解:()230m m --≤23m ∴≤≤m a +=a m ∴=32a ∴≤≤7528<<46a ∴<<a 为整数a ∴为5故答案为:5.【点睛】本题考查的知识点是二次根式以及估算无理数的大小,利用“逼近法”得出围是解此题的关键.15.0【解析】【分析】先将化简为就能确定其最小值为1,再和1作差,即可求解。

八年级初二数学 二次根式练习题及解析

八年级初二数学 二次根式练习题及解析

一、选择题1.5﹣x,则x的取值范围是()A.为任意实数B.0≤x≤5C.x≥5D.x≤52.下列二次根式中是最简二次根式的为()A B C D3.下列运算中,正确的是 ( )A. 3 B.×=6C. 3 D.4.有意义,则x的取值范围是()A.x≠2B.x>-2 C.x<-2 D.x≠-25.下列算式:(1=2)3)=7;(4)+=)A.(1)和(3)B.(2)和(4)C.(3)和(4)D.(1)和(4)6.下列各式中,正确的是()A.B.a3• a2=a6C.(b+2a) (2a -b) =b2 -4a2D.5m + 2m = 7m27.)B.C D.A.308.下列计算正确的是()A=B=C6==-D1x-=成立的x的值为()9.30A.-2 B.3 C.-2或3 D.以上都不对10.下列计算正确的是()A.=B C3=D3=-二、填空题m3﹣m2﹣2017m+2015=_____.11.若m12.已知()2117932x x x y ---+-=-,则2x ﹣18y 2=_____.13.为了简洁、明确的表示一个正数的算术平方根,许多数学家进行了探索,期间经历了400余年,直至1637年法国数学家笛卡儿在他的《几何学》中开始使用“”表示算数平方根.我国使用根号是由李善兰(1811-1882年)译西方数学书时引用的,她在《代数备旨》中把图1所示题目翻译为: 22164?a x a x +=则图2所示题目(字母代表正数)翻译为_____________,计算结果为_______________.14.已知函数1x f x x ,那么21f _____.15.若613-的整数部分为x ,小数部分为y ,则(213)x y +的值是___.16.若a 、b 、c 均为实数,且a 、b 、c 均不为0化简43252a c b=___________ 17.已知1<x <2,171x x +=-,则11x x ---的值是_____. 18.观察下列等式:11122323-=,11113-23438⎛⎫= ⎪⎝⎭,11114-345415⎛⎫= ⎪⎝⎭,根据上述各等式反映的规律,请写出第5个等式:___________________________.19.实数a 、b 在数轴上的位置如图所示,则化简()222a b a b -+-=_____.20.2a ·8a (a ≥0)的结果是_________.三、解答题21.先观察下列等式,再回答问题:2211+2+()1 =1+1=2;2212+2+()212=2 12; 2213+2+()3=3+13=313;…(1)根据上面三个等式提供的信息,请猜想第四个等式;(2)请按照上面各等式规律,试写出用 n (n 为正整数)表示的等式,并用所学知识证明.【答案】(1=144+=144;(2=211n n n n ++=,证明见解析.【分析】(1)根据“第一个等式内数字为1,第二个等式内数字为2,第三个等式内数字为3”,=414+=414;(2=n 211n n n ++=”,再利用222112n n n n++=+()()开方即可证出结论成立. 【详解】(1=1+1=2=212+=212;=313+=313;里面的数字分别为1、2、3,= 144+= 144.(2=1+1=2,=212+=212=313+=313=414+=414= 211n n n n ++=.证明:等式左边==n 211n n n ++==右边.=n 211n n n ++=成立. 【点睛】本题考查了二次根式的性质与化简以及规律型中数的变化类,解题的关键是:(1)猜测出第四个等式中变化的数字为4;(2)找出变化规律=n 211n n n ++=”.解决该题型题目时,根据数值的变化找出变化规律是关键.22.先将2x -x 的值,代入后,求式子的值. 【答案】答案见解析.【解析】试题分析:先把除式化为最简二次根式,再用二次根式的乘法法则化简,选取的x 的值需要使原式有意义.试题解析:原式==2x ==- 要使原式有意义,则x >2.所以本题答案不唯一,如取x =4.则原式=223.计算(2)2;(4)【答案】(1)2)9-;(3)1;(4)【分析】 (1)根据二次根式的性质和绝对值的代数意义进行化简后合并即可;(2)根据完全平方公式进行计算即可;(3)根据二次根式的乘除法法则进行计算即可;(4)先进行乘法运算,再合并即可得到答案.【详解】解:==(2)2=22-=63-=9-=1;(4)===【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.24.观察下列各式:11111122=+-=11111236=+-=111113412=+-= 请你根据上面三个等式提供的信息,猜想:(1=_____________ (2)请你按照上面每个等式反映的规律,写出用n (n 为正整数)表示的等式:______________;(3【答案】(1)1120;(211(1)n n =++;(3)1156,过程见解析 【分析】 (1)仿照已知等式确定出所求即可;(2)归纳总结得到一般性规律,写出即可;(3)原式变形后,仿照上式得出结果即可.【详解】解:(1111114520=+-=;故答案为:1120;(2111111(1)n n n n =+-=+++;11(1)n n =++;(31156== 【点睛】此题是一个阅读题目,通过阅读找出题目隐含条件.总结:找规律的题,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.25.已知x²+2xy+y²的值.【答案】16【解析】分析:(1)根据已知条件先计算出x+y=4,再利用完全平方公式得到x²+2xy+y²=(x+y )²,然后利用整体代入的方法计算.本题解析:∵x² +2xy+y² =(x+y)²,∴当∴x²+2xy+y²=(x+y)²=(2−=16.26.计算:(1 ;(2)))213【答案】(1)2)1-.【分析】(1)根据二次根式的混合运算法则可以算得答案.(2)结合整式的乘法公式和二次根式的运算法则计算.【详解】(1)原式==(2)原式=212---=1-.【点睛】本题考查二次根式的运算,熟练掌握二次根式的意义、性质和运算法则是解题关键.27.计算:(1)()202131)()2---+ (2【答案】(1)12;(2)【分析】(1)按照负整数指数幂、0指数幂、乘方的运算法则计算即可;(2)根据二次根式的加减乘除运算法则计算即可.【详解】(1)解:原式= 9-1+4=12(2)【点睛】本题考查负整数指数幂、0指数幂、乘方以及二次根式的运算法则,熟练掌握二次根式的化简是关键.28.先阅读下面的解题过程,然后再解答.a ,b ,使a b m +=,ab n =,即22m +==0)a b ==±>.这里7m =,12n =,由于437+=,4312⨯=,所以22+==,2===..【答案】见解析【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法.【详解】根据题意,可知13m =,42n =,由于7613+=,7642⨯=,所以2213+=,====【点睛】此题考查二次根式的性质与化简,解题关键在于求得13m =,42n =.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据二次根式的性质得出5-x≥0,求出即可.【详解】==-=-,x x|5|5∴5-x≥0,解得:x≤5,故选D.【点睛】本题考查了二次根式的性质的应用,注意:当a≥0,当a≤0.2.B解析:B【分析】利用最简二次根式定义判断即可.【详解】解:A=不是最简二次根式,本选项错误;BC=不是最简二次根式,本选项错误;=D2故选:B.【点睛】本题考查了最简二次根式,熟练掌握最简二次根式定义是解题的关键.3.C解析:C【分析】根据二次根式的加减法对A 、D 进行判断;根据二次根式的乘法法则对B 进行判断;根据二次根式的除法法则对C 进行判断.【详解】A 、A 选项错误;B 、×=12,所以B 选项错误;C 、3,所以C 选项正确;D 、,不能合并,所以D 选项错误;故选:C .【点睛】本题考查了二次根式的混合运算,正确掌握运算法则是解题关键.4.B解析:B【分析】根据二次根式的被开方数是非负数,且分母不能为零,可得答案.【详解】有意义,得: 20x +>,解得:2x >-.故选:B .【点睛】本题考查了二次根式有意义的条件,利用被开方数是非负数,分母不能为零得出不等式是解题关键.5.B解析:B【分析】根据二次根式的性质和二次根式的加法运算,分别进行判断,即可得到答案.【详解】(1(2),正确;(3)2=22=,错误;(4)==故选:B .【点睛】本题考查了二次根式的加法运算,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.6.A解析:A【分析】比较两个二次根式的大小可判别A ,根据同底数幂的乘法、平方差公式、合并同类项的运算法则分别计算可判断B 、C 、D 的正误.【详解】A 、=,=∵1812>,∴>,故该选项正确;B 、3a •25a a =,故该选项错误;C 、()()22224b a a b a b +-=-,故该选项错误; D 、527m m m +=,故该选项错误;故选:A .【点睛】本题考查了二次根式大小的比较,同底数幂的乘法、平方差公式、合并同类项的运算,熟练掌握相关运算法则是解题的关键.7.C解析:C【解析】故选C .点睛:此题主要考查了二次根式的化简,解题关键是利用分数的通分求和,然后把其分母有理化即可求解,比较简单,但是易出错,是常考题. 8.B解析:B【分析】根据二次根式加减运算和二次根式的性质逐项排除即可.【详解】与A 选项错误;===B 选项正确;321=-=,所以C 选项错误;与D 选项错误;故选答案为B.【点睛】本题考查了二次根式加减运算和二次根式的性质,掌握同类二次根式的定义和二次根式的性质是解答本题的关键.9.B解析:B【分析】根据二次根式有意义的条件以及二次根式的乘法进行分析即可得答案.【详解】x30-=,=0=,∴x=-2或x=3,又∵2030 xx+≥⎧⎨-≥⎩,∴x=3,故选B.【点睛】本题考查了二次根式的乘法以及二次根式有意义的条件,熟练掌握相关知识是解题的关键. 10.C解析:C【分析】根据合并二次根式的法则、二次根式的性质、二次根式的除法法则即可判定.【详解】A、A错误;B=B错误;C3=,故选项C正确;D3=,故选项D错误;故选:C.【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解题的关键.二、填空题11.4030【分析】利用平方差公式化简m,整理要求的式子,将m的值代入要求的式子计算即可. 【详解】m== m==+1,∴m3-m2-2017m+2015=m2(m﹣1)﹣2017m+2015解析:4030【分析】利用平方差公式化简m,整理要求的式子,将m的值代入要求的式子计算即可.【详解】mm,∴m3-m2-2017m+2015=m2(m﹣1)﹣2017m+2015= )22017)+2015=(2017+2015﹣2=4030.故答案为4030.【点睛】本题主要考查二次根式的化简以及二次根式的混合运算.12.【分析】直接利用二次根式的性质将已知化简,再将原式变形求出答案.【详解】解:∵一定有意义,∴x≥11,∴﹣|7﹣x|+=3y﹣2,﹣x+7+x﹣9=3y﹣2,整理得:=3y,∴x﹣解析:22【分析】直接利用二次根式的性质将已知化简,再将原式变形求出答案.【详解】一定有意义,∴x≥11,|7﹣x=3y﹣2,﹣x+7+x﹣9=3y﹣2,=3y,∴x﹣11=9y2,则2x﹣18y2=2x﹣2(x﹣11)=22.故答案为:22.【点睛】本题考查二次根式有意义的应用,以及二次根式的性质应用,属于提高题.13.a+3【分析】根据题意可知图中的甲代表a,据此可写出图2中表示的式子.再根据二次根式的性质进行化简.【详解】解:根据题意可知图中的甲代表a,∴图2所示题目(字母代表正数)翻【分析】根据题意可知图中的甲代表a,据此可写出图2中表示的式子.再根据二次根式的性质进行化简.【详解】解:根据题意可知图中的甲代表a,∴图2∵a>0+3.=aa+3.【点睛】本题考查阅读理解的能力,正确理解题意是关键.14.【分析】根据题意可知,代入原函数即可解答.【详解】因为函数,所以当时,.【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键.解析:2+【分析】根据题意可知1x =,代入原函数即可解答. 【详解】 因为函数1x f xx ,所以当1x =时, 211()2221f x . 【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键. 15.3【分析】先估算,再估算,根据6-的整数部分为x,小数部分为y,可得: x=2, y=,然后再代入计算即可求解.【详解】因为,所以,因为6-的整数部分为x,小数部分为y,所以x=2,解析:3【分析】先估算34<<,再估算263<<,根据6x ,小数部分为y ,可得: x =2, y=4然后再代入计算即可求解.【详解】因为34<,所以263<-<,因为6x ,小数部分为y ,所以x =2, y=4-,所以(2x y =(4416133=-=, 故答案为:3.【点睛】本题主要考查无理数整数部分和小数部分,解决本题的关键是要熟练掌握无理数估算方法和无理数整数和小数部分的求解方法.16.【解析】根据题意,由二次根式的性质,可知a 的值与计算没影响,c≥0,b≠0,因此可分为:当b >0时,=;当b <0时,=.故答案为:.解析:220202a b b a b b 当时当时⎧>⎪⎪⎨⎪-<⎪⎩【解析】根据题意,由二次根式的性质,可知a 的值与计算没影响,c≥0,b≠0,因此可分为:当b >0= 当b <0=故答案为:220202a b b a b b ⎧>⎪⎪⎨⎪-<⎪⎩当时当时. 17.-2【详解】∵x+=7,∴x-1+=6,∴(x-1)-2+=4,即 =4,又∵1<x <2,∴=-2,故答案为-2.【点睛】本题主要考查完全平方式的应用以及二次根式的运算,解题的关键是 解析:-2【详解】∵x+11x -=7,∴x-1+11x -=6,∴(x-1)-2+11x -=4,即2 =4,又∵1<x<2,∴,故答案为-2.【点睛】本题主要考查完全平方式的应用以及二次根式的运算,解题的关键是要根据所求的式子对已知的式子进行变形.18.【解析】上述各式反映的规律是(n⩾1的整数),得到第5个等式为: (n⩾1的整数).故答案是: (n⩾1的整数).点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;=【解析】上述各式反映的规律是=n⩾1的整数),得到第5==n⩾1的整数).=n⩾1的整数).点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;第二步,找规律,分别比较等式中各部分与序号之间的关系,把其蕴含的规律用含序数的代数式表示出来;第三步,根据找出的规律得出第n个等式.19.﹣2a【分析】首先根据实数a、b在数轴上的位置确定a、b的正负,然后利用二次根式的性质化简,最后合并同类项即可求解.【详解】依题意得:a<0<b,|a|<|b|,∴=-a-b+b-a=-解析:﹣2a【分析】首先根据实数a、b在数轴上的位置确定a、b的正负,然后利用二次根式的性质化简,最后合并同类项即可求解.【详解】依题意得:a<0<b,|a|<|b|,.故答案为-2a.【点睛】此题主要考查了二次根式的性质与化简,其中正确利用数轴的已知条件化简是解题的关键,同时也注意处理符号问题.20.4a【解析】【分析】根据二次根式乘法法则进行计算即可得.【详解】===4a,故答案为4a.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式乘法法则是解题的关键.解析:4a【解析】【分析】根据二次根式乘法法则进行计算即可得.)0a≥===4a,故答案为4a.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式乘法法则是解题的关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。

