牛顿运动定律题型归纳
高中物理牛顿运动相关九大题型整理及专项练习(带答案)
牛顿运动题型分类:1、力与运动的关系2、牛顿第二定律的瞬时性3、超重和失重4、已知物体的受力情况确定物体的运动情况5、已知物体的运动情况确定物体的受力情况6、连接体问题7、传送带问题8、牛顿运动定律的图象问题9、动力学中的临界极值问题一、力与运动的关系【例题1】如图所示,在水平向右做匀加速直线运动的平板车上有一圆柱体,其质量为m 且与竖直挡板及斜面间均无摩擦。
当车的加速度a 突然增大时,斜面对圆柱体的弹力F 1和挡板对圆柱体的弹力F 2的变化情况是(斜面倾角为θ)A .F 1增大,F 2不变B .F 1增大,F 2增大C .F 1不变,F 2增大D .F 1不变,F 2减小参考答案:C二、牛顿第二定律的瞬时性【例题2】(2017江西省赣州市南康市第三中学高三第三次大考)如图所示,在动摩擦因数0.2μ=的水平面上有一个质量1kg m =的小球,小球与水平轻弹簧及与竖直方向成45θ=角的不可伸长的轻绳一端相连,此时小球处于静止状态,且水平面对小球的弹力恰好为零。
在剪断轻绳的瞬间(g 取210m/s ),下列说法中正确的是A .小球受力个数不变B .小球开始向左运动,且20.8/a m s =C .小球开始向左运动,且210/a m s =D .若剪断的是弹簧,则剪断瞬间小球加速度为零参考答案:D【例题3】(多选)如图所示,物体A 和B 通过弹簧连接在一起组成一个弹簧连接体,A 、B 的质量分别为m 、2m ,连接体放置在水平的木板C 上,弹簧的劲度系数为k ,所有接触面均光滑。
若突然抽去木板C ,则下列关于物体A 、B 的加速度aA 、aB 的描述正确的是( )A .aA =0B .aA =0.5g ,方向竖直向下C .aB =0D .aB =1.5g ,方向竖直向下AD [木板C 被突然抽去时,C 沿水平方向运动,由于接触面均光滑,因此A 、B 在水平方向上均无运动,也无加速度,竖直方向上,在C 与B 离开的瞬间,A 、B 均在原位置,弹簧在这一瞬间形变量不变,仍保持原来的弹力大小F =mg ,对物体A 进行受力分析可知,其受力情况不变,所受合力为0,即加速度aA =0,故选项A 正确,B 错误;抽走C 的瞬间,木板C 对物体B 的支持力变为0,对物体B 进行受力分析,根据牛顿第二定律,有F +2mg =2maB ,又F =mg ,则加速度aB =1.5g ,方向竖直向下,故选项C 错误,D 正确。
牛顿第三定律(4大题型)(解析版)—2024-2025学年高一物理同步题型分类(人教版必修第一册)
牛顿第三定律知识点 1 作用力和反作用力1、力的作用是相互的①引力的作用是相互的:物体受到重力,是由于地球对物体的吸引,同时地球也受到物体对它的力的作用。
②弹力的作用是相互的:用手拉弹簧,弹簧受到手的拉力F,同时弹簧发生形变,手也就受到弹簧的拉力F’。
③摩擦力的作用是相互的:放在粗糙斜面上的木块沿斜面向下运动时,受到斜面给它的沿斜面向上的摩擦力F f2,由于运动的相对性,斜面相对木块向右运动,从而受到木块给它的沿斜面向下的摩擦力F f1。
大量实例说明,物体间力的作用是相互的。
2、作用力和反作用力两个物体之间的作用总是相互的。
当一个物体对另一个物体球施加了力,后一个物体一定同时对前一个物体也施加了力。
物体间相球互作用的这一对力,通常叫作作用力和反作用力。
作用力和反作用力总是互相依赖、同时存在的。
【注意】作用力和反作用力分别作用在不同的物体上,施力物体同时也是受力物体,受力物体同时也是施力物体。
知识点 2 牛顿第三定律1、实验:用弹簧测力计探究作用力和反作用力的关系把A、B两个弹簧测力计连接在一起,B的一端固定,用手拉测力计A。
从实验中可以发现,两个弹簧测力计的示数是相等的,方向相反。
2、牛顿第三定律(1【注意】牛顿第三定律中的“总是”是强调对于任何物体,无论在何种条件下,两个力等大、反向、共线的关系都成立,与物体的质量、形状、运动状态及参考系的选取等因素均无关。
(2)作用力与反作用力具有“四同”和“三异”的关系“四同”:①同大小:大小相等。
②同直线:作用在同一条直线上。
③同存亡:同时产生、同时消失、同时变化。
④同性质:作用力是引力,反作用力也是引力;作用力是弹力,反作用力也是弹力;作用力是摩擦力,反作用力也是摩擦力。
“三异”:①异向:方向相反。
②异体:作用在不同的物体上。
③异效:在不同的物体上分别产生不同的作用效果,不能相互抵消,因此,不能认为作用力和反作用力的合力为零。
知识点 3 物体受力的初步分析1、分析物体受力的思路①根据物体运动状态的变化来分析和判断其受力情况。
历年高考物理力学牛顿运动定律题型总结及解题方法
历年高考物理力学牛顿运动定律题型总结及解题方法单选题1、现在城市的滑板运动非常流行,在水平地面上一名滑板运动员双脚站在滑板上以一定速度向前滑行,在横杆前起跳并越过杆,从而使人与滑板分别从杆的上方、下方通过,如图所示,假设人和滑板运动过程中受到的各种阻力忽略不计,若运动员顺利地完成了该动作,最终仍落在滑板原来的位置上,则下列说法错误的是()A.运动员起跳时,双脚对滑板作用力的合力竖直向下B.起跳时双脚对滑板作用力的合力向下偏后C.运动员在空中最高点时处于失重状态D.运动员在空中运动时,单位时间内速度的变化相同答案:B解析:AB.运动员竖直起跳,由于本身就有水平初速度,所以运动员既参与了水平方向上的匀速直线运动,又参与了竖直上抛运动。
各分运动具有等时性,水平方向的分运动与滑板的运动情况一样,运动员最终落在滑板的原位置。
所以水平方向受力为零,则起跳时,滑板对运动员的作用力竖直向上,运动员对滑板的作用力应该是竖直向下,故A正确,不符合题意;B错误,符合题意;C.运动员在空中最高点时具有向下的加速度g,处于失重状态,故C正确,不符合题意;D.运动员在空中运动时,加速度恒定,所以单位时间内速度的变化量相等,故D正确,不符合题意。
故选B。
2、如图所示,物体静止于水平面上的O点,这时弹簧恰为原长l0,物体的质量为m,与水平面间的动摩擦因数为μ,现将物体向右拉一段距离后自由释放,使之沿水平面振动,下列结论正确的是()A.物体通过O点时所受的合外力为零B.物体将做阻尼振动C.物体最终只能停止在O点D.物体停止运动后所受的摩擦力为μmg答案:B解析:A.物体通过O点时弹簧的弹力为零,但摩擦力不为零,A错误;B.物体振动时要克服摩擦力做功,机械能减少,振幅减小,做阻尼振动,B正确;CD.物体最终停止的位置可能在O点也可能不在O点。
若停在O点摩擦力为零,若不在O点,摩擦力和弹簧的弹力平衡,停止运动时物体所受的摩擦力不一定为μmg,CD错误。
专题02牛顿运动定律的六大题型(原卷版)
专题02牛顿运动定律的六大题型(原卷版)专题02:牛顿运动定律的六大题型(原卷版)1. 题型一:概念理解题题目描述请简述牛顿运动定律的基本内容,并说明其应用范围。
解题步骤1. 牛顿运动定律分为三条,分别是:(1)牛顿第一定律,也称为惯性定律,指出一个物体若受到外力作用,其运动状态将发生改变;若不受外力作用,其运动状态将保持静止或匀速直线运动。
(2)牛顿第二定律,也称为加速度定律,指出物体受到的合外力等于物体的质量与加速度的乘积,即 F = ma。
(3)牛顿第三定律,也称为作用与反作用定律,指出任何两个物体之间的作用力与反作用力大小相等、方向相反,并作用在同一直线上。
2. 牛顿运动定律适用于低速、宏观的物体,不适用于高速、微观的粒子。
2. 题型二:计算题题目描述一个质量为2kg的物体受到一个3N的水平力和一个45N的竖直力作用,求物体的加速度和摩擦力。
解题步骤1. 分析物体受力情况,可得物体受到的合外力为:F_合 = F_水平 + F_竖直 = 3N + 45N = 48N2. 根据牛顿第二定律,计算物体的加速度:a = F_合 / m = 48N / 2kg = 24m/s²3. 由于物体在水平方向上没有受到摩擦力,所以摩擦力为0。
3. 题型三:应用题题目描述一个物体从静止开始沿着光滑的斜面滑下,已知斜面倾角为30°,物体的质量为3kg,求物体滑下斜面10m时的速度和所用时间。
解题步骤1. 分析物体受力情况,可得物体受到的合外力为:F_合 = m * g * sin30° = 3kg * 9.8m/s² * 0.5 = 14.7N2. 根据牛顿第二定律,计算物体的加速度:a = F_合 / m = 14.7N / 3kg = 4.9m/s²3. 利用运动学公式 v² = 2 * a * s,计算物体滑下斜面10m时的速度:v = √(2 * 4.9m/s² * 10m) = 9.4m/s4. 利用运动学公式 t = v / a,计算物体滑下斜面10m所用时间:t = 9.4m/s / 4.9m/s² = 2s4. 题型四:综合题题目描述一个质量为5kg的物体在水平地面上受到一个5N的推力和一个20N的摩擦力作用,已知物体初始速度为0,求物体在推力作用下移动10m的时间和最终速度。
牛顿定律高中全题型归纳(全)
牛顿运动定律--(第一定律第三定律)一、牛顿第一定律:1.内容:一切物体总保持匀速直线运动运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态.2.理解:①定律的前一句话揭示了物体所具有的一个重要属性,即“保持匀速直线运动状态或静止状态”,这种性质叫惯性.牛顿第一定律指出了一切物体在任何情况下都具有惯性.②定律的后一句话“除非作用在它上面的力迫使它改变这种状态”这实际上是给力下的定义,即力是改变运动状态的原因(力并不是产生和维持物体运动的原因).③牛顿第一定律指出了物体不受外力作用时的运动规律.实际上,不受外力作用的物体是不存在的.物体所受到的几个力的合力为零时,其运动效果就跟不受外力相同,这时物体的运动状态是匀速直线运动或静止状态.二、牛顿第三定律1.内容:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一直线上.2.表达式:F甲对乙=-F乙对甲,负号表示方向相反.3.意义:揭示了力的作用的相互性,即两个物体间只要有作用就必然会出现一对作用力和反作用力.4.特点:(1).是同种性质的力如G与G/、F N与F N/、f与f/.(2).作用在两个物体上,如G作用于人,G/作用于地球.(3).同时产生、同时消失(甲对乙无作用、乙对甲也无作用).(4).不管静止或运动,作用力和反作用力总是大小相等,方向相反.(5).与物体是否平衡无关.题型1:怎样判断物体运动状态是否发生变化?例1关于运动状态的改变,下列说法正确的是()A.速度方向不变,速度大小改变的物体,运动状态发生了变化B.速度大小不变,速度方向改变的物体,运动状态发生了变化C.速度大小和方向同时改变的物体,运动状态一定发生了变化D.做匀速圆周运动的物体,运动状态没有改变1. 在以下各种情况中,物体运动状态发生了改变的有()A.静止的物体 B.物体沿着圆弧运动,在相等的时间内通过相同的路程C.物体做竖直上抛运动,到达最高点过程 D.跳伞运动员竖直下落过程,速率不变2.跳高运动员从地面上跳起,是由于()A.地面给运动员的支持力大于运动员给地面的压力 B.运动员给地面的压力大于运动员受的重力C.地面给运动员的支持力大于运动员受的重力 D.运动员给地面的压力等于地面给运动员的支持力3.某人用力推原来静止在水平面上的小车,使小车开始运动,此后改用较小的力就可以维持小车做匀速直线运动。
