用单片机控制蜂鸣器的实验电路
c51芯片蜂鸣器电路原理
c51芯片蜂鸣器电路原理一、概述C51芯片是一种常用的单片机芯片,广泛应用于嵌入式系统开发中。
蜂鸣器是一种常见的电子设备,通常用于发出声音信号。
在本篇文章中,我们将介绍如何使用C51芯片控制蜂鸣器,以实现各种声音输出。
二、蜂鸣器电路原理1. 蜂鸣器连接方式:蜂鸣器通常需要连接到C51芯片的I/O口,以便对其进行控制。
常见的方法是将蜂鸣器连接到单片机的PB0端口,可以通过简单的编程来实现控制。
2. 工作原理:当单片机接收到相应的控制信号时,会通过I/O口控制蜂鸣器的驱动电路,从而触发蜂鸣器发出声音。
控制信号可以是高电平或低电平,具体取决于电路设计。
3. 驱动电路:蜂鸣器的驱动电路通常包括一个三极管或继电器,用于将微弱的电信号放大,以驱动蜂鸣器发出声音。
电路的设计和元件的选择取决于蜂鸣器的功率和音量需求。
4. 时序控制:为了获得更好的声音效果,需要对蜂鸣器的驱动时序进行精确控制。
可以通过编写程序来实现不同的时序,以产生不同的声音效果。
三、编程实现在C51单片机中,可以使用汇编语言或C语言来编写程序,实现对蜂鸣器的控制。
以下是一个简单的示例程序,用于控制蜂鸣器的开关和音量:```c#include <reg51.h> // 包含C51寄存器定义的头文件void delay(unsigned int time) // 延时函数{unsigned int i, j;for(i=0; i<time; i++)for(j=0; j<1275; j++);}void main(){P1 = 0x01; // 打开蜂鸣器while(1) // 循环执行以下操作{if(flag) // 如果flag为真{P1 = 0x02; // 增加音量flag = 0; // 清空flagdelay(50); // 延时一段时间}else // 如果flag为假{P1 = 0x00; // 关闭蜂鸣器flag = 1; // 设置flag为真,以便下次循环时增加音量}}}```以上程序中,P1端口用于控制蜂鸣器的开关,音量通过改变P1端口的电平来实现。
单片机实验报告蜂鸣器
一、实验目的1. 熟悉51单片机的基本结构和工作原理。
2. 掌握51单片机的I/O口编程方法。
3. 学习蜂鸣器的驱动原理和应用。
4. 通过实验,提高动手实践能力和问题解决能力。
二、实验原理蜂鸣器是一种将电信号转换为声音信号的器件,常用于产生按键音、报警音等提示信号。
根据驱动方式,蜂鸣器可分为有源蜂鸣器和无源蜂鸣器。
1. 有源蜂鸣器:内部自带振荡源,将正负极接上直流电压即可持续发声,频率固定。
2. 无源蜂鸣器:内部不带振荡源,需要控制器提供振荡脉冲才能发声,调整提供振荡脉冲的频率,可发出不同频率的声音。
在本次实验中,我们使用的是无源蜂鸣器。
51单片机通过控制P1.5端口的电平,产生周期性的方波信号,驱动蜂鸣器发声。
三、实验器材1. 51单片机实验板2. 蜂鸣器3. 连接线4. 电路焊接工具5. 编程软件(如Keil)四、实验步骤1. 电路连接:- 将蜂鸣器的正极连接到51单片机的P1.5端口。
- 将蜂鸣器的负极接地。
2. 程序编写:- 使用Keil软件编写程序,实现以下功能:1. 初始化P1.5端口为输出模式。
2. 通过循环,不断改变P1.5端口的电平,产生方波信号。
3. 调整方波信号的频率,控制蜂鸣器的音调。
3. 程序下载:- 将程序下载到51单片机中。
4. 实验观察:- 启动程序后,观察蜂鸣器是否发声,以及音调是否与程序设置一致。
五、实验结果与分析1. 实验结果:- 成功驱动蜂鸣器发声,音调与程序设置一致。
2. 结果分析:- 通过实验,我们掌握了51单片机的I/O口编程方法,以及蜂鸣器的驱动原理。
- 在程序编写过程中,我们学习了方波信号的生成方法,以及如何调整方波信号的频率。
六、实验总结本次实验成功地实现了51单片机控制蜂鸣器发声的功能,达到了预期的实验目的。
通过本次实验,我们提高了以下能力:1. 对51单片机的基本结构和工作原理有了更深入的了解。
2. 掌握了51单片机的I/O口编程方法。
3. 学习了蜂鸣器的驱动原理和应用。
单片机蜂鸣器唱歌程序(二)2024
单片机蜂鸣器唱歌程序(二)引言概述:本文档主要介绍了单片机蜂鸣器唱歌程序(二),包括使用单片机控制蜂鸣器发出不同音乐的方法和具体实现步骤。
本文将从五个大点进行阐述,每个大点包含5-9个小点,以便读者更好地理解和实践。