(完整)八年级二次根式综合练习题及答案解析.docx

(完整)八年级二次根式综合练习题及答案解析.docx

填空题1. 使式子x 4 有意义的条件是。

【答案】x≥4【分析】二次根号内的数必须大于等于零,所以x-4≥ 0,解得x≥ 4 2. 当__________时,x 2 1 2 x 有意义。

【答案】 -2≤x≤12【分析】 x+2≥ 0, 1-2x≥ 0 解得 x≥- 2, x≤1123. 若m有意义,则 m 的取值范围是。

m 1【答案】 m≤0且m≠﹣1【分析】﹣ m≥0 解得 m≤ 0,因为分母不能为零,所以m+1≠ 0 解得 m≠﹣ 14.当 x __________ 时, 1 x 2 是二次根式。

【答案】 x 为任意实数【分析】﹙1- x﹚2是恒大于等于0 的,不论 x 的取值,都恒大于等于0,所以 x 为任意实数5.在实数范围内分解因式: x49 __________, x2 2 2x 2__________ 。

【答案】﹙x 2+ 3﹚﹙ x+3﹚﹙ x-3﹚,﹙ x- 2 ﹚2【分析】运用两次平方差公式:x 4- 9=﹙ x 2+ 3﹚﹙ x 2-3﹚=﹙ x 2+ 3﹚﹙ x+ 3 ﹚﹙x - 3 ﹚,运用完全平方差公式:x 2- 2 2 x+ 2=﹙ x- 2 ﹚26.若 4 x22x ,则 x 的取值范围是。

【答案】 x≥0【分析】二次根式开根号以后得到的数是正数,所以2x≥ 0,解得 x≥07.已知x22 x ,则x的取值范围是。

2【答案】 x≤2【分析】二次根式开根号以后得到的数是正数,所以2- x≥0,解得 x≤ 2 8.化简: x2 2 x 1 x p 1的结果是。

【答案】 1-x【分析】x2 2 x 1 =(x1)22,因为 x 1 ≥0,x<1所以结果为1-x9.当1x p5时,x2x 5 _____________ 。

1【答案】 4【分析】因为 x≥1 所以x 1 2= x 1,因为x<5所以x-5的绝对值为5-x,x- 1+5- x= 410.把 a1的根号外的因式移到根号内等于。

初二数学二次根式试题答案及解析

初二数学二次根式试题答案及解析

初二数学二次根式试题答案及解析1.化简的结果是()A.-3B.3C.±3D.【答案】B.【解析】.故选B.【考点】二次根式化简.2.当a<0时,化简|2a- |的结果是………()A.a B.-a C.3a D.-3a【答案】D.【解析】∵a<0,∴|a|=-a,则原式=|2a-|a||=|2a+a|=-3a.故选D【考点】二次根式的性质与化简.3.下列计算错误的是 ( )A.B.C.D.【答案】D.【解析】A.,计算正确;B.,计算正确;C.,计算正确;D.,计算错误.故选D.考点: 二次根式的运算.4.下列说法正确的是()A.一个数的立方根有两个,它们互为相反数B.一个数的立方根与这个数同号C.如果一个数有立方根,那么它一定有平方根D.一个数的立方根是非负数【答案】B【解析】一个数的立方根只有一个,A错误;一个数有立方根,但这个数不一定有平方根,如,C错误;一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0,所以D是错误的,故选B5.已知,求的值.【答案】2005【解析】解:因为,所以,即,所以.故,从而,所以,所以.6.下列说法错误的是()A.5是25的算术平方根B.1是1的一个平方根C.的平方根是-4D.0的平方根与算术平方根都是0【答案】C【解析】A.因为=5,所以A正确;B.因为±=±1,所以1是1的一个平方根说法正确;C.因为±=±=±4,所以C错误;D.因为=0, =0,所以D正确.故选C.7.的平方根是,的算术平方根是 .【答案】3【解析】;,所以的算术平方根是3.8.的平方根是.【答案】±2.【解析】的算术平方根是4,4的平方根是±2.【考点】1.算术平方根;2. 平方根.9.下列计算正确的是()A.B.C.D.【答案】A.【解析】根据根式运算法则.不是同类项不能合并同类项根式运算.10.若有意义,则________.【答案】1.【解析】由题意,得:,解得,则=1.故答案是:1.【考点】二次根式有意义的条件.11.设S=+++…+,则不大于S的最大整数[S]等于()A.98B.99C.100D.101【答案】B.【解析】,,…,所以所以不大于S的最大整数[S]等于99.【考点】规律型.12. 16的算术平方根是()A.4B.-4C.D.256【答案】A【解析】16的算术平方根是=4,选A.一个非负数a有两个平方根±,它们互为相反数, 称为a的算术平方根,由题,16的算术平方根是=4,选A.【考点】算术平方根.13.已知,那么= .【答案】4【解析】由题意分析可知,在满足本题的条件下,,代入得y=1,所以=4【考点】二次根号的意义点评:本题属于对二次根号的基本性质和代数式有意义的条件的基本考查和运算14.函数y=中自变量x的取值范围是________.【答案】x≥-1【解析】易知根号下为非负数。

新部编初中数学八年级下册同步练习试题及答案_第16章 二次根式(19页)

新部编初中数学八年级下册同步练习试题及答案_第16章 二次根式(19页)

第十六章 二次根式测试1 二次根式学习要求掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.a +1表示二次根式的条件是______. 2.当x ______时,12--x 有意义,当x ______时,31+x 有意义. 3.若无意义2+x ,则x 的取值范围是______. 4.直接写出下列各式的结果: (1)49=_______;(2)2)7(_______; (3)2)7(-_______;(4)2)7(--_______; (5)2)7.0(_______;(6)22])7([- _______. 二、选择题5.下列计算正确的有( ).①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=-A .①、②B .③、④C .①、③D .②、④6.下列各式中一定是二次根式的是( ). A .23-B .2)3.0(-C .2-D .x7.当x =2时,下列各式中,没有意义的是( ). A .2-xB .x -2C .22-xD .22x -8.已知,21)12(2a a -=-那么a 的取值范围是( ).A .21>aB .21<a C .21≥a D .21≤a 三、解答题9.当x 为何值时,下列式子有意义? (1);1x -(2);2x -(3);12+x (4)⋅+-xx2110.计算下列各式:(1);)23(2 (2);)1(22+a(3);)43(22-⨯-(4).)323(2-综合、运用、诊断一、填空题11.x 2-表示二次根式的条件是______. 12.使12-x x有意义的x 的取值范围是______. 13.已知411+=-+-y x x ,则x y 的平方根为______. 14.当x =-2时,2244121x x x x ++-+-=________. 二、选择题15.下列各式中,x 的取值范围是x >2的是( ).A .2-xB .21-xC .x -21D .121-x16.若022|5|=++-y x ,则x -y 的值是( ). A .-7B .-5C .3D .7三、解答题17.计算下列各式:(1);)π14.3(2- (2);)3(22--(3);])32[(21-(4).)5.03(2218.当a =2,b =-1,c =-1时,求代数式aacb b 242-±-的值.拓广、探究、思考19.已知数a ,b ,c 在数轴上的位置如图所示:化简:||)(||22b b c c a a ---++-的结果是:______________________.20.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC 的c 边的长.测试2 二次根式的乘除(一)学习要求会进行二次根式的乘法运算,能对二次根式进行化简.课堂学习检测一、填空题1.如果y x xy ⋅=24成立,x ,y 必须满足条件______.2.计算:(1)=⨯12172_________;(2)=--)84)(213(__________; (3)=⨯-03.027.02___________.3.化简:(1)=⨯3649______;(2)=⨯25.081.0 ______;(3)=-45______. 二、选择题4.下列计算正确的是( ). A .532=⋅ B .632=⋅C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么( ).A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时,2x 的值是( ). A .±3 B .3 C .-3 D .9三、解答题7.计算:(1);26⨯(2));33(35-⨯- (3);8223⨯(4);1252735⨯ (5);131aab ⋅(6);5252ac c b b a ⋅⋅(7);49)7(2⨯- (8);51322-(9).7272y x8.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.综合、运用、诊断一、填空题9.定义运算“@”的运算法则为:,4@+=xy y x 则(2@6)@6=______.10.已知矩形的长为cm 52,宽为cm 10,则面积为______cm 2.11.比较大小:(1)23_____32;(2)25______34;(3)-22_______-6. 二、选择题12.若b a b a -=2成立,则a ,b 满足的条件是( ).A .a <0且b >0B .a ≤0且b ≥0C .a <0且b ≥0D .a ,b 异号13.把4324根号外的因式移进根号内,结果等于( ). A .11- B .11C .44-D .112三、解答题14.计算:(1)=⋅x xy 6335_______;(2)=+222927b a a _______;(3)=⋅⋅21132212_______; (4)=+⋅)123(3_______.15.若(x -y +2)2与2-+y x 互为相反数,求(x +y )x 的值.拓广、探究、思考16.化简:(1)=-+1110)12()12(________;(2)=-⋅+)13()13(_________.测试3 二次根式的乘除(二)学习要求会进行二次根式的除法运算,能把二次根式化成最简二次根式.课堂学习检测一、填空题1.把下列各式化成最简二次根式:(1)=12______;(2)=x 18______;(3)=3548y x ______;(4)=xy______; (5)=32______;(6)=214______;(7)=+243x x ______;(8)=+3121______. 2.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:23 与.2(1)32与______; (2)32与______;(3)a 3与______; (4)23a 与______; (5)33a 与______. 二、选择题 3.xxx x -=-11成立的条件是( ). A .x <1且x ≠0 B .x >0且x ≠1C .0<x ≤1D .0<x <14.下列计算不正确的是( ). A .471613= B .xy x x y 63132= C .201)51()41(22=-D .x x x3294= 5.把321化成最简二次根式为( ). A .3232 B .32321C .281 D .241 三、计算题 6.(1);2516 (2);972(3);324 (4);1252755÷-(5);1525 (6);3366÷(7);211311÷(8).125.02121÷综合、运用、诊断一、填空题7.化简二次根式:(1)=⨯62________(2)=81_________(3)=-314_________8.计算下列各式,使得结果的分母中不含有二次根式: (1)=51_______(2)=x 2_________(3)=322__________(4)=y x5__________ 9.已知,732.13≈则≈31______;≈27_________.(结果精确到0.001) 二、选择题 10.已知13+=a ,132-=b ,则a 与b 的关系为( ). A .a =b B .ab =1C .a =-bD .ab =-111.下列各式中,最简二次根式是( ).A .yx -1B .ba C .42+x D .b a 25三、解答题12.计算:(1);3b a ab ab ⨯÷ (2);3212y xy ÷(3)⋅++ba b a13.当24,24+=-=y x 时,求222y xy x +-和xy 2+x 2y 的值.拓广、探究、思考14.观察规律:,32321,23231,12121-=+-=+-=+……并求值.(1)=+2271_______;(2)=+10111_______;(3)=++11n n _______.15.试探究22)(a 、a 与a 之间的关系.测试4 二次根式的加减(一)学习要求掌握可以合并的二次根式的特征,会进行二次根式的加、减运算.课堂学习检测一、填空题1.下列二次根式15,12,18,82,454,125,27,32化简后,与2的被开方数相同的有______,与3的被开方数相同的有______,与5的被开方数相同的有______.2.计算:(1)=+31312________; (2)=-x x 43__________.二、选择题3.化简后,与2的被开方数相同的二次根式是( ). A .10B .12C .21 D .61 4.下列说法正确的是( ).A .被开方数相同的二次根式可以合并B .8与80可以合并C .只有根指数为2的根式才能合并D .2与50不能合并5.下列计算,正确的是( ). A .3232=+B .5225=-C .a a a 26225=+D .xy x y 32=+ 三、计算题6..48512739-+ 7..61224-+8.⋅++3218121 9.⋅---)5.04313()81412(10..1878523x x x +- 11.⋅-+xx x x 1246932综合、运用、诊断一、填空题12.已知二次根式b a b +4与b a +3是同类二次根式,(a +b )a 的值是______.13.3832ab 与b a b 26无法合并,这种说法是______的.(填“正确”或“错误”) 二、选择题14.在下列二次根式中,与a 是同类二次根式的是( ).A .a 2B .23aC .3aD .4a三、计算题 15..)15(2822180-+-- 16.).272(43)32(21--+17.⋅+-+bb a b a a124118..21233ab bb a aba bab a-+-四、解答题19.化简求值:y y xy xx 3241+-+,其中4=x ,91=y .20.当321-=x 时,求代数式x 2-4x +2的值.拓广、探究、思考21.探究下面的问题:(1)判断下列各式是否成立?你认为成立的,在括号内画“√”,否则画“×”.①322322=+( ) ②833833=+( )③15441544=+( ) ④24552455=+( ) (2)你判断完以上各题后,发现了什么规律?请用含有n 的式子将规律表示出来,并写出n 的取值范围.(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.测试5 二次根式的加减(二)学习要求会进行二次根式的混合运算,能够运用乘法公式简化运算.课堂学习检测一、填空题1.当a =______时,最简二次根式12-a 与73--a 可以合并. 2.若27+=a ,27-=b ,那么a +b =______,ab =______.3.合并二次根式:(1)=-+)18(50________;(2)=+-ax xax45________. 二、选择题4.下列各组二次根式化成最简二次根式后的被开方数完全相同的是( ). A .ab 与2abB mn 与nm 11+ C .22n m +与22n m - D .2398b a 与4329b a5.下列计算正确的是( ). A .b a b a b a -=-+2))(2( B .1239)33(2=+=+C .32)23(6+=+÷D .641426412)232(2-=+-=- 6.)32)(23(+-等于( ). A .7 B .223366-+- C .1D .22336-+三、计算题(能简算的要简算) 7.⋅-121).2218( 8.).4818)(122(+-9.).32841)(236215(-- 10.).3218)(8321(-+11..6)1242764810(÷+- 12..)18212(2-综合、运用、诊断一、填空题13.(1)规定运算:(a *b )=|a -b |,其中a ,b 为实数,则=+7)3*7(_______.(2)设5=a ,且b 是a 的小数部分,则=-ba a ________.二、选择题14.b a -与a b -的关系是( ). A .互为倒数 B .互为相反数 C .相等D .乘积是有理式15.下列计算正确的是( ).A .b a b a +=+2)(B .ab b a =+C .b a b a +=+22D .a aa =⋅1三、解答题 16.⋅+⋅-221221 17.⋅--+⨯2818)212(218..)21()21(20092008-+ 19..)()(22b a b a --+四、解答题20.已知,23,23-=+=y x 求(1)x 2-xy +y 2;(2)x 3y +xy 3的值.21.已知25-=x ,求4)25()549(2++-+x x 的值.拓广、探究、思考22.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个代数式互为有理化因式.如:a 与a ,63+与63-互为有理化因式. 试写下列各式的有理化因式: (1)25与______;(2)y x 2-与______;(3)mn 与______; (4)32+与______; (5)223+与______;(6)3223-与______.23.已知,732.13,414.12≈≈求)23(6-÷.(精确到0.01)答案与提示第十六章 二次根式测试11.a ≥-1.2.<1, >-3.3.x <-2.4.(1)7; (2)7; (3)7; (4)-7; (5)0.7; (6)49. 5.C . 6.B . 7.D . 8.D .9.(1)x ≤1;(2)x =0;(3)x 是任意实数;(4)x ≤1且x ≠-2.10.(1)18;(2)a 2+1;(3);23- (4)6.11.x ≤0. 12.x ≥0且⋅=/21x 13.±1. 14.0. 15.B . 16.D . 17.(1)π-3.14;(2)-9;(3);23 (4)36. 18.21-或1.19.0. 20.提示:a =2,b =3,于是1<c <5,所以c =2,3,4.测试2 1.x ≥0且y ≥0.2.(1);6 (2)24;(3)-0.18.3.(1)42;(2)0.45;(3).53- 4.B . 5.B . 6.B .7.(1);32 (2)45; (3)24; (4);53 (5);3b(6);52(7)49; (8)12; (9)⋅y xy 263 8..cm 629..72 10.210. 11.(1)>;(2)>;(3)<. 12.B . 13.D .14.(1);245y x (2);332b a + (3) ;34 (4)9. 15.1. 16.(1);12- (2).2测试31.(1);32 (2);23x (3);342xy y x (4);xxy (5);36 (6);223 (7);32+x x (8)630. 2..3)5(;3)4(;3)3(;2)2(;3)1(a a 3.C . 4.C . 5.C . 6..4)8(;322)7(;22)6(;63)5(;215)4(;22)3(;35)2(;54)1(-7.⋅-339)3(;42)2(;32)1( 8.⋅y y x x x 55)4(;66)3(;2)2(;55)1( 9.0.577,5.196. 10.A . 11.C . 12..)3(;33)2(;)1(b a x bab+ 13..112;2222222=+=+-y x xy y xy x 14..1)3(;1011)2(;722)1(n n -+--15.当a ≥0时,a a a ==22)(;当a <0时,a a -=2,而2)(a 无意义.测试41..454,125;12,27;18,82,32 2.(1).)2(;33x3.C . 4.A . 5.C . 6..33 7..632+ 8.⋅827 9..23+ 10..214x 11..3x 12.1. 13.错误. 14.C . 15..12+ 16.⋅-423411 17..321b a + 18.0.19.原式,32y x+=代入得2. 20.1. 21.(1)都画“√”;(2)1122-=-+n n nn n n (n ≥2,且n 为整数);(3)证明:⋅-=-=-+-=-+111)1(1223222n nn n n n n n n n n n 测试51.6. 2..3,72 3.(1);22 (2) .3ax - 4.D . 5.D . 6.B . 7.⋅668..1862-- 9..3314218-10.⋅417 11..215 12..62484-13.(1)3;(2).55-- 14.B . 15.D . 16.⋅-4117.2. 18..21- 19.ab 4(可以按整式乘法,也可以按因式分解法).20.(1)9; (2)10. 21.4.22.(1)2; (2)y x 2-; (3)mn ; (4)32-; (5)223-; (6)3223+(答案)不唯一. 23.约7.70.第十六章 二次根式全章测试一、填空题 1.已知mnm 1+-有意义,则在平面直角坐标系中,点P (m ,n )位于第______象限. 2.322-的相反数是______,绝对值是______. 3.若3:2:=y x ,则=-xy y x 2)(______.4.已知直角三角形的两条直角边长分别为5和52,那么这个三角形的周长为______. 5.当32-=x 时,代数式3)32()347(2++++x x 的值为______. 二、选择题6.当a <2时,式子2)2(,2,2,2-+--a a a a 中,有意义的有( ). A .1个 B .2个C .3个D .4个7.下列各式的计算中,正确的是( ). A .6)9(4)9()4(=-⨯-=-⨯- B .7434322=+=+C .9181404122=⨯=-D .2323= 8.若(x +2)2=2,则x 等于( ). A .42+B .42-C .22-±D .22±9.a ,b 两数满足b <0<a 且|b |>|a |,则下列各式中,有意义的是( ). A .b a +B .a b -C .b a -D .ab10.已知A 点坐标为),0,2(A 点B 在直线y =-x 上运动,当线段AB 最短时,B 点坐标( ).A .(0,0)B .)22,22(- C .(1,-1) D .)22,22(-三、计算题11..1502963546244-+- 12.).32)(23(--13..25341122÷⋅ 14.).94(323ab ab ab a aba b+-+15.⋅⋅-⋅ba b a ab ba 3)23(35 16.⋅÷+--+xy yx y x xy yx y )(四、解答题17.已知a 是2的算术平方根,求222<-a x 的正整数解.18.已知:如图,直角梯形ABCD 中,AD ∥BC ,∠A =90°,△BCD 为等边三角形,且AD 2=,求梯形ABCD 的周长.附加题19.先观察下列等式,再回答问题.①;2111111112111122=+-+=++②;6111212113121122=+-+=++ ③⋅=+-+=++12111313114131122(1)请根据上面三个等式提供的信息,猜想2251411++的结果; (2)请按照上面各等式反映的规律,试写出用n (n 为正整数)表示的等式.20.用6个边长为12cm 的正方形拼成一个长方形,有多少种拼法?求出每种长方形的对角线长(精确到0.1cm ,可用计算器计算).答案与提示第十六章 二次根式全章测试1.三. 2..223,223-- 3..2665- 4..555+ 5..32+ 6.B . 7.C . 8.C . 9.C . 10.B . 11..68- 12..562- 13.⋅1023 14..2ab - 15..293ab b a - 16.0. 17.x <3;正整数解为1,2. 18.周长为.625+ 19.(1);2011141411=+-+(2).)1(111111)1(11122++=+-+=+++n n n nn n20.两种:(1)拼成6×1,对角线);cm (0.733712721222≈=+(2)拼成2×3,对角线3.431312362422≈=+(cm).。

