不等式常见题型分析(可编辑修改word版)
(完整)专题:基本不等式常见题型归纳(教师版),推荐文档
专题函数常见题型归纳三个不等式关系:(1)a ,b ∈R ,a 2+b 2≥2ab ,当且仅当a =b 时取等号.(2)a ,b ∈R +,a +b ≥2,当且仅当a =b 时取等号.ab (3)a ,b ∈R ,≤()2,当且仅当a =b 时取等号.a 2+b 22a +b2上述三个不等关系揭示了a 2+b 2 ,ab ,a +b 三者间的不等关系.其中,基本不等式及其变形:a ,b ∈R +,a +b ≥2(或ab ≤()2),当且仅当ab a +b2a =b 时取等号,所以当和为定值时,可求积的最值;当积为定值是,可求和的最值.利用基本不等式求最值:一正、二定、三等号.【题型一】利用拼凑法构造不等关系【典例1】(扬州市2015—2016学年度第一学期期末·11)已知且1,,b a ,则的最小值为 .7log 3log 2=+a b b a 112-+b a 【解析】∵且∴,解得1,,b a 7log 3log 2=+a b b a 32log 7log a a b b+=或,∵∴,即.1log 2a b =log 3a b =1,,b a 1log 2a b =2a b =2111111a ab a +=-++--.13≥=练习:1.(南京市、盐城市2015届高三年级第一次模拟·10)若实数,x y 满足0x y >>,且22log log 1x y +=,则22x y x y+-的最小值为.解析:由log 2x+log 2y=1可得log 2xy=1=log 22,则有xy=2,那么y x y x -+22=y x xy y x -+-2)(2=(x -y )+y x -4≥2y x y x -⋅-4)(=4,当且仅当(x -y )=yx -4,即x=3+1,y=3-1时等号成立,故y x y x -+22的最小值为4.2.(苏北四市(徐州、淮安、连云港、宿迁)2017届高三上学期期末)若实数满足,x y,则的最小值为 .133(02xy x x +=<<313x y +-3.(无锡市2017届高三上学期期末)已知,且,则0,0,2a b c >>>2a b +=的最小值为 .2ac c c b ab +-+【典例2】(南京市2015届高三年级第三次模拟·12)已知x ,y 为正实数,则+4x4x +y 的最大值为 .yx +y 解析:由于+==4x 4x +y yx +y ))(4()4()(4y x y x y x y y x x +++++22225484yxy x y xy x ++++=1+=1+≤1+=,22543y xy x xy ++345x y y x ⋅++5423+⋅xy y x 43当且仅当4=,即y=2x 时等号成立.y x xy【典例3】若正数、满足,则的最小值为__________.a b 3ab a b =++a b +解析:由,得,解得,a b R +∈223(),()4()1202a b ab a b a b a b +=++≤+-+-≥(当且仅当且,即时,取等号).6a b +≥a b =3ab a b =++3a b ==变式:1.若,且满足,则的最大值为_________.,a b R +∈22a b a b +=+a b +解析:因为,所以由,,a b R +∈22222()2a b a b a b a b a b ++=+⇒+=+≥2()a b +-,解得(当且仅当且,即时,取等号).2()0a b +≤02a b <+≤a b =22a b a b +=+1a b ==2.设,,则的最小值为_______ 40,0>>y x 822=++xy y x y x 2+3.设,,则的最大值为_________R y x ∈,1422=++xy y x y x +210524.(苏北四市(淮安、宿迁、连云港、徐州)2017届高三上学期期中)已知正数,满a b 足,则的最小值为 195a b+=-ab 【题型二】含条件的最值求法【典例4】(苏州市2017届高三上期末调研测试)已知正数满足,则y x ,1=+y x的最小值为 1124+++y x 练习1.(江苏省镇江市高三数学期末·14)已知正数满足,则y x ,111=+yx 的最小值为 .1914-+-y yx x 解析:对于正数x ,y ,由于+=1,则知x>1,y>1,那么x 1y1+=(+)(1+1--)=(+)(+)≥(14-x x 14-y y 14-x x 14-y y x 1y 114-x x 14-y y x x 1-yy 1-+)2=25,当且仅当·=·时等号成x x x x 114-⋅-y y y y 114-⋅-14-x x y y 1-14-y y x x 1-立.2.(2013~2014学年度苏锡常镇四市高三教学情况调查(一)·11)已知正数,x y 满足22x y +=,则8x yxy+的最小值为 .解析:8181828145922x y x y x y xy y x y x y x ⎛⎫++⎛⎫=+=+⋅=+++≥+= ⎪ ⎪⎝⎭⎝⎭,当且仅当82x yy x=时,取等号.故答案为:9.3.(南通市2015届高三第一次调研测试·12)已知函数的图像经过点(0)xy a b b =+>,如下图所示,则的最小值为 .(1,3)P 411a b+-解析:由题可得a+b=3,且a>1,那么+=(a -1+b )(+)=(4+14-a b 12114-a b 121++1)≥(2+5)=,当且仅当=时等号成立.b a 1-14-a b 21141-⋅-a b b a 29b a 1-14-a b4.(江苏省苏北四市2015届高三第一次模拟考试·12)己知a ,b 为正数,且直线60ax by +-=与直线2(3)50x b y +-+=互相平行,则2a+3b 的最小值为________.【解析】由于直线ax+by -6=0与直线2x+(b -3)y+5=0互相平行,则有2a =3-b b ,即3a+2b=ab ,那么2a+3b=(2a+3b )·ab b a 23+=(2a+3b )(b 3+a 2)=b a 6+ab6+13≥2a b b a 66⋅+13=25,当且仅当b a 6=ab6,即a=b 时等号成立.5.常数a ,b 和正变量x ,y 满足ab =16,+=.若x +2y 的最小值为64,则ax 2by 12a b =________.答案:64;(考查基本不等式的应用).6.已知正实数满足,则的最大值为.,a b ()()12122a b b b a a +=++ab 答案:2【题型三】代入消元法【典例5】(苏州市2016届高三调研测试·14)已知,,则的14ab =,(0,1)a b ∈1211ab+--最小值为 .解析:由得 ,14ab =14a b=2221211424122711411451451a b b b b b b b b b bb +---+--=+==+---+--+-令 则当且仅当71b t -=227149*********5142718427b t b bt t t t-+=+=-≥+-+--+-+- 等号成立.t =练习1.(江苏省扬州市2015届高三上学期期末·12)设实数x ,y 满足x 2+2xy -1=0,则x 2+y 2的最小值是 .解析:由x 2+2xy -1=0可得y=,那么x 2+y 2=x 2+=x 2+-≥2212x x -222(1)4x x -54214x 12-,当且仅当x 2=,即x 4=时等号成立. 121254214x 152.(苏州市2014届高三调研测试·13)已知正实数x ,y 满足,则x + y 的最小值为.解析:∵正实数x ,y 满足xy+2x+y=4,∴(0<x <2).∴x+y=x+==(x+1)+﹣3,当且仅当时取等号.∴x+y 的最小值为.故答案为:.3.(南通市2014届高三第三次调研测试·9)已知正实数满足,则,x y (1)(1)16x y -+=的最小值为.x y +解析:∵正实数x ,y 满足(x ﹣1)(y+1)=16,∴,∴x+y=1116++=y x ,当且仅当y=3,(x=5)时取等号.∴x+y 的最小值为()8116121116=+⋅+≥+++y y y y 8.故答案为:8.4.(扬州市2017届高三上学期期中)若,且,则使得取2,0>>b a 3=+b a 214-+b a 得最小值的实数=。
(word完整版)不等式的应用-教师版
整数解问题【例1】 在一次爆破中,用1米的导火索来引爆炸药,导火索的燃烧速度为0.5cm/s ,引爆员点着导火索后,至少以每秒_____米的速度才能跑到600m 或600m 以外的安全区域?【答案】3m/s【例2】 一次普法知识竞赛共有30道题,规定答对一道题得4分,答错或不答一道题得-1分,在这次竞赛中,小明获得优秀(90分或 90分以上)则小明至少答对了 道题.【答案】24【例3】 现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排( )A .4辆B .5辆C .6辆D .7辆【答案】C【例4】 初中九年级一班几名同学,毕业前合影留念,每人交0.70元,一张彩色底片0.68元,扩印一张照片0.50元,每人分一张,将收来的钱尽量用掉的前提下,这张照片上的同学最少有( )A .2个B .3个C .4个D .5个【答案】C【例5】 工程队原计划6天内完成300土方工程,第一天完成60土方,现决定比原计划提前两天超额完成,问后几天每天平均至少要完成多少土方?【解析】设后几天每天平均完成x 土方,根据题意,得:60(612)300x +--≥,解得80x ≥, 每天平均至少挖土80土方.【答案】每天平均至少挖土80土方【例6】 小华家距离学校2.4千米.某一天小华从家中去上学恰好行走到一半的路程时,发现离到校时间只有12分钟了.如果小华能按时赶到学校,那么他行走剩下的一半路程的平均速度至少要达到多少?不等式的应用知识讲解【解析】设他行走剩下的一半路程的速度为x ,则122.4 1.260x -≥所以6x ≥. ∴他行走剩下的一半路程的速度至少为6千米/小时.【答案】6千米/小时.【例7】 若干名学生合影留念,需交照像费20元(有两张照片),如果另外加洗一张照片,又需收费1.5元,要使每人平均出钱不超过4元钱,并都分到一张照片,至少应有几名同学参加照像?【解析】设有x 位同学参加照像,根据题意得:20 1.5(2)4x x +-≤,解得 6.8x ≥,所以至少应有7名同学参加照像.【答案】7【例8】 某工人9月份计划生产零件180个,前10天每天平均生产6个,后经改进生产技术,提前2天并且超额完成任务,这个工人改进技术后平均每天至少生产零件多少个?【解析】这个工人改进技术后平均每天至少生产零件x 个,根据题意得:610(30102)180x ⨯+-->,263x >,这个工人改进技术后平均每天至少生产零件7个.【答案】7个【例9】 八戒去水果店买水果,八戒有45元,买了5斤香蕉,若香蕉每斤3元,西瓜每个8元,请问八戒至多能买几个西瓜?【解析】设八戒买了x 个西瓜,则35845x ⨯+≤,解得154x ≤,故八戒至多买3个西瓜. 【答案】3个【例10】 在保护地球爱护家园活动中,校团委把一批树苗分给初三⑴班同学去栽种.