正文:一、引脚连接设置1. 确定单片机的输出引脚和蜂鸣器的输入引脚2. 将单片机的输出引脚与蜂鸣器的输入引脚连接3. 确保连接的稳定性和正确性4. 利用电路图进行布线二、编程环境配置1. 安装适合单片机的编程软件2. 创建新的项目3. 配置单片机的型号及选项4. 导入相关的库文件5. 编写代码框架三、发声原理及代码实现1. 理解蜂鸣器工作原理2. 使用单片机的PWM输出功能控制蜂鸣器的频率3. 利用PWM输出的方式实现不同音调的发声4. 编写音调转换函数5. 编写歌曲的音乐片段代码四、优化和调试1. 测试不同频率的声音2. 调整蜂鸣器的音量3. 避免噪音的干扰4. 检查代码的正确性和合理性5. 不断尝试,优化代码和音效五、实验结果及总结1. 运行程序,测试蜂鸣器的唱歌效果2. 记录实验结果和观察结果3. 分析实验过程中遇到的问题和解决方法4. 总结实验经验和注意事项5. 展望将来的改进和研究方向总结:本文详细介绍了单片机蜂鸣器唱歌程序(二)的实现方法和步骤。
通过连接设置、编程环境配置、发声原理及代码实现、优化和调试、实验结果及总结等五个大点的阐述,读者可以深入了解单片机控制蜂鸣器发声的原理和方法,并通过实验得到具体的唱歌效果。
同时,读者在实践过程中也要注意优化和调试,不断尝试和改进,以实现更好的音效效果。
希望本文对读者有所帮助,为单片机蜂鸣器唱歌程序的开发提供了指导和参考。
五、单片机学习——继电器与蜂鸣器实验
五、单⽚机学习——继电器与蜂鸣器实验实验⽬的:理解并掌握继电器和蜂鸣器驱动电路的⼯作原理; 理解并掌握⽤单⽚机 I/O 驱动⼤电流器件的驱动⽅法;实验模块:核⼼板+流⽔灯与独⽴按键模块+继电器模块+蜂鸣器模块;实验内容:按键控制继电器和蜂鸣器动作,并⽤相应的 led 灯进⾏指⽰,即第⼀ 个按键按下,第⼀位 led 灯点亮,蜂鸣器响应;第⼆个按键按下,第⼆位 led 灯点亮,继电器吸合;第三个按键按下,第⼀个、第⼆个流⽔灯点亮,继电器吸 合、蜂鸣器响应;第四个按键按下,恢复初始状态,所有的 led 灯熄灭、继电器 断开、蜂鸣器不响应。
模块连接图:电路原理图:电路驱动原理:(1)蜂鸣器发声原理是电流通过电磁线圈,使电磁线圈产⽣磁场来驱动振动膜发声的,仅仅依靠单⽚机 I/O 不⾜以驱动蜂鸣器进⾏⼯作;蜂鸣器的正极接到三极管的 C 极上⾯,蜂鸣器的负极接到地端,三极管的基极 B 经过限流电阻后由单⽚机的 P1.2 引脚控制,当 P1.2 输出⾼电平时,三极管 T1 截⽌,没有电流流过线圈,蜂鸣器不发声;当 P1.42 输出低电平时,三极管导通,这样蜂鸣器的电流形成回路,发出声⾳。
因此,我们可以通过程序控制 P1.2 脚的电平来使蜂鸣器发出声⾳或关闭。
(2)继电器驱动电路如上,主要通过 PNP 型的三极管 S8550 来实现通过单⽚机的 I/O ⼝控制继电器的吸合与断开;三极管驱动继电器主要是应⽤三极管的放⼤特性和开关特性;当与单⽚机相连的 I/0 ⼝输出低电平时,三极管导通,此时三极管的 E 极(发射极)与 C 极(集电极)间的阻值很⼩,此时电路相当于 VCC 经过继电器,再经过通过三极管接到地形成完整回路,继电器吸合;相反,当与单⽚机相连的 I/0⼝输出⾼电平时,三极管截⽌,此时三极管的 E 极(发射极)与 C 极(集电极)间的阻值很⼤,电路⽆法形成回路,继电器不吸合。
因此,我们可以通过程序控制与单⽚机相连 I/O ⼝的电平来控制继电器的吸合与关闭。
(单片机)
实验四一、实验题目:当K1键按下后,首先使蜂鸣器响一声,然后使LED1-LED8完成3种闪亮的花样(自己定义),每一种花样循环3次,然后周而复始。
二、keil代码:/*当K1键按下后,首先使蜂鸣器响一声,然后使LED1- LED8完成3种闪亮的花样(自己定义),每一种花样循环3次,然后周而复始。
*/#include<reg51.h>sbit P2_0=P2^0;//接蜂鸣器sbit P2_7=P2^7;sbit P1_0=P1^0;sbit P1_1=P1^1;sbit P1_2=P1^2;sbit P1_3=P1^3;sbit P1_4=P1^4;sbit P1_5=P1^5;sbit P1_6=P1^6;sbit P1_7=P1^7;void DELAY(int time)//延时{while(time--){}}void BUZ_ON(){if(P2_7==0){P2_0=1;}else{ P2_0=0;}}void F1(void){int i;char data_group_mide[5]={0x00,0x18,0x24,0x42,0x81};//向两边延伸for(i=0;i<5;i++){P1=data_group_mide[i];DELAY(20000);}P1=0x00;}void F2(void){int i;char data_group_left[8]={0xFF,0x7F,0x3F,0x0F,0x07,0x03,0x01,0x00};//向左延伸for(i=0;i<8;i++){P1=data_group_left[i];DELAY(20000);P1=0x00;}void