高中物理牛顿运动定律的应用常见题型及答题技巧及练习题(含答案)
高中物理牛顿运动定律的应用常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试牛顿运动定律的应用1.一轻弹簧的一端固定在倾角为θ的固定光滑斜面的底部,另一端和质量为m 的小物块a相连,如图所示.质量为35m 的小物块b 紧靠a 静止在斜面上,此时弹簧的压缩量为x 0,从t=0时开始,对b 施加沿斜面向上的外力,使b 始终做匀加速直线运动.经过一段时间后,物块a 、b 分离;再经过同样长的时间,b 距其出发点的距离恰好也为x 0.弹簧的形变始终在弹性限度内,重力加速度大小为g .求:(1)弹簧的劲度系数; (2)物块b 加速度的大小;(3)在物块a 、b 分离前,外力大小随时间变化的关系式.【答案】(1)08sin 5mg x θ (2)sin 5g θ(3)22084sin sin 2525mg F mg x θθ=+【解析】 【详解】(1)对整体分析,根据平衡条件可知,沿斜面方向上重力的分力与弹簧弹力平衡,则有:kx 0=(m+35m )gsinθ 解得:k=8 5mgsin x θ(2)由题意可知,b 经两段相等的时间位移为x 0;由匀变速直线运动相邻相等时间内位移关系的规律可知:1014x x = 说明当形变量为0010344x x x x =-=时二者分离; 对m 分析,因分离时ab 间没有弹力,则根据牛顿第二定律可知:kx 1-mgsinθ=ma 联立解得:a=15gsin θ(3)设时间为t ,则经时间t 时,ab 前进的位移x=12at 2=210gsin t θ则形变量变为:△x=x 0-x对整体分析可知,由牛顿第二定律有:F+k △x-(m+35m )gsinθ=(m+35m )a解得:F=825mgsinθ+22425mg sinxθt2因分离时位移x=04x由x=04x=12at2解得:052xtgsinθ=故应保证0≤t<052xgsinθ,F表达式才能成立.点睛:本题考查牛顿第二定律的基本应用,解题时一定要注意明确整体法与隔离法的正确应用,同时注意分析运动过程,明确运动学公式的选择和应用是解题的关键.2.如图甲所示,一倾角为37°的传送带以恒定速度运行.现将一质量m=1 kg的小物体抛上传送带,物体相对地面的速度随时间变化的关系如图乙所示,取沿传送带向上为正方向,g=10 m/s2,sin 37°=0.6,cos 37°=0.8:求:(1)物体与传送带间的动摩擦因数;(2) 0~8 s内物体机械能的增加量;(3)物体与传送带摩擦产生的热量Q。
高考物理牛顿运动定律的应用常见题型及答题技巧及练习题(含答案)
高考物理牛顿运动定律的应用常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试牛顿运动定律的应用1.一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m ,如图(a )所示.0t =时刻开始,小物块与木板一起以共同速度向右运动,直至1t s =时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s 时间内小物块的v t -图线如图(b )所示.木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2.求(1)木板与地面间的动摩擦因数1μ及小物块与木板间的动摩擦因数2μ; (2)木板的最小长度;(3)木板右端离墙壁的最终距离.【答案】(1)10.1μ=20.4μ=(2)6m (3)6.5m 【解析】(1)根据图像可以判定碰撞前木块与木板共同速度为v 4m/s = 碰撞后木板速度水平向左,大小也是v 4m/s =木块受到滑动摩擦力而向右做匀减速,根据牛顿第二定律有24/0/1m s m sg sμ-=解得20.4μ=木板与墙壁碰撞前,匀减速运动时间1t s =,位移 4.5x m =,末速度v 4m/s = 其逆运动则为匀加速直线运动可得212x vt at =+ 带入可得21/a m s =木块和木板整体受力分析,滑动摩擦力提供合外力,即1g a μ= 可得10.1μ=(2)碰撞后,木板向左匀减速,依据牛顿第二定律有121()M m g mg Ma μμ++= 可得214/3a m s =对滑块,则有加速度224/a m s =滑块速度先减小到0,此时碰后时间为11t s = 此时,木板向左的位移为2111111023x vt a t m =-=末速度18/3v m s =滑块向右位移214/022m s x t m +== 此后,木块开始向左加速,加速度仍为224/a m s =木块继续减速,加速度仍为214/3a m s =假设又经历2t 二者速度相等,则有22112a t v a t =- 解得20.5t s =此过程,木板位移2312121726x v t a t m =-=末速度31122/v v a t m s =-= 滑块位移24221122x a t m == 此后木块和木板一起匀减速.二者的相对位移最大为13246x x x x x m ∆=++-= 滑块始终没有离开木板,所以木板最小的长度为6m(3)最后阶段滑块和木板一起匀减速直到停止,整体加速度211/a g m s μ==位移23522v x m a==所以木板右端离墙壁最远的距离为135 6.5x x x m ++= 【考点定位】牛顿运动定律【名师点睛】分阶段分析,环环相扣,前一阶段的末状态即后一阶段的初始状态,认真沉着,不急不躁2.质量为m =0.5 kg 、长L =1 m 的平板车B 静止在光滑水平面上,某时刻质量M =l kg 的物体A (视为质点)以v 0=4 m/s 向右的初速度滑上平板车B 的上表面,在A 滑上B 的同时,给B 施加一个水平向右的拉力.已知A 与B 之间的动摩擦因数μ=0.2,重力加速度g 取10 m/s 2.试求:(1)如果要使A 不至于从B 上滑落,拉力F 大小应满足的条件; (2)若F =5 N ,物体A 在平板车上运动时相对平板车滑行的最大距离. 【答案】(1)1N 3N F ≤≤ (2)0.5m x ∆= 【解析】 【分析】物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度,结合牛顿第二定律和运动学公式求出拉力的最小值.另一种临界情况是A 、B 速度相同后,一起做匀加速直线运动,根据牛顿第二定律求出拉力的最大值,从而得出拉力F 的大小范围.【详解】(1)物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v 1,则:222011-22A Bv v v L a a =+ 又: 011-=A Bv v v a a 解得:a B =6m/s 2再代入F +μMg =ma B 得:F =1N若F <1N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1N当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才不会从B 的左端滑落,则由牛顿第二定律得: 对整体:F =(m +M )a 对物体A :μMg =Ma 解得:F =3N若F 大于3N ,A 就会相对B 向左滑下 综上所述,力F 应满足的条件是1N≤F ≤3N(2)物体A 滑上平板车B 以后,做匀减速运动,由牛顿第二定律得:μMg =Ma A 解得:a A =μg =2m/s 2平板车B 做匀加速直线运动,由牛顿第二定律得:F +μMg =ma B 解得:a B =14m/s 2两者速度相同时物体相对小车滑行最远,有:v 0-a A t =a B t 解得:t =0.25s A 滑行距离 x A =v 0t -12a A t 2=1516m B 滑行距离:x B =12a B t 2=716m 最大距离:Δx =x A -x B =0.5m 【点睛】解决本题的关键理清物块在小车上的运动情况,抓住临界状态,结合牛顿第二定律和运动学公式进行求解.3.如图甲所示,质量为1kg m =的物体置于倾角为37θ︒=的固定且足够长的斜面上,对物体施以平行于斜面向上的拉力F ,10.5s t = 时撤去拉力,物体速度与时间v-t 的部分图象如图乙所示。
牛顿运动定律常见题型
牛顿运动定律复习1、 连接体问题解题思路:整体法与隔离法的灵活运用a) 各部分间没有相对运动,或者虽有相对运动但为匀速运动:整体及各部分有相同的加速度,整体法求加速度,隔离法求各物体受力情况。
b) 各部分间有相对运动且不是匀速运动:整体及部分间没有共同的加速度,且整体的加速度不等于各部分的加速度平均。
必须灵活运用整体法及隔离法求解问题。
整体的加速度用整体法求解,部分的加速度用隔离法求解;受力情况运用整体、隔离及牛三定律等求解。
例1、 如图所示,小车向右做匀加速运动的加速度大小为a ,bc 为固定在小车上的水平横杆,物块M 串在杆上,M 通过细线悬吊着一小铁球m , M 、m 均相对小车静止,细线与竖直方向的夹角为θ.若小车的加速度逐渐增大到2a 时,M 仍与小车保持相对静止,则A .横杆对M 的作用力增加到原来的2倍B .细线的拉力增加到原来的2倍C .细线与竖直方向的夹角增加到原来的2倍D .细线与竖直方向夹角的正切值增加到原来的2倍例2、 如图所示,水平地面上有两块完全相同的木块AB ,水平推力F 作用在A 上,用F AB 代表A 、B 间的相互作用力,下列说法可能正确的是A .若地面是完全光滑的,则F AB =FB .若地面是完全光滑的,则F AB =F /2C .若地面是有摩擦的,且AB 未被推动,可能F AB =F /3D .若地面是有摩擦的,且AB 被推动,则F AB =F /2例3、 如图所示,一质量为M 的直角劈B 放在水平面上,在劈的斜面上放一质量为m 的物体A ,用一沿斜面向上的力F 作用于A 上,使其沿斜面匀速上滑,在A 上滑的过程中直角劈B 相对地面始终静止,则关于地面对劈的摩擦力f 及支持力N 正确的是A .f = 0 ,N = Mg +mgB .f 向左,N <Mg +mgC .f 向右,N <Mg +mgD .f 向左,N =Mg +mg例4、 某人拍得一张照片,上面有一个倾角为α的斜面,斜面上有一辆无动力的小车,小车上悬挂一个小球,如图所示,悬挂小球的悬线与垂直斜面的方向夹角为β,下面判断正确的是A 、如果βα=,小车一定处于静止状态B 、如果0β=,斜面一定是光滑的C 、如果βα>,小车一定是沿斜面加速向下运动D 、无论小车做何运动,悬线都不可能停留图中虚线的右侧例5、 如图所示,一轻绳通过一光滑定滑轮,两端各系一质量为m 1和m 2的物体,m 1放在地面上,当m 2的质量发生变化时,m 1的加速度a 的大小与m 2的关系大致如下图中的图( ).αβF V α B A2、 弹簧类问题可视为特殊的连接体问题,注意关键点:弹簧的弹力不能突变。