如果每人分2棵,还剩42棵;如果前面每人分3棵,那么最后一人得到的树苗少于5棵(但至少分得一棵). ⑴ 设初三⑴班有x 名同学,则这批树苗有多少棵?(用含x 的代数式表示). ⑵ 初三⑴班至少有多少名同学?最多有多少名【解析】⑴ 242x +;⑵ ()1242315x x +--<≤,则4044x <≤,至少有41名同学;最多有44名同学.【答案】⑴ 242x +;⑵ 至少有41名同学;最多有44名同学.【例11】 某物流公司,要将300吨物资运往某地,现有A 、B 两种型号的车可供调用,已知A 型车每辆可装20吨,B 型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装运完,问:在已确定调用5辆A型车的前提下至少还需调用B 型车多少辆?【例12】【解析】设至少还需要B 型车x 辆,依题意得20515300x ⨯+≥解得1133x ≥,∴14x =.【答案】14【例13】 商业大厦购进某种商品l000件,售价定为进价的125%.现计划节日期间按原售价让利l0%,至多售出l00件商品;而在销售淡季按原定价的60%大甩卖.为使全部商品售完后赢利,在节日和淡季之外要按原定价销售出至少多少件商品?【解析】设进价为a 元,按原定价售出x 件,节日让利售出y 件(0100y <≤).依题意有125%125%(1a x a y ⋅⋅+⋅⋅⋅-10%)(1000)125%60%1000x y a a +--⋅⋅⋅>,整理得432000x y +>,由于0100y <≤,所以425x >,因此按原定价至少销售426件.【答案】426件求范围以及具体数目问题【例14】 一堆有红、白两种颜色的球各若干个,已知白球的个数比红球少,但白球个数的2倍比红球多.若把每一个白球都记作“2”,每一个红球都记作“3”,则总数为60,那么,白球与红球各有多少个?【解析】设白球有x 个,红球有y 个,依题意有22360x y xx y <<⎧⎨+=⎩,解得7.512x <<又由26033(20)x y y =-=-,知x 是3的倍数.故白球共有9个,红球共有l4个.【答案】白球共有9个,红球共有l4个.【例15】 “六一"儿童节前夕,某消防队官兵了解到汶川地震灾区一帐篷小学的小朋友喜欢奥运福娃,就特意买了一些,送给这个小学的小朋友做为节日礼物.如果每班分10套,那么欲5套;如果前面的每个班级分13套,那么最后一个班级虽然分有福娃,但不足4套.问:该小学有多少个班级?奥运福娃共有多少套?【解析】设该小学有x 个班,则奥运福娃共有()105x +套.由题意,得()()1051314105131x x x x ⎧+<-+⎪⎨+>-⎪⎩解之,得1463x <<. ∵x 只能取整数,所以5x =,此时10555x +=.【答案】5个班级,55套福娃【例16】 某企业人事招聘工作中,共安排了五个测试项目,规定每通过一项测试得1分,未通过不得分,此次前来应聘的26人平均得分不低于4.8分,其中最低分3分,而且至少有3人得4分,则得5分的共有多少人?【解析】共有22人.设x 人得3分,y 人得4分,则得5分的共有26x y --人,则可知:()34526 4.82613x y x y x y ++--⨯⎧⎪⎨⎪⎩≥≥≥解得13x y ==,,所以2622x y --= 即得5分的共有22人.【答案】得5分的共有22人.【例17】 暑假期间小张一家为体验生活品质,自驾汽车外出旅游,计划每天行驶相同的路程.如果汽车每天行驶的路程比原计划多19公里,那么8天内它的行程就超过2200公里;如果汽车每天的行程比原计划少12公里,那么它行驶同样的路程需要9天多的时间.求这辆汽车原来每天计划的行程范围(单位:公里).【解析】设原计划每天的行程为x 公里,由题意,应有:8(19)22008(19)9(12)x x x +>⎧⎨+>-⎩,解得256260x x >⎧⎨<⎩答:所以这辆汽车原来每天计划的行程范围为超过256公里且不到260公里.【答案】这辆汽车原来每天计划的行程范围为超过256公里且不到260公里.【例18】 有人问一位老师他所教的班有多少学生,老师说:“一半的学生在学数学,四分之一的学生在学音乐,七分之一的学生在念外语,还剩不足六位同学在操场踢足球".试问:这个班共有多少学生?【答案】设该班共有x 名学生,由题意可得()6247x x x x -++<,∴3628x<,即56x <又∵x 、2x、4x 、7x 都是整数,∴28x = 答:这个班有28名学生方案决策问题【例19】 2008年北京奥运会的比赛门票开始接受公众预定.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷准备用12000元预定15张下表中球类比赛的门票:(1)若全部资金用来预定男篮门票和乒乓球门票,问这个球迷可以预订男篮门票和乒乓球门票各多少张?(2)若在准备资金允许的范围内和总票数不变的前提下,这个球迷想预定上表中三种球类门票,其中足球门票与乒乓球门票数相同,且足球门票的费用不超过男篮门票的费用,问可以预订这三种球类门票各多少张?【解析】(1)设预定男篮门票x 张,则乒乓球门票()15x -张.得:()10005001512000x x +-=,解得:9x = ∴151596x -=-=(2)设足球门票与乒乓球门票数都预定y 张,则男篮门票数为()152y -张,得8005001000(152)120008001000(152)y y y y y ++-≤⎧⎨≤-⎩解得:2545714y ≤≤. 由y 为正整数可得5y =,1525y -=【答案】 (1)男篮门票9张,则乒乓球门票6张; (2)乒乓球、足球门票、男篮门票各5张.【例20】 某零件制造车间有工人20名,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件可获利150元,每制造一个乙种零件可获利260元,在这20名工人中,车间每天安排x 名工人制造甲种零件,其余工人制造乙种零件.⑴请写出此车间每天所获利润y (元)与x (人)之间的关系式;⑵若要使每天所获利润不低于24000元,你认为至少要派多少名工人去制造乙种零件才合适?【解析】(1)依题意,得()()150626052040026000020y x x x x =⨯+⨯-=+≤≤.(2)依题意得,4002600024000x -+≥.解得5x ≤,2020515x -=-=.答:至少要派15名工人去制作乙种零件才合适. 【答案】(1)()()150626052040026000020y x x x x =⨯+⨯-=+≤≤(2)至少要派15名工人去制作乙种零件才合适.【例21】 某童装加工企业今年五月份,工人每人平均加工童装150套,最不熟练的工人加工的童装套数为平均套数的60%.为了提高工人的劳动积极性,按照完成外商订货任务,企业计划从六月份起进行工资改革.改革后每位工人的工资分两部分:一部分为每人每月基本工资200元;另一部分为每加工1套童装奖励若干元.(1)为了保证所有工人的每月工资收入不低于市有关部门规定的最低工资标准450元,按五月份工人加工的童装套数计算,工人每加工1套童装企业至少应奖励多少元(精确到分)?(2)根据经营情况,企业决定每加工1套童装奖励5元.工人小张争取六月份工资不少于1200元,问小张在六月份应至少加工多少套童装?【解析】(1)设企业每套奖励x 元,由题意得:20060%150450x +⨯≥.解得: 2.78x ≥.因此,该企业每套至少应奖励2.78元;(2)设小张在六月份加工y 套,由题意得:20051200y +≥, 解得200y ≥.【答案】(1)2.78元;(2)200【例22】 2008年8月,北京奥运会帆船比赛将在青岛国际帆船中心举行.观看帆船比赛的船票分为两种:A 种船票600元/张,B 种船票120元/张.某旅行社要为一个旅行团代购部分船票,在购票费不超过5000元的情况下,购买A B ,两种船票共15张,要求A 种船票的数量不少于B 种船票数量的一半.若设购买A 种船票x 张,请你解答下列问题:(1)共有几种符合题意的购票方案?写出解答过程; (2)根据计算判断:哪种购票方案更省钱?【解析】(1)由题意:()()6001201550001152x x x x +-⎧⎪⎨-⎪⎩≤≥ 解得:2053x ≤≤∵x 为整数,∴56x =,∴共两种购票方案:方案一:A种船票5张,B种船票10张方案二:A种船票6张,B种船票9张(2)因为B种船票价格便宜,因此B种船票越多,总购票费用少.∴第一种方案省钱,为5600120104200⨯+⨯= (元)【答案】(1)共两种购票方案:方案一:A种船票5张,B种船票10张方案二:A种船票6张,B种船票9张(2)第一种方案省钱【例23】某超市销售有甲、乙两种商品,甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元.(1)若该起市同时一次购进甲、两种商品共80件,恰好用去1600元,求能购进甲乙两种商品各多少件?(2)该超市为使甲、乙两种商品共80元的总利润(利润=售价—进价)不少于600元,但又不超过610元,请你帮助该超市设计相应的进货方案.【解析】(1)商品进了x件,则乙种商品进了80x-件,依题意得()+-⨯=1080301600x x解得:40x=即甲种商品进了40件,乙种商品进了804040-=件.(2)设购买甲种商品为x件,则购买乙种商品为()80x-件,依题意可得:()()()-+--≤≤6001510403080610x x解得:38≤x≤40即有三种方案,分别为:第一种方案:甲38件,乙42件;第二种方案:甲39件,乙41件;第三种方案:甲40件,乙40件.【答案】(1)甲种商品进了40件,乙种商品进了40件.(2)有三种方案,分别为:第一种方案:甲38件,乙42件;第二种方案:甲39件,乙41件;第三种方案:甲40件,乙40件.【例24】 某饮料厂开发了A B ,两种新型饮料,主要原料均为甲和乙,每瓶饮料中甲、乙含量如下表所示,现用甲原料和乙原料各2800克进行试生产,计划生产A B ,两种饮料共100瓶.设生产A 种饮料x 瓶,解答下列问题:⑴ 有几种符合题意的生产方案?写出解答过程;⑵ 如是A 种饮料每瓶的成本为2.60元,B 种饮料每瓶的成本为2.80元,这两种饮料成本总额为y 元,请写出y 与x 之间的关系式,并说明x 取何值会使成本总额最低?原料名称 饮料名称甲乙A 20克40克B30克 20克【解析】⑴ 设生产A 种饮料x 瓶,生产B 种饮料100x -瓶.则()()2030100280040201002800x x x x ⎧+-⎪⎨+-⎪⎩≤≤,解得2040x ≤≤,由x 为整数,共有21组解, 所有符合题意的生产方案共有21种.⑵ ()2.6 2.8100y x x =+-,整理得0.2280y x =-+,∵x 的系数为0.2-, ∴y 随x 的增大而减小.当40x =时,成本总额最低.【答案】(1)21;(2)0.2280y x =-+,当40x =时,成本总额最低.