八年级初二数学二次根式练习题及答案

八年级初二数学二次根式练习题及答案
阅读理解:
﹣1;


应用计算:(1) 的值;
(2) (n为正整数)的值.
归纳拓展:(3) 的值.
【答案】应用计算:(1) ;(2) ;归纳拓展:(3)9.
【分析】
由阅读部分分析发现式子的分子、分母都乘以分母的有理化因式,为此(1)乘以 分母利用平方差公式计算即可,(2)乘以 分母利用平方差公式计算即可,(3)根据分母的特点各项分子分母乘以各分母的有理化因式,分母用公式计算化去分母,分子合并同类项二次根式即可.
【答案】(1) ;(2)4
【分析】
(1)先利用二次根式的乘法法则和绝对值的意义计算,再进行回头运算即可;
(2)先根据二次根式有意义的条件确定b的值,再根据非负数的和的意义确定a,c的值,然后再计算代数式的值即可.
【详解】
解:(1)
(2)由题意可知: ,
解得
由此可化简原式得,


【点睛】
可不是考查了二次根式的混合运算以及二次根式的化简求值,熟练掌握运算法则和运算顺序是解答此题的关键.
正方形的面积也为4.边长为
周长为:
∴长方形的周长大于正方形的周长.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【解析】
B. = ;C. = ; D. .故选A.
2.C
解析:C
【详解】
, ,
所以 = ,
故选:C.
【点睛】
对于形如 的式子,改变其中两个字母的位置后,并不改变代数式的值,通常将具有这个特点的代数式称为轮换对称式,如 , , 等,轮换对称式都可以用 , 来表示,所以求轮换对称式的值,一般是先将式子用 , 来表示,然后再整体代入计算.

新人教版初中数学八年级下册同步练习试题及答案_第16章 二次根式(19页)

新人教版初中数学八年级下册同步练习试题及答案_第16章 二次根式(19页)

