HFSS天线设计实例-微带贴片天线
HFSS设计微带天线的心得
hfss在仿微带贴片天线的心得(1)
(1)仿真结果稍有偏差的问题
用hfss仿双频微带天线的时候,
在setup里面设置求解频率,
比如设计的天线是1.5G和2.5G,
那么据仿真的结果和加工出来的天线实测结果来看,
如果把求解频率设置为2.5G,那么通常低频的1.5G算不准(实际上是偏高)
把求解频率设置为1.5G,那么高频又算不准;
这与网上盛传的求解频率不超过3个倍频有点出入;
建议大家在精仿的时候对于多个频率的天线,
最好还是一个一个的仿,不要设置好一个频率就不再变动了。
对于粗仿倒是无所谓。
hfss在仿微带贴片天线的心得(2)
(2)设置多端口实现圆极化问题
hfss10中设置多个端口,以两个端口为例,展开HFSSDesign1,在其子目录下找到field overlays,右键f ield overlays,选择edit sources,出现一个选择表如图1,
图1
这样就可以实现两个端口相差90度馈电了,依次类推,要实现4端口90相差馈电可参照图2,图2
也可以设置各个端口任意相差馈电;
这在仿双端口馈电圆极化天线和四端口馈电圆极化很有用。
实验七-微带贴片天线的设计与仿真
实验七微带贴片天线的设计与仿真一、实验目的1.设计一个微带贴片天线2..查看并分析该微带贴片天线的二、实验设备装有HFSS 13.0软件的笔记本电脑一台三、实验原理传输线模分析法求微带贴片天线的辐射原理如下图所示:设辐射元的长为L,宽为ω,介质基片的厚度为h。
现将辐射元、介质基片和接地板视为一段长为L的微带传输线,在传输线的两端断开形成开路,根据微带传输线的理论,由于基片厚度h<<λ,场沿h方向均匀分布。
在最简单的情况下,场沿宽度ω方向也没有变化,而仅在长度方向(L≈λ/2)有变化。
在开路两端的电场均可以分解为相对于接地板的垂直分量和水平分量,两垂直分量方向相反,水平分量方向相同,因而在垂直于接地板的方向,两水平分量电场所产生的远区场同向叠加,而两垂直分量所产生的场反相相消。
因此,两开路端的水平分量可以等效为无限大平面上同相激励的两个缝隙,缝的电场方向与长边垂直,并沿长边ω均匀分布。
缝的宽度△L≈h,长度为ω,两缝间距为L≈λ/2。
这就是说,微带天线的辐射可以等效为有两个缝隙所组成的二元阵列。
四、实验内容利用HFSS软件设计一个右手圆极化天线,此天线通过微带结构实现。
中心频率为2.45GHz,选用介质基片R04003,其介电常数为εr=2.38,厚度为h =5mm。
最后得到反射系数和三维方向图的仿真结果。
五、实验步骤1.建立新工程了方便建立模型,在Tool>Options>HFSS Options中讲Duplicate Boundaries with geometry 复选框选中。
2.将求解类型设置为激励求解类型:(1)在菜单栏中点击HFSS>Solution Type。
(2)在弹出的Solution Type窗口中(a)选择Driven Modal。
(b)点击OK按钮。
3.设置模型单位(1)在菜单栏中点击3D Modeler>Units。
(2)在设置单位窗口中选择:mm。
基于HFSS矩形微带贴片天线的仿真设计报告
.. .. ..矩形微带贴片天线的仿真设计实验目的:运用HFSS的仿真能力对矩形微带天线进行仿真实验容:矩形微带天线仿真:工作频率7.55GHz天线结构尺寸如表所示:名称起点尺寸类型材料Sub -14.05,-16,0 28.1,32,0.794 Box Rogers 5880 (tm)GND -14.05,-16,-0.05 28.1,32,0.05 Box pecPatch -6.225,-8,0.794 12.45 , 16, 0.05 Box pec MSLine -3.1125,-8,0.794 2.49 , -8 , 0.05 Box pecPort -3.1125,-16,-0.05 2.49 ,0, 0.894 RectangleAir -40,-40,-20 80,80,40 Box Vacumn一、新建文件、重命名、保存、环境设置。
(1)、菜单栏File>>save as,输入0841,点击保存。
(2). 设置激励终端求解方式:菜单栏HFSS>Solution type>Driven Termin ,点击OK。
(3)、设置模型单位:3D Modeler>Units选择mm ,点击OK。
(4)、菜单栏Tools>>Options>>Modeler Options,勾选”Edit properties of new pri”, 点击OK。
二、建立微带天线模型(1)、插入模型设计(2)、重命名输入0841(3)点击创建GND,起始点:x:-14.05,y:-16,z:-0.05,dx:28.1,dy:32,dz:0.05修改名称为GND, 修改材料属性为 pec,(4)介质基片:点击,:x:-14.05,y:-16,z:0。
dx: 28.1,dy: 32,dz: 0.794,修改名称为Sub,修改材料属性为Rogers RT/Duriod 5880,修改颜色为绿色,透明度0.4。
利用ADS和HFSS仿真微带天线案例
利用ADS和HFSS仿真微带天线案例01矩形微带天线设计原理在工程上,微带天线采用传输模法设计,在PCB板上实现,如图1(a)所示:L是微带天线长边,电场正弦变化;W是其宽边,天线的辐射槽便是宽边的边沿;ΔL是由边沿电容引起的边沿延伸。
