机器人避障问题论文
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机器人避障问题
【摘要】
本文主要是对机器人在一个平面区域内通过不同障碍物到指定目标点进行研究,通过建立机器人与障碍物的最小安全距离的禁区模型,进而建立从区域一点到另一点的最短距离、最短时间的数学模型。在最优转弯顶点为障碍物,最优转弯半径为安全距离10的基础上,把路径概括为基本的三种数学模型。利用穷举的算法找出最短路径和最短时间。
针对区域中从一点到另一点避障的最优路径问题,把障碍物划分为有顶点和无顶点两大类。首先本文证明对于有顶点障碍物,机器人以障碍物顶点为圆心且转弯的圆弧半径为10时路径最优,我们还注意到在某些路径中适当增加圆的半径可以把曲线路线转换为直线路径,进一步优化行进路径;对于无顶点障碍物通过论证找出以障碍物圆心为转弯圆心,以障碍物半径与安全距离的和为转弯半径的最优转弯圆弧。其次本文将寻找最短路径的的问题转换为最短路径的优选问题。本文巧妙的将优化模型转变为研究不与障碍物边界相交、不与圆弧相交的路线中的最优解的问题。在这个数学模型的基础上进行相应的改善并且使用穷举的算法找出最优路径。
针对不同的目标点,我们将机器人的行进分为单目标点和多目标点两种情况针对多目标点问题,由于机器人不能直线转向,所以在经过目标点时,应该提前转向,且中间目标点应该在转弯弧上。因此先建立优化模型(模型三)对行进时中间目标点处转弯圆弧圆心搜索求解。求出中间目标点转弯圆心后,用把中间目标点的圆心看做“障碍物”的办法把问题转化为单目标点问题。然后根据模型二和模型一利用MATLAB软件编程求得了O→A、O→B、O→C、O→A→B→A→C的最短路径,最短路径长分别为 471.0372、857.6778、1094.5、2799.0121,其中O-->A的最短路径对应圆弧的圆心坐标为(80,210);O→B的最短路径对应圆弧的圆心坐标:(60,300)、(150,435)、(220、470)、(220,530)、(150,600);O→C经过的圆心:(230,60)、(410,100)、(500,200)、(720,520),
(720,600);对于多目标点问题利用模型三进行分割求解得到O→A→B→C→O最短路径对应圆心坐标(80,210)、(307.7715)、(306.2932)、(220,530)、(150,600)、(109.8478,701.7379)、(270,680)、(370,680)、(430,680)、(540,730)、(670,730)、(709.7933)、(642.0227)、(720,600)、(720,520)(500,200),(410,100),(230,60)。对于最短时间路径问题,根据转弯半径和速度的关系,在问题一求出的最短路径的模型的基础上,进行路线优化,建立以最短时间为目标的非线性规划模型,利用lingo 求解最短时间获得了机器人从O点出发,到达A的最短时间路径,求得最短时间路径下转弯半径为12.9885 ,同时最短时间路径时间长为94.2283个单位,路径长为471.129个单位。相应圆弧的圆心坐标为(82.1414,207.9153)。
关键词:机器人避障覆盖法穷举法非线性规划
目录
一、问题重述 (3)
二、问题分析 (4)
2.1求取最短路径的分析 (4)
2.2求取最短时间的分析 (4)
三、模型假设 (4)
四、符号说明 (5)
五、最短路径模型建立和求解 (5)
5.1确定圆弧位置和转弯半径 (5)
5.2单目标点模型建立 (8)
5.3多目标点模型建立 (12)
5.4最短路径模型求解 (14)
六、最短路径模型建立和求解 (19)
七、模型推广与评价 (23)
八、附录 (24)
一、问题重述
在一800×800的平面场景图,在原点O(0, 0)点处有一个机器人,它只能在该平面场景范围内活动。图中有12个不同形状的区域是机器人不能与之发生碰撞的障碍物,障编号
障碍物名称 左下顶点坐标 其它特性描述 1
正方形 (300, 400) 边长200 2
圆形 圆心坐标(550, 450),半径70 3
平行四边形 (360, 240) 底边长140,左上顶点坐标(400, 330) 4
三角形 (280, 100) 上顶点坐标(345, 210),右下顶点坐标(410, 100) 5
正方形 (80, 60) 边长150 6
三角形 (60, 300) 上顶点坐标(150, 435),右下顶点坐标(235, 300) 7
长方形 (0, 470) 长220,宽60 8
平行四边形 (150, 600)
底边长90,左上顶点坐标(180, 680) 9
长方形 (370, 680) 长60,宽120 10
正方形 (540, 600) 边长130 11
正方形 (640, 520) 边长80 12 长方形 (500, 140) 长300,宽60 碍物的距离至少超过10个单位)。规定机器人的行走路径由直线段和圆弧组成,其中圆弧是机器人转弯路径。机器人不能折线转弯,转弯路径由与直线路径相切的一段圆弧组成,也可以由两个或多个相切的圆弧路径组成,但每个圆弧的半径最小为10个单位。为了不与障碍物发生碰撞,同时要求机器人行走线路与障碍物间的最近距离为10个单位,否则将发生碰撞,若碰撞发生,则机器人无法完成行走。
机器人直线行走的最大速度为50=v 个单位/秒。机器人转弯时,最大转弯速度为21.0100e
1)(ρρ-+==v v v ,其中ρ是转弯半径。如果超过该速度,机器人将发生侧 翻,无法完成行走。
(1) 机器人从O(0, 0)出发,O →A 、O →B 、O →C 和O →A →B →C →O 的最短路径。
(2) 机器人从O (0, 0)出发,到达A 的最短时间路径。
注:要给出路径中每段直线段或圆弧的起点和终点坐标、圆弧的圆心坐标以及机器人行走的总距离和总时间。