【例25】 开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小 亮用31元买了同样的钢笔2支和笔记本5本. ⑴ 求每支钢笔和每本笔记本的价格;⑵ 校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出.【解析】⑴ 设每支钢笔x 元,每支笔记本y 本.3182531x y x y +=⎧⎨+=⎩,∴35x y =⎧⎨=⎩. ⑵ 设购买钢笔a 支,笔记本b 个.4835200a b a b b a+=⎧⎪+⎨⎪⎩≤≥,∴2028a b ⎧⎨⎩≥≤,则共有五种购买方案20,21,22,23,2428,27,26,25,24a b =⎧⎨=⎩.【答案】(1)每支钢笔3元,每支笔记本5本.(5)五种方案:20,21,22,23,2428,27,26,25,24 ab=⎧⎨=⎩【例26】2007年我市某县筹备20周年县庆,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A B,两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.⑴某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.⑵若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?【解析】⑴设搭配A种造型x个,则B种造型为(50)x-个,依题意,得:8050(50)34904090(50)2950x xx x+-≤⎧⎨+-≤⎩,解得:3331xx≤⎧⎨≥⎩,∴3133x≤≤∵x是整数,∴x可取31,32,33,∴可设计三种搭配方案:①A种园艺造型31个,B种园艺造型19个;②A种园艺造型32个,B种园艺造型18个;③A种园艺造型33个,B种园艺造型17个.⑵(法1):由于B种造型的造价成本高于A种造型成本.所以B种造型越少,成本越低,故应选择方案③,成本最低,最低成本为:338001796042720⨯+⨯=(元)(法2):方案①需成本:318001996043040⨯+⨯=(元)方案②需成本:328001896042880⨯+⨯=(元)方案③需成本:338001796042720⨯+⨯=(元)【答案】(1)可设计三种搭配方案:①A种园艺造型31个,B种园艺造型19个;②A种园艺造型32个,B种园艺造型18个;③A种园艺造型33个,B种园艺造型17个.(2)方案③成本最低,最低成本为:42720(元)【例27】在车站开始检票时,有a名旅客在候车室排队等候检票进站,检票开始后,仍有旅客继续前来排队同步练习检票进站,设旅客按固定的速度增加,检票中检票的速度也是固定的,若开放一个检票口,则需要30分钟才可将等候检票的旅客全部检票完毕;若开放两个检票口,则需要10分钟便可将排队等候检票的旅客全部检票完毕;如果要在5分钟内将排队等候检票的旅客全部检票完毕,以使后来到站的旅客能随到随检,至少要同时开放几个检票口?【解析】设检票开始后每分钟增加旅客为x 人,检票速度为每个检票口每分钟检票y 人,5分钟内检票完毕要同时开放n 个检票口依题意得30301021055a x ya x y a x n y +=⎧⎪+=⨯⎨⎪+≤⋅⎩①②③②3⨯-①,得15a y =,代入①便得30a x =,再把所求的x 、y 代入③便有63a aa n +≤⋅ 因为0a >,所以11163n +≤⋅,即 3.5n ≥,n 取最小的整数,所以4n =答:至少需要同时开放4个检票口.【答案】至少需要同时开放4个检票口【例28】 某高速公路收费站有m (0m >)辆汽车排队等候通过,假设通过收费站得车流量保持不变,每个收费窗口的收费检票的速度也是不变的,若开放一个收费窗口,则需20min 才能将原来排队等候的汽车以及后来到的汽车全部收费通过。
(完整版)数学高职高考专题复习__不等式问题(可编辑修改word版)
<2222高职高考不等式问题专题复习一、不等式基础题1、不等式 x 2+1>2x 的解集是 ()A.{x|x ≠1,x ∈R}B.{x|x >1,x ∈R}C.{x|x ≠-1 ,x ∈R }D. {x|x ≠0,x ∈R} 2、不等式|x+3|>5 的解集为 ( ) A.{x|x >2|} B.{x|x <-8 或 x >2} C.{x|x >0} D.{x|x >3} 3、二次不等式 x 2 -3x+2<0 的解集为 ()A.{x ︱x ≠0}B.{x ︱1<x<2}C.{x ︱-1<x<2}D. {x ︱x>0}1 14. 已知 a>b ,那么 > a b的充要条件是()A.a 2+b 2≠0B.a>0C.b<0D.ab<05、若 a ≥b ,c ∈R ,则 () A.a 2≥b 2 B.∣ac ∣≥∣bc ∣ C.ac 2≥bc 2 D. a - 3≥b - 36、下列命题中,正确的是 ()A.若 a >b,则 ac 2>bc 2B. 若a> b ,则 a>b1 1C.若 a>b ,则 a bc 2 c 2D.若 a>b ,c>d ,则 ac>bd7、如果 a>0,b>0,那么必有()A. b > 2b - a aB. b ≥ 2b - a aC. b < 2b - a aD. b ≤ 2b - a a8、对任意 a ,b ,c∈R +,都有 ()A. b + c + a> 3 a b c B. b + c + a< 3a b c C. b + c + a ≥ 3a b c D. b + c + a≤ 3a b c9、对任意 x∈R,都有 ( )A.(x-3)2>(x-2)(x-4)B.x 2>2(X+1)C.( x - 3)2 x - 4 > x - 2D. x 2 + 1 > 1 x 2 + 110、已知 0<x<1,都有 ( )A.2x>x 2>xB.2x>x>x 2C. x 2>2x>xD.x > x 2 >2x11 、 若 不 等 式 2x 2-bx+a<0 的 解 集 为 {x ︱ 1<x<5}, 则 a= ( ) A.5 B.6 C.10 D.12x - 3 12、不等式x + 2> 1的解集是()A.{x∣x<-2}B.{x∣x<-2 或 x>3}C.{x∣x>-2}D.{x∣-2<x<3}13、不等式 lgx+lg(2x-1)<1 的解集是 ()A.{x - 2 < x < 5}2 B.{x 0 < x < 5}2C. {x< x < 5 }2D. {x x > 1}214、不等式︱x+2︱+︱x-1︱<4 的解集是()1 2A. { x - 2 < x < 1 }B.{x x < 3}2C. {x - 5 2 < x < 3}2 D. {x x > - 5}215、已知 a 是实数,不等式 2x 2-12x+a≤0 的解集是区间[1,5],那么不等式 a x 2-12x+2≤0 的 解 集 是 () A. [1, 1]5B.[-5,-1]C.[-5,5]D.[-1,1]16、不等式(1+x )(1-︱x ︱)>0 的解集是 ( )A.{x∣-1<x<1}B.{x∣x<1}C.{x∣x <-1 或 x<1}D.{x∣x<1 且 x≠-1} 17、若不等式 x 2 + m (x - 6) < 0 的解集为{x - 3 < x < 2},则 m=()A .2B .-2C .-1D .12x18、函数 y =x 2+ 1的值域为区间()A .[-2,2]B .(-2,2)C .[-1,1]D .(-1,1)a 2 +b 2 19、如果 a>b ,ab=1,则的取值范围为区间( )a - bA .[2 2,+ ∞)B .[17 , 6+ ∞)C . (3,+ ∞)D . (2 , + ∞)17、不等式︱3x -5︱<8 的解集是 . 18、不等式|5x+3|>2 的解集是 .19、不等式|3-2x|-7≤0 的解集是 . 1 3 20 、不等式|6x - |≤ 的解集是.221、不等式4-x -3 2(1 ) x-4>0 的解集是 . 222、不等式log 2 x < log 4 (3x + 4) 的解集是.二、不等式的简单应用23、已知关于 x 的不等式 x 2-ax+a >0 的解集为实数集 R ,则 a 的取值范围是 ( )A.(0,4)B.[2,+∞)C.[0,2)D.(-∞,0)∪(4,+∞) (98 年成人)x 24、函数 y =1 + x 2(x > 0) 的值域是区间.25、 已知方程( k+1) x=3k -2 的解大于 1, 那么常数 k 的取值范围是数集{kx 2 - x - 2 3 ∣}.26、解下列不等式:(x - 6)(3x + 15) (1) > 04 + x三、不等式解答题(2) 23x -1 >2(3) ( 1 )2 x 2+5 x +5 > 1(4) lg(x + 2) - lg(x - 3) > 12 4(5)∣5x -x 2∣>6(6) x + 4≥ 3x 2(7)4x -6x -2×9x <0(8) log 1 (x + 2) > log 1 (3x + 4)24(9) <x 2 x - 1(10) < 22+ 2(11) log 2 (4 + 3x - x 2) > log (4x - 2)5x - 4 (12)≤ 2x + 427、k 取什么值时,关于 x 的方程(k -2)x 2-2x+1=0 有:(1)两个不相等的实数根; (2)两个相等的实数根; (3)没有实数根.28、设实数 a 使得方程 x 2+(a -1)x+1=0 有两个实根 x 1,x 2. (1) 求 a 的取值范围;(2) 当 a 取何值时, 1 1 1 x 2取得最小值,并求出这个最小值.附:参考答案(四)1-16 ABBDC BBCAB CACCAD 17.{x - 1 < x <13318.{x x < -1或x > -1} 519.{x ︱-2≤x ≤5} 20.{x ︱ - 1 6 ≤ x ≤ 1} 21.{x ︱x<-2} 22.{x ︱0<x<4} 23.A324. (0 , 1 ] 2 25.{x ︱ k < -1或k > 3 1} 26.(1){x ︱-5<x<4 或 x>6} (2) {x ︱x> } 2 6x2 2 }(3) {x︱-32<x <-1 } (4) {x︱3<x<32} (5) {x︱x<-1 或2<x<3 或x>6}9(6) {x︱x≥-1} (7) {x︱x> log 2 2 } (8) {x︱-1<x< 0} (9) {x︱x<0 或1<x<3}3(10) {x︱-2<x≤-1 或2≤x<3} 27. (1)k<3 且k≠2 (2)k=3 (3)k>328.(1) a≤-1 或a≥3 (2) a= -1 或3,最小值为2.。
高中《不等式》知识点总结(可编辑修改word版)