F3(void){int i;char date_group_right[8]={0x00,0x01,0x03,0x07,0x0f,0x3f,0x7f,0xff};//向右延伸for(i=0;i<8;i++){P1=date_group_right[i];DELAY(20000);}P1=0x00;}void main(){unsigned int i; //每种花样循环三次P2_0=0;P2_7=1;BUZ_ON();P1=0x00;while(P2_7==0){for(i=0;i<3;i++)//花样1 {F1();}for(i=0;i<3;i++)//花样2 {F2();}for(i=0;i<3;i++)//花样3 {F3();}}}三、protues电路图:四、实验截图:五、实验小结:通过本次实验,我们熟悉了protues的编译环境,对以后的单片机学习有很大帮助。
按键计数蜂鸣器实验报告(3篇)
第1篇一、实验目的1. 了解按键电路的工作原理。
2. 掌握蜂鸣器的工作原理及其控制方法。
3. 学习使用C语言进行嵌入式编程。
4. 培养动手实践能力和团队合作精神。
二、实验原理1. 按键电路:按键电路由按键、上拉电阻和下拉电阻组成。
当按键未被按下时,上拉电阻将输入端拉高;当按键被按下时,下拉电阻将输入端拉低。
2. 蜂鸣器电路:蜂鸣器是一种发声元件,其工作原理是利用电磁铁的磁力使振动膜片振动,从而产生声音。
蜂鸣器的控制主要通过改变输入信号的频率来实现。
3. 计数原理:通过按键输入信号,实现计数器的计数功能。
当按键被按下时,计数器加一;当按键被连续按下时,计数器的计数值随之增加。
三、实验器材1. 单片机开发板(如STC89C52)2. 按键3. 蜂鸣器4. 电阻5. 接线6. 电脑7. 调试软件(如Keil uVision)四、实验步骤1. 设计电路图:根据实验要求,设计按键、蜂鸣器和单片机的连接电路图。
2. 编写程序:使用C语言编写程序,实现按键计数和蜂鸣器控制功能。
3. 编译程序:将编写好的程序编译成机器码。
4. 烧录程序:将编译好的机器码烧录到单片机中。
5. 调试程序:通过调试软件对程序进行调试,确保程序正常运行。
6. 测试实验:将单片机连接到实验电路中,进行按键计数和蜂鸣器控制测试。
五、实验代码```cinclude <reg52.h>define uchar unsigned chardefine uint unsigned intsbit key = P3^2; // 按键连接到P3.2端口sbit buzzer = P1^0; // 蜂鸣器连接到P1.0端口uchar count = 0; // 计数器void delay(uint t) {uint i, j;for (i = 0; i < t; i++)for (j = 0; j < 127; j++);}void buzzer_on() {buzzer = 0; // 使蜂鸣器发声}void buzzer_off() {buzzer = 1; // 使蜂鸣器停止发声}void main() {while (1) {if (key == 0) { // 检测按键是否被按下delay(10); // 消抖if (key == 0) {count++; // 计数器加一buzzer_on(); // 使蜂鸣器发声delay(500); // 发声时间buzzer_off(); // 停止发声}}}}```六、实验结果与分析1. 当按键未被按下时,蜂鸣器不发声。
单片机蜂鸣器控制程序和驱动电路典型设计案例
单片机蜂鸣器控制程序和驱动电路典型设计案例[前言]蜂鸣器从结构区分分为压电式蜂鸣器和电磁式蜂鸣器。
压电式为压电陶瓷片发音,电流比较小一些,电磁式蜂鸣器为线圈通电震动发音,体积比较小。
蜂鸣器从结构区分分为压电式蜂鸣器和电磁式蜂鸣器。
压电式为压电陶瓷片发音,电流比较小一些,电磁式蜂鸣器为线圈通电震动发音,体积比较小。
按照驱动方式分为有源蜂鸣器和无源蜂鸣器。
这里的有源和无源不是指电源,而是振荡源。
有源蜂鸣器内部带了振荡源,如图9-8 所示中,给了BUZZ 引脚一个低电平,蜂鸣器就会直接响。
而无源蜂鸣器内部是不带振荡源的,要让他响必须给500Hz~4.5KHz 之间的脉冲频率信号来驱动它才会响。
有源蜂鸣器往往比无源蜂鸣器贵一些,因为里边多了振荡电路,驱动发音也简单,靠电平就可以驱动,而无源蜂鸣器价格比较便宜,此外无源蜂鸣器声音频率可以控制,而音阶与频率又有确定的对应关系,因此就可以做出来do re mi fa sol la si的效果,可以用它制作出简单的音乐曲目,比如生日歌、两只老虎等等。