图1(b)给出其等效电路图,可看成源阻抗通过长为L+2ΔL的传输线与负载阻抗ZL 相连,其中ZS=ZL是辐射槽的阻抗;Zin是从输入端口位置的辐射槽向里看的输入阻抗,即不包含第一个辐射槽阻抗在内的输入阻抗。
由具有任意负载阻抗的一段传输线的输入阻抗公式可得(微波工程51页):其中,Z0为宽度W的微带线的特性阻抗,β为传播常数。
谐振时,把(2)带入(1)式得到:Zs=Zin=ZL。
这也表明半波长线不改变负载阻抗。
ΔL、εe由以下两个式子确定。
其中,W为微带天线的宽边;h为介质板的厚度;εr为相对介电常数。
W值不是很关键,通常按照下面的式子确定:02矩形微带天线ADS仿真设计。
要求:PCB基片εr=3.5,厚度h=1mm,导体厚度T=0.035mm,工作频率3GHz,输入阻抗50Ω。
2.1 几何参数计算根据式(2)-(5)计算天线几何参数。
2.2 馈线设计、ADS LineCalc工具使用(1)启动LineCalc,如图2所示。
(2)Substrate Parameters 栏中,设置PCB参数;Component Parameters 栏中,设置频率;Electrical 栏中设置阻抗和电长度。
具体设置如下:相对介电常数Er: 3.5介质厚度H: 1mm导体厚度T:0.035mm工作频率Freq:3GHz特征阻抗Z0=50Ω电长度E_Eff:180°其他为默认值。
(3)设置完成后,将Physical 栏中W和L的单位改成mm,然后点击Synthesize 栏下的“向上箭头”按钮,在Physical 栏中得到馈线的宽度为2.219360mm,长度为30.162200mm。
基于HFSS矩形微带贴片天线的仿真设计报告
. . . .. .矩形微带贴片天线的仿真设计实验目的:运用HFSS的仿真能力对矩形微带天线进行仿真实验容:矩形微带天线仿真:工作频率7.55GHz天线结构尺寸如表所示:名称起点尺寸类型材料Sub -14.05,-16,0 28.1,32,0.794 Box Rogers 5880 (tm)GND -14.05,-16,-0.05 28.1,32,0.05 Box pecPatch -6.225,-8,0.794 12.45 , 16, 0.05 Box pec MSLine -3.1125,-8,0.794 2.49 , -8 , 0.05 Box pecPort -3.1125,-16,-0.05 2.49 ,0, 0.894 RectangleAir -40,-40,-20 80,80,40 Box Vacumn一、新建文件、重命名、保存、环境设置。
(1)、菜单栏File>>save as,输入0841,点击保存。
(2). 设置激励终端求解方式:菜单栏HFSS>Solution type>Driven Termin ,点击OK。
(3)、设置模型单位:3D Modeler>Units选择mm ,点击OK。
(4)、菜单栏Tools>>Options>>Modeler Options,勾选”Edit properties of new pri”, 点击OK。
二、建立微带天线模型(1)、插入模型设计(2)、重命名输入0841(3)点击创建GND,起始点:x:-14.05,y:-16,z:-0.05,dx:28.1,dy:32,dz:0.05修改名称为GND, 修改材料属性为 pec,(4)介质基片:点击,:x:-14.05,y:-16,z:0。
dx: 28.1,dy: 32,dz: 0.794,修改名称为Sub,修改材料属性为Rogers RT/Duriod 5880,修改颜色为绿色,透明度0.4。
设计实验 微带贴片天线设计
设计实验微带贴片天线的设计一、实验目的Fig. 1 微带贴片天线设计思路1、通过HFSS仿真设计微带贴片天线,具体参数要求如下:✓工作频率为2.6GHz,使用材料为FR4(相对介电常数ε=4.4),厚度为1.6mm的双面覆铜板;✓辐射贴片采用夹角为180°的扇形贴片,利用50Ω的微带线进行馈电,用1/4波导微带匹配段对天线进行阻抗匹配;✓要求天线的血站频率在2.55GHz~2.65GHz范围内,且仿真参数S11在谐振频率出小于-13dB。
2、天线设计思路参考Fig.1,仿真成功后做出实物板。
二、实验原理1、HFSS仿真设计流程:建立模型→设置边界和激励(包括金属板、介质板和空气盒子)→建立优化→设置求解条件,并执行仿真→生成结果。
2、利用APPCAD计算微带线参数:介质板厚度为1.6mm,FR4材料的相对介电常数ε=4.4,中心频率为2.6GHz,根据APCAD计算,如图Fig.2所示,为使微带线馈电电阻为50.04Ω,微带线宽度应为W3=3.06mm,并且1/4波导微带匹配段的长度应为L=15.65mm.Fig. 2 扇形贴片天线参数计算同时,金属板尺寸为100mm×75mm,可初步估计扇形半径R=33mm,馈线长度L3=5mm,匹配段宽度W=1mm。
根据以上参数可绘制如图Fig.3所示。
Fig. 3 扇形贴片天线参数和设计示意图3、制板流程:导出图形→打印胶片→PCB板打孔穿线→将胶片固定在PCB板上进行曝光→显影→刻蚀→用酒精除去感光膜→焊接→测试。
三、仿真过程与分析正面示意图背面示意图Fig. 4 微带贴片天线设计金属板示意图1、建立模型(Fig.4)。
打开HFSS,绘制介质板,第一个点(-10,0,0),第二个点相对坐标为(100,75,-1.6),建立尺寸为100mm×75mm×1.6mm的长方体。
●绘制正面图形:绘制馈线:第一个点(38.475,0,0),第二个点相对坐标(3.06,5,0),建立3.06mm×5mm的矩形馈线。