2一、不等式及其解法:《不等式》知识点1. 一元二次不等式: 化标准式(即二次项系数为正) ⇒ “大于取两边,小于取中间”如:解不等式(1) x 2 + 2x - 3 ≤ 0 ;(2) - x 2 + 2x + 1 ≤ 0 解:(1)原不等式等价于 (x + 3)(x - 1) ≤ 0 , 方程(x + 3)(x - 1) = 0 的根为- 3 ,1 故解集为{x }- 3 ≤ x ≤ 1}. (2)原不等式等价于 x 2 - 2x - 1 ≥ 0 , 方程 x 2 - 2x - 1 = 0 的根为1+ ,1 - ,故解集为{x }x ≤ 1 - 2或x ≥ 1 + 2}.2. 高次不等式:“穿根法”. 化标准式(即每一项的 x 系数为都为正) ⇒ 穿根 (从右上方出发,依次穿过每个根,如遇“重根”,奇穿偶回)(x + 2)(x - 1)(x - 1)2 如:解不等式(1) x (x + 1)(x - 1) ≤ 0 ; (2) x - 3≥ 0 ; (3) (x + 1)(x + 2) < 0 解:(1)解集为{x x < -1或0 ≤ x ≤ 1}; (2)解集为{x - 2 ≤ x ≤ 1或x > 3; (3)解集为[-2,-1]3. 分式不等式:移项⇒ 通分. 如:解不等式 2 ≤ 1. 解:移项后 2 - 1 ≤ 0 ,通分后 2 - x≤ 0 ,化标准式为 x - 2 ≥ 0 ,故解集为{x x < 0或x ≥ 2} x x x x4. 绝对值不等式: x < a (a > 0) 的解集为{x - a < x < a };x > a (a > 0) 的解集为{x x > a 或x < -a } 二、1.重要不等式: a 2 + b 2 ≥ 2ab (a , b ∈ R ) ,当且仅当 a = b 时,等号成立变形: ab ≤ a 2 + b 2 2应用: a 2 + b 2 为定值时,求 ab 的最大值.2.基本不等式: ≤ a + b 2(a > 0, b > 0) 当且仅当 a = b 时,等号成立 变形一: a + b ≥ 2 a + b 变形二: ab ≤ ( )2 2应用: ab 为定值时,求 a + b 的最小值.应用: a + b 为定值时,求 ab 的最大值. 注:利用基本不等式求最值的条件:一正、二定、三相等.三、线性规划问题 1. 能画出二元一次不等式组表示的平面区域.2. 相关概念:约束条件、目标函数、可行域、可行解、最优解.3. 目标函数常见类型:(1) 求线性目标函数 z = Ax + By 的最值时,先令 z = 0 ,画出直线l : Ax + By = 0 ,①若 B > 0 ,则l 向上平移, z 变大,向下平移, z 变小;②若 B < 0 ,则l 向上平移, z 变小,向下平移, z 变大y - b (2) “斜率型”目标函数 z =x - a , z 表示可行域内动点(x , y ) 与定点(a , b ) 连线的斜率.(3)“距离型”目标函数 z = (x - a )2 + ( y - b )2 = ( 的距离的平方. (x - a )2 + ( y - b )2 )2 , z 表示可行域内动点(x , y ) 到定点(a , b )2 ab ab。
不等式概念及性质知识点详解与练习[1]
(完整word版)不等式概念及性质知识点详解与练习(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word版)不等式概念及性质知识点详解与练习(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word版)不等式概念及性质知识点详解与练习(word版可编辑修改)的全部内容。
不等式的概念及性质知识点详解及练习一、不等式的概念及列不等式不等式⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧→→≤≥≠→→表示出不等关系列出代数式设未知数步骤列不等式””、“”、“”、“”、““不等号概念 1、不等式的概念及其分类(1)定义:用“>”、“﹤”、“≠”、“≥"及“≤"等不等号把代数式连接起来,表示不等关系的式子。
a —b 〉0a>b, a —b=0a=b, a-b 〈0a<b 。
(2)分类:①矛盾不等式:不等式只是表示了某种不等关系,它表示的关系可能在任何条件下都不成立,这样的不等式叫矛盾不等式;如2>3,x 2﹤0②绝对不等式:它表示的关系可能在任何条件下都成立,这样的不等式叫绝对不等式; ③条件不等式:在一定条件下才能成立的不等式叫条件不等式。
(3)不等号的类型:①“≠”读作“不等于”,它说明两个量之间关系是不等的,但不能明确两个量谁大谁小; ②“>"读作“大于",它表示左边的数比右边的数大;③“﹤”读作“小于”, 它表示左边的数比右边的数小;④“≥”读作“大于或等于”, 它表示左边的数不小于右边的数;⑤“≤”读作“小于或等于”, 它表示左边的数不大于右边的数;注意:要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学术语的含义。
不等式常见题型及解析题
不等式常见题型及解析题一、一元一次不等式1.问题描述解不等式$a x+b>c$,其中$a>0$。
2.解法分析根据不等式的性质,我们可以将不等式转化为等价的形式:$$ax+b=c$$然后确定不等式的解集。
(1)当$a>0$时将不等式转化为等式,我们得到$ax+b=c$,解得$x=\fr ac{c-b}{a}$。
此时,对于任意一个满足$c-b>0$的$x$,都可以使得$a x+b>c$,所以解集为$\le ft(\fr ac{c-b}{a},+∞\ri gh t)$。
(2)当$a<0$时将不等式转化为等式,我们得到$ax+b=c$,解得$x=\fr ac{c-b}{a}$。
此时,对于任意一个满足$c-b<0$的$x$,都可以使得$a x+b<c$,所以解集为$\le ft(-∞,\f r ac{c-b}{a}\r igh t)$。
(3)当$a=0$时此时,不等式退化为$b>c$或$b<c$,没有变量$x$,所以不存在解。
二、一元二次不等式1.问题描述解不等式$a x^2+bx+c>0$,其中$a>0$。
2.解法分析和一元一次不等式类似,我们可以将不等式转化为等价的形式:$$ax^2+b x+c=0$$然后确定不等式的解集。
(1)当$a>0$时判断二次函数$a x^2+b x+c$的图像与$x$轴的交点数:-当判别式$Δ=b^2-4a c$大于0时,二次函数与$x$轴有两个交点,此时不等式的解集为$\le ft(-∞,x_1\ri gh t)\c up\le ft(x_2,+∞\ri g ht)$,其中$x_1$和$x_2$分别为二次方程$a x^2+b x+c=0$的两个根。
-当判别式$Δ=b^2-4a c$等于0时,二次函数与$x$轴有一个交点,此时不等式的解集为$\ma th bb{R}$,即全体实数的集合。
-当判别式$Δ=b^2-4a c$小于0时,二次函数与$x$轴没有交点,此时不等式的解集为空集。
(完整版)不等式常见题型分析
不等式的基本知识(一)不等式与不等关系1、应用不等式(组)表示不等关系; 不等式的主要性质:(1) 对称性: a b b a(2) 传达性: a b, b c a c(3) 加法法规: a ba cbc ; a b,c da c bd ( 同向可加 )(4) 乘法法规: ab, c 0 ac bc ;a b, c 0 ac bca b 0, c dacbd ( 同向同正可乘 )(5)倒 数 法 则 :a b, ab1 1(6)乘 方 法 则 :baa b 0a nb n (n N * 且 n 1)(7) 开方法规: abnanb (n N * 且 n 1)2、应用不等式的性质比较两个实数的大小:作差法(作差——变形——判断符号——结论)3、应用不等式性质证明不等式 (二)解不等式1、一元二次不等式的解法一元二次不等式 ax 2 bx c 0或 ax 2 bx c 0 a 0 的解集:设相应的一元二次方程ax 2 bx c0 a 0 的两根为 x 1、 x 2 且 x 1x 2 ,b 2 4ac ,则不等式的解的各种情况以下表:y ax 2bxcy ax 2bx cyax 2 bx c二次函数y ax 2bx c( a 0 )的图象一元二次方程有两相异实根有两相等实根ax 2bx cx 1 x 2b a 0 的根 x 1 , x 2 ( x 1 x 2 )无实根2aax 2bx c 0x xb(a 0)的解集 x x x 1或x x 2R2aax 2 bx c 0x x 1 x x 2(a0)的解集2、分式不等式的解法 :分式不等式的一般解题思路是先移项使右边为 0,再通分并将分子分母分解因式, 并使每一个因式中最高次项的系数为正 ,最后用标根法求解。
解分式不等式时, 一般不能够去分母,但分母恒为正或恒为负时可去分母。
f (x)f ( x) f ( x) g(x) 0f ( x) g(x) 0;g(x)g ( x)g( x)3、不等式的恒成立问题:常应用函数方程思想和“分别变量法”转变成最值问题若不等式 f x A 在区间 D 上恒成立 , 则等价于在区间 D 上 f x minA若不等式 fxB 在区间 D 上恒成立 , 则等价于在区间 D 上 fxmaxB(三)线性规划1、用二元一次不等式(组)表示平面地域二元一次不等式 Ax +By +C > 0 在平面直角坐标系中表示直线 Ax +By +C =0 某一侧所有点组成的平面地域 . (虚线表示地域不包括界线直线) 2、二元一次不等式表示哪个平面地域的判断方法由于对在直线 Ax +By +C =0 同一侧的所有点 ( x, y ) ,把它的坐标(x, y ) 代入 Ax +By +C ,所得到实数的符号都相同, 所以 只需在此直线的某一侧取一特别点 ( x 0, y 0) ,从 Ax 0+By 0+C 的正负即可判断 Ax +By +C > 0 表示直线哪一侧的平面地域 . (特别地,当 C ≠ 0 时,常把 原点 作为此特别点) 3、线性规划的有关看法:①线性拘束条件 :在上述问题中,不等式组是一组变量x 、y 的拘束条件,这组拘束条件都是关于 x 、 y 的一次不等式,故又称线性拘束条件.②线性目标函数 :关于 x 、 y 的一次式 z=ax+by 是欲达到最大值或最小值所涉及的变量x 、 y 的解析式,叫线性目标函数.③线性规划问题 :一般地,求线性目标函数在线性拘束条件下的最大值或最小值的问题, 统称为线性规划问题.④可行解、可行域和最优解 : 满足线性拘束条件的解(x,y )叫可行解.由所有可行解组成的会集叫做可行域.使目标函数获取最大或最小值的可行解叫线性规划问题的最优解. 4、求线性目标函数在线性拘束条件下的最优解的步骤:( 1)搜寻线性拘束条件,列出线性目标函数; ( 2)由二元一次不等式表示的平面地域做出可行域;( 3)依照线性目标函数作参照直线a x +b y =0,在可行域内平移参照直线求目标函数的最优 解(四)基本不等式ab ab21.若 a,b ∈ R ,则 a 2+b 2≥ 2ab,当且仅当 a=b 时取等号 .ab b 时取 " " 号).2.若是 a,b 是正数,那么ab(当且仅当 a2变形: 有 :a+b ≥ 2 ab ;ab ≤a b2,当且仅当 a=b 时取等号 .23.若是 a,b ∈ R+,a ·b=P (定值 ),当且仅当 a=b 时 ,a+b 有最小值 2 P ;若是 a,b ∈ R+,且 a+b=S (定值 ),当且仅当 a=b 时 ,ab 有最大值S 2.4注:( 1)当两个正数的积为定值时,能够求它们和的最小值,当两个正数的和为定值时,能够求它们的积的最小值,正所谓“积定和最小,和定积最大”.( 2)求最值的重要条件“一正,二定,三取等”4. 常用不等式 有:(1) a 2 b 2a bab2( 依照目标不等式左右的运算结构2211a b采纳 ) ;( 2) a 、b 、 c R , a 2 b 2 c 2 ab bc ca (当且仅当 ab c 时,取等号);( 3)若 a b 0, m 0 ,则bb m(糖水的浓度问题)。