图9-8 蜂鸣器电路原理图我们来看一下图9-8 的电路,蜂鸣器电流依然相对较大,因此需要用三极管驱动,并且加了一个100 欧的电阻作为限流电阻。
此外还加了一个D4 二极管,这个二极管叫做续流二极管。
我们的蜂鸣器是感性器件,当三极管导通给蜂鸣器供电时,就会有导通电流流过蜂鸣器。
而我们知道,电感的一个特点就是电流不能突变,导通时电流是逐渐加大的,这点没有问题,但当关断时,经电源-三极管-蜂鸣器-地这条回路就截断了,过不了任何电流了,那么储存的电流往哪儿去呢,就是经过这个D4 和蜂鸣器自身的环路来消耗掉了,从而就避免了关断时由于电感电流造成的反向冲击。
接续关断时的电流,这就是续流二极管名称的由来。
蜂鸣器经常用于电脑、打印机、万用表这些设备上做提示音,提示音一般也很简单,就是简单发出个声音就行,我们用程序简单做了个4KHZ 频率下的发声和1KHZ 频率下的发声程序,同学们可以自己研究下程序,比较下实际效果。
制作蜂鸣器模块实验报告
一、实验目的1. 了解蜂鸣器的工作原理及分类。
2. 掌握蜂鸣器模块的制作方法。
3. 学会使用蜂鸣器模块进行简单的声音控制。
二、实验原理蜂鸣器是一种电子音响器件,其工作原理是利用电流通过压电陶瓷片或电磁线圈产生振动,从而发出声音。
根据驱动方式,蜂鸣器可分为有源蜂鸣器和无源蜂鸣器两种。
1. 有源蜂鸣器:内部自带振荡电路,只需接通电源即可发声。
2. 无源蜂鸣器:需要外部电路提供方波信号驱动。
本实验采用有源蜂鸣器模块,其内部结构包括振荡电路、驱动电路、压电陶瓷片等。
三、实验器材1. 有源蜂鸣器模块2. 单片机(如Arduino)3. 杜邦线4. 电源5. 万用表6. 烧录器四、实验步骤1. 搭建电路:- 将蜂鸣器模块的VCC引脚连接到单片机的5V电源;- 将蜂鸣器模块的GND引脚连接到单片机的GND;- 将蜂鸣器模块的I/O引脚连接到单片机的数字输出引脚(如D8)。
2. 编写程序:- 使用单片机编程语言(如Arduino)编写程序,通过控制数字输出引脚的高低电平,控制蜂鸣器发声。
3. 烧录程序:- 将编写好的程序烧录到单片机中。
4. 测试:- 连接电源,观察蜂鸣器是否发声。
五、实验结果与分析1. 实验结果:- 成功搭建蜂鸣器模块电路;- 编写程序控制蜂鸣器发声;- 实现简单的音乐播放功能。
2. 分析:- 通过控制单片机数字输出引脚的高低电平,可以改变蜂鸣器的频率,从而控制音调;- 通过改变高低电平的持续时间,可以改变蜂鸣器的音量;- 可以通过编程实现多种声音效果,如音乐播放、报警等。
六、实验总结1. 通过本次实验,掌握了蜂鸣器的工作原理及分类;2. 学会了蜂鸣器模块的制作方法;3. 掌握了使用蜂鸣器模块进行简单的声音控制。
七、拓展应用1. 将蜂鸣器模块应用于智能家居系统,实现门铃、报警等功能;2. 将蜂鸣器模块应用于机器人,实现语音提示、警报等功能;3. 将蜂鸣器模块应用于音乐创作,实现音效合成等功能。
51单片机项目教程项目 5 蜂鸣器实验
图5- 9蜂鸣器实物结果
当SM0、SM1=01时,串行口设为方式1的双机串行通信。TXD脚和 RXD脚分别用于发送和接收数据。
5.2技术准备
方式1发送时,数据位由TXD端输出,发送一帧信息为10位:1位起始 位0,8位数据位(先低位)和1位停止位1。当CPU执行一条数据写 SBUF的指令,就启动发送。发送开始时,内部发送控制信号变为有 效,将起始位向TXD脚(P3.0)输出,此后每经过一个TX时钟周期, 便产生一个移位脉冲,并由TXD引脚输出一个数据位。8位数据位全部 发送完毕后,中断标志位TI置1。 方式1接收时(REN = 1),数据从RXD(P3.1)引脚输入。当检测到 起始位的负跳变,则开始接收。当一帧数据接收完毕后,同时满足以 下两个条件,接收才有效。 (1)RI = 0,即上一帧数据接收完成时,RI = 1发出的中断请求已被 响应,SBUF中的数据已被取走,说明“接收SBUF”已空。 (2)SM2 = 0或收到的停止位 = 1(方式1时,停止位已进入RB8), 则将接收到的数据装入SBUF和RB8(装入的是停止位),且中断标 志RI置“1”。
5.2技术准备
5.2.2 了解实验板蜂鸣器电路
图5- 3蜂鸣器电路
5.2技术准备
5.2.3 蜂鸣器驱动电路
蜂鸣器驱动电路如图5-4所示。
图5- 4蜂鸣器驱动电路
5.2技术准备
5.2.4串行口的结构
单片机串口结构如图5-5所示。有两个物理上独立的接收、发送缓冲器 SBUF(属于特殊功能寄存器),可同时发送、接收数据。控制寄存器共 有两个:特殊功能寄存器SCON和PCON。发送和接收引脚分别是TXD (P3.0)和RXD(P3.1)。