牛顿定律高中全题型归纳(全)
牛顿运动定律--(第一定律第三定律)一、牛顿第一定律:1.内容:一切物体总保持匀速直线运动运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态.2.理解:①定律的前一句话揭示了物体所具有的一个重要属性,即“保持匀速直线运动状态或静止状态”,这种性质叫惯性.牛顿第一定律指出了一切物体在任何情况下都具有惯性.②定律的后一句话“除非作用在它上面的力迫使它改变这种状态”这实际上是给力下的定义,即力是改变运动状态的原因(力并不是产生和维持物体运动的原因).③牛顿第一定律指出了物体不受外力作用时的运动规律.实际上,不受外力作用的物体是不存在的.物体所受到的几个力的合力为零时,其运动效果就跟不受外力相同,这时物体的运动状态是匀速直线运动或静止状态.二、牛顿第三定律1.内容:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一直线上.2.表达式:F甲对乙=-F乙对甲,负号表示方向相反.3.意义:揭示了力的作用的相互性,即两个物体间只要有作用就必然会出现一对作用力和反作用力.4.特点:(1).是同种性质的力如G与G/、F N与F N/、f与f/.(2).作用在两个物体上,如G作用于人,G/作用于地球.(3).同时产生、同时消失(甲对乙无作用、乙对甲也无作用).(4).不管静止或运动,作用力和反作用力总是大小相等,方向相反.(5).与物体是否平衡无关.题型1:怎样判断物体运动状态是否发生变化?例1关于运动状态的改变,下列说法正确的是()A.速度方向不变,速度大小改变的物体,运动状态发生了变化B.速度大小不变,速度方向改变的物体,运动状态发生了变化C.速度大小和方向同时改变的物体,运动状态一定发生了变化D.做匀速圆周运动的物体,运动状态没有改变1. 在以下各种情况中,物体运动状态发生了改变的有()A.静止的物体 B.物体沿着圆弧运动,在相等的时间内通过相同的路程C.物体做竖直上抛运动,到达最高点过程 D.跳伞运动员竖直下落过程,速率不变2.跳高运动员从地面上跳起,是由于()A.地面给运动员的支持力大于运动员给地面的压力 B.运动员给地面的压力大于运动员受的重力C.地面给运动员的支持力大于运动员受的重力 D.运动员给地面的压力等于地面给运动员的支持力3.某人用力推原来静止在水平面上的小车,使小车开始运动,此后改用较小的力就可以维持小车做匀速直线运动。
高考物理牛顿运动定律常见题型及答题技巧及练习题(含答案)及解析
高考物理牛顿运动定律常见题型及答题技巧及练习题(含答案)及解析一、高中物理精讲专题测试牛顿运动定律1.利用弹簧弹射和传送带可以将工件运送至高处。
如图所示,传送带与水平方向成37度角,顺时针匀速运动的速度v =4m/s 。
B 、C 分别是传送带与两轮的切点,相距L =6.4m 。
倾角也是37︒的斜面固定于地面且与传送带上的B 点良好对接。
一原长小于斜面长的轻弹簧平行斜面放置,下端固定在斜面底端,上端放一质量m =1kg 的工件(可视为质点)。
用力将弹簧压缩至A 点后由静止释放,工件离开斜面顶端滑到B 点时速度v 0=8m/s ,A 、B 间的距离x =1m ,工件与斜面、传送带问的动摩擦因数相同,均为μ=0.5,工件到达C 点即为运送过程结束。
g 取10m/s 2,sin37°=0.6,cos37°=0.8,求:(1)弹簧压缩至A 点时的弹性势能;(2)工件沿传送带由B 点上滑到C 点所用的时间;(3)工件沿传送带由B 点上滑到C 点的过程中,工件和传送带间由于摩擦而产生的热量。
【答案】(1)42J,(2)2.4s,(3)19.2J【解析】【详解】(1)由能量守恒定律得,弹簧的最大弹性势能为:2P 01sin 37cos372E mgx mgx mv μ︒︒=++ 解得:E p =42J(2)工件在减速到与传送带速度相等的过程中,加速度为a 1,由牛顿第二定律得: 1sin 37cos37mg mg ma μ︒︒+=解得:a 1=10m/s 2 工件与传送带共速需要时间为:011v v t a -=解得:t 1=0.4s 工件滑行位移大小为:220112v v x a -= 解得:1 2.4x m L =<因为tan 37μ︒<,所以工件将沿传送带继续减速上滑,在继续上滑过程中加速度为a 2,则有:2sin 37cos37mg mg ma μ︒︒-=解得:a 2=2m/s 2假设工件速度减为0时,工件未从传送带上滑落,则运动时间为:22vt a = 解得:t 2=2s工件滑行位移大小为:2 3? 1n n n n n 解得:x 2=4m工件运动到C 点时速度恰好为零,故假设成立。
高中物理牛顿运动定律常见题型及答题技巧及练习题(含答案)
高中物理牛顿运动定律常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试牛顿运动定律1.固定光滑细杆与地面成一定倾角,在杆上套有一个光滑小环,小环在沿杆方向的推力F 作用下向上运动,推力F 与小环速度v 随时间变化规律如图所示,取重力加速度g =10m/s 2.求:(1)小环的质量m ; (2)细杆与地面间的倾角a . 【答案】(1)m =1kg ,(2)a =30°. 【解析】 【详解】由图得:0-2s 内环的加速度a=vt=0.5m/s 2 前2s ,环受到重力、支持力和拉力,根据牛顿第二定律,有:1sin F mg ma α-= 2s 后物体做匀速运动,根据共点力平衡条件,有:2sin F mg α= 由图读出F 1=5.5N ,F 2=5N联立两式,代入数据可解得:m =1kg ,sinα=0.5,即α=30°2.我国的动车技术已达世界先进水平,“高铁出海”将在我国“一带一路”战略构想中占据重要一席.所谓的动车组,就是把带动力的动力车与非动力车按照预定的参数组合在一起.某中学兴趣小组在模拟实验中用4节小动车和4节小拖车组成动车组,总质量为m=2kg ,每节动车可以提供P 0=3W 的额定功率,开始时动车组先以恒定加速度21/a m s =启动做匀加速直线运动,达到额定功率后保持功率不变再做变加速直线运动,直至动车组达到最大速度v m =6m/s 并开始匀速行驶,行驶过程中所受阻力恒定,求: (1)动车组所受阻力大小和匀加速运动的时间;(2)动车组变加速运动过程中的时间为10s ,求变加速运动的位移. 【答案】(1)2N 3s (2)46.5m 【解析】(1)动车组先匀加速、再变加速、最后匀速;动车组匀速运动时,根据P=Fv 和平衡条件求解摩擦力,再利用P=Fv 求出动车组恰好达到额定功率的速度,即匀加速的末速度,再利用匀变速直线运动的规律即可求出求匀加速运动的时间;(2)对变加速过程运用动能定理,即可求出求变加速运动的位移.(1)设动车组在运动中所受阻力为f ,动车组的牵引力为F ,动车组以最大速度匀速运动时:F=动车组总功率:m P Fv =,因为有4节小动车,故04P P = 联立解得:f=2N设动车组在匀加速阶段所提供的牵引力为Fʹ,匀加速运动的末速度为v ' 由牛顿第二定律有:F f ma '-=动车组总功率:P F v ='',运动学公式:1v at '= 解得匀加速运动的时间:13t s =(2)设动车组变加速运动的位移为x ,根据动能定理:221122m Pt fx mv mv =-'- 解得:x=46.5m3.如图所示,在光滑水平面上有一段质量不计,长为6m 的绸带,在绸带的中点放有两个紧靠着可视为质点的小滑块A 、B ,现同时对A 、B 两滑块施加方向相反,大小均为F=12N 的水平拉力,并开始计时.已知A 滑块的质量mA=2kg ,B 滑块的质量mB=4kg ,A 、B 滑块与绸带之间的动摩擦因素均为μ=0.5,A 、B 两滑块与绸带之间的最大静摩擦力等于滑动摩擦力,不计绸带的伸长,求:(1)t=0时刻,A 、B 两滑块加速度的大小; (2)0到3s 时间内,滑块与绸带摩擦产生的热量.【答案】(1)22121,0.5m ma a ss ==;(2)30J【解析】 【详解】(1)A 滑块在绸带上水平向右滑动,受到的滑动摩擦力为A f ,水平运动,则竖直方向平衡:A N mg =,A A f N =;解得:A f mg μ= ——① A 滑块在绸带上水平向右滑动,0时刻的加速度为1a , 由牛顿第二定律得:1A A F f m a -=——② B 滑块和绸带一起向左滑动,0时刻的加速度为2a 由牛顿第二定律得:2B B F f m a -=——③;联立①②③解得:211m /s a =,220.5m /s a =;(2)A 滑块经t 滑离绸带,此时A B 、滑块发生的位移分别为1x 和2x1221122221212L x x x a t x a t ⎧+=⎪⎪⎪=⎨⎪⎪=⎪⎩代入数据解得:12m x =,21m x =,2s t =2秒时A 滑块离开绸带,离开绸带后A 在光滑水平面上运动,B 和绸带也在光滑水平面上运动,不产生热量,3秒时间内因摩擦产生的热量为:()12A Q f x x =+ 代入数据解得:30J Q =.4.5s 后系统动量守恒,最终达到相同速度vʹ,则()12mv Mv m M v +='+ 解得vʹ=0.6m/s ,即物块和木板最终以0.6m/s 的速度匀速运动.(3)物块先相对木板向右运动,此过程中物块的加速度为a 1,木板的加速度为a 2,经t 1时间物块和木板具有相同的速度vʹʹ, 对物块受力分析:1mg ma μ= 对木板:2F mg Ma μ+= 由运动公式:021v v a t =-''11v a t ''=解得:113t s =2/3v m s '=' 此过程中物块相对木板前进的距离:01122v v v s t t '-'''+= 解得s=0.5m ;t 1后物块相对木板向左运动,这再经t 2时间滑落,此过程中板的加速度a 3,物块的加速度仍为a 1,对木板:3-F mg Ma μ=由运动公式:222122321122v t a t v t a t s ''⎛⎫---= ⎪⎝⎭''解得23t s =故经过时间120.91t t t s =+=≈ 物块滑落.5.某课外活动小组为了研究遥控玩具小车的启动性能,进行了如图所示的实验。
牛顿定律高中全题型归纳(全)
题型3:动力学的两类基本问题1.已知物体的受力情况求物体的运动情况根据物体的受力情况求出物体受到的合外力,然后应用牛顿第二定律F=ma 求出物体的加速度,再根据初始条件由运动学公式就可以求出物体的运动情况––物体的速度、位移或运动时间。