Example1.1_HFSS_同轴探针馈电微带贴片天线(1-3.5GHz)
Example1.1_HFSS_同轴探针馈电微带贴⽚天线(1-3.5GHz)第五章天线实例第三节同轴探针微带贴⽚天线这个例⼦教你如何在HFSS设计环境下创建、仿真、分析⼀个同轴探针微带贴⽚天线。
F 5.3.1F 5.3.2微波仿真论坛组织翻译第133 页第五章天线实例⼀.开始⼀)启动Ansoft HFSS1、点击微软的开始按钮,选择程序,然后选择Ansoft,HFSS10程序组,点击HFSS10,进⼊Ansoft HFSS。
⼆)设置⼯具选项1、设置⼯具选项注意:为了与这个例⼦的后续步骤⼀致,要对⼯具选项进⾏如下设置:1、选择菜单:Tools > Options > HFSS Options2、HFSS选项窗⼝a、点击常规(General)标签创建边界时使⽤数据输⼊条:选复制⼏何图形的边界:选b、点击确定键。
3、选择菜单Tools 〉 Options 〉3D Modeler Options 。
4、3D模块选项窗⼝a、点击Operation 键曲线⾃动封闭:选b、点击Drawing 键新的原始模型编辑属性C、点击确定。
三)打开新⼯程1、在HFSS窗⼝,点击⼯具条上的,或者选择菜单File > New 。
2、从Project菜单选择Insert HFSS Design 。
F 5.3.3四)设置求解类型微波仿真论坛组织翻译第134 页第五章天线实例1.选择菜单 HFSS 〉 Solution Type 。
2.Sloution Type 窗⼝:1).选择终端驱动( Driven Terminal )。
2).点击确定。
F 5.3.4⼆.建⽴3D模型⼀)设置模型单位1.选择菜单3D Modeler 〉 Units 。
2.设置单位:A、选择单位厘⽶(cm)B、点击确定⼆)设置默认材料1.在3D模型材料⼯具栏,选择Select。
F 5.3.52.选择定义窗⼝:A、在通过名称区域输⼊Rogers RT/duroid 5880(tm)。
基于HFSS矩形微带贴片天线的仿真设计报告
基于HFSS矩形微带贴片天线的仿真设计报告矩形微带贴片天线的仿真设计实验目的:运用HFSS的仿真能力对矩形微带天线进行仿真实验内容:矩形微带天线仿真:工作频率7.55GHz天线结构尺寸如表所示:名称起点尺寸类型材料Sub -14.05,-16,0 28.1,32,0.794 Box Rogers 5880 (tm)GND -14.05,-16,-0.0528.1,32,0.05 Box pecPatch -6.225,-8,0.794 12.45 , 16,0.05Box pecMSLine -3.1125,-8,0.794 2.49 , -8 ,0.05Box pecPort -3.1125,-16,-0.052.49 ,0, 0.894 RectangleAir -40,-40,-20 80,80,40 Box Vacumn 一、新建文件、重命名、保存、环境设置。
(1)、菜单栏File>>save as,输入0841,点击保存。
(2). 设置激励终端求解方式:菜单栏HFSS>Solution type>Driven Termin ,点击OK。
(3)、设置模型单位:3D Modeler>Units选择mm ,点击OK。
(4)、菜单栏Tools>>Options>>Modeler Options,勾选”Edit properties of new pri”, 点击OK。
二、建立微带天线模型(1)、插入模型设计(2)、重命名输入0841(3)点击创立GND,起始点:x:-14.05,y:-16,z:-0.05,dx:28.1,dy:32,dz:0.05修改名称为GND, 修改材料属性为 pec,(4) 介质基片:点击,:x:-14.05,y:-16,z:0。
dx: 28.1,dy: 32,dz: 0.794,修改名称为Sub,修改材料属性为Rogers RT/Duriod 5880,修改颜色为绿色,透明度0.4。
微波仿真论坛_基于HFSS的双层宽带微带贴片天线的研究
and propagat, 1989,48(5):73-76. [6]Ikmo Park. An aperture-couple small microstrip antenna with enhanced bangwidth[J]. Antennas and Propagation Society Interna
关键词:宽频带 微带贴片天线 阻抗带宽 HFSS
中图分类号: TN821
文献标识码: A
文章编号:1674-0874(2008)05-0059-03
微带天线又叫共型天线, 是在带有导体接地板 的介质基片上贴加导体薄片而形成的天线. 它具有 剖面薄、体积小、重量轻、便于获得圆极化、容易 实现双频段、双极化, 平面结构, 与微波毫米波无 源电路、有源电路以及集成电路的兼容性好等优 点. 但微带天线有其固有缺陷, 即宽带比较窄, 一般 微带天线的带宽只有 5%左右[1.5]. 因此, 展宽微带天 线的带宽具有十分重要的意义. 目前, 随着微带天 线的应用越来越广, 对于如何展宽天线的带宽已经 出现了很多有效的方法, 其基本方法有以下几种: ①增大微带介质的厚度[1]; ②降低微带介质的介电 常数[1,4]; ③采用有耗介质[6]; ④附加阻抗匹配网络[7] 等. 前两种方法制作起来比较简单, 容易加工; 第三 种方法以天线增益的降低为代价; 第四种方法需要 设计宽带匹配电路, 电路结构复杂, 制作难度大.