SM0 0 0 1 1 SM1 0 1 0 1 工作 方式 0 1 2 3 功能简介 移位寄存器 8位UART 9位UART 9位UART 比特率 OSC/12 可变 OSC/32或 OSC/64 可变
单片机实验报告-蜂鸣器驱动实验5页
单片机实验报告-蜂鸣器驱动实验5页
实验目的:了解蜂鸣器的基本原理和控制方法,熟悉单片机I/O口配置和使用。
实验器材:AT89C52单片机开发板、蜂鸣器、面包板、杜邦线、电源适配器。
实验原理:
蜂鸣器是一种能够发声的电子元件,在很多电子产品中都有广泛应用,比如:电子时钟、电子琴等。
蜂鸣器的基本原理是利用单片机产生一定频率的脉冲信号,通过输出端口将信号送到蜂鸣器上,使之发出相应频率的声音。
AT89C52单片机是一种高性能、低功耗的8位单片机,具有容易编程、易于学习的特点。
单片机通过I/O口输出脉冲信号来控制蜂鸣器的输出,从而实现发声。
实验步骤:
2.在开发板上选择一个I/O口,将其配置为输出端口。
3.编写程序,通过输出口控制蜂鸣器的发声。
4.将程序下载到开发板中,通过电源适配器供电。
5.观察蜂鸣器是否工作正常,听到蜂鸣声音。
实验代码:
实验结果:
经过实验,可以听到蜂鸣器发出的声音,证明程序运行正常,单片机成功驱动蜂鸣器。
单片机《蜂鸣器》实验报告
SPEAKER一端接单片机P2.0端口,另一端接地,在proteus上进行仿真之后,添加程序运行生成的hex文件,电路运行,根据程序所设置的延时,依次发出《两只老虎》这首歌的各个音节,有节奏的唱出这首歌曲,并且能够听出歌曲的音调,直到结束,实现一个简易蜂鸣器音乐播放器的功能。
六、实验分析总结
Beep调用:在调用Beep时,首先进行定义,在主函数中每个音节开始前后,分别在两个for循环中进行调用,Beep=~Beep表示调用指令,Beep=1表示关闭蜂鸣器,依次实现各个音节的发声和停止,达到控制歌曲有节奏播放的目的。
延时函数:各个音节的发声间隔用到延时程序,这里用到多个延时程序,如500ms,700ms此程序会反复调用,作用于各个音节的延时发声。
四、软件程序说明
主函数:主函数中采用while和for循环,并且引用延时函数,对各部分程序进行调用。与采用一般的延时函数相比,可以分别控制歌曲各个音节的持续发声。
For循环的调用:在主函数中,通过多个for循环,对歌曲的每个音节起始和结束进行控制,通过不同的延时函数实现音节的有节奏发声,串联而成,实现蜂鸣器对一首完整歌曲的播放。
b)通过51单片机与C程序,将程序所设计的算法与蜂鸣器电路连接起来,采用循环函数配合多个延时来实现各个音节的有规律发声,合成一首完整的音乐,此处我用了较为简单的一首儿歌《两只老虎》来体现。
三、硬件电路说明
本实验使用电磁式蜂鸣器,蜂鸣器连接单片机P2.0端口,另一端接地,通过C程序产生的hex文件控制蜂鸣器发声,播放一首完整的歌曲,音节的曲调,间隔时间都是构成歌曲的一个重要部分,需要调节频率和利用延时函数,控制发声频率要产生音频脉冲,只要算出某一音频的周期/频率,然后将此周期除以2(即为半周期的时间)。利用定时器计时这半个周期时间(每当计时到后就将输出脉冲的I/O反相,然后重复计时此半周期时间再对I/O反相,就可在I/O脚上得到此频率的脉冲。利用AT89C51的内部定时器使其工作在计数器模式下,改变计数值TH0及TL0从而产生不同频率。此外结束符和休止符可以分别用代码00H和FFH来表示,若查表结果为0x00,则表示曲子终了,若查表结果为0xff,则产生相应的停顿效果。
单片机蜂鸣器响一秒停一秒实验报告代码
单片机蜂鸣器响一秒停一秒实验报告代码实验目的:利用单片机控制蜂鸣器输出不同的频率和时间,实现蜂鸣器响一秒停一秒的功能。
实验器材:STC89C52单片机、蜂鸣器、 Jumper wires。
实验原理:STC89C52单片机的IO口可以用来控制外部器件,蜂鸣器连接到单片机的IO口上,通过程序控制IO口输出高电平或低电平控制蜂鸣器发声或停止发声。
实验步骤:1. 将STC89C52单片机片上系统搭建好,将蜂鸣器连接到单片机的一个IO口上;2. 使用Keil编译器编写程序代码,实现蜂鸣器响一秒停一秒的功能;3. 将程序代码烧录进单片机,连接电源后观察蜂鸣器是否正常响起。