2.已知物体的运动情况求物体的受力情况根据物体的运动情况,应用运动学公式求出物体的加速度,然后再应用牛顿第二定律求出物体所受的合外力,进而求出某些未知力。
求解以上两类动力学问题的思路,可用如下所示的框图来表示: 第一类 第二类在匀变速直线运动的公式中有五个物理量,其中有四个矢量v 0、v 1、a 、s ,一个标量t 。
在动力学公式中有三个物理量,其中有两个矢量F 、a ,一个标量m。
运动学和动力学中公共的物理量是加速度a 。
在处理力和运动的两类基本问题时,不论由力确定运动还是由运动确定力,关键在于加速度a ,a 是联结运动学公式和牛顿第二定律的桥梁。
例1.如图所示,物体从斜坡上的A 点由静止开始滑到斜坡底部B 处,又沿水平地面滑行到C 处停下,已知斜坡倾角为θ,A 点高为h 求B 、C 间的距离。
例 2.风洞实验室中可产生水平方向的、大小可调节的风力,现将一套有小球的细直杆放入风洞实验室,小球孔径略大于细杆直径。
(如图)(1)当杆在水平方向上固定时,调节风力的大小,使小球在杆上匀速运动。
这时小球所受的风力为小球所受重力的0.5倍,求小球与杆间的动摩擦因数。
(2)保持小球所受风力不变,使杆与水平方向间夹角为37°并固定,则小球从静止出发在细杆上滑下距离s 所需时间为多少?(sin37°=0.6,cos37°=0.8)【例3】蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目.一个质量为60 kg 的运动员,从离水平网面3.2 m 高处自由下落,着网后沿竖直方向蹦回离水平网面 5.0 m 高处.已知运动员与网接触的时间为1.2s.若把在这段时间内网对运动员的作用力当作恒力处理,求此力的大小.(g =10 m/s 2)例 4.、在跳马运动中,运动员完成空中翻转的动作,能否稳住是一个得分的关键,为此,运动员在脚接触地面后都有一个下蹲的过程,为的是减小地面对人的冲击力.某运动员质量为m ,从最高处下落过程中在空中翻转的时间为t ,接触地面时所能承受的最大作用力为F (视为恒力),双脚触地时重心离脚的高度为h ,能下蹲的最大距离为s ,若运动员跳起后,在空中完成动作的同时,又使脚不受伤,则起跳后重心离地的高度H 的范围为多大?练习:1.以24.5m/s 的速度沿水平面行驶的汽车上固定一个光滑的斜面,如图所示,汽车刹车后,经2.5s 停下来,欲使在刹车过程中物体A 与斜面保持相对静止,则此斜面的倾角应为 ,车的行驶方向应向。
牛顿运动定律的题型总结与练习
牛顿运动定律【基本知识点】(一)牛顿第一定律(即惯性定律)(二)牛顿第二定律1. 定律内容物体的加速度a跟物体所受的合外力成正比,跟物体的质量m成反比。
2. 公式:理解要点:①因果性:是产生加速度a的原因,它们同时产生,同时变化,同时存在,同时消失;②方向性:a与都是矢量,方向严格相同;③瞬时性和对应性:a为某时刻某物体的加速度,是该时刻作用在该物体上的合外力。
(三)力的平衡1. 平衡状态指的是静止或匀速直线运动状态。
特点:a=0。
2. 平衡条件F0。
共点力作用下物体的平衡条件是所受合外力为零,即∑=3. 平衡条件的推论(1)物体在多个共点力作用下处于平衡状态,则其中的一个力与余下的力的合力等大反向;(2)物体在同一平面内的三个不平行的力作用下,处于平衡状态,这三个力必为共点力(3)物体在三个共点力作用下处于平衡状态时,图示这三个力的有向线段必构成闭合三角形。
(四)牛顿第三定律两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上,公式可写为=-'。
F F【典型问题】一、临界问题例. 如图1所示,一细线的一端固定于倾角为45°的光滑楔形滑块A的顶端P处,细线另一端拴一质量为m的小球。
当滑块以2g加速度向左运动时,线中拉力T等于多少?二、突变问题例如图4甲、乙所示,图中细线均不可伸长,物体均处于平衡状态。
如果突然把两水平细线剪断,求剪断瞬间小球A、B的加速度各是多少?(θ角已知)三、传送带问题例3. 传送带与水平面夹角37°,皮带以10m/s的速率运动,皮带轮沿顺时针方向转动,如图6所示。
今=05.的小物块,它与传送带间的动摩擦因数为0.5,若在传送带上端A处无初速地放上一个质量为m kgm s/,则物体从A运动到B的时间为多少?传送带A到B的长度为16m,g取102四、木块、木板问题:=8的小车停放在光滑水平面上,在小车右端施加一水平恒力F=8N。
当小车向例4. 如图7,质量M kg右运动速度达到3m/s 时,在小车的右端轻放一质量m=2kg 的小物块,物块与小车间的动摩擦因数μ=02.,假定小车足够长,问:(1)经过多长时间物块停止与小车间的相对运动? (2)小物块从放在车上开始经过t s 030=.所通过的位移是多少?(g 取102m s /)五、超重、失重问题:例5. 将金属块m 用压缩的轻弹簧卡在一个矩形的箱中,如图9所示,在箱的上顶板和下底板装有压力传感器,箱可以沿竖直轨道运动。
高中物理 必修一【牛顿运动定律整合】典型题(带解析)
高中物理必修一一、【牛顿运动定律】1.伽利略的斜面实验证明了()A.使物体运动必须有力的作用,没有力的作用,物体将静止B.使物体静止必须有力的作用,没有力的作用,物体将运动C.物体不受外力作用时,一定处于静止状态D.物体不受外力作用时,总保持原来的匀速直线运动状态或者静止状态解析:选D.伽利略的斜面实验证明了:运动不需要力来维持,物体不受外力作用时,总保持原来的匀速直线运动状态或静止状态,故D正确.2.关于运动状态与所受外力的关系,下面说法中正确的是()A.物体受到恒定的力作用时,它的运动状态不发生改变B.物体受到不为零的合力作用时,它的运动状态要发生改变C.物体受到的合力为零时,它一定处于静止状态D.物体的运动方向与它所受的合力方向一定相同解析:选B.力是改变物体运动状态的原因,只要物体受力(合力不为零),它的运动状态就一定会改变,A错误,B正确;物体受到的合力为零时,物体可能处于静止状态,也可能处于匀速直线运动状态,C错误;物体所受合力的方向可能与物体的运动方向相同或相反,也可能不在一条直线上,D错误.3.某同学为了取出如图所示羽毛球筒中的羽毛球,一只手拿着球筒的中部,另一只手用力击打羽毛球筒的上端,则()A.此同学无法取出羽毛球B.羽毛球会从筒的下端出来C.羽毛球筒向下运动过程中,羽毛球受到向上的摩擦力才会从上端出来D.该同学是在利用羽毛球的惯性解析:选D.羽毛球筒被手击打后迅速向下运动,而羽毛球具有惯性要保持原来的静止状态,所以会从筒的上端出来,D 正确.4.(多选)下列说法正确的是( )A .运动越快的汽车越不容易停下来,是因为汽车运动得越快,惯性越大B .同一物体在地球上不同的位置受到的重力是不同的,但它的惯性却不随位置的变化而变化C .一个小球竖直上抛,抛出后能继续上升,是因为小球运动过程中受到了向上的推力D .物体的惯性大小只与本身的质量有关,质量大的物体惯性大,质量小的物体惯性小 解析:选BD .惯性是物体本身的固有属性,其大小只与物体的质量大小有关,与物体的受力及运动情况无关,故选项B 、D 正确;速度大的汽车要停下来时,速度变化大,由Δv =at 可知需要的时间长,惯性未变,故选项A 错误;小球上抛时是由于惯性向上运动,并未受到向上的推力,故选项C 错误.5.夸克(quark)是一种基本粒子,也是构成物质的基本单元.其中正、反顶夸克之间的强相互作用势能可写为E p =-k 4αs 3r,式中r 是正、反顶夸克之间的距离,αs 是无单位的常量,k 是与单位制有关的常数,则在国际单位制中常数k 的单位是( )A .N ·mB .NC .J/mD .J ·m解析:选D .由题意有k =-3E p r 4αs,αs 是无单位的常量,E p 的国际单位是J ,r 的国际单位是m ,在国际单位制中常数k 的单位是J ·m ,D 正确,A 、B 、C 错误.6. (多选)如图所示,质量为m 的小球被一根橡皮筋AC 和一根绳BC 系住,当小球静止时,橡皮筋处在水平方向上.下列判断中正确的是( )A .在AC 被突然剪断的瞬间,BC 对小球的拉力不变B .在AC 被突然剪断的瞬间,小球的加速度大小为g sin θC .在BC 被突然剪断的瞬间,小球的加速度大小为g cos θD .在BC 被突然剪断的瞬间,小球的加速度大小为g sin θ解析:选BC .设小球静止时BC 绳的拉力为F ,AC 橡皮筋的拉力为T ,由平衡条件可得:F cos θ=mg ,F sin θ=T ,解得:F =mg cos θ,T =mg tan θ.在AC 被突然剪断的瞬间,BC上的拉力F也发生了突变,小球的加速度方向沿与BC垂直的方向且斜向下,大小为a=mg sin θ=g sin θ,B正确,A错误;在BC被突然剪断的瞬间,橡皮筋AC的拉力不变,小m=球的合力大小与BC被剪断前拉力的大小相等,方向沿BC方向斜向下,故加速度a=Fm gcos θ,C正确,D错误.7. (多选)搭载着“嫦娥三号”的“长征三号乙”运载火箭在西昌卫星发射中心发射升空,下面关于卫星与火箭升空的情形叙述正确的是()A.火箭尾部向下喷气,喷出的气体反过来对火箭产生一个反作用力,从而让火箭获得了向上的推力B.火箭尾部喷出的气体对空气产生一个作用力,空气的反作用力使火箭获得飞行的动力C.火箭飞出大气层后,由于没有了空气,火箭虽然向后喷气,但也无法获得前进的动力D.卫星进入运行轨道之后,与地球之间仍然存在一对作用力与反作用力解析:选AD.火箭升空时,其尾部向下喷气,火箭箭体与被喷出的气体是一对相互作用的物体.火箭向下喷气时,喷出的气体对火箭产生向上的反作用力,即为火箭上升的推动力.此动力并不是由周围的空气对火箭的反作用力提供的,因而与是否飞出大气层、是否存在空气无关,选项B、C错误,A正确;火箭运载卫星进入轨道之后,卫星与地球之间依然存在相互吸引力,即地球吸引卫星,卫星吸引地球,这就是一对作用力与反作用力,故选项D正确.8.如图,一截面为椭圆形的容器内壁光滑,其质量为M,置于光滑水平面上,内有一质量为m的小球,当容器受到一个水平向右的力F作用向右匀加速运动时,小球处于图示位置,此时小球对椭圆面的压力大小为()A .m g 2-⎝⎛⎭⎫F M +m 2B .m g 2+⎝⎛⎭⎫F M +m 2C .m g 2+⎝⎛⎭⎫F m 2D .(mg )2+F 2解析:选B .先以整体为研究对象,根据牛顿第二定律得:加速度为a =F M +m,再对小球研究,分析受力情况,如图所示,由牛顿第二定律得到:F N =(mg )2+(ma )2=m g 2+⎝ ⎛⎭⎪⎫F M +m 2,由牛顿第三定律可知小球对椭圆面的压力大小为m g 2+⎝ ⎛⎭⎪⎫F M +m 2,故B 正确.9.如图所示,将两个相同的条形磁铁吸在一起,置于桌面上,下列说法中正确的是( )A .甲对乙的压力的大小小于甲的重力的大小B .甲对乙的压力的大小等于甲的重力的大小C .乙对桌面的压力的大小等于甲、乙的总重力大小D .乙对桌面的压力的大小小于甲、乙的总重力大小解析:选C .