第十六章 二次根式测试1 二次根式学习要求掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.a +1表示二次根式的条件是______.2.当x ______时,12--x 有意义,当x ______时,31+x 有意义. 3.若无意义2+x ,则x 的取值范围是______.4.直接写出下列各式的结果:(1)49=_______;(2)2)7(_______; (3)2)7(-_______;(4)2)7(--_______; (5)2)7.0(_______;(6)22])7([- _______.二、选择题5.下列计算正确的有( ).①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=- A .①、②B .③、④C .①、③D .②、④6.下列各式中一定是二次根式的是( ).A .23-B .2)3.0(-C .2-D .x7.当x =2时,下列各式中,没有意义的是( ).A .2-xB .x -2C .22-xD .22x -8.已知,21)12(2a a -=-那么a 的取值范围是( ). A .21>a B .21<a C .21≥a D .21≤a 三、解答题9.当x 为何值时,下列式子有意义?(1);1x -(2);2x -(3);12+x (4)⋅+-xx2110.计算下列各式:(1);)23(2 (2);)1(22+a(3);)43(22-⨯-(4).)323(2-综合、运用、诊断一、填空题11.x 2-表示二次根式的条件是______.12.使12-x x有意义的x 的取值范围是______. 13.已知411+=-+-y x x ,则x y 的平方根为______.14.当x =-2时,2244121x x x x ++-+-=________. 二、选择题15.下列各式中,x 的取值范围是x >2的是( ).A .2-xB .21-x C .x-21 D .121-x16.若022|5|=++-y x ,则x -y 的值是( ).A .-7B .-5C .3D .7三、解答题17.计算下列各式:(1);)π14.3(2- (2);)3(22--(3);])32[(21-(4).)5.03(2218.当a =2,b =-1,c =-1时,求代数式aacb b 242-±-的值.拓广、探究、思考19.已知数a ,b ,c 在数轴上的位置如图所示:化简:||)(||22b b c c a a ---++-的结果是:______________________.20.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC 的c 边的长.测试2 二次根式的乘除(一)学习要求会进行二次根式的乘法运算,能对二次根式进行化简.课堂学习检测一、填空题1.如果y x xy ⋅=24成立,x ,y 必须满足条件______.2.计算:(1)=⨯12172_________;(2)=--)84)(213(__________; (3)=⨯-03.027.02___________.3.化简:(1)=⨯3649______;(2)=⨯25.081.0 ______;(3)=-45______.二、选择题4.下列计算正确的是( ).A .532=⋅B .632=⋅C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么( ).A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时,2x 的值是( ). A .±3B .3C .-3D .9三、解答题7.计算:(1);26⨯ (2));33(35-⨯- (3);8223⨯(4);1252735⨯ (5);131aab ⋅ (6);5252ac c b b a ⋅⋅(7);49)7(2⨯- (8);51322-(9).7272y x8.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.综合、运用、诊断一、填空题9.定义运算“@”的运算法则为:,4@+=xy y x 则(2@6)@6=______.10.已知矩形的长为cm 52,宽为cm 10,则面积为______cm 2.11.比较大小:(1)23_____32;(2)25______34;(3)-22_______-6. 二、选择题12.若b a b a -=2成立,则a ,b 满足的条件是( ).A .a <0且b >0B .a ≤0且b ≥0C .a <0且b ≥0D .a ,b 异号13.把4324根号外的因式移进根号内,结果等于( ). A .11-B .11C .44-D .112三、解答题14.计算:(1)=⋅x xy 6335_______;(2)=+222927b a a _______;(3)=⋅⋅21132212_______; (4)=+⋅)123(3_______.15.若(x -y +2)2与2-+y x 互为相反数,求(x +y )x 的值.拓广、探究、思考16.化简:(1)=-+1110)12()12(________;(2)=-⋅+)13()13(_________.测试3 二次根式的乘除(二)学习要求会进行二次根式的除法运算,能把二次根式化成最简二次根式.课堂学习检测一、填空题1.把下列各式化成最简二次根式:(1)=12______;(2)=x 18______;(3)=3548y x ______;(4)=xy______; (5)=32______;(6)=214______;(7)=+243x x ______;(8)=+3121______. 2.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:23 与.2(1)32与______; (2)32与______;(3)a 3与______; (4)23a 与______; (5)33a 与______. 二、选择题3.xx x x -=-11成立的条件是( ). A .x <1且x ≠0 B .x >0且x ≠1 C .0<x ≤1 D .0<x <14.下列计算不正确的是( ).A .471613= B .xy xx y 63132=C .201)51()41(22=-D .x xx3294= 5.把321化成最简二次根式为( ). A .3232B .32321C .281 D .241 三、计算题6.(1);2516 (2);972(3);324 (4);1252755÷-(5);1525 (6);3366÷ (7);211311÷(8).125.02121÷综合、运用、诊断一、填空题7.化简二次根式:(1)=⨯62________(2)=81_________(3)=-314_________ 8.计算下列各式,使得结果的分母中不含有二次根式:(1)=51_______(2)=x 2_________(3)=322__________(4)=y x 5__________ 9.已知,732.13≈则≈31______;≈27_________.(结果精确到0.001) 二、选择题10.已知13+=a ,132-=b ,则a 与b 的关系为( ). A .a =bB .ab =1C .a =-bD .ab =-111.下列各式中,最简二次根式是( ).A .yx -1B .ba C .42+x D .b a 25三、解答题12.计算:(1);3b a ab ab ⨯÷(2);3212y xy ÷(3)⋅++ba b a13.当24,24+=-=y x 时,求222y xy x +-和xy 2+x 2y 的值.拓广、探究、思考14.观察规律:,32321,23231,12121-=+-=+-=+……并求值.(1)=+2271_______;(2)=+10111_______;(3)=++11n n _______.15.试探究22)(a 、a 与a 之间的关系.测试4 二次根式的加减(一)学习要求掌握可以合并的二次根式的特征,会进行二次根式的加、减运算.课堂学习检测一、填空题1.下列二次根式15,12,18,82,454,125,27,32化简后,与2的被开方数相同的有______,与3的被开方数相同的有______,与5的被开方数相同的有______.2.计算:(1)=+31312________; (2)=-x x 43__________.二、选择题3.化简后,与2的被开方数相同的二次根式是( ).A .10B .12C .21 D .61 4.下列说法正确的是( ).A .被开方数相同的二次根式可以合并B .8与80可以合并C .只有根指数为2的根式才能合并D .2与50不能合并5.下列计算,正确的是( ).A .3232=+B .5225=-C .a a a 26225=+D .xy x y 32=+三、计算题6..48512739-+ 7..61224-+8.⋅++3218121 9.⋅---)5.04313()81412(10..1878523x x x +- 11.⋅-+xx x x 1246932综合、运用、诊断一、填空题12.已知二次根式b a b +4与b a +3是同类二次根式,(a +b )a 的值是______.13.3832ab 与bab 26无法合并,这种说法是______的.(填“正确”或“错误”) 二、选择题14.在下列二次根式中,与a 是同类二次根式的是( ).A .a 2B .23aC .3aD .4a三、计算题15..)15(2822180-+-- 16.).272(43)32(21--+17.⋅+-+bb a b a a 124118..21233ab bb a aba b ab a -+-四、解答题19.化简求值:y y xy xx 3241+-+,其中4=x ,91=y .20.当321-=x 时,求代数式x 2-4x +2的值.拓广、探究、思考21.探究下面的问题:(1)判断下列各式是否成立?你认为成立的,在括号内画“√”,否则画“×”.①322322=+( ) ②833833=+( ) ③15441544=+( ) ④24552455=+( ) (2)你判断完以上各题后,发现了什么规律?请用含有n 的式子将规律表示出来,并写出n 的取值范围.(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.测试5 二次根式的加减(二)学习要求会进行二次根式的混合运算,能够运用乘法公式简化运算.课堂学习检测一、填空题1.当a =______时,最简二次根式12-a 与73--a 可以合并. 2.若27+=a ,27-=b ,那么a +b =______,ab =______.3.合并二次根式:(1)=-+)18(50________;(2)=+-ax xax45________. 二、选择题4.下列各组二次根式化成最简二次根式后的被开方数完全相同的是( ).A .ab 与2abB mn 与nm 11+ C .22n m +与22n m -D .2398b a 与4329b a5.下列计算正确的是( ).A .b a b a b a -=-+2))(2(B .1239)33(2=+=+C .32)23(6+=+÷D .641426412)232(2-=+-=-6.)32)(23(+-等于( ).A .7B .223366-+-C .1D .22336-+三、计算题(能简算的要简算)7.⋅-121).2218( 8.).4818)(122(+-9.).32841)(236215(-- 10.).3218)(8321(-+11..6)1242764810(÷+-12..)18212(2-综合、运用、诊断一、填空题13.(1)规定运算:(a *b )=|a -b |,其中a ,b 为实数,则=+7)3*7(_______.(2)设5=a ,且b 是a 的小数部分,则=-baa ________. 二、选择题14.b a -与a b -的关系是( ).A .互为倒数B .互为相反数C .相等D .乘积是有理式15.下列计算正确的是( ).A .b a b a +=+2)(B .ab b a =+C .b a b a +=+22D .a aa =⋅1三、解答题16.⋅+⋅-221221 17.⋅--+⨯2818)212(218..)21()21(20092008-+19..)()(22b a b a --+四、解答题20.已知,23,23-=+=y x 求(1)x 2-xy +y 2;(2)x 3y +xy 3的值.21.已知25-=x ,求4)25()549(2++-+x x 的值.拓广、探究、思考22.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个代数式互为有理化因式.如:a 与a ,63+与63-互为有理化因式.试写下列各式的有理化因式:(1)25与______; (2)y x 2-与______; (3)mn 与______;(4)32+与______; (5)223+与______; (6)3223-与______.23.已知,732.13,414.12≈≈求)23(6-÷.(精确到0.01)答案与提示第十六章 二次根式测试11.a ≥-1.2.<1, >-3.3.x <-2.4.(1)7; (2)7; (3)7; (4)-7; (5)0.7; (6)49.5.C . 6.B . 7.D . 8.D .9.(1)x ≤1;(2)x =0;(3)x 是任意实数;(4)x ≤1且x ≠-2.10.(1)18;(2)a 2+1;(3);23- (4)6.11.x ≤0. 12.x ≥0且⋅=/21x 13.±1. 14.0. 15.B . 16.D . 17.(1)π-3.14;(2)-9;(3);23 (4)36. 18.21-或1.19.0. 20.提示:a =2,b =3,于是1<c <5,所以c =2,3,4.测试21.x ≥0且y ≥0.2.(1);6 (2)24;(3)-0.18.3.(1)42;(2)0.45;(3).53- 4.B . 5.B . 6.B .7.(1);32 (2)45; (3)24; (4);53 (5);3b(6);52(7)49; (8)12; (9)⋅y xy 263 8..cm 629..72 10.210. 11.(1)>;(2)>;(3)<. 12.B . 13.D .14.(1);245y x (2);332b a + (3) ;34 (4)9. 15.1.16.(1);12- (2).2测试31.(1);32 (2);23x (3);342xy y x (4);xxy (5);36 (6);223 (7);32+x x (8)630. 2..3)5(;3)4(;3)3(;2)2(;3)1(a a3.C . 4.C . 5.C .6..4)8(;322)7(;22)6(;63)5(;215)4(;22)3(;35)2(;54)1(-7.⋅-339)3(;42)2(;32)1( 8.⋅y y x x x 55)4(;66)3(;2)2(;55)1( 9.0.577,5.196. 10.A . 11.C . 12..)3(;33)2(;)1(b a x bab+ 13..112;2222222=+=+-y x xy y xy x14..1)3(;1011)2(;722)1(n n -+--15.当a ≥0时,a a a ==22)(;当a <0时,a a -=2,而2)(a 无意义.测试41..454,125;12,27;18,82,32 2.(1).)2(;33x3.C . 4.A . 5.C . 6..33 7..632+ 8.⋅8279..23+ 10..214x 11..3x12.1. 13.错误. 14.C . 15..12+16.⋅-423411 17..321b a + 18.0.19.原式,32y x+=代入得2. 20.1. 21.(1)都画“√”;(2)1122-=-+n n nn n n (n ≥2,且n 为整数);(3)证明:⋅-=-=-+-=-+111)1(1223222n nn n n n n n n n n n 测试51.6. 2..3,72 3.(1);22 (2) .3ax -4.D . 5.D . 6.B . 7.⋅668..1862-- 9..3314218-10.⋅417 11..215 12..62484-13.(1)3;(2).55-- 14.B . 15.D .16.⋅-4117.2. 18..21-19.ab 4(可以按整式乘法,也可以按因式分解法).20.(1)9; (2)10. 21.4.22.(1)2; (2)y x 2-; (3)mn ; (4)32-; (5)223-; (6)3223+(答案)不唯一. 23.约7.70.第十六章 二次根式全章测试一、填空题1.已知m nm 1+-有意义,则在平面直角坐标系中,点P (m ,n )位于第______象限. 2.322-的相反数是______,绝对值是______.3.若3:2:=y x ,则=-xy y x 2)(______.4.已知直角三角形的两条直角边长分别为5和52,那么这个三角形的周长为______. 5.当32-=x 时,代数式3)32()347(2++++x x 的值为______.二、选择题6.当a <2时,式子2)2(,2,2,2-+--a a a a 中,有意义的有( ).A .1个B .2个C .3个D .4个7.下列各式的计算中,正确的是( ).A .6)9(4)9()4(=-⨯-=-⨯-B .7434322=+=+C .9181404122=⨯=-D .2323= 8.若(x +2)2=2,则x 等于( ).A .42+B .42-C .22-±D .22±9.a ,b 两数满足b <0<a 且|b |>|a |,则下列各式中,有意义的是( ).A .b a +B .a b -C .b a -D .ab10.已知A 点坐标为),0,2(A 点B 在直线y =-x 上运动,当线段AB 最短时,B 点坐标( ).A .(0,0)B .)22,22(- C .(1,-1) D .)22,22(-三、计算题11..1502963546244-+- 12.).32)(23(--13..25341122÷⋅14.).94(323ab ab ab a aba b+-+15.⋅⋅-⋅ba b a ab ba 3)23(35 16.⋅÷+--+xy yx y x xy yx y )(四、解答题17.已知a 是2的算术平方根,求222<-a x 的正整数解.18.已知:如图,直角梯形ABCD 中,AD ∥BC ,∠A =90°,△BCD 为等边三角形,且AD 2=,求梯形ABCD 的周长.附加题19.先观察下列等式,再回答问题.①;2111111112111122=+-+=++②;6111212113121122=+-+=++③⋅=+-+=++12111313114131122(1)请根据上面三个等式提供的信息,猜想2251411++的结果; (2)请按照上面各等式反映的规律,试写出用n (n 为正整数)表示的等式.20.用6个边长为12cm的正方形拼成一个长方形,有多少种拼法?求出每种长方形的对角线长(精确到0.1cm,可用计算器计算).答案与提示第十六章 二次根式全章测试1.三. 2..223,223-- 3..2665- 4..555+ 5..32+ 6.B . 7.C . 8.C . 9.C . 10.B .11..68- 12..562- 13.⋅1023 14..2ab - 15..293ab b a - 16.0. 17.x <3;正整数解为1,2. 18.周长为.625+ 19.(1);2011141411=+-+(2).)1(111111)1(11122++=+-+=+++n n n nn n20.两种:(1)拼成6×1,对角线);cm (0.733712721222≈=+(2)拼成2×3,对角线3.431312362422≈=+(cm).。

八年级数学下册第一章《二次根式》综合测试题-浙教版(含答案)

八年级数学下册第一章《二次根式》综合测试题-浙教版(含答案)

八年级数学下册第一章《二次根式》综合测试题-浙教版(含答案)一.选择题(共7小题,满分28分)1.下列二次根式中,能与合并的是()A.B.C.D.2.要使二次根式有意义,那么x的取值范围是()A.x≥1B.x>1C.x<1D.x≥﹣13.下列计算中,正确的是()A.=±5B.=﹣3C.÷=2D.=50 4.下列二次根式中,属于最简二次根式的是()A.B.C.D.5.已知一个矩形面积是,一边长是,则另一边长是()A.12B.C.D.6.已知,则的值为()A.﹣2B.2C.2D.﹣27.若,则代数式x2﹣6x﹣8的值为()A.2005B.﹣2005C.2022D.﹣2022二.填空题(共7小题,满分28分)8.计算﹣的结果是.9.若b=﹣+6,则=.10.化简:(a>0)=.11.计算:=.12.一个三角形的三边长分别为,,2,则这个三角形的面积为.13.已知a,b,c为△ABC三边的长,化简=.14.已知+|b+1|=0,则=.三.解答题(共6小题,满分64分)15.计算:(1)﹣+;(2)÷﹣.16.计算下列各题:(1);(2).17.已知,x=+,y=﹣.求:(1)x+y和xy的值;(2)求x2﹣xy+y2的值.18.在一个长为,宽为的矩形内部挖去一个边长为的正方形,求剩余部分的面积.19.王老师在小结时总结了这样一句话“对于任意两个正数a,b,如果a>b,那么”,然后讲解了一道例题:比较和2的大小.解:=×200=8,(2)2=4×3=12.∵8<12,∴<2.参考上面例题的解法,解答下列问题:(1)比较﹣5与﹣6的大小;(2)比较+1与的大小.20.像,两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式.例如:₅与+1与,与2﹣3₅等都是互为有理化因式,进行二次根式计算时,利用有理化因式,可以化去分母中的根号,请回答下列问题:(1)化简:①=.②=;(2)计算:.参考答案一.选择题(共7小题,满分28分)1.解:A、与不能合并,故A不符合题意;B、与不能合并,故B不符合题意;C、=3,与不能合并,故C不符合题意;D、=2,与能合并,故D符合题意;故选:D.2.解:由题意得,2x﹣2≥0,解得,x≥1,故选:A.3.解:A.=5,故A选项错误;B.=3,故B选项错误;C.==2,故C选项正确;D.=20,故D选项错误.故选:C.4.解:A、=,故A不符合题意;B、=2,故B不符合题意;C、=|x|,故C不符合题意;D、是最简二次根式,故D符合题意;故选:D.5.解:÷===2,故选:B.6.解:∵x=+1,y=﹣1,∴x+y=2,xy=1,∴+===2,故选:B.7.解:∵,∴x2﹣6x﹣8=x2﹣6x+9﹣8﹣9=(x﹣3)2﹣17=(3﹣﹣3)2﹣17=(﹣)2﹣17=2022﹣17=2005,故选:A.二.填空题(共7小题,满分28分)8.解:===,故答案为:.9.解:由题意得:,解得a=3,所以b=6,所以.故答案为:.10.解:∵﹣ab3≥0,a>0,∴b≤0.∴==|b|=﹣b.故答案为:﹣b.11.解:=×4﹣3+6=2﹣3+6=5,故答案为:5.12.解:∵三角形的三边长分别为,,2,∴()2+()2=(2)2,∴这个三角形是直角三角形,斜边长为2,∴这个三角形的面积为××=,故答案为:.13.解:∵a,b,c为△ABC三边的长,∴b+c>a,a+c>b,∴=|a﹣b﹣c|+|b﹣a﹣c|=﹣(a﹣b﹣c)﹣(b﹣a﹣c)=﹣a+b+c﹣b+a+c=2c.故答案为:2c.14.解:∵+|b+1|=0,∴a﹣2=0,b+1=0,∴a=2,b=﹣1,∴=×+=×+=+2,故答案为:+2.三.解答题(共6小题,满分64分)15.解:(1)﹣+=3=0;(2)÷﹣=4﹣=4+.16.解:(1)==12;(2)=6﹣2﹣(4﹣4+3)=4﹣7+4=4﹣3.17.解:(1)∵x=+,y=﹣,∴x+y=()+()=2,xy=()×(﹣)=3﹣2=1;(2)∵x+y=2,xy=1,∴x2﹣xy+y2=(x+y)2﹣3xy=(2)2﹣3×1=12﹣3=9.18.解:由题意可得,=.即剩余部分的面积为10+8.19.解:(1)(﹣5)2=25×6=150,(﹣6)2=36×5=180,∵150<180,∴﹣5>﹣6;(2)(+1)2=7+2+1=8+2=8+,(+)2=5+2+3=8+2=8+,∵<,∴+1<+.20.解:(1)①==,==,故答案为:,;(2)原式=﹣1+﹣+﹣+......+﹣=﹣1.。

八年级数学下册第一单元《二次根式》测试(含答案解析)

八年级数学下册第一单元《二次根式》测试(含答案解析)