微波仿真论坛_HFSS设计微带天线
用Sonnet & Agilent HFSS设计微带天线摘要:以一同轴线底馈微带贴片为题材,分别用Sonnet 软件及 Agilent Hfss 软件进行Simulate,分析其特性。
并根据结果对这两个软件作一比较。
天线模型:天线为微带贴片天线,馈电方式为50Ω同轴线底馈,中心频率3GHzξ=,尺寸 56mm*52mm*3.175mm基片采用Duroid材料 2.33rPatch :30mm*30mm馈电点距Patch中心7mm处。
参见下图。
一.Sonnet参数设置如下图:介质层按照天线指标予以设置:画出Antenna Layout.Top viewBottom view其中箭头所指处为via ,并在GND 层加上via port. 即实现了对Patch 的底馈。
至此,Circuit Edit 完成。
下一步对其进行模拟。
模拟结果:S11,即反射系数图:可见中心频率在3G附近,。
进一步分析电流分布:在中心频率的附近,取3G,3.1G作表面电流分布图:可见,在中心频率的电流分布较为对称。
符合设计的要求。
远区场方向图:选取了若干个频率点绘制远区场增益图。
从中可以看到,中心频率的增益较边缘为大。
符合设计的要求。
二.Agilent HfssAgilent Hfss (high frequency structure simulator)是AGILENT公司的一个专门模拟高频无源器件的软件。
较现在广泛应用的ANSOFT HFSS功能类似,但操作简单明了。
能在平面结构上建模天线不同,Agilent Hfss可以精确地定义天线的立体结构。
并可将馈电部分考虑在模拟因素内,按要求设定辐射界面,等等。
可能在本文的例子中,由于结构比较简单,并不能充分体现这一点,但也应可见一斑。
本例与HFSS HELP中所附带的例子较为类似,因此我参照HELP文件,在HFSS5.6环境下较为顺利的完成了模拟。
用HFSS模拟天线,主要分Draw Model、Assign Material、Define Boundary、Solve、Post Process 五个步骤:⒈Draw Model:HFSS采用的是相当流行的AUTOCAD的ENGINE,因此绘制方法与AUTOCAD大同小异,这里不在赘述。
基于HFSS的不同形状微带贴片天线的仿真设计
基于HFSS的不同形状微带贴片天线的仿真设计一、概述随着无线通信技术的快速发展,天线作为无线通信系统中不可或缺的部分,其性能的优化与设计变得日益重要。
微带贴片天线作为一种常见的天线形式,因其体积小、重量轻、易共形和易集成等优点,在无线通信、雷达、卫星通信等领域得到了广泛应用。
微带贴片天线的性能受其形状、尺寸、介质基板和馈电方式等多个因素影响,如何根据不同的应用场景和性能需求,设计出性能优良的微带贴片天线成为了研究的热点。
HFSS(High Frequency Structure Simulator)是一款功能强大的电磁仿真软件,广泛应用于微波、毫米波频段的天线、滤波器、微波电路等高频电磁结构的仿真分析。
通过HFSS软件,可以对微带贴片天线的性能进行精确的仿真分析,从而指导天线的设计和优化。
本文旨在探讨基于HFSS软件的不同形状微带贴片天线的仿真设计方法。
通过对矩形、圆形、椭圆形等常见形状的微带贴片天线进行建模和仿真分析,研究不同形状对天线性能的影响,并根据仿真结果优化天线设计。
本文的研究内容对于提高微带贴片天线的性能、推动无线通信技术的发展具有重要意义。
1. 微带贴片天线的背景与意义随着无线通信技术的飞速进步,天线作为无线通信系统的关键组成部分,其性能对整个系统的性能具有决定性的影响。
天线设计的优化与创新成为了无线通信领域的研究热点。
微带贴片天线作为一种常见的天线类型,自七十年代初期研制成功以来,凭借其体积小、重量轻、易于集成和制造成本低等优点,在无线通信、雷达、卫星通信等领域得到了广泛应用。
微带贴片天线的设计灵感源于微带线的辐射。
这一概念最早由德尚教授在1935年提出,但由于当时缺乏理想的微波介质材料,该概念并未得到广泛的研究。
直到七十年代,随着具有优良特性的微波介质材料的出现,以及照相平板印刷技术的改进和更好的理论模型的发展,微带贴片天线才取得了突破性的进展。
微带贴片天线的性能受到其形状、尺寸、介质基板等因素的影响。
基于HFSS矩形微带贴片天线的仿真设计
它 可 也 做 成 任 意 形 状 , 常 见 的 形 状 有 矩 形 、方 形 、 圆 形
等 ,通 常 为 了便 于 分 析 和 预 测 其 性 能 都 用 较 为简 单 的 几 何
形 状 ,本 文研 究 对 象 的 形 状 选 为 矩 形 。 为 了 增 强 辐 射 的 边 场 效 应 .通 常 要 求 介 质 基 片 的 相 对 介 电常 数 较 低 ,文 中
向 变 化 。 辐 射 基 本 上 是 由贴 片 开 路 边 沿 的 边 缘 场 引 起 的 。 在 两端 的 场 相 对 地 板 可 以分 解 为 法 向 和 切 向分 量 , 因为 贴
S b ( , 0 x d z ( 8 1 2一 . )B x u 00 )d y d 2 ., ,0 9 o , 3 7
1矩 形微 带天 线 介 绍 以及 辐 射 原 理
11 形 微 带 天 线 的 结 构 .矩
微 带 天 线 的 结 构 比较 简 单 ,它 是 由贴 在 带 有 金 属 地 板