以甲为研究对象,甲受重力、乙的支持力及乙的吸引力而处于平衡状态,根据平衡条件可知,乙对甲的支持力大小等于甲受到的重力和吸引力的大小之和,大于甲的重力大小,由牛顿第三定律可知,甲对乙的压力大小大于甲的重力大小,故A 、B 错误;以整体为研究对象,整体受重力、支持力而处于平衡状态,故桌面对乙的支持力等于甲、乙的总重力的大小,由牛顿第三定律可知乙对桌面的压力大小等于甲、乙的总重力大小,故C 正确,D 错误.10.如图所示为英国人阿特伍德设计的装置,不考虑绳与滑轮的质量,不计轴承、绳与滑轮间的摩擦.初始时两人均站在水平地面上,当位于左侧的甲用力向上攀爬时,位于右侧的乙始终用力抓住绳子,最终至少一人能到达滑轮.下列说法正确的是( )A.若甲的质量较大,则乙先到达滑轮B.若甲的质量较大,则甲、乙同时到达滑轮C.若甲、乙质量相同,则乙先到达滑轮D.若甲、乙质量相同,则甲先到达滑轮解析:选A.由于滑轮光滑,甲拉绳子的力等于绳子拉乙的力,若甲的质量大,则由甲拉绳子的力等于乙受到的绳子拉力,得甲攀爬时乙的加速度大于甲,所以乙会先到达滑轮,选项A正确,B错误;若甲、乙的质量相同,甲用力向上攀爬时,甲拉绳子的力等于绳子拉乙的力,甲、乙具有相同的加速度和速度,所以甲、乙应同时到达滑轮,选项C、D错误.11.如图所示,跳水运动员最后踏板的过程可以简化为下述模型:运动员从高处落到处于自然状态的跳板上,随跳板一同向下做变速运动到达最低点,然后随跳板反弹,则()A.运动员与跳板接触的全过程中只有超重状态B.运动员把跳板压到最低点时,他所受外力的合力为零C.运动员能跳得高的原因从受力角度来看,是因为跳板对他的作用力远大于他的重力D.运动员能跳得高的原因从受力角度来看,是因为跳板对他的作用力远大于他对跳板的作用力解析:选C.运动员与跳板接触的下降过程中,先向下加速,然后向下减速,最后速度为零,则加速度先向下,然后向上,所以下降过程中既有失重状态也有超重状态,同理上升过程中也存在超重和失重状态,故A错误;运动员把跳板压到最低点时,跳板给运动员的弹力大于运动员受到的重力,合外力不为零,故B错误;从最低点到运动员离开跳板过程中,跳板对运动员的作用力做正功,重力做负功,二力做功位移一样,运动员动能增加,因此跳板对他的作用力大于他的重力,故C正确;跳板对运动员的作用力与运动员对跳板的作用力是作用力与反作用力,大小相等,故D错误.12.如图所示,甲、乙两人在冰面上“拔河”.两人中间位置处有一分界线,约定先使对方过分界线者为赢.若绳子质量不计,冰面可看成光滑,则下列说法正确的是()A.甲对绳的拉力与绳对甲的拉力是一对平衡力B.甲对绳的拉力与乙对绳的拉力是作用力与反作用力C.若甲的质量比乙大,则甲能赢得“拔河”比赛的胜利D.若乙收绳的速度比甲快,则乙能赢得“拔河”比赛的胜利解析:选C.根据牛顿第三定律可知甲对绳的拉力与绳对甲的拉力是一对作用力与反作用力,选项A错误;因为甲对绳的拉力和乙对绳的拉力作用在同一个物体(绳)上,故两力不可能是作用力与反作用力,故选项B错误;若甲的质量比乙大,则甲的惯性比乙的大,故运动状态改变比乙难,故乙先过界,选项C正确;“拔河”比赛的输赢只与甲、乙的质量有关,与收绳速度无关,选项D错误.13.(山东省2020等级考试) (多选)如图所示,某人从距水面一定高度的平台上做蹦极运动.劲度系数为k的弹性绳一端固定在人身上,另一端固定在平台上.人从静止开始竖直跳下,在其到达水面前速度减为零.运动过程中,弹性绳始终处于弹性限度内.取与平台同高度的O点为坐标原点,以竖直向下为y轴正方向,忽略空气阻力,人可视为质点.从跳下至第一次到达最低点的运动过程中,用v、a、t分别表示人的速度、加速度和下落时间.下列描述v与t、a与y的关系图象可能正确的是()解析:选AD.人在下落的过程中,弹性绳绷紧之前,人处于自由落体状态,加速度为g;弹性绳绷紧之后,弹力随下落距离均匀增加,人的加速度随下落距离先均匀减小后反向均匀增大,C 错误,D 正确;人的加速度先减小后反向增加,可知速度时间图象的斜率先减小后反向增加.B 错误,A 正确.14.(多选)某物体在光滑的水平面上受到两个恒定的水平共点力的作用,以10 m/s 2的加速度做匀加速直线运动,其中F 1与加速度的方向的夹角为37°,某时刻撤去F 1,此后该物体( )A .加速度可能为5 m/s 2B .速度的变化率可能为6 m/s 2C .1 秒内速度变化大小可能为20 m/sD .加速度大小一定不为10 m/s 2解析:选BC .根据牛顿第二定律得F 合=ma =10m ,F 1与加速度方向的夹角为37°,根据几何知识可知,F 2有最小值,最小值为F 2min =F 合sin 37°=6m ,所以当F 1撤去后,合力的最小值为F min =6m ,此时合力的取值范围为F 合≥6m ,所以最小的加速度为a min =F min m=6 m/s 2,故B 、C 正确. 15.如图所示,在倾角为θ=30°的光滑斜面上,物块A 、B 质量分别为m 和2m .物块A 静止在轻弹簧上面,物块B 用细线与斜面顶端相连,A 、B 紧挨在一起,但A 、B 之间无弹力,已知重力加速度为g ,某时刻把细线剪断,当细线剪断瞬间,下列说法正确的是( )A .物块A 的加速度为0B .物块A 的加速度为g 3C .物块B 的加速度为0D .物块B 的加速度为g 2 解析:选B .剪断细线前,弹簧的弹力:F 弹=mg sin 30°=12mg ,细线剪断的瞬间,弹簧的弹力不变,仍为F 弹=12mg ;剪断细线瞬间,对A 、B 系统分析,加速度为:a =3mg sin 30°-F 弹3m =g 3,即A 和B 的加速度均为g 3,方向沿斜面向下. 16.(多选) 如图所示,两轻质弹簧a 、b 悬挂一质量为m 的小球,整体处于平衡状态,弹簧a 与竖直方向成30°,弹簧b 与竖直方向成60°,弹簧a 、b 的形变量相等,重力加速度为g ,则( )A .弹簧a 、b 的劲度系数之比为 3∶1B .弹簧a 、b 的劲度系数之比为 3∶2C .若弹簧a 下端松脱,则松脱瞬间小球的加速度大小为3gD .若弹簧b 下端松脱,则松脱瞬间小球的加速度大小为g 2解析:选AD .由题可知,两个弹簧相互垂直,对小球受力分析,如图所示,设弹簧的伸长量都是x ,由受力分析图知,弹簧a 中弹力F a =mg cos 30°=32mg ,根据胡克定律可知弹簧a 的劲度系数为k 1=F a x =3mg 2x ,弹簧b 中的弹力F b =mg cos 60°=12mg ,根据胡克定律可知弹簧b 的劲度系数为k 2=F b x =mg 2x,所以弹簧a 、b 的劲度系数之比为3∶1,A 正确,B 错误;弹簧a 中的弹力为32mg ,若弹簧a 的下端松脱,则松脱瞬间弹簧b 的弹力不变,故小球所受重力和弹簧b 弹力的合力与F a 大小相等、方向相反,小球的加速度大小a =F a m=32g ,C 错误;弹簧b 中弹力为12mg ,若弹簧b 的下端松脱,则松脱瞬间弹簧a 的弹力不变,故小球所受重力和弹簧a 弹力的合力与F b 大小相等、方向相反,故小球的加速度大小a ′=F b m=12g ,D 正确.二、【牛顿第二定律的应用】1. (多选)如图所示,一木块在光滑水平面上受一恒力F 作用,前方固定一足够长的水平轻弹簧,则当木块接触弹簧后,下列判断正确的是( )A .木块立即做减速运动B .木块在一段时间内速度仍增大C .当F 等于弹簧弹力时,木块速度最大D .弹簧压缩量最大时,木块速度为零但加速度不为零解析:选BCD .木块刚开始接触弹簧时,弹簧对木块的作用力小于外力F ,木块继续向右做加速度逐渐减小的加速运动,直到二力相等,而后,弹簧对木块的作用力大于外力F ,木块继续向右做加速度逐渐增大的减速运动,直到速度为零,但此时木块的加速度不为零,故选项A 错误,B 、C 、D 正确.2.质量为1 t 的汽车在平直公路上以10 m/s 的速度匀速行驶,阻力大小不变,从某时刻开始,汽车牵引力减少2 000 N ,那么从该时刻起经过6 s ,汽车行驶的路程是( )A .50 mB .42 mC .25 mD .24 m解析:选C .汽车匀速行驶时,F =F f ①,设汽车牵引力减小后加速度大小为a ,牵引力减少ΔF =2 000 N 时,F f -(F -ΔF )=ma ②,解①②得a =2 m/s 2,与速度方向相反,汽车做匀减速直线运动,设经时间t 汽车停止运动,则t =v 0a =102s =5 s ,故汽车行驶的路程x =v 02t =102×5 m =25 m ,故选项C 正确. 3. (多选)建设房屋时,保持底边L 不变,要设计好屋顶的倾角θ,以便下雨时落在房顶的雨滴能尽快地滑离屋顶,雨滴下滑时可视为小球做无初速度、无摩擦的运动.下列说法正确的是( )A .倾角θ越大,雨滴下滑时的加速度越大B .倾角θ越大,雨滴对屋顶压力越大C .倾角θ越大,雨滴从顶端O 下滑至屋檐M 时的速度越大D .倾角θ越大,雨滴从顶端O 下滑至屋檐M 时的时间越短解析:选AC .设屋檐的底角为θ,底边长度为L ,注意底边长度是不变的,屋顶的坡面长度为x ,雨滴下滑时加速度为a ,对雨滴受力分析,只受重力mg 和屋顶对雨滴的支持力F N ,垂直于屋顶方向:mg cos θ=F N ,平行于屋顶方向:ma =mg sin θ.雨滴的加速度为:a=g sin θ,则倾角θ越大,雨滴下滑时的加速度越大,故A正确;雨滴对屋顶的压力大小:F N′=F N=mg cos θ,则倾角θ越大,雨滴对屋顶压力越小,故B错误;根据三角关系判断,屋顶坡面的长度x=L2cos θ,由x=12g sin θ·t2,可得:t=2Lg sin 2θ,可见当θ=45°时,用时最短,D错误;由v=g sin θ·t可得:v=gL tan θ,可见θ越大,雨滴从顶端O下滑至M时的速度越大,C正确.4.如图所示为四旋翼无人机,它是一种能够垂直起降的小型遥控飞行器,目前正得到越来越广泛的应用.一架质量为m=2 kg的无人机,其动力系统所能提供的最大升力F=36 N,运动过程中所受空气阻力大小恒定,无人机在地面上从静止开始,以最大升力竖直向上起飞,在t=5 s时离地面的高度为75 m(g取10 m/s2).(1)求运动过程中所受空气阻力大小;(2)假设由于动力设备故障,悬停的无人机突然失去升力而坠落.无人机坠落地面时的速度为40 m/s,求无人机悬停时距地面高度;(3)假设在第(2)问中的无人机坠落过程中,在遥控设备的干预下,动力设备重新启动提供向上的最大升力.为保证安全着地,求飞行器从开始下落到恢复升力的最长时间.解析:(1)根据题意,在上升过程中由牛顿第二定律得:F-mg-F f=ma由运动学规律得,上升高度:h=12at2联立解得:F f=4 N.(2)下落过程由牛顿第二定律:mg-F f=ma1得:a1=8 m/s2落地时的速度v 2=2a 1H 联立解得:H =100 m.(3)恢复升力后向下减速,由牛顿第二定律得: F -mg +F f =ma 2 得:a 2=10 m/s 2设恢复升力后的速度为v m ,则有 v 2m 2a 1+v 2m2a 2=H 得:v m =4053 m/s由:v m =a 1t 1 得:t 1=553s.