代码如下:```c#include<reg52.h>#define ON 0 // 蜂鸣器控制IO口输出高电平#define OFF 1 // 蜂鸣器控制IO口输出低电平void delay(unsigned int x); // 延迟函数void main(){while (1){P1 = ON; // 蜂鸣器控制IO口输出高电平delay(1000); // 延时1秒P1 = OFF; // 蜂鸣器控制IO口输出低电平delay(1000); // 延时1秒}}void delay(unsigned int x){ // 延迟函数unsigned char i, j;for (i = x; i > 0; i--)for (j = 110; j > 0; j--);}```以上代码中,P1口控制蜂鸣器,利用循环控制蜂鸣器在高低电平间切换,延时用来实现响1秒停1秒的功能。
注意:实现蜂鸣器响一秒停一秒功能时,需要确保延时函数的时间间隔精度较高,否则会影响响停时间的准确性。
以上是单片机蜂鸣器响一秒停一秒的实验报告和代码,希望能对您有所帮助。
单片机中npn三极管控制蜂鸣器的原理
一、概述单片机作为一种微型电脑,广泛应用于各种电子设备中。
在许多电子设备中,蜂鸣器都是一个常见的部件,用于发出警报或提醒。
而现代的单片机控制技术往往采用NPN三极管控制蜂鸣器,下面我们将介绍NPN三极管控制蜂鸣器的原理。
二、NPN三极管的基本原理1. NPN三极管的结构NPN三极管是一种三端器件,由两个PN结组成。
其中,P型掺杂的基区夹在两个N型掺杂的发射区和集电区之间,发射区和集电区之间有一个非常薄的基区。
NPN三极管的结构决定了它可以放大电流信号。
2. NPN三极管的工作原理当在NPN三极管的基极施加正向电压时,基极与发射区之间的PN结被正向偏置,电子从发射区注入到基区,同时产生少量的空穴。
这些电子与空穴在基区发生复合,产生少量的热电子,并通过漂移电流和扩散电流向发射结和集电结方向流动。
最终在集电结被抽收,形成集电流。
三、NPN三极管控制蜂鸣器的原理1. 蜂鸣器的工作原理蜂鸣器是一种能够发出声音的电子设备,通常由振膜、驱动板和震动器组成。
当通过驱动板施加一定的电压信号时,振膜在震动器的作用下产生声音。
2. NPN三极管控制蜂鸣器的电路连接在单片机控制蜂鸣器的电路中,通常使用NPN三极管来控制蜂鸣器的振动。
NPN三极管的集电极连接到蜂鸣器的正极,发射极连接到单片机的IO口,而基极通过一个限流电阻连接到单片机的另一个IO口。
3. NPN三极管控制蜂鸣器的工作原理当单片机通过IO口输出高电平时,NPN三极管的基极接收到正向偏置的电压,导通NPN三极管,使蜂鸣器的正极与负极之间形成一个闭合回路。
此时电流通过蜂鸣器,在振动器作用下产生声音。
反之,当单片机通过IO口输出低电平时,NPN三极管截止,使蜂鸣器处于静音状态。
四、总结NPN三极管作为一种常见的电子元件,被广泛应用于单片机控制技术中。
通过合理的电路连接和工作原理,NPN三极管可以很好地实现对蜂鸣器的控制,为各种电子设备提供了丰富的声音信号。
以上就是NPN三极管控制蜂鸣器的原理,希望可以帮助到大家。
(2)AT89C52有源蜂鸣器控制
/*名 称:
AT89S51 通过 CD4094 驱动 LED
*/
/*功 能:
用 CD4094 扩充 I/O 口,每片 4094 可以扩充 8 个 I/O 口 */
/*芯片类型:
AT89S51
*/
/*晶振频率:
11.0592MHZ
*/
/*作 者:
救火车
*/
/*版 权:
7
//unsigned char bdata p6,p7;//定义扩展 P6,P7 口
void update4094() {
unsigned char i,j,tt; STR4094=0; for (j=HOWMANY4094;j>0;j--) {
tt=*(&P4+j-1); for(i=0;i<8;i++) {
D4094=(tt&0x80)>0;//数据脚 CLK4094=0; CLK4094=1; tt<<=1; } } STR4094=1; }
8
key_times++;
if(3==key_times)
{
key_times=0;
delay_ms(1000);
sound_3(); //模拟声 3 报警音
}
} //if((last_key==1)&&(this_key==0))
if((0==last_key)&&(0==this_key)) {
k++; if(60==k) {
/*名 称:
蜂鸣器模拟报警音
*/
/*功 能:
每按一次按键,指示灯闪烁 8 次
关于单片机的一些小实验_05 蜂鸣器控制实验
*功能:利用P1.3输出高低电平来控制蜂鸣器蜂鸣。
*********************************************************************************************/
void main (void)
{
while(1) //死循环
sbit P1_3 = P1 ^ 3; //定义位变量