图 1 微 带 天 线
的介 质 基 片 上 的 辐 射 贴 片 构 成 的 .一 般 介 质 基 片 的 相 对 介
S参 数 闭 ,驻 波 比 以及 方 向 图 。 仿 真 结 果 跟 理 论 结 果 很 吻 合 ,证 明 了方 法 的可 行 性 ,
仿 真 ห้องสมุดไป่ตู้具 。
关键 词 :微 带 天 线 ;矩 形 ;仿 真 ;HF S S 中 图分 类 号 :T 8 N2 文献 标 识 码 :A 文 章 编 号 :10 — 4 2 (0 0 0 04 — 2 0 9 9 9 2 1)1— 0 0 0
HFSS矩形微带贴片天线的仿真设计报告
- -.基于 HFSS 矩形微带贴片天线的仿真设计实验目的:运用HFSS的仿真能力对矩形微带天线进行仿真实验内容:矩形微带天线仿真:工作频率7.55GHz天线结构尺寸如表所示:名称起点尺寸类型材料Sub 0,0,0 28.1,32,-0.79 Bo* Rogers 5880 (tm)GND 0,0,-0.79 28.1,32,-0.05 Bo* pecPatch 7.03 , 8 , 0 12.45 , 16, 0.05 Bo* pecMSLine 10.13,0,-0.79 2.49 , 8 , 0.05 Bo* pecPort 10.13,0,-0.79 2.49 ,0, 0.89 RectangleAir -5,-5,-5.79 38.1 , 42, 10.79 Bo* Vacumn一、新建文件、重命名、保存、环境设置。
(1)、菜单栏File>>save as,输入Antenna,点击保存。
(2). 设置激励终端求解方式:菜单栏HFSS>Solution type>Driven Termin ,点击OK。
(3)、设置模型单位:3D Modeler>Units选择mm ,点击OK。
(4)、菜单栏Tools>>Options>>Modeler Options,勾选”Edit properties of new pri”, 点击OK。
二、建立微带天线模型(1)点击创建GND,起始点:*:0,y:0,z:-0.79,d*:28.1,dy:32,dz:-0.05修改名称为GND, 修改材料属性为 pec,(2) 介质基片:点击,:*:0,y:0,z:0。
d*: 28.1,dy: 32,dz: - 0.794,修改名称为Sub,修改材料属性为Rogers RT/Duriod 5880,修改颜色为绿色,透明度0.4。
点击OK(3) 建立天线模型patch,点击,*:7.03,y: 8, z:0 ,d*: 12.45,dy: 16,dz: 0.05命名为patch,点击OK。
HFSS-矩形微带贴片天线的仿真设计报告
基于HFSS矩形微带贴片天线的仿真设计-、新建文件、重命名、保存、环境设置。
(1) 、菜单栏File»save as,输入Antenna,点击保存。
(2).设置激励终端求解方式:菜单栏HFSS>Solution type>Driven Termin ,点击OK。
(3)、设置模型单位:3D Modeler>Units 选择mm,点击OK。
(4)、菜单栏Tools»Options>>Modeler Options,勾选"Edit properties of new pri ”,点击OK。
建立微带天线模型Sf W41Vhi t |Ev«l i Qftttdl ¥D«1CTkptLi9in"ordintl 吉GlebaFoil ti DBL o B o■■O M魯Oto * …ISlEt2S 1M 2& iwttiit32—321--Q 05■-Q CO**修改名称为GND,修改材料属性为pec ,LJCwhna | I修改名称为Sub,修改材料属性为Rogers RT/Duriod 5880,修改颜色为绿色透明度0.4。
⑴点击创建GND起始点:x:0 , y:0 , z:-0.79 dx:28.1,dy:32,dz:-0.05ITIN1fT11 11Or a rht * 般z心lh ■>!看fi...UnTruiiptrtiit.0 21Ut4"«hljr厂厂厂厂厂厂厂厂(2)介质基片:点击,:x:0,y:0,z:0。
dx: 28.1,dy: 32,dz: - 0.794,点击OK(3) 建立天线模型patch , 匚gag]C^crdiMlt .7 03 #812 «5-»TSi m命名为patch ,点击OK£弹・・^扌 ikt-lir iIMSLine,dx:2.46 , dy: 8 , dz: 0.05 ,点击: ,x:7.03,y: 8, z:0,dx: 12.45 , dy: 16 , dz: 0.05(4)建立天线模型微带线点击:,x:10.13,y: 0, ,z: 0V AI IP«ICTiptLMCcMtniCrtktitBtiGUbtlPtiili m10 13 H 0』p> 10 1A d 0t 炸■A tIStnB MA MZSi r«4 «0 ffiM命名为MSLine,材料pec,透明度0.4班“啊叶¥Dwfcripti Mt R4*4-«JyKi lEUn.r V^lerial■p -W**p«*厂 lEkiidltF厂Ori GlobdLr B«4*lr厂r Ccl^T* Edit rTrimjspw*»t0 *r选中 Patch 和 MSLine,点击 Modeler>Boolean>Unite(5)、建立端口。