在数轴上表示不等式的解集常考题(详细的答案解析)word版本
在数轴上表示不等式的解集常考题(详细的答案解析)6.5在数轴上表示不等式的解集常考题一、选择题(共24小题)1、(2009•河池)一个不等式的解集为﹣1<x≤2,那么在数轴上表示正确的是()A、B、C、D、2、(2008•重庆)不等式2x﹣4≥0的解集在数轴上表示正确的是()A、B、C、D、3、(2008•河北)把某不等式组中两个不等式的解集表示在数轴上,如图所示,则这个不等式组可能是()A、B、C、D、4、(2007•武汉)如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为()A、x<4B、x<2C、2<x<4D、x>25、(2007•内江)不等式2(x+1)<3x的解集在数轴上表示出来应为()A、B、C、D、6、(2007•金华)不等式2x﹣6>0的解集在数轴上表示正确的是()A、B、C、D、7、(2007•福州)解集在数轴上表示为如图所示的不等式组是()A、B、C、D、8、(2006•宿迁)若关于x的不等式x﹣m≥﹣1的解集如图所示,则m等于()A、0B、1C、2D、39、(2006•泸州)不等式:2x+1≥3的解集在数轴上表示正确的是()A、B、C、D、10、(2006•柳州)如图,图中阴影部分表示x的取值范围,则下列表示中正确的是()A、x>﹣3<2B、﹣3<x≤2C、﹣3≤x≤2D、﹣3<x<211、(2006•衡阳)不等式组:的解集在数轴上可表示为()A、B、C、D、12、(2006•长春)在数轴上表示不等式2x﹣6≥0的解集,正确的是()A、B、C、D、13、(2005•盐城)将不等式组的解集在数轴上表示出来,应是()A、B、C、D、14、(2005•黄石)已知关于x的不等式2x+m>﹣5的解集如图所示,则m的值为()A、1B、0C、﹣1D、﹣215、(2003•桂林)不等式组的解集在数轴上表示,正确的是()A、B、C、D、16、(2003•常州)已知关于x的不等式2x﹣m>﹣3的解集如图,则m的值为()A、2B、1C、0D、﹣117、若不等式组的解集为﹣1≤x≤3,则图中表示正确的是()A、B、C、D、18、满足﹣1<x≤2的数在数轴上表示为()A、B、C、D、19、在数轴上表示不等式x>﹣2的解集,正确的是()A、B、C、D、20、如图,用不等式表示数轴上所示不等式组的解集,正确的是()A、x<﹣1或x≥﹣3B、x≤﹣1或x>3C、﹣1≤x<3D、﹣1<x≤321、不等式组的解集在数轴上可表示为()A、B、C、D、22、下图所表示的不等式组的解集为()A、x>3B、﹣2<x<3C、x>﹣2D、﹣2>x>323、关于x的不等式﹣2x+a≤2的解集如图所示,那么a的值是()A、﹣4B、﹣2C、0D、224、(2010•黔南州)已知⊙O1和⊙O2的半径分别为1和4,如果两圆的位置关系为相交,那么圆心距O1O2的取值范围在数轴上表示正确的是()A、B、C、D、二、填空题(共2小题)25、表示不等式组的解集如图所示,则不等式组的解集是_________.26、图中是表示以x为未知数的一元一次不等式组的解集,那么这个一元一次不等式组可以是_________.答案与评分标准一、选择题(共24小题)1、(2009•河池)一个不等式的解集为﹣1<x≤2,那么在数轴上表示正确的是()A、B、C、D、考点:在数轴上表示不等式的解集。
(完整word版)高考不等式经典例题
高考不等式经典例题【例1】已知a >0,a ≠1,P =log a (a 3-a +1),Q =log a (a 2-a +1),试比较P 与Q 的大小.【解析】因为a 3-a +1-(a 2-a +1)=a 2(a -1), 当a >1时,a 3-a +1>a 2-a +1,P >Q ; 当0<a <1时,a 3-a +1<a 2-a +1,P >Q ; 综上所述,a >0,a ≠1时,P >Q . 【变式训练1】已知m =a +1a -2(a >2),n =x -2(x ≥12),则m ,n 之间的大小关系为( )A.m <nB.m >nC.m ≥nD.m ≤n【解析】选C.本题是不等式的综合问题,解决的关键是找中间媒介传递. m =a +1a -2=a -2+1a -2+2≥2+2=4,而n =x -2≤(12)-2=4.【变式训练2】已知函数f (x )=ax 2-c ,且-4≤f (1)≤-1,-1≤f (2)≤5,求f (3)的取值范围.【解析】由已知-4≤f (1)=a -c ≤-1,-1≤f (2)=4a -c ≤5. 令f (3)=9a -c =γ(a -c )+μ(4a -c ),所以⎩⎨⎧-=--=+1,94μγμγ⇒⎪⎪⎩⎪⎪⎨⎧=-=38,35μγ 故f (3)=-53(a -c )+83(4a -c )∈[-1,20].题型三 开放性问题【例3】已知三个不等式:①ab >0;② c a >db ;③bc >ad .以其中两个作条件,余下的一个作结论,则能组成多少个正确命题?【解析】能组成3个正确命题.对不等式②作等价变形:c a >d b ⇔bc -adab >0.(1)由ab >0,bc >ad ⇒bc -adab>0,即①③⇒②;(2)由ab >0,bc -adab >0⇒bc -ad >0⇒bc >ad ,即①②⇒③;(3)由bc -ad >0,bc -adab >0⇒ab >0,即②③⇒①.故可组成3个正确命题.【例2】解关于x 的不等式mx 2+(m -2)x -2>0 (m ∈R ). 【解析】当m =0时,原不等式可化为-2x -2>0,即x <-1; 当m ≠0时,可分为两种情况:(1)m >0 时,方程mx 2+(m -2)x -2=0有两个根,x 1=-1,x 2=2m .所以不等式的解集为{x |x <-1或x >2m};(2)m <0时,原不等式可化为-mx 2+(2-m )x +2<0, 其对应方程两根为x 1=-1,x 2=2m ,x 2-x 1=2m -(-1)=m +2m.①m <-2时,m +2<0,m <0,所以x 2-x 1>0,x 2>x 1, 不等式的解集为{x |-1<x <2m };②m =-2时,x 2=x 1=-1,原不等式可化为(x +1)2<0,解集为∅; ③-2<m <0时,x 2-x 1<0,即x 2<x 1,不等式解集为{x |2m <x <-1}.【变式训练2】解关于x 的不等式ax -1x +1>0. 【解析】原不等式等价于(ax -1)(x +1)>0.当a =0时,不等式的解集为{x |x <-1};当a >0时,不等式的解集为{x |x >1a 或x <-1};当-1<a <0时,不等式的解集为{x |1a <x <-1};当a =-1时,不等式的解集为∅;当a <-1时,不等式的解集为{x |-1<x <1a}.【例3】已知ax 2+bx +c >0的解集为{x |1<x <3},求不等式cx 2+bx +a <0的解集. 【解析】由于ax 2+bx +c >0的解集为{x |1<x <3},因此a <0, 解得x <13或x >1.(1)z =x +2y -4的最大值; (2)z =x 2+y 2-10y +25的最小值; (3)z =2y +1x +1的取值范围.【解析】作出可行域如图所示,并求出顶点的坐标A (1,3),B (3,1),C (7,9). (1)易知直线x +2y -4=z 过点C 时,z 最大. 所以x =7,y =9时,z 取最大值21. (2)z =x 2+(y -5)2表示可行域内任一点(x ,y )到定点M (0,5)的距离的平方, 过点M 作直线AC 的垂线,易知垂足N 在线段AC 上, 故z 的最小值是(|0-5+2|2)2=92.(3)z =2·y -(-12)x -(-1)表示可行域内任一点(x ,y )与定点Q (-1,-12)连线斜率的2倍.因为k QA =74,k QB =38,所以z 的取值范围为[34,72].【例1】(1)设x ,y ∈R +,且xy -(x +y )=1,则( )A .x +y ≥2(2+1)B .x +y ≤2(2+1) C. x +y ≤2(2+1)2 D. x +y ≥(2+1)2 (2)已知a ,b ∈R +,则ab ,a +b2,a 2+b 22,2aba +b的大小顺序是 . 【解析】(1)选A.由已知得xy =1+(x +y ),又xy ≤(x +y 2)2,所以(x +y2)2≥1+(x +y ). 解得x +y ≥2(2+1)或x +y ≤2(1-2). 因为x +y >0,所以x +y ≥2(2+1). (2)由a +b 2≥ab 有a +b ≥2ab ,即a +b ≥2ab ab ,所以ab ≥2aba +b .又a +b 2=a 2+2ab +b 24≤2(a 2+b 2)4,所以a 2+b 22≥a +b2, 所以a 2+b 22≥a +b 2≥ab ≥2aba +b. 【变式训练1】设a >b >c ,不等式1a -b +1b -c >λa -c 恒成立,则λ的取值范围是 .【解析】(-∞,4).因为a >b >c ,所以a -b >0,b -c >0,a -c >0.而(a -c )(1a -b +1b -c )=[(a -b )+(b -c )](1a -b +1b -c)≥4,所以λ<4. 【例2】(1)已知x <54,则函数y =4x -2+14x -5的最大值为 ;【解析】(1)因为x <54,所以5-4x >0. 所以y =4x -2+14x -5=-(5-4x +15-4x )+3≤-2+3=1.当且仅当5-4x =15-4x,即x =1时,等号成立. 所以x =1时,y max =1.【变式训练2】已知x ,a ,b ,y 成等差数列,x ,c ,d ,y 成等比数列,求(a +b )2cd 的取值范围.【解析】由等差数列、等比数列的性质得a +b =x +y ,cd =xy ,所以(a +b )2cd =(x +y )2xy =2+x y +y x ,当y x >0时,(a +b )2cd ≥4;当yx <0时,(a +b )2cd ≤0,故(a +b )2cd的取值范围是(-∞,0]∪[4,+∞).例 已知28,,0,1x y x y>+=,求xy 的最小值。
高中数学基本不等式题型总结word版