一、选择题1.从“+,﹣,×,÷”中选择一种运算符号,填入算式“+1)□x”的“□”中,使其运算结果为有理数,则实数x 不可能是( )A B . 1 C 2 D .12. )A .1B .2C .3D .43. )A B C D 4.下列式子中是二次根式的是( )A B C D 5.下列运算正确的是 ( )A B C .1)2=3-1 D 6.设a b 0>>,2240a b ab +-=,则a b b a +-的值是( )A .2B .-3C .D .7.下列计算正确的是( )A 7=±B 7=-C 112=D 2=8.合并的是( )A B C D 9.下列计算正确的是( )A =B =C .216=D 1=10.若0<x<1,则 )A .2xB .- 2xC .-2xD .2x11.=x 可取的整数值有( ). A .1个 B .2个C .3个D .4个12. )A .1个B .2个C .3个D .4个二、填空题13.x 的取值范围是______________. 14._____. 15.2=__________.16.已知+3,则x-y=_____________.17.已知a 、b 为有理数,m 、n分别表示521amn bn +=,则3a b +=_________.18.19.===…(a 、b 均为实数)则=a __________,=b __________.20.)0a >=______.三、解答题21.(1(2)解不等式组:2(3)8(1)22x x x x x --<⎧⎪⎨--≤-⎪⎩ 22.先化简再求值:2211,211a a a a a ----+-其中a = 23.(1)计算2011(20181978)|22-⎛⎛⎫-⨯----- ⎪ ⎝⎭⎝⎭(2)先化简,再求值:2256111x x x x -+⎛⎫-÷ ⎪--⎝⎭,x 从0,1,2,3四个数中适当选取. 24.先化简,再求值:21133x x x x xx ,其中1x =25.计算:(12(5)-; (2)(x ﹣2y+3)(x+2y+3).26.计算(1)22018112-⎛⎫-+ ⎪⎝⎭;(20|1-;(3)2(1)16x -=;(4)321x +=【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据题意,添上一种运算符号后逐一判断即可.【详解】解:A+1+1)=0,故本选项不合题意;B、1)无论是相加,相减,相乘,相除,结果都是无理数,故本选项符合题意; C﹣2)=3,故本选项不合题意;D)(12,故本选项不合题意.故选:B .【点睛】本题主要考查了二次根式的混合运算,熟记二次根式的混合运算法则以及平方差公式是解答本题的关键.(a+b )(a-b )=a 2-b 2.2.C解析:C【分析】为同类根式,即可得到此方程的正整数解的组数有三组.【详解】解:∵,x ,y 为正整数,∴====∴11327x y =⎧⎨=⎩,224812x y =⎧⎨=⎩,331473x y =⎧⎨=⎩,共有三组正整数解. 故选:C .【点睛】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.3.B解析:B【分析】根据分数的性质,在分子分母同乘以2,再根据二次根式的性质化简即可.【详解】4===, 故选:B .【点睛】此题考查化简二次根式,掌握分数的性质确定分子分母同乘以最小的数值,使分母化为一个数的平方,由此化简二次根式是解题的关键.4.C解析:C【分析】利用二次根式的定义进行解答即可.【详解】A 中,当0a <时,不是二次根式,故此选项不符合题意;B 1x <-时,不是二次根式,故此选项不符合题意;C =()2 10x +≥恒成立,因此该式是二次根式,故此选项符合题意;D 20-<,不是二次根式,故此选项不符合题意;故选:C .【点睛】(0a ≥)的式子叫做二次根式. 5.B解析:B【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【详解】A A 错误;B ,故选项B 正确;C 、21)313=-=-,故选项C 错误;D 53=≠+,故选项D 错误;故选:B .【点睛】本题考查了二次根式的混合运算,解答本题的关键是明确二次根式混合运算的法则. 6.D解析:D【分析】由2240a b ab +-=可得2()6a b ab +=,2()2a b ab -=,然后根据0a b >>求得a b +和a b -的值,代入即可求解.【详解】∵2240a b ab +-=,即224a b ab +=,∴2()6a b ab +=,2()2a b ab -=,∵0a b >>, ∴a b +=a b -=,∴a b a b b a a b ++=---== 故选:D .【点睛】本题考查了求分式的值以及二次根式的除法运算,正确运用完全平方公式是解题的关键. 7.D解析:D【分析】根据二次根根式的运算法则即可求出答案.【详解】A 77=-=,故该选项错误;B 77=-=,故该选项错误;C ==D == 故选:D .【点睛】本题主要考查了利用二次根式的性质化简,正确掌握相关运算法则是解题关键. 8.D解析:D【分析】先化简选项中各二次根式,然后找出被开方数为2的二次根式即可.【详解】的同类二次根式.A63无法合并,故A错误;B43无法合并,故B错误;C25无法合并,故C错误;D32可以合并,故D正确.故选D.【点睛】本题主要考查的是同类二次根式的定义,掌握同类二次根式的定义是解题的关键.9.B解析:B【分析】根据二次根式加减法、乘除法的法则分别计算即可得到答案.【详解】A A错误;B==B正确;C、28=,故选项C错误;D==D错误;故选:B.【点睛】本题主要考查了二次根式的加减乘除运算,熟练掌握运算方法是解题的关键.10.D解析:D【分析】利用完全平方公式以及二次根式的性质,结合0<x<1,进行化简,即可得到答案.【详解】∵0<x<1,∴1+xx >0,1-xx<0,∴=11|+||-|x x x x- =1+x x +1-x x=2x ,故选D【点睛】||a =,是解题的关键. 11.B解析:B【分析】根据二次根式有意义的条件列出不等式,求出x 的范围,得到答案.【详解】解:由题意得,40x -≥,50x -≥,解得,45x ≤≤,则x 可取的整数是4、5,共2个,故选:B .【点睛】本题考查了二次根式有意义的条件,掌握二次根式有意义的条件是被开方数是非负数是解题的关键.12.B解析:B【分析】先把各二次根式化简为最简二次根式,再根据同类二次根式的概念解答即可.【详解】被开方数不同,故不是同类二次根式;被开方数不同,故不是同类二次根式;被开方数相同,故是同类二次根式;2被开方数相同,故是同类二次根式.2个,故选:B .【点睛】此题主要考查了同类二次根式的定义即化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.二、填空题13.且【分析】根据分式有意义可得根据二次根式有意义的条件可得再解即可【详解】由题意得:且解得:且故答案为:且【点睛】本题主要考查了分式有意义和二次根式有意义的条件关键是掌握分式有意义的条件是分母不等于零 解析:0x ≥且1x ≠【分析】根据分式有意义可得10x -≠,根据二次根式有意义的条件可得0x ≥,再解即可.【详解】由题意得:10x -≠,且0x ≥,解得:0x ≥且1x ≠,故答案为:0x ≥且1x ≠.【点睛】本题主要考查了分式有意义和二次根式有意义的条件,关键是掌握分式有意义的条件是分母不等于零,二次根式中的被开方数是非负数.14.【分析】先分母有理化然后化简后合并即可【详解】解:=2﹣=故答案为:【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式然后合并同类二次根式即可在二次根式的混合运算中如能结合题目特点灵.【分析】先分母有理化,然后化简后合并即可.【详解】=【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.15.1【分析】由题可得即可得出再根据二次根式的性质化简即可【详解】由题可得∴∴∴故答案为:【点睛】本题主要考查了二次根式有意义的条件以及二次根式的性质与化简掌握二次根式的性质是解决问题的关键解析:1【分析】由题可得,30x -≥,即可得出20x -≤,再根据二次根式的性质化简即可.【详解】由题可得,30x -≥,∴3x ≥,∴20x -≤,∴2()()23x x =----23x x =-+-+1=.故答案为:1.【点睛】本题主要考查了二次根式有意义的条件以及二次根式的性质与化简,掌握二次根式的性质是解决问题的关键.16.﹣1【分析】根据二次根式有意义的条件可得关于x 的不等式组进而可求出xy 然后把xy 的值代入所求式子计算即可【详解】解:由题意得:所以x=2当x=2时y=3所以x -y=2-3=﹣1故答案为:﹣1【点睛】解析:﹣1【分析】根据二次根式有意义的条件可得关于x 的不等式组,进而可求出x 、y ,然后把x 、y 的值代入所求式子计算即可.【详解】解:由题意得:2020x x -≥⎧⎨-≥⎩,所以x=2, 当x=2时,y=3,所以x -y=2-3=﹣1.故答案为:﹣1.【点睛】本题考查了二次根式有意义的条件、代数式求值和一元一次不等式组,属于基础题目,熟练掌握基本知识是解题的关键.17.4【分析】只需先对估算出大小从而求出其整数部分a 其小数部分用表示再分别代入进行计算;【详解】∵2<<3∴2<<3∴m=2n==把m=2n=代入∴化简得:∴且解得:∴故答案为:4【点睛】本题考查了无理解析:4【分析】只需先对5-a ,其小数部分用5a -表示,再分别代入21amn bn +=进行计算;【详解】∵2<3,∴2<5-3,∴ m=2,n=52=3,把m=2,n=3代入21amn bn +=∴ ((22331a b -+-=,化简得:())616261a b a b ++= ,∴ 6161a b +=且260a b +=,解得: 1.5a =,0.5b =-∴331.50.54a b +=⨯-=,故答案为:4.【点睛】本题考查了无理数大小的估算和二次根式的混合运算,能够正确估算出一个较复杂的无理数的大小是解决此类问题的关键;18.<【分析】直接利用二次根式的性质分别变形进而比较得出答案【详解】解:==∵>∴∴<故答案为:<【点睛】此题主要考查了二次根式的分母有理化正确化简二次根式是解题关键解析:<【分析】直接利用二次根式的性质分别变形,进而比较得出答案.【详解】===== ∵+∴< ∴故答案为:<.【点睛】此题主要考查了二次根式的分母有理化,正确化简二次根式是解题关键.19.748【分析】利用已知条件找出规律写出结果即可【详解】解:∵⋯⋯∴⋯⋯∴故答案为:748【点睛】本题考查归纳推理考查对于所给的式子的理解主要看清楚式子中的项与项的数目与式子的个数之间的关系本题是一个解析:7, 48【分析】利用已知条件,找出规律,写出结果即可.【详解】解:∵=== ⋯⋯,∴====== ⋯⋯,==∴7a =,27148b =-=,故答案为:7,48【点睛】本题考查归纳推理,考查对于所给的式子的理解,主要看清楚式子中的项与项的数目与式子的个数之间的关系,本题是一个易错题.20.-b 【分析】先确定b 的取值范围再利用二次根式的性质化简【详解】解:∵a ﹥0﹥0∴b ﹤0∴-b 故答案为:-b 【点睛】本题考查了二次函数的性质与化简解题的关键是确定b 的取值范围及理解被开平方数具有非负性解析:【分析】先确定b 的取值范围,再利用二次根式的性质化简.【详解】解:∵a ﹥0,3-ab ﹥0,∴b ﹤0,∴)0a >=故答案为:【点睛】本题考查了二次函数的性质与化简,解题的关键是确定b 的取值范围及理解被开平方数具有非负性.三、解答题21.(1)2)﹣2<x≤2【分析】(1)先算乘除,再算加减;(2)分别求出两个一元一次不等式的解即可;【详解】(1)原式=,=;(2)2(3)8(1)22x x x x x --<⎧⎪⎨--≤-⎪⎩, 解不等式2(3)8--<x x 得:x >﹣2; 解不等式(1)22--≤-x x x 得:x≤2; 所以,不等式组的解集为:﹣2<x≤2.【点睛】本题主要考查了二次根式的混合运算和一元一次不等式组的求解,准确计算是解题的关键.22.()()211a a -+,1. 【分析】分母先分解因式化简,两个异分母分式通分后相减,再把a 值代入求解即可.【详解】2211211a a a a a ----+- =211(1)(1)(1)a a a a a ----+- =1111a a --+ =()()(1)(1)11a a a a +---+=()()211a a -+,当a =原式231=-=1【点睛】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.23.(1)12)12x -,12- 【分析】(1)由二次根式的性质、负整数指数幂、零指数幂、绝对值的意义进行化简,然后进行计算,即可得到答案;(2)先去括号,把分式进行化简,然后结合分式有意义的条件,取到合适的值,再代入计算,即可得到答案. 【详解】解:(1)原式(141241212⎛=-⨯--=--+= ⎝⎭; (2)原式12(2)(3)3111111(2)(3)2x x x x x x x x x x x x -----⎛⎫=-÷=⋅= ⎪-------⎝⎭; ∵10x -≠,20x -≠,30x -≠,∴1,2,3x ≠,x 只能取0,当0x =时,原式11122==--. 【点睛】 本题考查了分式的混合运算,分式的化简求值,二次根式的性质、负整数指数幂、零指数幂、绝对值的意义,解题的关键是熟练掌握运算法则,正确的进行化简.24.2x x -;2+.【分析】先把括号内通分化简,然后利用除法运算化为乘法运算,将算式化简,再将1x =代入计算原式的值即可.【详解】 解:21133x x x x x x 2311=333x x x x x x x x2131=33x x x x x x x 213=31x x x x x1x x2x x =-当1x =时,原式2212122.【点睛】本题考查了分式的化简求值,熟悉相关运算法则是解题的关键.25.(1)345;(2)x 2+6x+9﹣4y 2 【分析】(1)首先计算开方,然后从左向右依次计算;求出算式的值是多少即可.(2)将各多项式分组,利用平方差公式和完全平方公式计算即可.【详解】解:(1)原式=2+(﹣1)+45+5 =6+45 =345; (2)原式=(x+3﹣2y )(x+3+2y )=(x+3)2﹣4y 2=x 2+6x+9﹣4y 2. 【点睛】本题主要考查实数的运算,平方差公式和完全平方公式,解决此类问题,要熟练掌握运算顺序和运算方法.26.(1)-5;(2;(3)5x =或3x =-;(4)-1【分析】(1)分别利用乘方、负整数指数幂、算术平方根和立方根计算,再将结果相加减;(2)分别利用二次根式的性质、绝对值的性质和零指数幂化简(或计算),再将结果相加减;(3)两边直接开平方后,解一元一次方程即可;(4)移项合并后开立方即可.【详解】解:(1)原式=145(3)-+-+-=94-+=5-;(2)原式=211-;(3)2(1)16x -=两边同时开平方得:14x -=±,即14x =±,即5x =或3x =-;(4)321x +=移项后合并得:31x =-两边同时开立方得:1x =-.【点睛】本题考查实数的混合运算,利用平方根和立方根解方程.涉及的知识点有二次根式的性质、零指数幂和负整数指数幂、化简绝对值、平方根和立方根等.(1)(2)中能利用相关定义分别计算是解题关键;(3)(4)中主要用到的思想是降次.。