#define BEEP_ON() (P1_3=0) //定义"BEEP_ON()"为P1.3输出低电平,控制蜂鸣器蜂鸣
#define BEEP_OFF() (P1_3=1) //定义"BEEP_OFF()"为P1.3输出高电平,控制蜂鸣器不蜂鸣
/*与编译器无关的数据类型定义*/
/********************************************************************************************/
typedef unsigned char uint8; //无符号8位整型变量
/********************************************************************************************
*功能:利用P1.3输出高低电平来控制蜂鸣器蜂鸣。
*硬件条件:1.CPU型号:AT89S52
* 2.晶振:12.000MHz
typedef signed char int8; //有符号8位整型变量
typedef unsigned short uint16; //无符号16位整型变量
AVR教程第十一课蜂鸣器
动手学 AVR 单片机十一、让蜂鸣器发 出声音
CEPARK-AVR 单片机教程. 技术专家 tiankai 原创 专家技术博客地址: /space.php?uid=8160 有技术类问题欢迎去给技术专家留言. 推荐论坛: 收集人:wang1jin
{
unsigned char i;
推荐网站:
推荐论坛:
PORTE |= (1 << PE5);
//
DDRE |= (1 << PE5);
//
Delayms(500);
PORTE &= ~(1 << PE5);
//
Delayms(500);
最下面给大家介绍几个下载资料的地方: 51 学习专区: / USB 学习专区: / CAN 学习专区: AVR 学习专区: / FPGA 学习专区: / STM32 学习专区: / ARM 学习专区: / DSP 学习专区: / PIC 学习专区: / DIY 电子制作专区: / GPS 学习专区:
下图是一种比较安全的蜂鸣器驱动电路
推荐网站:
推荐论坛:
图中在蜂鸣器两端并联了一个二极管,这个二极管称为续流二极管,蜂鸣器本质 上是一个感性元件,其电流不能瞬变,因此必须有一个续流二极管提供续流。否则,在蜂鸣 器两端会产生几十伏的尖峰电压,可能损坏驱动三极管,并干扰整个电路系统的其它部分。
#include <util/delay.h>
//GCC 中的延时函数头文件
//函数声明
void Delayus(unsigned int lus);
//us 延时函数
void Delayms(unsigned int lms);
单片机蜂鸣器
单片机蜂鸣器(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--实验原理51单片机的一个I/O口控制speaker发声,演唱祝你平安歌曲。
主要器件以及电路图单片机——AT89C51,蜂鸣器——speaker。
一、电磁式蜂鸣器驱动原理二、蜂鸣器发声原理是电流通过电磁线圈,使电磁线圈产生磁场来驱动振动膜发声的,因此需要一定的电流才能驱动它,单片机IO引脚输出的电流较小,单片机输出的TTL电平基本上驱动不了蜂鸣器,因此需要增加一个电流放大的电路。
S51增强型单片机实验板通过一个三极管C8550来放大驱动蜂鸣器,原理图见下面图三、如图所示,蜂鸣器的正极接到VCC(+5V)电源上面,蜂鸣器的负极接到三极管的发射极E,三极管的基级B经过限流电阻R1后由单片机的引脚控制,当输出高电平时,三极管T1截止,没有电流流过线圈,蜂鸣器不发声;当输出低电平时,三极管导通,这样蜂鸣器的电流形成回路,发出声音。
因此,我们可以通过程序控制脚的电平来使蜂鸣器发出声音和关闭。
四、五、程序中改变单片机引脚输出波形的频率,就可以调整控制蜂鸣器音调,产生各种不同音色、音调的声音。
另外,改变输出电平的高低电平占空比,则可以控制蜂鸣器的声音大小,这些我们都可以通过编程实验来验证。