答案:(1)4 N (2)100 m (3)553s5.一质量为m =2 kg 的滑块能在倾角为θ=30°的足够长的斜面上以加速度a =2.5 m/s 2匀加速下滑.如图所示,若用一水平向右的恒力F 作用于滑块,使之由静止开始在t =2 s 内能沿斜面运动位移x =4 m .求:(g 取10 m/s 2)(1)滑块和斜面之间的动摩擦因数μ; (2)恒力F 的大小.解析:(1)对滑块,根据牛顿第二定律可得: mg sin θ-μmg cos θ=ma , 解得:μ=36. (2)使滑块沿斜面做匀加速直线运动,有加速度沿斜面向上和向下两种可能. 由x =12a 1t 2,得a 1=2 m/s 2,当加速度沿斜面向上时:F cos θ-mg sin θ-μ(F sin θ+mg cos θ)=ma 1,代入数据解得:F=7635N;当加速度沿斜面向下时:mg sin θ-F cos θ-μ(F sin θ+mg cos θ)=ma1,代入数据解得:F=437N.答案:(1)36(2)7635N或437N6.(多选)一个质量为2 kg的物体,在5个共点力作用下处于平衡状态.现同时撤去大小分别为15 N和10 N的两个力,其余的力保持不变,关于此后该物体的运动的说法中正确的是()A.一定做匀变速直线运动,加速度大小可能是5 m/s2B.一定做匀变速运动,加速度大小可能等于重力加速度的大小C.可能做匀减速直线运动,加速度大小是2.5 m/s2D.可能做匀速圆周运动,向心加速度大小是5 m/s2解析:选BC.根据平衡条件得知,其余力的合力与撤去的两个力的合力大小相等、方向相反,则撤去大小分别为15 N和10 N的两个力后,物体的合力大小范围为5 N≤F合≤25 N,根据牛顿第二定律a=Fm得:物体的加速度范围为2.5 m/s2≤a≤12.5 m/s2.若物体原来做匀速直线运动,撤去的两个力的合力方向与速度方向不在同一直线上,物体做匀变速曲线运动,加速度大小可能为5 m/s2,故A错误.由于撤去两个力后其余力保持不变,则物体所受的合力不变,一定做匀变速运动,加速度大小可能等于重力加速度的大小,故B正确.若物体原来做匀速直线运动,撤去的两个力的合力方向与速度方向相同时,物体做匀减速直线运动,故C正确.由于撤去两个力后其余力保持不变,在恒力作用下不可能做匀速圆周运动,故D错误.7.如图所示,几条足够长的光滑直轨道与水平面成不同角度,从P点以大小不同的初速度沿各轨道发射小球,若各小球恰好在相同的时间内到达各自的最高点,则各小球最高点的位置()A .在同一水平线上B .在同一竖直线上C .在同一抛物线上D .在同一圆周上解析:选D .设某一直轨道与水平面成θ角,末速度为零的匀减速直线运动可逆向看成初速度为零的匀加速直线运动,则小球在直轨道上运动的加速度a =mg sin θm =g sin θ,由位移公式得l =12at 2=12g sin θ·t 2,即l sin θ=12gt 2,不同的倾角θ对应不同的位移l ,但l sin θ相同,即各小球最高点的位置在直径为12gt 2的圆周上,选项D 正确.8.如图所示,B 是水平地面上AC 的中点,可视为质点的小物块以某一初速度从A 点滑动到C 点停止.小物块经过B 点时的速度等于它在A 点时速度的一半.则小物块与AB 段间的动摩擦因数μ1和BC 段间的动摩擦因数μ2的比值为( )A .1B .2C .3D .4解析:选C .物块从A 到B 根据牛顿第二定律,有μ1mg =ma 1,得a 1=μ1g .从B 到C 根据牛顿第二定律,有μ2mg =ma 2,得a 2=μ2g .设小物块在A 点时速度大小为v ,则在B 点时速度大小为v 2,由于AB =BC =l ,由运动学公式知,从A 到B :⎝⎛⎭⎫v 22-v 2=-2μ1gl ,从B到C ∶0-⎝⎛⎭⎫v 22=-2μ2gl ,联立解得μ1=3μ2,故选项C 正确,A 、B 、D 错误.9.有一个冰上滑木箱的游戏节目,规则是:选手们从起点开始用力推箱一段时间后,放手让箱向前滑动,若箱最后停在有效区域内,视为成功;若箱最后未停在有效区域内就视为失败.其简化模型如图所示,AC 是长度为L 1=7 m 的水平冰面,选手们可将木箱放在A 点,从A 点开始用一恒定不变的水平推力推木箱,BC 为有效区域.已知BC 长度L 2=1 m ,木箱的质量m =50 kg ,木箱与冰面间的动摩擦因数μ=0.1.某选手作用在木箱上的水平推力F =200 N ,木箱沿AC 做直线运动,若木箱可视为质点,g 取10 m/s 2.那么该选手要想游戏获得成功,试求:(1)推力作用在木箱上时的加速度大小; (2)推力作用在木箱上的时间满足的条件.解析:(1)设推力作用在木箱上时的加速度大小为a 1,根据牛顿第二定律得F -μmg =ma 1, 解得a 1=3 m/s 2.(2)设撤去推力后,木箱的加速度大小为a 2,根据牛顿第二定律得 μmg =ma 2, 解得a 2=1 m/s 2.推力作用在木箱上时间t 内的位移为x 1=12a 1t 2.撤去推力后木箱继续滑行的距离为x 2=(a 1t )22a 2.为使木箱停在有效区域内,要满足 L 1-L 2≤x 1+x 2≤L 1, 解得1 s ≤t ≤76s. 答案:(1)3 m/s 2 (2)1 s ≤t ≤76s 10.如图所示,一儿童玩具静止在水平地面上,一名幼儿用沿与水平面成30°角的恒力拉着它沿水平地面运动,已知拉力F =6.5 N ,玩具的质量m =1 kg ,经过时间t =2.0 s ,玩具移动的距离x =2 3 m ,这时幼儿将手松开,玩具又滑行了一段距离后停下.(g 取10 m/s 2)求:(1)玩具与地面间的动摩擦因数. (2)松手后玩具还能滑行多远?(3)幼儿要拉动玩具,拉力F 与水平方向夹角θ为多少时拉力F 最小? 解析:(1)玩具做初速度为零的匀加速直线运动,由位移公式可得 x =12at 2,解得a = 3 m/s 2, 对玩具,由牛顿第二定律得 F cos 30°-μ(mg -F sin 30°)=ma , 解得μ=33. (2)松手时,玩具的速度v =at =2 3 m/s松手后,由牛顿第二定律得μmg =ma ′, 解得a ′=1033m/s 2.由匀变速运动的速度位移公式得 玩具的位移x ′=0-v 2-2a ′=335 m.(3)设拉力与水平方向的夹角为θ,玩具要在水平面上运动,则 F cos θ-F f >0,F f =μF N , 在竖直方向上,由平衡条件得 F N +F sin θ=mg , 解得F >μmgcos θ+μsin θ.因为cos θ+μsin θ=1+μ2sin(60°+θ),所以当θ=30°时,拉力最小. 答案:(1)33 (2)335m (3)30°三、【动力学中的“板块”“传送带”模型】1.(多选)如图所示,表面粗糙、质量M =2 kg 的木板,t =0时在水平恒力F 的作用下从静止开始沿水平面向右做匀加速直线运动,加速度a =2.5 m/s 2,t =0.5 s 时,将一个质量m =1 kg 的小铁块(可视为质点)无初速度地放在木板最右端,铁块从木板上掉下时速度是木板速度的一半.已知铁块和木板之间的动摩擦因数μ1=0.1,木板和地面之间的动摩擦因数μ2=0.25,g =10 m/s 2,则( )A .水平恒力F 的大小为10 NB .铁块放上木板后,木板的加速度为2 m/s 2C .铁块在木板上运动的时间为1 sD .木板的长度为1.625 m解析:选AC .未放铁块时,对木板由牛顿第二定律:F -μ2Mg =Ma ,解得F =10 N ,选项A 正确;铁块放上木板后,对木板:F -μ1mg -μ2(M +m )g =Ma ′,解得:a ′=0.75 m/s 2,选项B 错误;0.5 s 时木板的速度v 0=at 1=2.5×0.5 m/s =1.25 m/s ,铁块滑离木板时,木板的速度:v 1=v 0+a ′t 2=1.25+0.75t 2,铁块的速度v ′=a铁t 2=μ1gt 2=t 2,由题意:v ′=12v 1,解得t 2=1 s ,选项C 正确;铁块滑离木板时,木板的速度v 1=2 m/s ,铁块的速度v ′=1 m/s ,则木板的长度为:L =v 0+v 12t 2-v ′2t 2=1.25+22×1 m -12×1 m =1.125 m ,选项D 错误;故选A 、C .2.(多选)如图甲为应用于机场和火车站的安全检查仪,用于对旅客的行李进行安全检查.其传送装置可简化为如图乙的模型,紧绷的传送带始终保持v =1 m/s 的恒定速率运行.旅客把行李无初速度地放在A 处,设行李与传送带之间的动摩擦因数μ=0.1,A 、B 间的距离L =2 m ,g 取10 m/s 2.若乘客把行李放到传送带的同时也以v =1 m/s 的恒定速率平行于传送带运动到B 处取行李,则( )A .乘客与行李同时到达B 处 B .乘客提前0.5 s 到达B 处C .行李提前0.5 s 到达B 处D .若传送带速度足够大,行李最快也要2 s 才能到达B 处解析:选BD .行李放在传送带上,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.加速度为a =μg =1 m/s 2,历时t 1=v a =1 s 达到共同速度,位移x 1=v2t 1=0.5 m ,此后行李匀速运动t 2=L -x 1v =1.5 s 到达B ,共用2.5 s ;乘客到达B ,历时t =Lv =2 s ,B 正确;若传送带速度足够大,行李一直加速运动,最短运动时间t min =2L a= 2×21s =2 s ,D 正确. 3.如图甲所示,倾角为37°足够长的传送带以4 m/s 的速度顺时针转动,现将小物块以2 m/s 的初速度沿斜面向下冲上传送带,小物块的速度随时间变化的关系如图乙所示,g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,试求:。
牛顿运动定律八大题型
《牛顿运动定律》
经典题型
《牛顿运动定律》八大经典题型
两类基本问题 连接体问题
超失重问题
瞬时性问题 变加速问题
临界问题
传送带问题 弹簧类问题
动力学 两类基本问题
力
运动
v=v0+at
2 x=v0t+at /2
G=mg F=kx
Ff=μFN 其他 外力等
已知受力求运动
F合 = m a
已知运动求受力
v2-v02=2ax
C
v
D
七:传送带问题
【同类变式I】两轮CD之间的距离为L=9m, θ=37°,皮带的速度恒为v=2m/s,方向如图, 现有一质量m=1kg的小滑块A,从C端轻轻地放 上,滑块与皮带之间的滑动摩擦因数为μ=0.8。 (g=10m/s2) 施力物体 试问: (1)是否能够将A上传? (2)将A由C传送到D处所需时间? θ (3)若提高传送速度,则可以缩短 传送时间。若要将A物在最短时间内 传送到D点,则传送带的速度应满足 什么条件?