2023年人教版八年级数学下册第十六章《二次根式》综合测试卷附答案解析

2023年人教版八年级数学下册第十六章《二次根式》综合测试卷附答案解析

2023年八年级数学下册第十六章《二次根式》综合测试卷1.下列各式是二次根式的是()A.-7B.m C.a 2+1D.332.若式子x +1+x -2在实数范围内有意义,则x 的取值范围是()A.x >-1B.x ≥-1C.x ≥-1且x ≠0D.x ≤-13.下列二次根式中,是最简二次根式的是()A.2B.12C.12D.94.4.下列运算正确的是()A.2+3=5B.30=0C.(-2a )3=-8a 3D.a 6÷a 3=a 25.化简二次根式(-5)2×3的结果为()A.-53B.53C.±53 D.30×3的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.估计5+2×10的值应在()A.5和6之间B.6和7之间C.7和8之间D.8和9之间8.若x <0,则x -x 2x 的结果是()A.0B.-2C.0或2D.29.已知a ,b ,c 为△ABC 的三边长,且a 2-2ab +b 2+|b -c |=0,则△ABC 的形状是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形10.如图,长方形内有两个相邻的正方形,其面积分别为2和8,则图中阴影部分的面积为()A.2B.2C.22D.6二、填空题(每题3分,共24分)11.比较大小:35________27(填“>”“<”或“=”).12.计算:24-323=________.13.比较:5-12________12(填“>”“=”或“<”).14.实数a 在数轴上对应的点的位置如图所示,则(a -4)2+(a -11)2化简后为________.15.【2022·贺州】若实数m ,n 满足|m -n -5|+2m +n -4=0,则3m +n =________.16.△ABC 的面积S =12cm 2,底边a =23cm,则底边上的高为__________.17.已知a ≠0,b ≠0且a <b ,化简-a 3b 的结果是__________.18.已知三角形的三边长分别为a ,b ,c ,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦给出求其面积的海伦公式S =p (p -a )(p -b )(p -c ),其中p =a +b +c 2;我国南宋时期数学家秦九韶曾提出利用三角形的三边求其面积的秦九韶公式S 的三边长分别为2,3,4,则其面积是________.三、解答题(19题16分,其余每题10分,共66分)19.计算:(1)(6+8)×3÷32;-12+(1-2)0-|3-2|;(3)(6-412+38)÷22;(4)(1+3)(2-6)-(22-1)2.20.先化简,再求值:23x 9x +y 2x y 3-21x -5x =12,y =4.21.已知等式|a -2023|+a -2024=a 成立,求a -20232的值.22.已知一个长方形花坛与一个圆形花坛的面积相等,长方形花坛的长为140πm,宽为35πm,求这个圆形花坛的半径.23.【跨学科题】据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=h5 (不考虑风速的影响).(1)求从40m高空抛物到落地的时间.(2)小明说从80m高空抛物到落地时间是(1)中所求时间的2倍,他的说法正确吗?如果不正确,请说明理由.(3)已知高空坠落物体动能(单位:焦耳)=10×物体质量×高度,某质量为0.05kg的鸡蛋经过6s后落在地上,这个鸡蛋产生的动能是多少?你能得到什么启示?(注:杀伤无防护人体只需要65焦耳的动能)24.我们学习了二次根式,那么所有的非负数都可以看成是一个数的平方,如3=(3)2,5=(5)2,下面我们观察:(2-1)2=(2)2-2×1×2+12=2-22+1=3-22;反之,3-22=2-22+1=(2-1)2,∴3-22=(2-1)2,∴3-22=2-1.(1)化简3+2 2.(2)化简4+2 3.(3)化简4-12.(4)若a±2b=m±n,则m,n与a,b的关系是什么?并说明理由.答案一、1.C2.C 3.A 4.C 5.B 6.D 7.B 8.D 9.B 10.B 二、11.>12.613.>14.715.716.43cm17.-a -ab点拨:∵a ≠0,b ≠0,∴-a 3b >0,a 3b <0.∴a ,b 异号.又∵a <b ,∴a <0,b >0.∴-a 3b =-a -ab .18.3154三、19.解:(1)原式=(32+26)÷32=1+233;(2)原式=-2-23+1-(2-3)=-2-23+1-2+3=-3-3;6-412+3×24=32-1+3=32+2;(4)原式=2×(1+3)×(1-3)-(8-42+1)=2×(1-3)-8+42-1=-22-8+42-1=22-9.20.解:原式=2x x +xy -x x +5xy=x x +6xy .当x =12,y =4时,原式=1212+612×4=24+62=2524.21.解:由题意得a -2024≥0,∴a ≥2024.原等式变形为a -2023+a -2024=a .整理,得a -2024=2023.两边平方,得a -2024=20232,∴a -20232=2024.22.解:长方形花坛的面积为140π×35π=70π(m 2),∴圆形花坛的面积为70πm 2.设圆形花坛的面积为S m 2,半径为r m,则S =πr 2,即70π=πr 2,∴r=70ππ=70.故这个圆形花坛的半径为70m. 23.解:(1)由题意知h=40m,∴t=h5=405=8=22(s).(2)不正确.理由如下:当h=80m时,t=805=16=4(s).∵4≠2×22,∴不正确.(3)当t=6s时,6=h5,∴h=180m.∴鸡蛋产生的动能为10×0.05×180=90(焦耳).启示:严禁高空抛物.24.解:(1)3+22=(2+1)2=2+1.(2)4+23=(3+1)2=3+1.(3)4-12=4-23=(3-1)2=3-1.+n=a,=b.理由:把a±2b=m±n两边平方,得a±2b=m+n±2mn,+n=a,=b.。

初二数学二次根式试题答案及解析

初二数学二次根式试题答案及解析

初二数学二次根式试题答案及解析1.已知n是正整数,是整数,则n的最小值是.【答案】21【解析】∵189=32×21,∴,∴要使是整数,n的最小正整数为21.故填:21.【考点】二次根式的定义2.下列计算正确的是()A.B.C.D.【答案】B.【解析】A. 不能计算,故A选项错误;B. ,故B选项正确;C. ,故C选项错误;D. ,故D选项错误.故选B.【考点】二次根式的混合运算.3.列二次根式中,最简二次根式是()A.B.C.D.【答案】B.【解析】A、,被开方数含能开得尽方的因数,不是最简二次根式,故A选项错误;B、,满足最简二次根式条件,故B选项正确;C、,被开方数含分母,不是最简二次根式,故C选项错误;D、,被开方数含能开得尽方的因数和因式,不是最简二次根式,故D选项错误;故选B.【考点】最简二次根式.4.计算下列各题(1)(2)(3)(4)【答案】(1);(2);(3);(4).【解析】(1)先将括号里面的式子进行通分化简,然后再进行除法运算即可;(2)先化简二次根式,再合并同类二次根式即可;(3)先把方程组中的①化简,利用加减消元法或者代入消元法求解即可;(4)先去分母,然后利用前两个方程消掉y,第一个方程和第三个方程消掉y得到两个关于x、z的方程,然后根据二元一次方程组的解法求出x、z的值,再代入第一个方程求出y的值,从而得解.试题解析:(1)原式=;(2)原式=;(3),由①得:③,③×3-②×2得:,解得:,把代入①得:,∴;(4)整理得:,①+②×2,得:④,①+③得:⑤,④+⑤×7,得:,把代入⑤,得:,把,代入①,得:,∴.【考点】1.二次根式的混合运算;2.解二元一次方程组;3.解三元一次方程组.5.(1)已知:(x+5)2=16,求x;(2)计算:【答案】(1),;(2).【解析】本题考查了平方根、立方根的定义及性质和绝对值的性质.(1)根据平方根的定义,先得出:,再分别计算出的值;(2)先利用平方根、立方根的性质及绝对值的性质分别计算出每个式子的值,最后相加.试题解析:解:(1)∵∴∴,原式【考点】1、平方根的定义及性质;2、立方根的定义及性质;3、绝对值的性质.6.如果实数满足y=,那么的值是().A.0B.1C.2D.-2【答案】C【解析】由题意可知,,,所以,,所以.故选.【考点】1、算术平方根的非负性.7.-的相反数是.【答案】.【解析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0. 因此-的相反数是.【考点】相反数.8.若m=-2,则m的范围是A.1 < m < 2B.2 < m < 3C.3 < m < 4D.4 < m < 5【答案】C【解析】根据,可得,即可作出判断.故选C.【考点】无理数的估算点评:解题的关键是熟练掌握“夹逼法”是估算无理数的常用方法,也是主要方法.9.设,,则的值等于 .【答案】-【解析】先解方程同时结合得到a与b的关系,再代入求值即可.解方程得当时,当时,.【考点】解方程,代数式求值点评:计算题是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.10.当时,二次根式的值为 .【答案】3【解析】先把代入二次根式,再根据二次根式的性质求值即可.当时,.【考点】绝对值的规律,二次根式的性质点评:解题的关键是熟练掌握二次根式的性质:当,;当,.11.(1)计算: ①;②÷(2)解方程:①;②【答案】(1)①;②;(2)①;②【解析】(1)先根据二次根式的性质化简,再合并同类二次根式即可;(2)①先移项,方程两边同加一次项系数一半的平方,再根据完全平方公式分解因式,最后根据直接开平方法求解即可;②先去括号,再移项、合并同类项,最后选择恰当的方法解方程即可.(1)①;②;(2)①解得;②解得.【考点】实数的运算,解一元二次方程点评:点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.12.平方等于64的数是 .【答案】±8【解析】由题意分析可知,,所以平方等于64的数是±8【考点】平方根点评:本题属于对平方的基本知识和平方根定义的熟练把握13.把下列各数分别填入相应的集合中: -,, 0.232323有理数集合无理数集合【答案】无理数:,-有理数是,0.232323【解析】无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,所以无理数是,-,有理数是,0.232323【考点】无理数的定义点评:本题属于基础应用题,只需学生熟练掌握无理数的三种形式,即可完成.14.下列说法正确的是()A.8的立方根是±2B.负数没有立方根C.互为相反数的两个数立方根也互为相反数D.立方根是它本身的数是0【答案】C【解析】根据立方根的定义依次分析各选项即可判断.A.8的立方根是2,B.负数的立方根是负数,D.立方根是它本身的数是0,±1,故错误;C.互为相反数的两个数立方根也互为相反数,本选项正确.【考点】立方根点评:解题的关键是熟练掌握正数的立方根是正数,0的立方根是0,负数的立方根是负数.15.设,则代数式的值为( ).A.-6B.24C.D.【答案】A【解析】先根据完全平方公式配方,再代入求值即可.当时,故选A.【考点】代数式求值点评:解题的关键是熟练掌握完全平方公式:16.如果一个数的平方根与它的立方根相同,那么这个数是()A.±1B.0C.1D.0和1【答案】B【解析】根据平方根、立方根的定义依次分析各选项即可判断.∵1的平方根是±1,1的立方根是1,0的平方根、立方根均为0,-1没有平方根,-1的立方根是-1∴平方根与它的立方根相同的数是0故选B.【考点】平方根,立方根点评:本题属于基础应用题,只需学生熟练掌握平方根、立方根的定义,即可完成.17.估算的值是()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间【答案】B【解析】根据,即可作出判断.的值是在2和3之间故选B.【考点】无理数的估算点评:解答本题的关键是熟练掌握“夹逼法”是估算无理数的常用方法,也是主要方法.18.若,,那么a b的值等于A.-8B.8C.-16D.16【答案】D【解析】先根据立方根及算术平方根的定义求得a、b的值,再根据乘方法则计算即可.∵,∴故选D.【考点】立方根、算术平方根点评:解题的关键是熟记一个正数有两个平方根,且它们互为相反数,其中正的平方根叫算术平方根.19.在,,,,这五个实数中,无理数的是.【答案】,【解析】是循环小数,不是无理数;是整数之比,不是无理数;开放后是无限小数,是有理数;为无限小数;,不是无理数。

八年级数学二次根式32道典型题(含答案和解析)

八年级数学二次根式32道典型题(含答案和解析)

八年级数学二次根式32道典型题(含答案和解析)1.如果式子√x+1在实数范围内有意义,那么x的取值范围是.答案:x≥-1.解析:二次根式有意义的条件是根号内的式子不小于零,所以x+1≥0,即x≥-1. 考点:式——二次根式——二次根式的基础——二次根式有意义的条件.2.当x 时,√3x+2有意义..答案:x≥−23解析:由题意得:3x+2≥0.解得:x≥−2.3考点:式——二次根式——二次根式的基础——二次根式有意义的条件.3.已知化简√12−n的结果是正整数,则实数n的最大值为().A.12B.11C.8D.3答案:B.解析:当√12−n等于最小的正整数1时,n取最大值,则n=11.考点:式——二次根式.4.如果式子√x+3有意义,那么x的取值范围在数轴上表示出来,正确的是().答案:C.解析:如果式子√x+3有意义,则x+3≥0,即x≥-3,数轴表示为C图.考点:式——二次根式——二次根式的基础——二次根式有意义的条件.5.二次根式√3−x在实数范围内有意义,则x的取值范围是.答案:x≤3.解析:二次根式√3−x在实数范围内有意义,则需满足3-x≥0,即x≤3. 考点:式——二次根式——二次根式的基础——二次根式有意义的条件.6.下列等式成立的是().A.√32=±3B.√172−82=9C.(√−7)2=7D.√(−7)2=7答案:D.解析:√32=3,故A选项错误.√172−82=√225=15,故B选项错误.√−7无意义,故C选项错误.√(−7)2=7,故D选项正确.考点:式——二次根式——二次根式的基础——二次根式化简.7.若x<2,则化简√(x−2)2的结果是().A.2-xB.x-2C.x+2D.x-2√x+2答案:A.解析:∵x<2.∴x-2<0.∴√(x−2)2=|x−2|=2−x.考点:式——二次根式——二次根式的基础——二次根式化简.8.计算√(−2)2的结果是.答案:2.解析:√(−2)2=|−2|=2.考点:式——二次根式——二次根式的基础——二次根式化简.9.若a<1,化简√(a−1)2−1等于.答案:-a.解析:当a<1时,a-1<0.∴√(a−1)2−1=1-a-1=-a.考点:式——二次根式——二次根式的化简求值.10.已知x<1,那么化简√x2−2x+1的结果是().A.x-1B.1-xC.-x-1D.x+1 答案:B.解析:∵x<1.∴x-1<0.∴√x2−2x+1=√(x−1)2=|x−1|=1−x.考点:式——二次根式——二次根式的化简求值.11.结合数轴上的两点a、b,化简√a2−√(a−b)2的结果是.答案:b.解析:由数轴可知,b<0<a.∴a-b>0.∴√a2−√(a−b)2=a−a+b=b.考点:式——二次根式——二次根式的化简求值.12.下列二次根式中,是最简二次根式的是().A.√5abB.√4a2C.√8aD.√a2答案:A.解析:√5ab是最简二次根式,故选项A正确.√4a2=2|a|,不是最简二次根式,故选项B错误.√8a=2√2a,不是最简二次根式,故选项C错误.√a中含有分母,即不是最简二次根式,故选项D错误.2考点:式——二次根式——二次根式的基础——最简二次根式.13.下列各式中,最简二次根式是().A.√0.2B.√18C.√x2+1D.√x2答案:C.,不是最简二次根式,故选项A错误.解析:√0.2=√55√18=3√2,不是最简二次根式,故选项B错误.√x2=|x|,不是最简二次根式,故选项D错误.√x2+1是最简二次根式,故选项C正确.考点:式——二次根式——二次根式的基础——最简二次根式.14. 若m =√13,估计m 的值所在的范围是( ).A.0<m <1B.1<m <2C.2<m <3D.3<m <4 答案:D.解析:3=√9<√13<√16=4.所以3<m <4.考点:数——实数——估算无理数的大小.15. 已知a 、b 为两个连续的整数,且a <√28<b ,则a +b = . 答案:11.解析:∵52=25,62=36.∴a =5,b =6.∴a +b =11.考点:数——实数——估算无理数的大小.16. 已知:x 2−3x +1=0,求√x √x 的值.答案:√5.解析:∵x 2−3x +1=0. ∴x +1x =3.∴(√x √x )2=x +1x +2=5.∴√x √x =√5.考点:式——二次根式——二次根式的化简求值.17. 若实数a ,b 满足(a +√2)2+√b −4=0,则a 2b = .答案:12. 解析:(a +√2)2+√b −4=0.又(a +√2)2≥0,√b −4≥0.∴{a +√2=0√b −4=0. 即a =−√2,b =4.∴a 2b =12. 考点:数——有理数——非负数的性质:偶次方.式——二次根式——二次根式的基础——二次根式化简.18. 若实数x ,y 满足√x −2+(y +√2)2=0,则代数式y x 的值是 . 答案:2.解析:由题意得,x −2=0,y +√2=0.解得x =2,y =−√2.则y x =2.考点:数——有理数——非负数的性质:偶次方.式——二次根式——二次根式的基础——二次根式化简.19. 下列各式计算正确的是( ).A.√2+√3=√5B.4√3−3√3=1C.2√2×3√3=6√3D.√27÷√3=3 答案:D.解析:√2+√3无法计算,故A 错误.4√3−3√3=√3,故B 错误.2√2×3√3=6×3=18,故C 错误.√27÷√3=√273=√9=3,D 正确.考点:式——二次根式——二次根式的乘除法——二次根式的加减法.20. 下列计算正确的是( ).A.√a 2=aB.√a +√b =√a +bC.(√a)2=aD.√ab =√a ×√b 答案:C.解析:√a 2=±a ,所以A 错误.√a +√b 中a 和b 的值未知,故不能进行加减运算,所以B 错误. (√a)2=a ,所以C 正确.√ab =√|a |×√|b |,所以D 错误.考点:式——二次根式——二次根式的混合运算.21. 计算:13√27−√6×√8+√12.答案:−√3.解析:原式=13×3√3−4√3+2√3=−√3.考点:式——二次根式——二次根式的混合运算.22. 计算:(√2−√3)2−(√2+√3)(√2−√3). 答案:6−2√6.解析:原式=2−2√6+3−2+3=6−2√6. 考点:数——实数——实数的运算.23. 计算:√18−4√18−2(√2−1).答案:2.解析:原式=3√2−4×√24−2√2+2=3√2−√2−2√2+2=2.考点:式——二次根式——二次根式的加减法.24. 计算:(12)−2−(π−√7)0+|√3−2|+4×√32.答案:5+√3.解析:原式=4−1+2−√3+2√3=5+√3. 考点:数——实数——实数的运算.25. 计算:|2−√5|−√83+(−12)−2.答案:√5.解析:原式=(√5−2)−2+1(−12)2=√5−2−2+4=√5.考点:数——实数——实数的运算.26. 计算:(√3−√2)2−√3(√2−√3). 答案:8−3√6.解析:原式=3−2√6+2−(√6−3)=5−2√6−√6+3=8−3√6.考点:式——二次根式——二次根式的混合运算.27. 计算:√4−(π−3)0−(12)−1+|−3|.答案:2.解析:原式=2−1−2+3=2.考点:数——实数——实数的运算.28. 计算:(1−√3)0+|2−√3|−√12+√643.答案:7−3√3.解析:原式=1+2−√3−2√3+4=7−3√3.考点:数——实数——实数的运算.29.计算:(√2+1)×(√6−√3).答案:√3.解析:原式=√12−√6+√6−√3=√12−√3=2√3−√3=√3.考点:式——二次根式——二次根式的混合运算.30.计算:√27+√6×√8−6√13.答案:5√3.解析:原式=3√3+4√3−2√3=5√3.考点:式——二次根式——二次根式的加减法.31.计算:√9−√83+|−√2|−(√3−√2)0.答案:√2.解析:原式=3−2+√2−1=√2.考点:数——实数——实数的运算.32.计算:(π−3.14)0+|√3−2|−√48+(13)−2.答案:12−5√3.解析:原式=1+2−√3−4√3+9=12−5√3. 考点:数——实数——实数的运算.。