高中数学基本不等式题型总结word版专题根本不等式知识根本不等式:ABXXX,B0(1)根本不等式成立的条件:;(2)等号成立的条件:当且仅当时取等号2.几个重要的不等式(1)ABA,BR;(2)A+BXXX,B0;分析的巧妙替换0,Y0,且_Y,贝U4的最小值为4_Y0,Y0,且_Y3,那么4的最小值为4_Y020XX年天津)设AB2,B0,那么扁早的最小值为数A,B满足AB1,那么A2B的最小值为数A,B满足AB1,贝UA2BAB的最小值为_,Y满足_2Y1,那么冬旦的最小值为_Y0,B0,假设不等式AB 总能成立,那么实数M的最大值为2AB_2A_BY1A,B0与圆_21相交A,B 两点,O为坐标原点AOB为直角三角形,那么的最小值为AB11的最小值AB22直线2A_BY20A0,B0始终平分圆_Y2_4Y10的周长,那么110,Y0,LG2_LG4YLG2,那么的最小值是_YA.6B.5C.322D.4、2F_4_14_1,0,_20,且F_1F_21,那么F_1_2的最小值为与“积混合型4相交所得弦,NR,假设直线L:M_NY10与_轴相交点A,与Y轴相交B,且I与圆_2Y2的长为2,O为坐标原点,贝UAOB面积的最小值为11,YR,A1,B1,假设A_BY2,A2B8,那么一一的最大值为_Y数A,B满足AB2AB1,那么AB的最小值为,NR,假设直线M1_N1Y20与圆_221Y11相切,那么MN的取值范围是(A)1.3,1.3(B),1313,(C)222,222(D),22、2.222,1I1,Y1,且一IN_,,LNY成等比数列,那么_Y的最小值为.440,BO,AB8,那么当A的值为时LOG2ALOG22B取得最大值.G2ALOG2B1,那么3A9B的最小值为【例9以下说法正确的选项是A.函数Y_的最小值为2、2_B.函数YSIN_0_的最小值为22SIN_RC.函数Y_|的最小值为2运_D函数YLG_孟的最小值为2【例10设_,YR,且_Y5,那么3_3Y的最小值是A.10B.63C.46D.18、3精选。
(完整word版)不等式应用题
例1某蔬菜经营户从蔬菜批发市场批发蔬菜进行零售,部分蔬菜批发价格与零售价格如下表:请解答下列问题:(1)第一天,该经营户批发西红柿和西兰花两种蔬菜共300kg ,用去了1520元钱,这两种蔬菜当天全部售完后一共能赚多少元钱?(2)第二天,该经营户用1520元钱仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发西红柿多少kg?例2学校准备购进一批节能灯,已知1只A 型节能灯和3只B 型节能灯共需26元;3只A 型节能灯和2只B 型节能灯共需29元.(1)求一只A 型节能灯和一只B 型节能灯的售价各是多少元?(2)学校准备购进这两种型号的节能灯共50只,并且A 型节能灯的数量不多于B 型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.例3某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如表:已知用600元购进的餐桌数量与用160元购进的餐椅数量相同.(1)求表中a的值;(2)若该商场购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张.该商场计划将一半的餐桌成套(一张餐桌和四张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售.请问怎样进货,才能获得最大利润?最大利润是多少?(3)由于原材料价格上涨,每张餐桌和餐椅的进价都上涨了10元,按照(2)中获得最大利润的方案购进餐桌和餐椅,在调整成套销售量而不改变销售价格的情况下,实际全部售出后,所得利润比(2)中的最大利润少了2250元.请问本次成套的销售量为多少?例1义洁中学计划从荣威公司购买A、B两种型号的小黑板,经洽谈,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需要多少元?(2)根据义洁中学实际情况,需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的.请你通过计算,求出义洁中学从荣威公司购买A、B两种型号的小黑板有哪几种方案?例2甲、乙两个厂家生产的办公桌和办公椅的质量、价格一致,每张办公桌800元,每张椅子80元.甲、乙两个厂家推出各自销售的优惠方案,甲厂家:买一张桌子送三张椅子;乙厂家:桌子和椅子全部按原价8折优惠.现某公司要购买3张办公桌和若干张椅子,若购买的椅子数为x张(x≥9).(1)分别用含x的式子表示甲、乙两个厂家购买桌椅所需的金额;(2)购买的椅子至少多少张时,到乙厂家购买更划算?例3某学校将周三“阳光体育”项目定为跳绳活动,为此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳单价的两倍多4元,且购买2条长跳绳与购买5条短跳绳的费用相同.(1)两种跳绳的单价各是多少元?(2)若学校准备用不超过2000元的现金购买200条长、短跳绳,且短跳绳的条数不超过长跳绳的6倍,问学校有几种购买方案可供选择?【过关检测】1.为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A,B两种型号的学习用品共1000件,已知A型学习用品的单价为20元,B型学习用品的单价为30元。
不等式的证明分析法与综合法习题(可编辑修改word版)
2.3 不等式的证明(2)——分析法与综合法习题知能目标锁定1.掌握分析法证明不等式的方法与步骤,能够用分析法证明一些复杂的不等式;2.了解综合法的意义,熟悉综合法证明不等式的步骤与方法;重点难点透视1.综合法与分析法证明不等式是重点,分析法是证明不等式的难点.方法指导1.分析法⑴分析法是证明不等式的一种常用方法.它的证明思路是:从未知,看需知,逐步靠已知.即”执果索因”.⑵分析法证明的逻辑关系是:结论 B ⇐B1 ⇐B2⇐ ⇐Bn⇐A⑶用分析法证题一定要注意书写格式,并保证步步可逆.(A 已确认).⑷用分析法探求方向,逐步剥离外壳,直至内核.有时分析法与综合法联合使用.当不等式两边有多个根式或多个分式时,常用分析法.2.综合法⑴ 综合法的特点是 :由因导果 .其逻辑关系是 :已知条件A ⇒B1 ⇒B2⇒ ⇒Bn⇒B (结论),后一步是前一步的必要条件.⑵在用综合法证题时要注意两点:常用分析法去寻找证题思路,找出从何处入手, 将不等式变形,使其结构特点明显或转化为容易证明的不等式.精题巧练一.夯实双基1.若a>2,b>2,则a b 与a+b 的大小关系是a b( )a+bA.= B. < C.> D.不能确定2.设b >a > 0 ,则下列不等式中正确的是()A.lga> 0 B. >b -a C.a<1 +aD.b<b + 1 b 1 +a 2 +a a a +1b -a2 xyb + 2 a bc x + y 3. 若 a ,b,c ∈ R + ,且 a+b+c=1,那么 1a + 1 +b 1有最小值( ) cA.6B.9C.4D.34. 设a = 2, b = - 3, c = - ,那么 a ,b,c 的大小关系是( )A .a > b > cB .a > c > bC .b > a > cD .b > c > a 5. 若 x >y>1,则下列 4 个选项中最小的是( )A. x + yB.2xyC. D. 1 ( 1 + 1 )2 二.循序厚积x + y2 x y6. 已知两个变量 x,y 满足 x+y=4,则使不等式 1 +4≥ m 恒成立的实数m 的取值范围是;7. 已知 a,b 为正数,且 a+b=1 则 x y+ 的最大值为 ;8. 若 a ,b,c ∈ R +,且 a +b+c=1,则+ + 的最大值是;9. 若 x y+yz+zx=1,则 x 2 + y 2 + z 2 与 1 的关系是;10. 10.若a > b > 0, m = - b , n = ,则 m 与 n 的大小关系是.三、提升能力11. a 、b 、c 、d 是不全相等的正数,求证:(a b+cd)(ac+bd)>abcd12.设 x >0,y>0,求证:≤ 213. 已知 a,b ∈ R + ,且 a+b=1,求证: (a + 1 )2 + (b + 1 )2≥25. a b27 6 a + 2 aa - bx + y214. 设 a,b,c 是不全相等的正数,求证: lg a + b + lg b + c + lg a + c> lg a + lg b + lg c .2 2 215. 如果直角三角形的周长为 2,则它的最大面积是多少?友情提示易错点:乱用均值不等式;误用分析法,把”逆求”作为”逆推”,以证” p ⇒ q 为例, 这时的推理过程就是: q ⇒ q 1 ⇒ q 2 ⇒ ⇒ q n ⇒ p .证明的结果是证明了逆命题”q ⇒ p ”.而正确的推证过程是: q ⇐ q 1 ⇐ q 2 ⇐ ⇐ q n ⇐ p . 易忽视点:均值不等式中能否取道”=”的条件分析易被忽视导致出错. 解题规律:用定理,抓步骤,重格式.。
(完整word版)多次运用基本不等式错解例析
多次运用基本不等式错解例析在《不等式》的学习中,我们结识了一个重要的不等式定理,即基本不等式(又叫均值定理),这个定理在解题中应用十分广泛,运用基本不等式时除了要注意 “一正、二定、三相等” 的条件以外,当多次运用基本不等式时,如果忽视了取等号的条件也一样会功败垂成,前功尽弃.例1.设x ∈(0,π),则函数f(x)=sinx+xsin 4的最小值是( ) A .4 B. 5 C.3 D.6 【典型错误】因为x ∈(0,π),所以sinx>0,x sin 4>0, f(x)=sinx+x sin 4≥2x x sin 4sin ⋅=4 因此f(x)的最小值是4.故选A.【错因分析】忽略了均值不等式a+b ≥2ab (a>O,b>0)中等号成立的条件:当且仅当a=b 时等号成立.事实上,sinx=xsin 4不可能成立,因为它成立的条件是sinx =±2,这不可能. 【正确解答1】f(x)=sinx+x sin 4=sinx+x sin 1+x sin 3,因为sinx+xsin 1≥2, 当且仅当sinx=1,即x=2π时等号成立.又x sin 3≥3,当且仅当sinx=1,即x=2π时等号成立.所以f(x)=sinx+xsin 4≥2+3=5,f(x)的最小值是5. 故选B. 【正确解答2】令sinx=t,因为x ∈(0,π),所以0<t ≤1,所给函数变为y=t+t 4易知此函数在区间(0,1]上是减函数,所以,当t=1时,y 取最小值5.故选B.例2.若实数m,n,x,y 满足条件m 2+n 2=a,x 2+y 2=b(a ≠b) ,则mx+ny 的最大值是 .【典型错误】因为a+b=m 2+x 2+n 2+y 2≥2mx+2ny,所以mx+ny ≤2b a +,即mx+ny 的最大值为2b a +. 【错因分析】m 2+x 2≥2mx 的等号成立的条件是m=x,n 2+y 2≥2ny 的等号成立的条件是n=y.所以m 2=x 2,n 2=y 2⇒m 2+n 2=x 2+y 2即a=b,与a ≠b 矛盾.因此mx+ny 不可能取到最大值2b a +. 【正确解答】令m=a cos α,n=a sin α,x=b cos β,y=b sin β,则mx+ny=ab (cos αcos β+sin αsin β)=ab cos(α-β)≤ab ,所以mx+ny 的最大值是ab .例3.求函数f(x)=x 2+324-x x (x 2>3)的最小值. 【典型错误】f(x)=x 2+33233)3(23333224224224≥+=+-⋅-≥+-+-=-x x x x x x x x x ,因此函数f(x)的最小值为3.【错因分析】上述解答中两个等号成立的条件不一致,第一个等号成立的条件是x 2-3=324-x x ,即x 2=23;第二个等号成立的条件是x 2=0.因此f(x)=3不可能取到.【正确解答】f(x)=x 2+324-x x =x 2+39)3(6)96(2224-++++-x x x x =(x 2-3)+ 26939)3(2339)3(6)3(222222≥+-+-=+-+-+-x x x x x +9,当x 2=3+23时取等号,因此函数f(x)的最小值为62+9.。