七:传送带问题
【原型题】传送带两轮C、D之间的距离为 L=9m,皮带的速度恒为v=2m/s,方向如图,现 有一质量m=1kg的小滑块A,从C端轻轻地放上, 滑块与皮带之间的滑动摩擦因数为μ=0.2。 (g=10m/s2)试问: (1)将A由C传送到D处所需时间? (2)若提高传送速度,则可以缩短传送时间。 若要将A物在最短时间内传送到D点,则传送带 A 的速度应满足什么条件? 施力物体
六:连接体问题
【能力提高】(09安徽理综)一根不 可伸缩的轻绳跨过轻质的定滑轮,一 端挂一吊椅,另一端被坐在吊椅上的 运动员拉住,如图所示。设运动员的 质量为65kg,吊椅的质量为15kg,不 计定滑轮与绳子间的摩擦,重力加速 度取g=10m/s2.当运动员与吊椅一起正 以加速度a=1m/s2上升时,试求: (1)运动员竖直向下拉绳的力; (2)运动员对吊椅的压力。
高考物理牛顿运动定律常见题型及答题技巧及练习题(含答案)及解析
高考物理牛顿运动定律常见题型及答题技巧及练习题(含答案)及解析一、高中物理精讲专题测试牛顿运动定律1.如图甲所示,一倾角为37°,长L=3.75 m的斜面AB上端和一个竖直圆弧形光滑轨道BC 相连,斜面与圆轨道相切于B处,C为圆弧轨道的最高点。
t=0时刻有一质量m=1 kg的物块沿斜面上滑,其在斜面上运动的v–t图象如图乙所示。
已知圆轨道的半径R=0.5 m。
(取g=10 m/s2,sin 37°=0.6,cos 37°=0.8)求:(1)物块与斜面间的动摩擦因数μ;(2)物块到达C点时对轨道的压力F N的大小;(3)试通过计算分析是否可能存在物块以一定的初速度从A点滑上轨道,通过C点后恰好能落在A点。
如果能,请计算出物块从A点滑出的初速度;如不能请说明理由。
【答案】(1)μ=0.5 (2)F'N=4 N (3)【解析】【分析】由图乙的斜率求出物块在斜面上滑时的加速度,由牛顿第二定律求动摩擦因数;由动能定理得物块到达C点时的速度,根据牛顿第二定律和牛顿第三定律求出)物块到达C点时对轨道的压力F N的大小;物块从C到A,做平抛运动,根据平抛运动求出物块到达C点时的速度,物块从A到C,由动能定律可求物块从A点滑出的初速度;【详解】解:(1)由图乙可知物块上滑时的加速度大小为根据牛顿第二定律有:解得(2)设物块到达C点时的速度大小为v C,由动能定理得:在最高点,根据牛顿第二定律则有:解得:由根据牛顿第三定律得:物体在C点对轨道的压力大小为4 N(3)设物块以初速度v1上滑,最后恰好落到A点物块从C到A,做平抛运动,竖直方向:水平方向:解得,所以能通过C 点落到A 点物块从A 到C ,由动能定律可得:解得:2.如图所示,倾角θ的足够长的斜面上,放着两个相距L 0、质量均为m 的滑块A 和B ,滑块A 的下表面光滑,滑块B 与斜面间的动摩擦因数tan μθ=.由静止同时释放A 和B ,此后若A 、B 发生碰撞,碰撞时间极短且为弹性碰撞.已知重力加速度为g ,求:(1)A 与B 开始释放时,A 、B 的加速度A a 和B a ; (2)A 与B 第一次相碰后,B 的速率B v ;(3)从A 开始运动到两滑块第二次碰撞所经历的时间t . 【答案】(1)sin A a g θ=;0B a =(202sin gL θ3)023sin L g θ【解析】 【详解】解:(1)对B 分析:sin cos B mg mg ma θμθ-=0B a =,B 仍处于静止状态对A 分析,底面光滑,则有:mg sin A ma θ= 解得:sin A a g θ=(2) 与B 第一次碰撞前的速度,则有:202A A v a L =解得:02sin A v gL θ=所用时间由:1v A at =,解得:012sin L g t θ=对AB ,由动量守恒定律得:1A B mv mv mv =+ 由机械能守恒得:2221111222A B mv mv mv =+解得:100,2sin B v v gL θ==(3)碰后,A 做初速度为0的匀加速运动,B 做速度为2v 的匀速直线运动,设再经时间2t 发生第二次碰撞,则有:2212A A x a t =22B x v t =第二次相碰:A B x x = 解得:0222sin L t g θ= 从A 开始运动到两滑块第二次碰撞所经历的的时间:12t t t =+ 解得:023sin L t g θ=3.某种弹射装置的示意图如图所示,光滑的水平导轨MN 右端N 处于倾斜传送带理想连接,传送带长度L=15.0m ,皮带以恒定速率v=5m/s 顺时针转动,三个质量均为m=1.0kg 的滑块A 、B 、C 置于水平导轨上,B 、C 之间有一段轻弹簧刚好处于原长,滑块B 与轻弹簧连接,C 未连接弹簧,B 、C 处于静止状态且离N 点足够远,现让滑块A 以初速度v 0=6m/s 沿B 、C 连线方向向B 运动,A 与B 碰撞后粘合在一起.碰撞时间极短,滑块C 脱离弹簧后滑上倾角θ=37°的传送带,并从顶端沿传送带方向滑出斜抛落至地面上,已知滑块C 与传送带之间的动摩擦因数μ=0.8,重力加速度g=10m/s 2,sin37°=0.6,cos37°=0.8.(1)滑块A 、B 碰撞时损失的机械能; (2)滑块C 在传送带上因摩擦产生的热量Q ;(3)若每次实验开始时滑块A 的初速度v 0大小不相同,要使滑块C 滑离传送带后总能落至地面上的同一位置,则v 0的取值范围是什么?(结果可用根号表示) 【答案】(1)9J E ∆= (2)8J Q =03313m/s 397m/s 22v ≤≤ 【解析】试题分析:(1)A 、B 碰撞过程水平方向的动量守恒,由此求出二者的共同速度;由功能关系即可求出损失的机械能;(2)A 、B 碰撞后与C 作用的过程中ABC 组成的系统动量守恒,应用动量守恒定律与能量守恒定律可以求出C 与AB 分开后的速度,C 在传送带上做匀加速直线运动,由牛顿第二定律求出加速度,然后应用匀变速直线运动规律求出C 相对于传送带运动时的相对位移,由功能关系即可求出摩擦产生的热量.(3)应用动量守恒定律、能量守恒定律与运动学公式可以求出滑块A 的最大速度和最小速度.(1)A 与B 位于光滑的水平面上,系统在水平方向的动量守恒,设A 与B 碰撞后共同速度为1v ,选取向右为正方向,对A 、B 有:012mv mv = 碰撞时损失机械能()220111222E mv m v ∆=- 解得:9E J ∆=(2)设A 、B 碰撞后,弹簧第一次恢复原长时AB 的速度为B v ,C 的速度为C v 由动量守恒得:122B C mv mv mv =+ 由机械能守恒得:()()222111122222B C m v m v mv =+ 解得:4/c v m s =C 以c v 滑上传送带,假设匀加速的直线运动位移为x 时与传送带共速由牛顿第二定律得:210.4/a gcos gsin m s μθθ=-= 由速度位移公式得:2212C v v a x -=联立解得:x=11.25m <L 加速运动的时间为t ,有:12.5Cv v t s a -== 所以相对位移x vt x ∆=- 代入数据得: 1.25x m ∆=摩擦生热·8Q mgcos x J μθ=∆= (3)设A 的最大速度为max v ,滑块C 与弹簧分离时C 的速度为1c v ,AB 的速度为1B v ,则C 在传送带上一直做加速度为2a 的匀减速直线运动直到P 点与传送带共速则有:22212c v v a L -=根据牛顿第二定律得:2212.4/a gsin gcos m s θμθ=--=-联立解得:1/c v s =设A 的最小速度为min v ,滑块C 与弹簧分离时C 的速度为2C v ,AB 的速度为1B v ,则C 在传送带上一直做加速度为1a 的匀加速直线运动直到P 点与传送带共速则有:22112c v v a L -=解得:2/c v s =对A 、B 、C 和弹簧组成的系统从AB 碰撞后到弹簧第一次恢复原长的过程中 系统动量守恒,则有:112max B C mv mv mc =+ 由机械能守恒得:()()22211111122222B C m v m v mv =+解得:133397/22max c v v m s == 同理得:313/2min v m s = 所以03313/397/22m s v m s ≤≤4.某课外活动小组为了研究遥控玩具小车的启动性能,进行了如图所示的实验。
高中物理牛顿运动定律的应用常见题型及答题技巧及练习题(含答案)
高中物理牛顿运动定律的应用常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试牛顿运动定律的应用1.在一个水平面上建立x 轴,在过原点O 垂直于x 轴的平面的右侧空间有一个匀强电场,场强大小E=6.0×105 N/C ,方向与x 轴正方向相同,在原点O 处放一个质量m=0.01 kg带负电荷的绝缘物块,其带电荷量q = -5×10-8 C .物块与水平面间的动摩擦因数μ=0.2,给物块一个沿x 轴正方向的初速度v 0=2 m/s.如图所示.试求:(1)物块沿x 轴正方向运动的加速度; (2)物块沿x 轴正方向运动的最远距离; (3)物体运动的总时间为多长? 【答案】(1)5 m/s 2 (2)0.4 m (3)1.74 s 【解析】 【分析】带负电的物块以初速度v 0沿x 轴正方向进入电场中,受到向左的电场力和滑动摩擦力作用,做匀减速运动,当速度为零时运动到最远处,根据动能定理列式求解;分三段进行研究:在电场中物块向右匀减速运动,向左匀加速运动,离开电场后匀减速运动.根据运动学公式和牛顿第二定律结合列式,求出各段时间,即可得到总时间. 【详解】(1)由牛顿第二定律可得mg Eq ma μ+= ,得25m/s a =(2)物块进入电场向右运动的过程,根据动能定理得:()210102mg Eq s mv μ-+=-. 代入数据,得:s 1=0.4m(3)物块先向右作匀减速直线运动,根据:00111••22t v v vs t t +==,得:t 1=0.4s 接着物块向左作匀加速直线运动:221m/s qE mg a m=μ-=. 根据:212212s a t =得220.2t s = 物块离开电场后,向左作匀减速运动:232m/s mga g mμμ=-=-=-根据:3322a t a t = 解得30.2t s =物块运动的总时间为:123 1.74t t t t s =++= 【点睛】本题首先要理清物块的运动过程,运用动能定理、牛顿第二定律和运动学公式结合进行求解.2.某智能分拣装置如图所示,A 为包裹箱,BC 为传送带.传送带保持静止,包裹P 以初速度v 0滑上传送带,当P 滑至传送带底端时,该包裹经系统扫描检测,发现不应由A 收纳,则被拦停在B 处,且系统启动传送带轮转动,将包裹送回C 处.已知v 0=3m/s ,包裹P 与传送带间的动摩擦因数μ=0.8,传送带与水平方向夹角θ=37º,传送带BC 长度L =10m ,重力加速度g =10m/s 2,sin37º=0.6,cos37º=0.8,求:(1)包裹P 沿传送带下滑过程中的加速度大小和方向; (2)包裹P 到达B 时的速度大小;(3)若传送带匀速转动速度v =2m/s ,包裹P 经多长时间从B 处由静止被送回到C 处; (4)若传送带从静止开始以加速度a 加速转动,请写出包裹P 送回C 处的速度v c 与a 的关系式,并画出v c 2-a 图象.【答案】(1)0.4m/s 2 方向:沿传送带向上(2)1m/s (3)7.5s(4)222200.4/80.4/ca a m s v a m s ⎧<=⎨≥⎩()() 如图所示:【解析】 【分析】先根据牛顿第二定律求出包裹的加速度,再由速度时间公式求包裹加速至速度等于传送带速度的时间,由位移公式求出匀加速的位移,再求匀速运动的时间,从而求得总时间,这是解决传送带时间问题的基本思路,最后对加速度a 进行讨论分析得到v c 2-a 的关系,从而画出图像。