八年级数学-二次根式练习题(含解析)

八年级数学-二次根式练习题(含解析)

八年级数学-二次根式练习题(含解析)一.选择题(共15小题)1.二次根式在实数范围内有意义,则x的取值范围是()A.x<1 B.x≥﹣1 C.x≠2 D.x≥﹣1且x≠22.若式子在实数范围内有意义,则x的取值范围是()A.x≥0 B.x≥1 C.x>1 D.x>03.若在实数范围内有意义,则x的取值范围是()A.x>﹣B.x>﹣且x≠0 C.x≥﹣D.x≥﹣且x≠04.式子+有意义的条件是()A.x≥0 B.x≤0 C.x≠﹣2 D.x≤0且x≠﹣25.若有意义,则x满足条件是()A.x≥﹣3且x≠1 B.x>﹣3且x≠1 C.x≥1 D.x≥﹣36.已知y=++2,则x y的值为()A.9 B.8 C.2 D.37.在式子中,二次根式有()A.2个B.3个C.4个D.5个8.下列各式中,一定是二次根式的有()①②③④⑤A.2个B.3个C.4个D.5个9.已知n是正整数,是整数,n的最小值为()A.21 B.22 C.23 D.2410.已知,则=()A.B.C.D.﹣11.若二次根式在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.12.如果y=,则2x﹣y的平方根是()A.﹣7 B.1 C.7 D.±113.若是二次根式,则下列说法正确的是()A.x≥0 B.x≥0且y>0C.x、y同号D.x≥0,y>0或x≤0,y<014.若,则a的取值范围是()A.a>0 B.a≥1 C.0<a<1 D.0<a≤115.使下列式子有意义的实数x的取值都满足x≥1的式子的是()A.B.C.+D.二.填空题(共10小题)16.若实数a,b满足,则a﹣b的平方根是.17.当x时,在实数范围内有意义.18.若在实数范围内有意义,则x的取值范围是.19.若|2017﹣m|+=m,则m﹣20172=.20.使代数式有意义的整数x的和是.21.观察与思考:形如的根式叫做复合二次根式,把变成=叫复合二次根式的化简,请化简=.22.若代数式﹣(x﹣2)0+(x﹣3)﹣2有意义,则x的取值范围是.23.设x,y为实数,且,则点(x,y)在第象限.24.代数式﹣3﹣的最大值为,若有意义,则=.25.当a时,无意义;有意义的条件是.三.解答题(共15小题)26.已知+=b+8.(1)求a、b的值;(2)求a2﹣b2的平方根和a+2b的立方根.27.(1)若++y=16,求﹣的值(2)若a,b互为相反数,c,d互为倒数,m的绝对值为2,求+m﹣cd的值28.若y=++x3,求10x+2y的平方根.29.已知n=﹣6,求的值.30.若b=+﹣a+10.(1)求ab及a+b的值;(2)若a、b满足x,试求x的值.31.(1)已知y=+x+3,求的值.(2)比较大小:3与2.32.已知x,y为实数,y=,求xy的平方根.33.若x,y为实数,且y=++.求﹣的值.34.已知a,b分别为等腰三角形的两条边长,且a•b满足b=4++3,求此三角形的周长.35.若a,b是一等腰三角形的两边长,且满足等式,试求此等腰三角形的周长.36.(1)已知a+3与2a﹣15是一个正数的平方根,求a的值;(2)已知x,y为实数,且y=﹣+4,求的值.37.(1)计算:(﹣)﹣1﹣|﹣3|﹣20160+()2;(2)解方程:4(x﹣1)2﹣1=24;(3)已知y=++3,则xy的算术平方根.38.请认真阅读下列这道例题的解法,并完成后面两问的作答:例:已知y=+2018,求的值.解:由,解得:x=2017,∴y=2018.∴.请继续完成下列两个问题:(1)若x、y为实数,且y>+2,化简:;(2)若y•=y+2,求的值.39.若a,b为实数,且,求.40.已知a、b、c为一个等腰三角形的三条边长,并且a、b满足b=2,求此等腰三角形周长.参考答案与试题解析一.选择题(共15小题)1.【分析】直接利用二次根式的定义得出x的取值范围进而得出答案.【解答】解:∵二次根式在实数范围内有意义,∴x+1≥0,解得:x≥﹣1.故选:B.2.【分析】根据被开方数是非负数、除数不等于0,确定x的取值范围.【解答】解:由题意,可得x﹣1>0,所以x>1故选:C.3.【分析】根据二次根式被开方数是非负数列出不等式,解不等式得到答案.【解答】解:由题意得,2x+5≥0,解得,x≥﹣,故选:C.4.【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【解答】解:根据题意得﹣x≥0且x+2≠0,解得x≤0且x≠﹣2.故选:D.5.【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:∵有意义,∴x满足条件是:x+3≥0,且x﹣1≠0,解得:x≥﹣3且x≠1.故选:A.6.【分析】直接利用二次根式有意义的条件得出x的值,进而求出y的值,即可得出答案, 【解答】解:∵y=++2,∴x﹣3=3﹣x=0,解得:x=3,则y=2,则x y=32=9.故选:A.7.【分析】根据二次根式的定义对各数分析判断即可得解.【解答】解:根据二次根式的定义,y=﹣2时,y+1=﹣2+1=﹣1,所以二次根式有(x>0),,(x<0),,共4个.故选:C.8.【分析】利用二次根式定义判断即可.【解答】解:①是二次根式;②,当a≥0时是二次根式;③是二次根式;④是二次根式;⑤,当x≤0时是二次根式,故选:B.9.【分析】如果一个根式是整数,则被开方数是完全平方数,首先把化简,然后求n的最小值.【解答】解:∵189=32×21,∴=3,∴要使是整数,n的最小正整数为21.故选:A.10.【分析】根据二次根式有意义的条件求出x,根据题意求出y,分母有理化化简即可.【解答】解:由题意得,x2﹣2≥0,2﹣x2≥0,∴x2=2,解得,x=±,当x=时,无意义,当x=﹣时,2=2y,解得,y=,∴==+,故选:C.11.【分析】直接利用二次根式有意义的条件结合数轴得出答案.【解答】解:二次根式在实数范围内有意义,则2x﹣6≥0,解得:x≥3,则x的取值范围在数轴上表示为:.故选:A.12.【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:由题意可得:x2﹣4=0,x+2≠0,解得:x=2,故y=3,则2x﹣y=1,故2x﹣y的平方根是:±1.故选:D.13.【分析】二次根式中的被开方数必须是非负数.【解答】解:依题意有≥0且y≠0,即≥0且y≠0.所以x≥0,y>0或x≤0,y<0.故选:D.14.【分析】直接利用二次根式有意义的条件得出答案.【解答】解:∵,∴,解得:0<a≤1.故选:D.15.【分析】根据分式有意义的条件以及二次根式有意义的条件即可求出答案【解答】解:(A)由,可得:x≤0且x≠﹣1,故x≥1时,无意义,故不选A,(B)由x+1>0,可得:x>﹣1,此时有意义,不都满足x≥1,故不选B;(C)由可得:﹣1≤x≤1,故C不选;(D)解得:x>1,满足x≥1,故选D故选:D.二.填空题(共10小题)16.【分析】直接利用二次根式有意义的条件进而分析得出答案.【解答】解:∵和有意义,则a=5,故b=﹣4,则===3,∴a﹣b的平方根是:±3.故答案为:±3.17.【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式得到答案.【解答】解:由题意得,x+1≥0,|x|﹣2≠0,解得,x≥﹣1且x≠2,故答案为:≥﹣1且x≠2.18.【分析】根据被开方数大于等于0,分母不等于0列不等式求解即可.【解答】解:由题意得,﹣>0,解得x<﹣3.故答案为:x<﹣3.19.【分析】根据二次根式的性质求出m≥2018,再化简绝对值,根据平方运算,可得答案.【解答】解:∵|2017﹣m|+=m,∴m﹣2018≥0,m≥2018,由题意,得m﹣2017+=m.化简,得=2017,平方,得m﹣2018=20172,m﹣20172=2018.故答案为:201820.【分析】直接利用二次根式的性质得出不等式组求出答案.【解答】解:使代数式有意义,则,解得:﹣4<x≤,则整数x有:﹣3,﹣2,﹣1,0,故整数x的和是:﹣3﹣2﹣1=﹣6.故答案为:﹣6.21.【分析】直接利用完全平方公式将原式变形进而得出答案.【解答】解:==﹣.故答案为:﹣.22.【分析】直接利用二次根式有意义的条件以及零指数幂的性质和负指数幂的性质分别判断得出答案.【解答】解:∵代数式﹣(x﹣2)0+(x﹣3)﹣2有意义,∴x+1≥0,且x﹣1≠0,x﹣2≠0,x﹣3≠0,解得:x≥﹣1且x≠1,x≠2,x≠3.故答案为:x≥﹣1且x≠1,x≠2,x≠3.23.【分析】直接利用二次根式有意义的条件得出x的值,进而得出y的值,再利用点的坐标特点得出答案.【解答】解:由题意可得:,解得:x=5,故y=﹣4,则点(x,y)为(5,﹣4)在第四象限.故答案为:四.24.【分析】根据算术平方根具有非负性可得当=0时,代数式﹣3﹣有最大值,进而可得代数式﹣3﹣的最大值为﹣3;再根据二次根式被开方数为非负数可得x=0,进而可得答案.【解答】解:∵≥0,∴当=0时,代数式﹣3﹣有最大值,∴代数式﹣3﹣的最大值为﹣3;∵有意义,∴,解得:x=0,则=1,故答案为:﹣3;1.25.【分析】根据二次根式成立的条件:被开方数是非负数;无意义:被开方数小于0,列不等式可得结论.【解答】解:3a﹣2<0,a<,由有意义得:,解得,当a时,无意义;有意义的条件是:x≤2且x≠﹣8,故答案为:a,x≤2且x≠﹣8.三.解答题(共15小题)26.【分析】(1)关键二次根式有意义的条件即可求解;(2)将(1)中求得的值代入即可求解.【解答】解:(1)由题意得a﹣17≥0,且17﹣a≥0,得a﹣17=0,解得a=17,把a=17代入等式,得b+8=0,解得b=﹣8.答:a、b的值分别为17、﹣8.(2)由(1)得a=17,b=﹣8,±=±=±15,===1.答:a2﹣b2的平方根为±15,a+2b的立方根为1.27.【分析】(1)根据二次根式的被开方数是非负数;(2)根据相反数、倒数的定义以及绝对值得到:a+b=0,cd=1,m=±2,代入求值即可.【解答】解:(1)由题意,得解得x=8.所以y=16所以原式=﹣=2﹣4=﹣2.(2)∵a,b互为相反数,c,d互为倒数,m的绝对值为2,∴a+b=0,cd=1,m=±2,∴=+m﹣1=m﹣1.当m=2时,原式=1.当m=﹣2时,原式=﹣2﹣1=﹣3.综上所述,+m﹣cd的值是1或﹣3.28.【分析】根据二次根式有意义的条件可得x=2,进而可得y的值,然后计算出10x+2y的值,再求平方根.【解答】解:由题意得:,解得:x=2,则y=8,10x+2y=20+16=36,平方根为±6.29.【分析】直接利用二次根式的性质得出m,n的值,进而化简得出答案.【解答】解:∵与有意义,∴m=2019,则n=﹣6,故==45.30.【分析】(1)直接利用二次根式有意义的条件得出ab,a+b的值;(2)利用已知结合完全平方公式计算得出答案.【解答】解:(1)∵b=+﹣a+10,∴ab=10,b=﹣a+10,则a+b=10;(2)∵a、b满足x,∴x2=,∴x2===8,∴x=±2.31.【分析】(1)直接利用二次根式有意义的条件分析得出x,y的值,进而答案;(2)直接将二次根式变形进而比较即可.【解答】解:(1)∵y=+x+3,∴x=3,故y=6,∴==3;(2)∵3=,2=,∴>,即3>2.32.【分析】根据被开方数是非负数且分母不等于零,可得x,y的值,根据开平方,可得答案.【解答】解:由题意,得,,且x﹣2≠0解得x=﹣2,y=﹣xy=,xy的平方根是.33.【分析】根据二次根式的被开方数是非负数求得x的值,进而得到y的值,代入求值即可.【解答】解:依题意得:x=,则y=,所以==,==2,所以﹣=﹣=﹣=.34.【分析】根据题意求出a、b的值,根据三角形的三边关系确定三角形的边长,求出此三角形的周长.【解答】解:由题意得,3a﹣6≥0,2﹣a≥0,解得,a≥2,a≤2,则a=2,则b=4,∵2+2=4,∴2、2、4不能组成三角形,∴此三角形的周长为2+4+4=10.35.【分析】根据被开方数大于等于0列式求出a,再求出b,然后分a是腰长与底边两种情况讨论.【解答】解:根据题意得,3a﹣6≥0且2﹣a≥0,解得a≥2且a≤2,所以a=2,b=4,①a=2是腰长时,三角形的三边分别为2、2、4,∵2+2=4,∴不能组成三角形,②a=2是底边时,三角形的三边分别为2、4、4,能组成三角形,周长=2+4+4=10,所以此等腰三角形的周长为10.36.【分析】(1)直接利用平方根的定义分析得出答案;(2)利用二次根式有意义的条件分析得出答案.【解答】解:(1)根据平方根的性质得,a+3+2a﹣15=0,解得:a=4,答:a的值为4;(2)满足二次根式与有意义,则,解得:x=9,∴y=4,∴=+=5.37.【分析】(1)直接利用负指数幂的性质以及零指数幂的性质和绝对值的性质分别化简得出答案;(2)利用直接开平方法解方程得出答案;(3)直接利用二次根式的性质分析得出x,y的值进而得出答案.【解答】解:(1)(﹣)﹣1﹣|﹣3|﹣20160+()2=﹣4﹣3﹣1+2=﹣6;(2)∵4(x﹣1)2﹣1=24,∴(x﹣1)2=,∴x﹣1=±,解得:x1=,x2=﹣;(3)∵y=++3,∴,解得:x=4,∴y=3,则xy=12,故12的算术平方根为:2.38.【分析】根据题意给出的方法即可求出答案.【解答】解:(1)由,解得:x=3,∴y>2.∴;(2)由:,解得:x=1.y=﹣2.∴.39.【分析】根据被开方数是非负数且分母不等于零,可得答案.【解答】解:由题意,得a2﹣1=0,且a+1≠0,解得a=1,b=.﹣=﹣3.40.【分析】由二次根式有意义的条件可得,解不等式可得a的值,进而可得b的值,然后再分两种情况进行计算即可.【解答】解:由题意得:,解得:a=3,则b=5,若c=a=3,此时周长为11,若c=b=5,此时周长为13.。