HFSS仿真2×2矩形贴片天线阵
HFSS 仿真2×2线极化矩形微带贴片天线阵微带天线以其体积小、重量轻、低剖面等独特的优点,在通信、卫星电视接收、雷达、遥感等领域得到广泛应用,它一般工作在100MHz-100GHz 宽广频域的无线电设备中,而矩形微带天线是微带天线最常用的辐射单元,它是一种谐振型天线,通常在谐振频率附近工作。
C 波段,是频率在4—8GHz 的无线电波,通常的上行频率范围为5.925—6.425GHz ,下行频率范围为3.7—4.2GHz 。
雷达天线具有将电磁波聚成波束的功能,定向地发射和接收电磁波。
本实验采用HFSS13.0设计了一款工作于C 波段中心频率在5.75GHz 的矩形贴片线极化微带雷达天线阵列,根据理论经验公式初步计算出矩形微带贴片天线的尺寸,然后在HFSS13.0里建模仿真,根据仿真结果反复调整天线的尺寸,对天线的结构进行优化,直到天线的中心频率为5.75GHz 为止。
1 单个侧馈贴片天线的仿真1.1 矩形贴片天线的设计导波波长g λ,矩形贴片天线的的有效长度e L 2/g e L λ= , e g ελλ/0=有效介电常数为e ε,r ε为介质的介电常数211212121-⎪⎭⎫⎝⎛+-++=w h r r e εεε矩形贴片的实际长度为L , L=e L -2L ∆=e ελ2/0-2L ∆=ef c ε02-2L ∆0f 天线的实际频率,L ∆微带天线等效辐射缝隙的长度()()()()8.0/258.0264.0/3.0412.0+-++=∆h W h W hL eeεε矩形贴片的宽度为W210212-⎪⎭⎫ ⎝⎛+=r f c W ε基片尺寸取:g L LG λ2.0+≥ ,g W WG λ2.0+≥介质板材为Rogers RT /duroid 5880,其相对介电常数r ε=2.2,厚度h=2mm ,损耗角正切为0.0009。
在设计过程中,我们假设贴片、微带线的厚度t 与基片厚度相比可以忽略不计,即005.0/≤h t ,在设计过程中,我们令t=0。
Example1.1_HFSS_同轴探针馈电微带贴片天线(1-3.5GHz)
第五章天线实例第三节 同轴探针微带贴片天线这个例子教你如何在HFSS设计环境下创建、仿真、分析一个同轴探针微带贴片天线。
F 5.3.1F 5.3.2微波仿真论坛组织翻译 第133 页第五章天线实例一.开始一)启动Ansoft HFSS1、点击微软的开始按钮,选择程序,然后选择Ansoft,HFSS10程序组,点击HFSS10,进入Ansoft HFSS。
二)设置工具选项1、设置工具选项注意:为了与这个例子的后续步骤一致,要对工具选项进行如下设置:1、选择菜单:Tools > Options > HFSS Options2、HFSS选项窗口a、点击常规(General)标签创建边界时使用数据输入条:选复制几何图形的边界:选b、点击确定键。
3、选择菜单Tools 〉 Options 〉3D Modeler Options 。
4、3D模块选项窗口a、点击Operation 键曲线自动封闭:选b、点击Drawing 键新的原始模型编辑属性C、点击确定。
三)打开新工程1、在HFSS窗口,点击工具条上的,或者选择菜单File > New 。
2、从Project菜单选择Insert HFSS Design 。
F 5.3.3四)设置求解类型微波仿真论坛组织翻译 第134 页第五章天线实例1.选择菜单 HFSS 〉 Solution Type 。
2.Sloution Type 窗口:1).选择终端驱动( Driven Terminal )。
2).点击确定。
F 5.3.4二.建立3D模型一)设置模型单位1.选择菜单3D Modeler 〉 Units 。
2.设置单位:A、选择单位厘米(cm)B、点击确定二)设置默认材料1.在3D模型材料工具栏,选择Select。
F 5.3.52.选择定义窗口:A、在通过名称区域输入Rogers RT/duroid 5880(tm)。
B、点击确定。
微波仿真论坛组织翻译 第135 页第五章天线实例F 5.3.6三)创建衬底1、创建衬底1.选择菜单Draw 〉 Box 。
设计实验 微带贴片天线设计
设计实验微带贴片天线的设计一、实验目的Fig. 1 微带贴片天线设计思路1、通过HFSS仿真设计微带贴片天线,具体参数要求如下:✓工作频率为2.6GHz,使用材料为FR4(相对介电常数ε=4.4),厚度为1.6mm的双面覆铜板;✓辐射贴片采用夹角为180°的扇形贴片,利用50Ω的微带线进行馈电,用1/4波导微带匹配段对天线进行阻抗匹配;✓要求天线的血站频率在2.55GHz~2.65GHz范围内,且仿真参数S11在谐振频率出小于-13dB。
2、天线设计思路参考Fig.1,仿真成功后做出实物板。
二、实验原理1、HFSS仿真设计流程:建立模型→设置边界和激励(包括金属板、介质板和空气盒子)→建立优化→设置求解条件,并执行仿真→生成结果。
2、利用APPCAD计算微带线参数:介质板厚度为1.6mm,FR4材料的相对介电常数ε=4.4,中心频率为2.6GHz,根据APCAD计算,如图Fig.2所示,为使微带线馈电电阻为50.04Ω,微带线宽度应为W3=3.06mm,并且1/4波导微带匹配段的长度应为L=15.65mm.Fig. 2 扇形贴片天线参数计算同时,金属板尺寸为100mm×75mm,可初步估计扇形半径R=33mm,馈线长度L3=5mm,匹配段宽度W=1mm。