高一物理牛顿定律知识点与题型总结归纳
高一物理牛顿定律知识点与题型总结归纳标题:高一物理牛顿定律知识点与题型总结归纳牛顿定律是高中物理中的重要内容,对理解物体运动具有极高的价值。
本文将针对人教版高一物理下学期必修二中的牛顿定律知识点进行总结,并对常考题型进行解析,以帮助同学们更好地掌握这一部分内容。
一、牛顿定律知识点总结1.牛顿第一定律(惯性定律):一个物体若不受外力作用,将保持静止状态或匀速直线运动状态。
2.牛顿第二定律(动力定律):物体受到的合外力等于其质量与加速度的乘积,即F=ma。
3.牛顿第三定律(作用与反作用定律):两个物体之间的作用力和反作用力总是大小相等、方向相反,作用在同一直线上。
二、常考题型解析1.判断题:考查对牛顿定律的理解和应用。
例题:一个物体受到两个大小相等、方向相反的力作用,物体的运动状态一定不变。
解析:错误。
物体受到的两个力虽然大小相等、方向相反,但如果作用点不在同一直线上,物体将产生旋转运动。
2.选择题:考查对牛顿定律知识点的掌握。
例题:下列哪个选项正确描述了牛顿第一定律?A.物体受到的合外力等于其质量与加速度的乘积B.物体若不受外力作用,将保持静止状态或匀速直线运动状态C.两个物体之间的作用力和反作用力总是大小相等、方向相反解析:B。
选项B正确描述了牛顿第一定律。
3.计算题:考查对牛顿定律的应用。
例题:一个质量为2kg的物体受到一个水平方向的大小为10N的力作用,求物体的加速度。
解析:根据牛顿第二定律F=ma,代入数据得a=10N/2kg=5m/s。
4.应用题:考查对牛顿定律的综合应用。
例题:一辆小车质量为1000kg,以20m/s的速度行驶,紧急刹车时,阻力为5000N,求小车停止所需的时间。
解析:根据牛顿第二定律F=ma,可得a=5000N/1000kg=5m/s。
小车停止所需的时间为t=(v-0)/a=20m/s / 5m/s=4s。
总结:通过对牛顿定律知识点的总结和常考题型的解析,希望同学们能够更好地掌握牛顿定律,并在实际问题中灵活运用。
牛顿定律与典型题型总结
牛顿定律与典型题型总结牛顿定律是物理学中的基石,对理解物体的运动和相互作用具有至关重要的意义。
本文将深入探讨牛顿定律,并对相关的典型题型进行总结,帮助大家更好地掌握这一重要的物理知识。
一、牛顿第一定律牛顿第一定律,也被称为惯性定律,其内容为:任何物体都要保持匀速直线运动或静止的状态,直到外力迫使它改变运动状态为止。
从这个定律,我们可以得出惯性的概念。
惯性是物体保持原有运动状态的性质,质量是衡量物体惯性大小的唯一量度。
质量越大,惯性越大;质量越小,惯性越小。
例如,在一辆行驶的公交车上,当车突然刹车时,站立的乘客会向前倾倒。
这是因为乘客原本具有向前的运动惯性,当车刹车时,脚受到摩擦力而停止运动,但身体上部由于惯性仍要保持向前运动的状态,从而导致向前倾倒。
相关题型:1、判断题:一个物体的速度为零,它一定处于静止状态。
(错误,速度为零不一定是静止状态,可能只是瞬间的情况,如竖直上抛的物体到达最高点时速度为零,但并非静止)2、选择题:关于惯性,下列说法正确的是()A 只有静止的物体才有惯性B 只有运动的物体才有惯性C 质量大的物体惯性大D 质量小的物体惯性大答案:C二、牛顿第二定律牛顿第二定律指出:物体的加速度跟作用力成正比,跟物体的质量成反比,加速度的方向跟作用力的方向相同。
其数学表达式为 F = ma ,其中 F 表示作用力,m 表示物体的质量,a 表示加速度。
这一定律揭示了力、质量和加速度之间的定量关系。
当作用力增大时,加速度也随之增大;质量越大,相同作用力下产生的加速度越小。
例如,一个质量为 2kg 的物体,受到一个 10N 的水平拉力作用,根据牛顿第二定律,其加速度 a = F / m = 10 / 2 = 5m/s²,物体将以5m/s²的加速度做加速运动。
相关题型:1、计算题:一个质量为 5kg 的物体,在水平方向受到一个 20N 的拉力,摩擦力为 10N ,求物体的加速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牛顿运动定律题型归纳
一、瞬不瞬变的问题(牛二律的瞬时性、同一性)
1、如图所示,细绳栓一个质量为m的小球,小球用固定在墙上的水平弹簧支撑,小球与弹簧不粘连,平衡时细绳与竖直方向的夹角为53°,求:
(1)小球静止时细绳的拉力大小?
(2)烧断细绳瞬间小球的加速度?
2、如图所示,三物体A、B、C的质量均相等,用轻弹簧和细绳相连后竖直悬挂,当把
A、B之间的细绳剪断的瞬间,求三物体的加速度aA、a
B、aC。
3、如图,弹簧吊着质量为2m的箱子A,箱放有质量为m的物体B,现
对箱子施加竖直向下的力F=3mg,而使系统静止。
撤去F的瞬间,B对A
的压力大小为()
A. mg
B. 1.5mg
C. 2mg
D. 2.5mg
二、单一物体单一过程的动力学问题
力→加速度→运动或运动→加速度→力
4、在水平地面上,质量50kg的木箱受到一个与水平面成37°斜向上的拉力作用,已知木箱与地板间的动摩擦因数为0.2,拉力F=150N,木箱沿水平方向向右运动,问经过10s木箱的速度多大?位移多大?
5、将一质量为m=2kg的物体以初速度v0=16m/s从地面竖直向上抛出,设在上升和下降过程中所受空气阻力大小恒为12N,g=10m/s2,求:
(1)物体上升的最大高度;
(2)物体落回地面的速度。
6、如图所示,ad、bd、cd是竖直面三根固定的光滑细杆,a、b、c、
d位于同一圆周上,a点为圆周的最高点,d点为最低点.每根杆上都
套着一个小滑环(图中未画出),三个滑环分别从a、b、c处释放(初
速为0),用t1、t2、t3依次表示滑环到达d所用的时间,则()
A. t1<t2<t3
B. t1>t2>t3
C. t3>t1>t2
D. t1=t2=t3
三、单一物体多个过程的动力学问题
熟练掌握力和运动的关系,会分析物体的运动:
F合=0时,物体将保持静止或匀速直线运动;
F合≠0且与v0方向相同,物体将做加速直线运动;
F合≠0且与v0方向相反,物体将做减速直线运动。
7、如图所示,一质量为m=100kg的箱子静止在水平面上,与水平面间的动摩擦因素为μ=0.5。
现对箱子施加一个与水平方向成θ=37°角的拉力,经t1=10s后撤去拉力,又经t2=1s 箱子停下来。
sin37°=0.6,cos37°=0.8,g=10m/s2。
求:
(1)拉力F大小;(2)箱子在水平面上滑行的位移x。
8、如图10所示,一质量为1 kg的小球套在一根固定的直杆上,直杆与水平面夹角θ为30°。
现小球在F =20N的竖直向上的拉力作用下,从A 点静止出发向上运动,已知
杆与球间的动摩擦因数m为
3
6。
试求:
(1)小球运动的加速度a 1;
(2)若A点距直杆上端10m,要使球不脱离杆,则F 作用
时间最多为多长?
9、一个物体放在足够大的水平地面上,图甲中,若用水平变力拉动,其加速度随力变化图像为图乙所示.现从静止开始计时,改用如图丙所示变化的水平力F作用(g取10m/s2).求:
(1)物体的质量及
物体与地面间的动
摩擦因数;
(2)求12s物体的
位移。
10、如图所示,自由下落的小球下落一段时间后,与弹簧接触,从它接触弹簧开始到弹簧压缩到最短的过程中,小球的速度、加速度的变化情况是( ) A.速度逐渐减小 B.加速度逐渐增大
C.小球先处于失重状态,后处于超重状态
D.小球先处于超重状态,后处于失重状态
四、多个研究对象
(一)理清多个物体的运动
11、一块物体和传送带间动摩擦因数为μ,传送带与水平面间倾角为θ,传送带沿逆时针方向转动,将物块轻放在传送带顶端,在以后的运动过程中,下面关于物块的速度时间图像不可能的是( ) A .
B .
C .
D .
12、足够长的水平浅色长传送带上放置一质量为0.5kg 的煤块.煤块与传送带之间的动摩擦因数μ =0.2.初始时,传送带与煤块都是静止的.现让传送带以恒定的加速度
a 0=3m/s 2
开始运动,其速度达到v=6m/s 后,便以此速度做匀速运动.求:经过足够长的时间后,煤块在传送带上形成的黑色痕迹的长度.
(二)整体法和隔离法的应用
(1)系统中各物体加速度相同
13、如图所示,五个木块并排放在水平地面上,它们的质量相同,它们与地面的摩擦不计,当用力F推木块1,使它们共同加速运动时,第3块木块对第2块木块的推力大小为?
14、如图所示,箱子的质量=5.0kg,与水平地面的动摩擦因数μ=0.22.在箱子顶板处系一细线,悬挂一个质量m=1.0kg的小球,箱子受到水平恒力F的作用,使小球的悬线偏离竖直方向θ=30°,求F的大小(g=10m/s2)。
(2)系统中各部分加速度不同
15、如图所示,质量为M、倾角为θ的斜面体静置于粗糙水平面上,在斜面上有一质量m的物块由静止开始沿斜面以加速度a匀加速下滑,在这个过程中,斜面没动。
求地面对斜面的摩擦力的大小和方向及地面对斜面的支持力。