(完整版)八年级下册数学二次根式测试题及答案(2套-高分必做),推荐文档

(完整版)八年级下册数学二次根式测试题及答案(2套-高分必做),推荐文档

-1- x 2132 -122132 a ab 2 a + b a - b (x -1)2 2x -3 3 3 4 a 3 11(3a -4b )2x -8 y - 2 5 x 2 - 2x +1 1- x + x 2 44b - a 3 (- 2 )259 +16 9 16(-9) ⨯(-4) (a + b )2 a 2 -1 a +1 a -1 a ba 248 1 8 130.5 122 1a初中数学二次根式测试题(一)判断题:(每小题 1 分,共 5 分).1. ( 2)2 =2.……( )2.是二次根式.……………( )3.=- =13-12=1.( )4., , c是同类二次根式.……()5. 的有理化因式为 .…………()(二)填空题:(每小题 2 分,共 20 分)6. 等式 =1-x 成立的条件是.7. 当 x时,二次根式有意义.8.比较大小: -2 2- .9. 计算:(3 1 )2 - ( 1 )2 等于 .1 10. 计算:3 2 2 1 2 ·= .9 11. 实数 a 、b 在数轴上对应点的位置如图所示:aob则 3a - = .12.若+ =0,则 x = ,y =.13.3-2的有理化因式是.114.当 <x <1 时, -=.215.若最简二次根式3b -1a + 2 与是同类二次根式,则 a =,b = .(三)选择题:(每小题 3 分,共 15 分)16 A 2 2 2 3 6B .下列变形中,正确的是………()( )(2 5) = × =( )=- (C )= + (D )= 9 ⨯ 17. 下列各式中,一定成立的是……()(A )=a +b(B )=a 2+11(C ) =·(D )= b18. 若式子 2x -1 -+1 有意义,则 x 的取值范围是………………………()11 1(A )x ≥(B )x ≤(C )x =(D )以上都不对22 219.当 a <0,b <0 时,把化为最简二次根式,得…………………………………( )(A (B )1 (C ) - b - ab (D ) b 20.当 a <0 时,化简|2a - |的结果是…()(A )a (B )-a(C )3a (D )-3a(五)计算:(每小题 5 分,共 20 分)23.(- 4)-( 3 - 2 ); 1- 2x 4(a 2 +1)2ababab48 12 3 122 a 3b a b ab ba5 - 25 x - 2 y 3x + 2 y - 86 3 6 3 724.(5+ - 6 )÷ ;2-4+2( -1)0;26.( -+2 + )÷ .(六)求值:(每小题 6 分,共 18 分)1 1bb27. 已 知 a = ,b = ,求-的值.2 4128. 已知 x =,求 x 2-x +的值.+29. 已知+ =0,求(x +y )x 的值.(七)解答题:30.(7 分)已知直角三角形斜边长为(2+ )cm ,一直角边长为( +2 )cm ,求这个直角三角形的面积.a -b 25. 50 +2 +1b ax 2 - 8x +16 a 3 3x -8 y - 2 5 5 5 3 21 25 5 5 5 5 5 5 x - 2 y 3x + 2 y - 8 x - 2 y 3x + 2 y - 8 (26 + 3)2 - ( 6 + 2 3)231.(7 分)已知|1-x |-=2x -5,求 x 的取值范围.试卷答案【答案】1.√;2.×;3.×;4.√;5.×. 6. 【答案】x ≤1.37. 【提示】二次根式有意义的条件是什么?a ≥0.【答案】≥ .28.【提示】∵ 3 < 4 = 2 ,∴ - 2 < 0 ,2 - 1 9.【提示】(3 )2-( )2=?【答案】2 .2 2 10.> 0 .【答案】<. 11. 【提示】从数轴上看出 a 、b 是什么数?[ a <0,b >0. ] 3a -4b 是正数还是负数? [ 3a -4b <0. ]【答案】6a -4b .12. 【提示】和 各表示什么?[x -8 和 y -2 的算术平方根,算术平方根一定非负,]你能得到什么结论?[x -8=0,y -2=0.]【答案】8,2. 13.【提示】(3-2)(3+2 )=-11.【答案】3+2 .1 1114.【提示】x 2-2x +1=()2;-x +x 2=( )2.[x -1;-x .]当 <x <1 时,422113 x -1 与 -x 各是正数还是负数?[x -1 是负数, -x 也是负数.]【答案】 -2x .2 2215. 【提示】二次根式的根指数是多少?[3b -1=2.]a +2 与 4b -a 有什么关系时,两式是同类二次根式?[a +2=4b -a .] 【答案】1,1.16. 【答案】D .17.【答案】B .18.【答案】C .19.【答案】B .20.【答案】D .23.【答案】3.a24.22-2.25.5 .26.a 2+a -+2.bb ( a + b ) - b ( a - b )ab + b - ab + b2b27. ==.2 ⨯ a - ba - b当 a = 1 ,b = 1 时,原式= 4 =2.241 - 12 4 28. 【提示】本题应先将 x 化简后,再代入求值.1【解】∵ x =- 2 5 + 2==5 - 4+ 2 .∴ x 2-x + =( +2)2-( +2)+ =5+4 +4- -2+ =7+4 .29.【解】∵≥0, ≥0,而+ =0,⎧x - 2 y = 0 ∴ ⎨ ⎧x = 2 解得 ⎨ y = 1. ∴ (x +y )x =(2+1)2=9.⎩3x + 2 y - 8 = 0. ⎩30.【解】在直角三角形中,根据勾股定理:另一条直角边长为:=3(cm ).3 5 566 3 (x - 4)23 ⎩数学八年级(下) 复习测试题∴ 直角三角形的面积为:S = 1×3×(+ 2 2 3答:这个直角三角形的面积为( 2)= + 3 2+ 3 )cm 2.(cm 2) 31.【解】由已知,等式的左边=|1-x |- =|1-x |-|x -4 右边=2x -5.⎧1 - x ≤ 0只有|1-x |=x -1,|x -4|=4-x 时,左边=右边.这时⎨x - 4 ≤ 0. 解得 1≤x ≤4.∴ x 的取值范围是 1≤x ≤4.3 3 6453 -a 2 + 2x 2X 38X6X 3 yxx-2 x x-2 - y x 2 -yy二次根式一、选择题(共 20 分):1、下列各式中,不是二次根式的是( )A 、B 、C 、D 、2、下列根式中,最简二次根式是()A.B. C. D.3、计算:3÷ 16的结果是 ( ) A 、2 B 、 2C 、 2D 、4、如果 a2=-a ,那么 a 一定是 ( )A 、负数B 、正数C 、正数或零D 、负数或零5、下列说法正确的是() a 2=- aa 2= aA 、若,则 a <0 B 、若,则 a >0C 、 a 4b 8=a 2b 4D 、5 的平方根是6、若 2m-4 与 3m-1 是同一个数的平方根,则 m 为( )A 、-3B 、1C 、-3 或 1D 、-17、能使等式=成立的x 值的取值范围是( )A 、x≠2B 、x≥0C 、x >2D 、x≥28、已知 xy >0,化简二次根式 x 的正确结果是()A. B. C.- D.-9、已知二次根式 的值为 3,那么 x 的值是()A 、3B 、9C 、-3D 、3 或-31 26 32 X 2+15-yx - 2 3 - x x - 2 x -1 x + y 3 2 - 12 3 - 23 24 - 34 3 25 3 3 a 2b1 5(x - 2)(3 - x ) 2 - x (-3)22 2 (a-3)210、若 a = , b = ,则 a 、b 两数的关系是( )5A 、 a = bB 、 ab = 5C 、 a 、b 互为相反数D 、a 、b 互为倒数二、填空题(共 30 分):11、当 a=-3 时,二次根式 1-a 的值等于。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 下列式子一定是二次根式的是( ) A .2--x B .x C .22+x D .22-x
2.若
b b -=-3)3(2,则( )
A .b>3
B .b<3
C .b ≥3
D .b ≤3 3.若
13-m 有意义,则m 能取的最小整数值是( )
A .m=0
B .m=1
C .m=2
D .m=3
4.若x<0,则
x
x x 2
-的结果是( )
A .0
B .—2
C .0或—2
D .2 5.下列二次根式中属于最简二次根式的是( )
A .
14
B .
48
C .
b
a D .
44+a
6.如果
)6(6-=-•x x x x ,那么( )
A .x ≥0
B .x ≥6
C .0≤x ≤6
D .x 为一切实数 7.小明的作业本上有以下四题:

24416a a =;②a a a 25105=⨯;③a a
a a a
=•=1
12;④a a a =-23。

做错的题是( )
A .①
B .②
C .③
D .④
8.化简
6
1
51+的结果为( )
A .
30
11 B .330
30 C .
30
330 D .1130
9.若最简二次根式a a 241-+与的被开方数相同,则a 的值为( )
A .4
3-
=a
B .34
=a C .a=1 D .a= —1
10.化简
)22(28+-得( )
A .—2
B .22-
C .2
D . 224-
11.①
=-2)3.0( ;②=-2)52( 。

12.二次根式
3
1-x 有意义的条件是 。

13.若m<0,则332||m m m ++= 。

14.
1112-=-•+x x x 成立的条件是 。

15.比较大小:
16.
=•y xy 82 ,=•2712 。

17.计算3
393a a a a
-+= 。

18.
232
31+-与的关系是 。

19.若35-=x ,则562++x x 的值为 。

20.化简
⎪⎪⎭

⎝⎛--+1083114515的结果是 。

三、解答题
21.求使下列各式有意义的字母的取值范围:
(1)43-x (2)
a 83
1- (3)42+m (4)x 1
-
22.化简:(1))169()144(-⨯- (2)2253
1
-
(3)510242
1
⨯- (4)n m 218
(1)2
1437⎪⎪⎭

⎝⎛- (2)2
25241⎪⎪⎭

⎝⎛-- (3)
)459(4
3
332-⨯
(4)⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-1263
12817 (5)2484554+-+ (6)2332326--
四、综合题
24.若代数式|
|11
2x x -+有意义,则x 的取值范围是什么?
25.若x ,y 是实数,且2
111+
-+-<x x y ,求1|1|--y y 的值。

第二十一章二次根式(A )
一、选择题
1.C 2.D 3.B 4.D 5.A 6.B 7.D 8.C 9.C 10.A 二、填空题 11.①0.3 ②25- 12.x ≥0且x ≠9 13.—m 14.x ≥1 15.<
16.x y
4 18 17.a
3 18.相等 19.1 20.
33
16
5315+
+ 三、解答题 21.(1)34≥
x
(2)24
1
<a (3)全体实数 (4)0<x 22.解:(1)原式=1561312169144169144=⨯=⨯=⨯;
(2)原式=51531
-=⨯-
; (3)原式=5165322
1
532212-=⨯-=⨯-;
(4)原式=
n m n m 232322=⨯⨯。

23.解:(1)原式=49×
21143=;(2)原式=25
1
25241=
-; (3)原式=
3455273
15)527(41532-=⨯-=-⨯;
(4)原式=
22
7
4271447912628492=⨯=⨯=⨯; (5)原式=225824225354
+=+-+;
(6)原式=2
6
5626366-=-
-。

24.解:由题意可知: 解得,12
1
≠-≥x x
且。

25.解:∵x —1≥0, 1—x ≥0,∴x=1,∴y<
2
1
.∴1|1|--y y =
111-=--y y .
2x+1≥0, 1—|x|≠0,。

相关文档
最新文档