;------------------------------------; 蜂鸣器演奏--祝你平安; 功能:蜂鸣器-蜂鸣器奏乐-祝你平安;------------------------------------SPK bitORG 0000HLJMP STARTORG 000BHINC 20H ;中断服务,中断计数器加1MOV TH0,#0D8HMOV TL0,#0EFH ;12M晶振,形成10毫秒中断RETISTART:MOV SP,#60H ;计数器中断初始化MOV TH0,#0D8HMOV TL0,#0EFHMOV TMOD,#01HMOV IE,#82HMUSIC0:NOPMOV DPTR,#DAT ;表头地址送DPTRMOV 20H,#00H ;中断计数器清0MOV B,#00H ;表序号清0MUSIC1:NOPCLR AMOVC A,@A+DPTR ;查表取代码JZ END0 ;是00H,则结束CJNE A,#0FFH,MUSIC5LJMP MUSIC3MUSIC5:NOPMOV R6,AINC DPTRMOV A,BMOVC A,@A+DPTR ;取节拍代码送R7MOV R7,ASETB TR0 ;启动计数MUSIC2:NOPCPL SPKMOV A,R6MOV R3,ALCALL DELMOV A,R7CJNE A,20H,MUSIC2 ;中断计数器(20H)=R7否?不等,则继续循环MOV 20H,#00H ;等于,则取下一代码INC DPTR; INC BLJMP MUSIC1MUSIC3:NOPCLR TR0 ;休止100毫秒MOV R2,#0DHMUSIC4:NOPMOV R3,#0FFHLCALL DELDJNZ R2,MUSIC4INC DPTRLJMP MUSIC1END0:NOPMOV R2,#64H ;歌曲结束,延时1秒后继续MUSIC6:MOV R3,#00HLCALL DELDJNZ R2,MUSIC6LJMP MUSIC0DEL:NOPDEL3:MOV R4,#02HDEL4:NOPDJNZ R4,DEL4NOPDJNZ R3,DEL3RETNOPDAT: ;祝你平安db 26h,20h,20h,20h,20h,20h,26h,10h,20h,10h,20h,80h,26h,20h,30h,20h db 30h,20h,39h,10h,30h,10h,30h,80h,26h,20h,20h,20h,20h,20h,1ch,20h db 20h,80h,2bh,20h,26h,20h,20h,20h,2bh,10h,26h,10h,2bh,80h,26h,20h db 30h,20h,30h,20h,39h,10h,26h,10h,26h,60h,40h,10h,39h,10h,26h,20h db 30h,20h,30h,20h,39h,10h,26h,10h,26h,80h,26h,20h,2bh,10h,2bh,10h db 2bh,20h,30h,10h,39h,10h,26h,10h,2bh,10h,2bh,20h,2bh,40h,40h,20h db 20h,10h,20h,10h,2bh,10h,26h,30h,30h,80h,18h,20h,18h,20h,26h,20h db 20h,20h,20h,40h,26h,20h,2bh,20h,30h,20h,30h,20h,1ch,20h,20h,20h db 20h,80h,1ch,20h,1ch,20h,1ch,20h,30h,20h,30h,60h,39h,10h,30h,10h db 20h,20h,2bh,10h,26h,10h,2bh,10h,26h,10h,26h,10h,2bh,10h,2bh,80h db 18h,20h,18h,20h,26h,20h,20h,20h,20h,60h,26h,10h,2bh,20h,30h,20h db 30h,20h,1ch,20h,20h,20h,20h,80h,26h,20h,30h,10h,30h,10h,30h,20h db 39h,20h,26h,10h,2bh,10h,2bh,20h,2bh,40h,40h,10h,40h,10h,20h,10h db 20h,10h,2bh,10h,26h,30h,30h,80h,00HEND ;程序结束。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用单片机控制蜂鸣器的实验电路
无源蜂鸣器也是有极性的电子元件,它的控制电路与有源蜂鸣器一样,如下图所示。
但它的发声条件与有源蜂鸣器不同。
只有当一定频率的电流从正极流向负极时,无源蜂鸣器才会鸣响。
下图所示是单片机P3.4引脚输出的各种频率的方波,三极管Q1在这些方波信号的控制下导通、截止,就会有和方波频率相同的电流流过无源蜂鸣器的正负两极,无源蜂鸣器就会发声了。
改变控制方波的频率可以调整控制蜂鸣器音调,产生各种不同音色、音调的声音。
如图2(a)(b)的方波频率不同,控制方坡的频率越高蜂鸣器的声音越尖细,反之频率越低声音越低沉。
另外,改变控制方波的高低电平占空比,则可以控制蜂鸣器的声音大小,如图2中(c)(d)的频率相同占空比不同。
我们可以根据这些特性编写程序,使单片机输出不同频率和占空比的方波信号,用无源蜂鸣器来演奏出简单的乐曲。