根据以上参数可绘制如图Fig.3所示。
Fig. 3 扇形贴片天线参数和设计示意图3、制板流程:导出图形→打印胶片→PCB板打孔穿线→将胶片固定在PCB板上进行曝光→显影→刻蚀→用酒精除去感光膜→焊接→测试。
三、仿真过程与分析正面示意图背面示意图Fig. 4 微带贴片天线设计金属板示意图1、建立模型(Fig.4)。
打开HFSS,绘制介质板,第一个点(-10,0,0),第二个点相对坐标为(100,75,-1.6),建立尺寸为100mm×75mm×1.6mm的长方体。
●绘制正面图形:绘制馈线:第一个点(38.475,0,0),第二个点相对坐标(3.06,5,0),建立3.06mm×5mm的矩形馈线。
基于HFSS的天线设计
图1:微带天线的结构一、 实验目的●利用电磁软件Ansoft HFSS 设计一款微带天线。
◆微带天线要求:工作频率为2.5GHz ,带宽 (回波损耗S11<-10dB)大于5%。
●在仿真实验的帮助下对各种微波元件有个具体形象的了解。
二、 实验原理1、微带天线简介微带天线的概念首先是由Deschamps 于1953年提出来的,经过20年左右的发展,Munson 和Howell 于20世纪70年代初期制造出了实际的微带天线。
微带天线由于具有质量轻、体积小、易于制造等优点,现今已经广泛应用于个人无线通信中。
图1是一个简单的微带贴片天线的结构,由辐射源、介质层和参考地三部分组成。
与天线性能相关的参数包括辐射源的长度L 、辐射源的宽度W 、介质层的厚度h 、介质的相对介电常数r ε和损耗正切δtan 、介质层的长度LG 和宽度WG 。
图1所示的微带贴片天线是采用微带天线来馈电的,本次将要设计的矩形微带贴片天线采用的是同轴线馈电,也就是将同轴线街头的内心线穿过参考地和介质层与辐射源相连接。
对于矩形贴片微带天线,理论分析时可以采用传输线模型来分析其性能,矩形贴片微带天线的工作主模式是TM10模,意味着电场在长度L 方向上有2/g λ的改变,而在宽度W 方向上保持不变,如图2(a )所示,在长度L 方向上可以看做成有两个终端开路的缝隙辐射出电磁能量,在宽度W 方向的边缘处由于终端开路,所以电压值最大电流值最小。
从图2(b )可以看出,微带线边缘的电场可以分解成垂直于参考地的分量和平行于参考地的分量两部分,两个边缘的垂直电场分量大小相等、方向相反,平行电场分量大小相等,方向相反;因此,远区辐射电场垂直分量相互抵消,辐射电场平行于天线表面。
(a )俯视图 (b )侧视图图2 矩形微带贴片天线的俯视图和侧视图2、天线几何结构参数推导计算公式假设矩形贴片的有效长度设为e L ,则有2/g e L λ= 式中,g λ表示波导波长,有 e g ελλ/0= 式中,0λ表示自由空间波长,e ε表示有效介电常数,且21)121(2121-+-++=W h r r e εεε 式中,r ε表示介质的相对介电常数,h 表示介质层厚度,W 表示微带贴片的宽度。
基于HFSS的不同形状微带贴片天线的仿真设计
基于HFSS的不同形状微带贴片天线的仿真设计一、本文概述随着无线通信技术的快速发展,天线作为无线通信系统的关键组成部分,其性能对整个系统的性能具有决定性的影响。
微带贴片天线作为一种常见的天线类型,因其体积小、重量轻、易于集成和制造成本低等优点,在无线通信、雷达、卫星通信等领域得到了广泛应用。
微带贴片天线的性能受到其形状、尺寸、介质基板等因素的影响,如何设计出具有优良性能的微带贴片天线成为了研究的热点。
本文旨在利用高频结构仿真器(HFSS)这一强大的电磁仿真工具,对不同形状微带贴片天线的性能进行仿真研究。
我们将对微带贴片天线的基本理论进行简要介绍,包括其工作原理、主要参数和性能评价指标等。
我们将设计并仿真几种不同形状(如圆形、方形、矩形、椭圆形等)的微带贴片天线,分析它们的性能特点,包括回波损耗、带宽、增益、方向性等。
我们将根据仿真结果,对不同形状微带贴片天线的性能进行比较和评价,以期为实际的天线设计提供有益的参考和指导。
通过本文的研究,我们期望能够为微带贴片天线的设计提供新的思路和方法,推动其在无线通信领域的应用和发展。
我们也期望通过本文的研究,能够加深对微带贴片天线性能影响因素的理解,为其他类型天线的设计提供借鉴和启示。
二、软件介绍及其在天线设计中的应用HFSS(High Frequency Structure Simulator)是由美国Ansoft 公司开发的一款三维电磁仿真软件,专门用于模拟分析高频结构中的电磁场问题。
该软件采用有限元法(FEM)进行求解,能够准确模拟包括微带天线在内的各种高频无源器件的三维电磁特性。
HFSS以其强大的仿真能力和广泛的适用性,在天线设计、微波电路、高速互连、电磁兼容等领域得到了广泛应用。
天线性能分析:通过HFSS,设计师可以分析天线的辐射性能,包括方向图、增益、效率等关键指标。
这对于优化天线设计,提高其性能至关重要。
天线结构优化:HFSS允许用户自由定义天线的几何形状和材料属性,通过参数化扫描和优化算法,找到最优的天线结构,从而提高其性能。
HFSS天线设计实例-微带贴片天线