(完整word)专题:基本不等式常见题型归纳(学生版),推荐文档
专题:基本不等式基本不等式求最值 利用基本不等式求最值:一正、二定、三等号.三个不等式关系:(1)a ,b ∈R ,a 2+b 2≥2ab ,当且仅当a =b 时取等号.(2)a ,b ∈R +,a +b ≥2,当且仅当a =b 时取等号.ab (3)a ,b ∈R ,≤()2,当且仅当a =b 时取等号.a 2+b 22a +b 2上述三个不等关系揭示了a 2+b 2 ,ab ,a +b 三者间的不等关系.其中,基本不等式及其变形:a ,b ∈R +,a +b ≥2(或ab ≤()2),当且仅当a =b 时ab a +b2取等号,所以当和为定值时,可求积的最值;当积为定值是,可求和的最值.【题型一】利用拼凑法构造不等关系【典例1】已知且,则的最小值为 .1,,b a 7log 3log 2=+a b b a 112-+b a 练习:1.若实数,x y 满足0x y >>,且22log log 1x y +=,则22x y x y+-的最小值为 .2.若实数满足,则的最小值为 .,x y 133(02xy x x +=<<313x y +-3.已知,且,则的最小值为 .0,0,2a b c >>>2a b +=2ac c c b ab +-+【典例2】已知x ,y 为正实数,则+的最大值为.4x 4x +y y x +y 【典例3】若正数、满足,则的最小值为__________.a b 3ab a b =++a b +变式:1.若,且满足,则的最大值为_________.,a b R +∈22a b a b +=+a b +2.设,,则的最小值为_______0,0>>y x 822=++xy y x y x 2+3.设,,则的最大值为_________ R y x ∈,1422=++xy y x y x +24.已知正数,满足,则的最小值为 a b 195a b+=-ab【题型二】含条件的最值求法【典例4】已知正数满足,则的最小值为 y x ,1=+y x 1124+++y x 练习1.已知正数满足,则的最小值为 .y x ,111=+y x 1914-+-y y x x2.已知正数,x y 满足22x y +=,则8x y xy +的最小值为 .3.已知函数的图像经过点,如下图所示,(0)x y a b b =+>(1,3)P 则的最小值为 .411a b +-4.己知a ,b 为正数,且直线 60ax by +-=与直线 2(3)50x b y +-+=互相平行,则2a+3b 的最小值为________.5.常数a ,b 和正变量x ,y 满足ab =16,+=.若x +2y 的最小值为64,则a x 2b y 12a b =________.6.已知正实数满足,则的最大值为 .,a b ()()12122a b b b a a +=++ab【题型三】代入消元法【典例5】(苏州市2016届高三调研测试·14)已知,,则的14ab =,(0,1)a b ∈1211a b +--最小值为 .练习1.设实数x ,y 满足x 2+2xy -1=0,则x 2+y 2的最小值是 .2.已知正实数x ,y 满足,则x + y 的最小值为 .3.已知正实数满足,则的最小值为 .,x y (1)(1)16x y -+=x y +4.若,且,则使得取得最小值的实数= 。
有关基本不等式的常见题型
2023年11月上半月㊀学习指导㊀㊀㊀㊀有关基本不等式的常见题型◉安徽省涡阳第一中学㊀李友转㊀㊀摘要:基本不等式是高考考查的热点,在选择题㊁填空题和解答题中均有所涉及.同时,基本不等式也是解决有关最值问题的重要工具之一,因此熟练掌握与基本不等式有关的题型及其求解方法,是顺利解决此类问题的关键.本文中主要针对基本不等式及其常见题型进行归纳总结.关键词:基本不等式;变量替换;配凑法1直接应用类[1]此类问题直接利用基本不等式求最值即可.注意 一正㊁二定㊁三相等 这三个条件缺一不可.例1㊀已知0<x <1,则x (3-3x )取得最大值时x 的值为.分析:满足 一正㊁二定㊁三相等 这三个条件,可以直接利用基本不等式求解.解析:由0<x <1,得1-x >0.由基本不等式,可得x (3-3x )=3x (1-x )ɤ3(x +1-x2)2=34,当且仅当x =1-x ,即x =12时,等号成立.因此x (3-3x )取最大值时,x 的值为12.例2㊀(2015年天津高考 文)已知a >0,b >0,a b =8,则当a 的值为时,l o g 2a l o g 2(2b )取得最大值.分析:本题结合对数知识考查基本不等式的应用,满足 一正㊁二定㊁三相等 这三个条件,直接利用基本不等式反解出参数的值.解析:l o g 2a l o g 2(2b )ɤl o g 2a +l o g 2(2b )2éëêêùûúú2=14(l o g 216)2=4,当且仅当a =2b 时等号成立.又a >0,b >0,a b =8,所以a =4,b =2.2恒等变形类[2]此类问题一般不能直接使用基本不等式,要从整体上把握式子的结构特征,对不满足使用基本不等式条件的式子通过 变形 来转换,但不论怎么变形,都需要根据条件转化成凑和为定值时求积最大,或凑积为定值求和最小.2.1拆项法例3㊀已知t >0,则函数y =t 2-4t +1t的最小值为.分析:将y =t 2-4t +1t进行裂项拆分,可以构造出乘积为定值的式子,进而利用基本不等式求得和的最小值.解析:y =t 2-4t +1t =t +1t-4.因为t >0,所以利用基本不等式可得y =t +1t -4ȡ2t 1t-4=-2,当且仅当t =1t,即t =1时,等号成立.故所求最小值为-2.2.2凑项法例4㊀若x >2,则函数y =x +1x -2的最小值为.分析:题目要求和的最小值,就要配凑积为定值,所以要减去2,再加上2,保持原式不变,进而利用基本不等式求解.解析:函数y =x +1x -2可以凑项变为y =x +1x -2=x -2+1x -2+2.由x >2,得x -2>0.故y =x -2+1x -2+2ȡ2(x -2)1x -2+2=4,当且仅当x -2=1x -2时,即x =3时,等号成立.因此所求最小值为4.例5㊀函数y =x 2+2x -1(x >1)的最小值是.34学习指导2023年11月上半月㊀㊀㊀分析:本题中函数解析式为一个分式,不利于求出最小值,所以可通过分离常数,凑出积为定值的式子,再利用基本不等式求解.解析:由x >1,得x -1>0.因此原函数可凑项得y =x 2+2x -1=(x -1)2+2(x -1)+3x -1=x -1+3x -1+2.利用基本不等式,可得y =x -1+3x -1+2ȡ2(x -1)3x -1+2=23+2,当且仅当x -1=3x -1,即x =1+3时,等号成立.因此原函数的最小值为23+2.2.3凑系数法例6㊀若0<x <83,则函数y =x (8-3x )的最大值为.分析:要求积的最大值,就要配凑出和为定值的式子,再利用基本不等式求解.解析:由0<x <83,得8-3x >0.于是y =x (8-3x )=13ˑ3x (8-3x ).因此,利用基本不等式可得y =133x (8-3x )ɤ13ˑ(3x +8-3x2)2=163,当且仅当3x =8-3x ,即x =43时,等号成立.故原函数的最大值为163.3条件最值类在求解含有两个变量的代数式的最值问题时,常通过变量替换或换 1法[3]来构造基本不等式求解.例7㊀已知a >0,b >0,a +b =1,则1a +1b的最小值为.分析:利用换 1 法,出现积为定值的式子,进而利用基本不等式来求和的最小值.解析:由a >0,b >0,a +b =1,可得1a +1b =(a +b )(1a +1b )=2+b a +ab .因此,利用基本不等式可得1a +1b =2+b a +a b ȡ2b a ab +2=4,当且仅当a =b =12时,等号成立.故1a +1b的最小值为4.例8㊀若正数x ,y 满足x +3y =5x y ,则3x +4y 的最小值是.分析:由题意可得15(1y +3x)=1,利用换 1法得到积为定值的式子,进而利用基本不等式来求和的最小值.解析:由x >0,y >0,x +3y =5x y ,可得15(1y +3x)=1.所以,对所求式子进行整体代换,得3x +4y =(3x +4y )ˑ15(1y +3x )=15(3xy+12y x )+135.利用基本不等式,可得15(3x y +12y x )+135ȡ25(3x yˑ12y x )+135=5,当且仅当3x y=12y x ,即x =1,y =12时,等号成立.故所求最小值为5.例9㊀(2015年福建高考 文)若直线x a +yb=1(a >0,b >0)过点(1,1),则a +b 的最小值等于(㊀㊀).A.2㊀㊀㊀㊀B .3㊀㊀㊀㊀C .4㊀㊀㊀㊀D.5分析:本题借助直线背景考查基本不等式的应用,简单利用换 1法即可求解.解析:由直线过点(1,1),得1a +1b=1.所以a +b =(a +b )(1a +1b )=2+b a +a b.又a >0,b >0,所以2+b a +a b ȡ2+2b a ˑa b=4,当且仅当a =b =2时,等号成立.故所求最小值为4.解决基本不等式的相关题型,首先要掌握利用基本不等式求最值时的前提,即:(1)非零的各数(或式)均为正;(2)和或积为定值;(3)等号能否成立.这三个条件缺一不可.其次就是辨别所求式子的类型,根据已知条件用相应的方法解题即可.参考文献:[1]耿道永.高考考查基本不等式的四种题型[J ].高中生,2016(18):28G29.[2]谈杰.基本不等式[J ].数学教学通讯,2012(32):28G29.[3]庄德明.浅析高中数学 基本不等式 常见题型[J ].新课程(中),2014(12):224G225.Z44。
(2021年整理)柯西不等式(原始版)题型分类
(完整版)柯西不等式(原始版)题型分类编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)柯西不等式(原始版)题型分类)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)柯西不等式(原始版)题型分类的全部内容。
(完整版)柯西不等式(原始版)题型分类编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望 (完整版)柯西不等式(原始版)题型分类这篇文档能够给您的工作和学习带来便利.同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为〈(完整版)柯西不等式(原始版)题型分类〉这篇文档的全部内容。
柯西不等式(原始版)的习题分类柯西不等式已经成为高考当中的新贵,去年全国卷II 的选修4—5不等式选讲,已经出现了柯西不等式命题,因此对柯西不等式几种典型习题加以分类,有助于知识的掌握。
一、柯西不等式(原始版) 1、()()()2221122212221b a b a b baa +≥++,当且仅当向量()21,a a a =,()21,b b b = 同向时候成立,如果0,21≠b b 时,那么当且仅当2211b a b a =时成立。
2、()()()2332211232221232221b a b a b a b b b a a a ++≥++++,当且仅当321321::::b b b a a a =时等号成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n a1不等式的基本知识(一)不等式与不等关系1、应用不等式(组)表示不等关系; 不等式的主要性质:(1) 对称性: a > b ⇔ b < a(2) 传递性: a > b , b > c ⇒ a > c(3) 加法法则: a > b ⇒ a + c > b + c ; a > b , c > d ⇒ a + c > b + d (同向可加)(4) 乘法法则: a > b , c > 0 ⇒ ac > bc ; a > b , c < 0 ⇒ ac < b ca >b > 0,c >d > 0 ⇒ ac > bd (同向同正可乘)(5) 倒 数 法 则 : a > b , ab > 0 ⇒ 1 < 1a b (6) 乘 方 法 则 :a >b > 0 ⇒ a n > b n (n ∈ N * 且n > 1)(7) 开方法则: a > b > 0 ⇒ > n b (n ∈ N * 且n > 1)2、应用不等式的性质比较两个实数的大小:作差法(作差——变形——判断符号——结论)3、应用不等式性质证明不等式 (二)解不等式1、一元二次不等式的解法一元二次不等式 ax 2 + bx + c > 0或ax 2 + bx + c < 0(a ≠ 0) 的解集:设相应的一元二次方程 ax 2 + bx + c = 0(a ≠ 0)的两根为 x 、x 且 x 1 ≤ x 2 , ∆ = b 2 - 4ac ,则不等式的解的各种情况如下表:y = ax 2+ bx + cy = ax 2+ bx + cy = ax 2+ bx + c2⎩分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。
解分式不等式时,一般 不能去分母,但分母恒为正或恒为负时可去分母。
f (x ) > 0 ⇔f (x )g (x ) > 0;f (x ) ≥ 0 ⇔⎧ f (x )g (x ) ≥ 0g (x )g (x )⎨g (x ) ≠ 03、不等式的恒成立问题:常应用函数方程思想和“分离变量法”转化为最值问题若不等式 f (x ) > A 在区间 D 上恒成立,则等价于在区间 D 上 f ( x ) 若不等式 f (x ) < B 在区间 D 上恒成立,则等价于在区间 D 上 f ( x ) minmax(三)线性规划1、用二元一次不等式(组)表示平面区域二元一次不等式 Ax +By +C >0 在平面直角坐标系中表示直线 Ax +By +C =0 某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线) 2、二元一次不等式表示哪个平面区域的判断方法由于对在直线 Ax +By +C =0 同一侧的所有点( x , y ),把它的坐标( x , y )代入 Ax +By +C ,所得 到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x 0,y 0),从 Ax 0+By 0+C 的正负即可判断 Ax +By +C >0 表示直线哪一侧的平面区域.(特殊地,当 C ≠0 时,常把原点作为此特殊点) 3、线性规划的有关概念:①线性约束条件:在上述问题中,不等式组是一组变量 x 、y 的约束条件,这组约束条件都是关于 x 、y 的一次不等式,故又称线性约束条件.②线性目标函数:关于 x 、y 的一次式 z =a x +b y 是欲达到最大值或最小值所涉及的变量 x 、y 的解析式,叫线性目标函数.③线性规划问题:一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题. ④可行解、可行域和最优解:满足线性约束条件的解(x ,y )叫可行解. 由所有可行解组成的集合叫做可行域.使目标函数取得最大或最小值的可行解叫线性规划问题的最优解. 4、求线性目标函数在线性约束条件下的最优解的步骤: (1) 寻找线性约束条件,列出线性目标函数;(2) 由二元一次不等式表示的平面区域做出可行域;(3) 依据线性目标函数作参照直线 a x +b y =0,在可行域内平移参照直线求目标函数的最优解(四)基本不等式≤a + b21. 若 a,b ∈R ,则 a 2+b 2≥2ab ,当且仅当 a =b 时取等号. a + b2.如果 a,b 是正数,那么 2≥ ab (当且仅当a = b 时取"="号).> A < B⎛ a + b ⎫2变形: 有:a+b ≥ 2 ;ab ≤⎝ ⎪ ,当且仅当 a=b 时取等号. ⎭3. 如果 a,b ∈R+,a ·b=P (定值),当且仅当 a=b 时,a+b 有最小值2 P ;S 2如果 a,b ∈R+,且 a+b=S (定值),当且仅当 a=b 时,ab 有最大值 .4注:(1)当两个正数的积为定值时,可以求它们和的最小值,当两个正数的和为定值时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的重要条件“一正,二定,三取等”4. 常用不等式有:(1≥ a + b ≥≥ 2 (根据目标不等式左右的运算结构2 1 + 1 a b选用);(2)a 、b 、c ∈ R , a 2 + b 2 + c 2 ≥ ab + bc + ca (当且仅当 a = b = c 时,取等号);b b + m(3)若 a > b > 0, m > 0 ,则 a < a + m(糖水的浓度问题)。
不等式主要题型讲解(一) 不等式与不等关系题型一:不等式的性质1. 对于实数 a , b , c 中,给出下列命题:① 若a > b ,则ac 2 > bc 2 ; ② 若ac 2 > bc 2 ,则a > b ; ③ 若a < b < 0,则a 2 > ab > b 2 ; ④ 若a < b < 0,则1 < 1; a b⑤ 若a < b < 0,则b> a; ⑥ 若a < b < 0,则a > b ;a b⑦ 若c > a > b > 0,则 a > b ; ⑧ 若 a > b , 1 > 1,则 a > 0, b < 0 。
c - a c - b a b其中正确的命题是题型二:比较大小(作差法、函数单调性、中间量比较,基本不等式)2. 设a > 2 , p = a +1a - 2, q = 2-a 2 +4a -2 ,试比较 p , q 的大小3. 比较 1+ log x 3 与2 log x 2(x > 0且x ≠ 1) 的大小4. 若 a > b > 1, P = 是.lg a ⋅ lg b , Q = 1(lg a + lg b ), R =lg( 2a + b2) , 则 P , Q , R 的大小关系 ab 2(二)解不等式题型三:解不等式5. 解不等式6. 解不等式(x -1)(x + 2)2≥ 0 。
7. 解不等式5 -xx2 - 2x -3<-18. 不等式ax2+bx +12 > 0 的解集为{x|-1<x<2},则a = , b=9.关于x 的不等式ax -b > 0 的解集为(1,+∞) ,则关于x 的不等式ax +b> 0 的解集为x - 210.解关于 x 的不等式ax2- (a +1)x +1 < 0题型四:恒成立问题11.关于x 的不等式a x2+ a x+1>0 恒成立,则a 的取值范围是12.若不等式x2- 2mx + 2m +1 > 0 对0 ≤x ≤1的所有实数x 都成立,求m 的取值范围.13.已知x > 0, y > 0 且1+9=1,求使不等式x +y ≥m 恒成立的实数m 的取值范围。
x y(三)基本不等式题型五:求最值≤a +b214.(直接用)求下列函数的值域1 1(1)y=3x 2+2x 2(2)y=x+x15.(配凑项与系数)(1)已知x <5,求函数y = 4x - 2 +414x -5的最大值。
(2)当时,求y =x(8 - 2x) 的最大值。
16.(耐克函数型)求y =x2+ 7x +10x +1(x >-1) 的值域。
注意:在应用基本不等式求最值时,若遇等号取不到的情况,应结合函数f (x) =x +axx2+ 517.(用耐克函数单调性)求函数y =的单调性。
18.(条件不等式)(1)若实数满足a +b = 2 ,则3a+ 3b的最小值是.(2)已知x > 0, y > 0 ,且1+9=1,求x +y 的最小值。
xy1+y 2 ⎪ ⎩y 2(3) 已知 x ,y 为正实数,且 x 2+ 2=1,求 x 的最大值.1(4) 已知 a ,b 为正实数,2b +ab +a =30,求函数 y = 的最小值.ab题型六:利用基本不等式证明不等式19. 已知 a , b , c 为两两不相等的实数,求证: a 2 + b2+ c 2> ab + bc + ca20. 正数 a ,b ,c 满足 a +b +c =1,求证:(1-a )(1-b )(1-c )≥8abc21. 已知 a 、b 、c ∈ R + ,且 a + b + c = 1。
求证: ⎛ 1 -1⎫⎛ 1 -1⎫⎛ 1 -1⎫≥ 8a ⎪b ⎪c ⎪ ⎝ ⎭⎝ ⎭⎝ ⎭题型七:均值定理实际应用问题:22. 某工厂拟建一座平面图形为矩形且面积为 200m 2 的三级污水处理池(平面图如图),如果池外圈周壁建造单价为每米 400 元,中间两条隔墙建筑单价为每米 248元,池底建造单价为每平方米 80 元,池壁的厚度忽略不计,试设计污水池的长和宽,使总造价最低,并求出最低造价。
(四)线性规划 题型八:目标函数求最值⎧2x + y - 3 ≤ 0 23. 满足不等式组⎨7x + y - 8 ≤ 0 ,求目标函数 k = 3x + y 的最大值 ⎪ x , y > 0⎪⎩⎨ ⎩已知实系数一元二次方程 x 2 + (1+ a )x + a + b +1 = 0 的两个实根为 x 、 x ,并且24. 24.0 < x 1< 2 , x 2 > 2 .则b a -11 2的取值范围是⎧ x ≥ 0⎪⎨3x + 4 y ≥ 4 x , y⎪ y ≥ 0 x 2 + y 2 + 2x 25. 已知 满足约束条件: ⎩ ,则 的最小值是⎧x + 2 y - 3 ≤ 0 26. 已知变量 x , y 满足约束条件⎨x + 3y - 3 ≥ 0 .若目标函数 z = ax + y (其中 a>0)仅在点⎪ y -1 ≤ 0 (3,0)处取得最大值,则 a 的取值范围为。