内容概述设计指标和天线尺寸计算HFSS设计流程1.重命名工程文件为:MSAntenna,设计名称为:Patch2.设置求解类型为:模式求解3.设置默认单位:mm4.创建参考地4.1创建4.2修改属性4.3修改参数(-45,-45,0),X=90,Y=904.4设置边界条件为:理想导体边界条件5.创建介质层5.1创建长方体5.2修改属性:Substrate,材料为Roger RO4003,颜色为墨绿,透明度0.65.3修改参数:顶点(-40,-40,0)X=80;Y=80;Z=56.创建微带辐射源6.1创建长方形6.2修改属性:Patch,铜黄,0.46.3修改参数:顶点(-15.5,-20.7,5)X=31;Y=41.46.4设置边界条件为:理想边界条件7.创建同轴馈线7.1创建圆柱体7.2修改属性:Feed,材料:pec;7.3修改参数:圆心(9.5,0,0),r=0.5;H=58.创建馈点孔8.1创建圆面8.2修改属性:Port8.3修改参数:圆心(9.5,0,0),r=1.58.4相减:GND-Port(保留Port平面作为集总端口平面)8.5设置Port端口为:集总端口8.5.1设置积分校准线:起始点(10,0,0)dX=1,dY=0,dZ=09.设置辐射边界条件9.1创建长方体9.2修改属性:Air,0.89.3修改参数:顶点(-80,-80,-35),X=160,Y=160,Z=759.4设置辐射边界条件10.添加求解设置项:频率:2.45GHz,最大迭代次数:1511.添加扫频设置项:类型:Fast,范围:1.5-3.5GHz,步长:0.0212.设计检查13.运行分析14.查看谐振点14.1标记谐振点15.由于没有达到设计要求,所以需要优化设计16.添加变量:Length:31mm;Width:41.4mm;Xf:9.5mm17.应用变量17.1Patch:X=Length;Y=Width17.2Feed:顶点坐标(Xf,0,0)17.3Port:顶点坐标(Xf,0,0)18.修改扫频范围为:范围:2.2-2.8GHz,步长:0.05GHz19.Length参数扫描分析:范围:28-31mm,步长:0.5mm 19.1设置19.2分析Length对谐振点的影响19.3查看分析结果19.4结论:Length=29.5mm时,接近2.45GHz20.Width参数扫描分析:范围:39-42mm,步长:0.5mm 20.1设置20.2分析Width对谐振点的影响20.3查看分析结果20.4结论:宽度Width对谐振点的位置影响不大21.优化设计21.1选取优化变量:Length:29-30mm。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
内容概述
设计指标和天线尺寸计算
HFSS设计流程
1.重命名工程文件为:MSAntenna,设计名称为:Patch
2.设置求解类型为:模式求解
3.设置默认单位:mm
4.创建参考地4.1创建
4.2修改属性
4.3修改参数(-45,-45,0),X=90,Y=90
4.4设置边界条件为:理想导体边界条件
5.创建介质层
5.1创建长方体
5.2修改属性:Substrate,材料为Roger RO4003,颜色为墨绿,透明度0.6
5.3修改参数:顶点(-40,-40,0)X=80;Y=80;Z=5
6.创建微带辐射源
6.1创建长方形
6.2修改属性:Patch,铜黄,0.4
6.3修改参数:顶点(-15.5,-20.7,5)X=31;Y=41.4
6.4设置边界条件为:理想边界条件
7.创建同轴馈线7.1创建圆柱体
7.2修改属性:Feed,材料:pec;
7.3修改参数:圆心(9.5,0,0),r=0.5;H=5
8.创建馈点孔8.1创建圆面
8.2修改属性:Port
8.3修改参数:圆心(9.5,0,0),r=1.5
8.4相减:GND-Port(保留Port平面作为集总端口平面)
8.5设置Port端口为:集总端口
8.5.1设置积分校准线:起始点(10,0,0)dX=1,dY=0,dZ=0
9.设置辐射边界条件9.1创建长方体
9.2修改属性:Air,0.8
9.3修改参数:顶点(-80,-80,-35),X=160,Y=160,Z=75
9.4设置辐射边界条件
10.添加求解设置项:频率:2.45GHz,最大迭代次数:15
11.添加扫频设置项:类型:Fast,范围:1.5-3.5GHz,步长:0.02
12.设计检查
13.运行分析
14.查看谐振点
14.1标记谐振点
15.由于没有达到设计要求,所以需要优化设计
16.添加变量:Length:31mm;Width:41.4mm;Xf:9.5mm
17.应用变量
17.1Patch:X=Length;Y=Width
17.2Feed:顶点坐标(Xf,0,0)
17.3Port:顶点坐标(Xf,0,0)
18.修改扫频范围为:范围:2.2-2.8GHz,步长:0.05GHz
19.Length参数扫描分析:范围:28-31mm,步长:0.5mm 19.1设置
19.2分析Length对谐振点的影响
19.3查看分析结果
19.4结论:Length=29.5mm时,接近2.45GHz
20.Width参数扫描分析:范围:39-42mm,步长:0.5mm 20.1设置
20.2分析Width对谐振点的影响
20.3查看分析结果
20.4结论:宽度Width对谐振点的位置影响不大
21.优化设计
21.1选取优化变量:Length:29-30mm。