二次函数的图象与各项系数之间的关系

合集下载

二次函数中各项系数abc与图像的关系

二次函数中各项系数abc与图像的关系

二次函数中各项系数a ,b ,c 与图像的关系一、首先就y=ax 2+bx+c (a≠0)中的a ,b ,c 对图像的作用归纳如下:1 a 的作用:决定开口方向:a > 0开口向上;a < 0开口向下;决定张口的大小:∣a ∣越大,抛物线的张口越小.2 b 的作用:b 和a 与抛物线图像的对称轴、顶点横坐标有关.b 与a 同号,说明02<-a b ,则对称轴在y 轴的左边; b 与a 异号,说明−b 2a >0,则对称轴在y 轴的右边;特别的,b = 0,对称轴为y 轴.3 c 的作用:c 决定了抛物线与y 轴的交点纵坐标.抛物线与y 轴的交点(0,c )c > 0 抛物线与y 轴的交点在y 轴的正半轴;c < 0 抛物线与y 轴的交点在y 轴的负半轴;特别的,c = 0,抛物线过原点.4 a,b,c 共同决定判别式?=b 2−4ac 的符号进而决定图象与x 轴的交点b 2−4ac >0 与x 轴两个交点b 2−4ac =0 与x 轴一个交点b 2−4ac <0 与x 轴没有交点5 几种特殊情况:x=1时,y=a + b + c ;x= -1时,y=a - b + c .当x = 1时,① 若y > 0,则a + b + c >0;② 若y < 时0,则a + b + c < 0当x = -1时,① 若y > 0,则a - b + c >0;② 若y < 0,则a - b + c < 0.扩:x=2, y=4a + 2b + c ;x= -2, y=4a -2b + c ; x=3, y=9a +3 b + c ;x= -3, y=9a -3b + c 。

一.选择题(共8小题)1.已知二次函数y=ax 2+bx +c 的图象大致如图所示,则下列关系式中成立的是( )A .a >0B .b <0C .c <0D .b +2a >02.如果二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,那么下列不等式成立的是( )A .a >0B .b <0C .ac <0D .bc <0.3.已知二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,有下列4个结论:①abc >0;②b <a +c ;③4a +2b +c >0;④b 2﹣4ac >0;其中正确的结论有( )A .1个B .2个C .3个D .4个4.二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,对于下列结论:①a <0;②b <0;③c >0;④2a +b=0;⑤a ﹣b +c <0,其中正确的个数是( )A .4个B .3个C .2个D .1个第3题图 第4题图 第5题图 第6题图5.二次函数y=ax 2+bx +c (a ≠0)的图象如图,给出下列四个结论::①a <0;②b >0;③b 2﹣4ac >0;④a +b +c <0;其中结论正确的个数有( )A .1个B .2个C .3个D .4个6.如图所示,抛物线y=ax 2+bx +c 的顶点为(﹣1,3),以下结论:①b 2﹣4ac <0;②4a ﹣2b +c <0;③2c﹣b=3;④a+3=c,其中正确的个数()A.1 B.2 C.3 D.47.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,下列给出四个结论中,正确结论的个数是()个①c>0;②若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2;③2a﹣b=0;④<0;⑤4a﹣2b+c>0.A.2 B.3 C.4 D.58.二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④当x<时,y随x的增大而减小;⑤a+b+c>0.其中正确的有()A.5个 B.4个 C.3个 D.2个二.填空题(共4小题)9.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0;④当y>0时,x的取值范围是﹣1≤x<3;⑤当x<0时,y随x增大而增大;其中结论正确有.10.一抛物线和抛物线y=﹣2x2的形状、开口方向完全相同,顶点坐标是(﹣1,3),则该抛物线的解析式为.11.抛物线y=ax2+12x﹣19顶点横坐标是3,则a=.12.将二次函数y=x2+6x+5化为y=a(x﹣h)2+k的形式为.三.解答题(共7小题)13.已知:抛物线y=﹣x2+bx+c经过点B(﹣1,0)和点C(2,3).(1)求此抛物线的表达式;(2)如果此抛物线沿y轴平移一次后过点(﹣2,1),试确定这次平移的方向和距离.14.函数y=(m+2)是关于x的二次函数,求:(1)满足条件的m值;(2)m为何值时,抛物线有最低点?求出这个最低点.这时,当x为何值时,y随x的增大而增大?(3)m为何值时,函数有最大值?最大值是多少?这时,当x为何值时,y随x的增大而减小.15.已知二次函数的图象经过(0,0)(﹣1,﹣1),(1,9)三点.(1)求这个函数的解析式;(2)求这个函数图象的顶点坐标.16.已知抛物线的顶点坐标是(1,﹣4),且经过点(0,﹣3),求与该抛物线相应的二次函数表达式.17.已知二次函数y=x2﹣4x+5.(1)将y=x2﹣4x+5化成y=a (x﹣h)2+k的形式;(2)指出该二次函数图象的对称轴和顶点坐标;(3)当x取何值时,y随x的增大而增大?18.如图,二次函数的图象的顶点坐标为(1,),现将等腰直角三角板直角顶点放在原点O,一个锐角顶点A在此二次函数的图象上,而另一个锐角顶点B在第二象限,且点A的坐标为(2,1).(1)求该二次函数的表达式;(2)判断点B是否在此二次函数的图象上,并说明理由.19.已知二次函数y=a(x﹣h)2,当x=4时有最大值,且此函数的图象经过点(1,﹣3).(1)求此二次函数的解析式;(2)当x为何值时,y随x的增大而增大?。

二次函数的图像与系数的关系(初三数学最全整理)

二次函数的图像与系数的关系(初三数学最全整理)

二次函数图象与系数的关系二次函数的图象与二次函数的系数a 、b 、c 有内在联系。

由系数可以得出二次函数的大致图象,由图象可以得出二次函数系数的取值范围,以下是二次函数的系数和图象之间联系的一些归纳和总结!一、知识点1 二次函数的图像与系数的关系(1)a 的符号由 决定: ①开口向 ⇔ a 0;①开口向 ⇔ a 0.(2)b 的符号由 决定:① 在y 轴的 ⇔b a 、 ;① 在y 轴的 ⇔b a 、 ;① 是 ⇔b 0.(3)c 的符号由 决定:①点(0,c )在y 轴正半轴 ⇔c 0;①点(0,c )在原点 ⇔c 0;①点(0,c )在y 轴负半轴 ⇔c 0.知识点2 二次函数与一元二次方程的关系[归纳概括]如果抛物线)0(2≠++=a c bx ax y 与x 轴有公共点,公共点的横坐标是0x ,那么当x= 时,函数的值是0,因此x= 就是方程02=++c bx ax 的一个根.[归纳概括]函数)0(2≠++=a c bx ax y 的图像与x 轴交点的个数(1)当042>-ac b 时,有 交点;(2)当042=-ac b 时,有 交点;(3)当042<-ac b 时,没有交点;二、例题讲解:例1 已知二次函数)0(2≠++=a c bx ax y 的图像如图所示,试确定代数式①a ;②b ;③c ;④b 2-4ac ;⑤2a+b ;⑥a+b+c ;⑦a-b+c ;⑧4a+2b+c 的符号.练习1:根据图象填空:(1)a _____0;(2)b 0;(3)c 0;(4)ac b 42- 0 ; (5)2a b +______0;(6)0a b c ++⎽⎽⎽⎽ ; (7)0a b c -+⎽⎽⎽⎽;练习2:二次函数y =ax 2+bx +c 的图象如图所示,对称轴是直线x =1.(1)试确定代数式的符号①abc ______0;②3a +c ______0;③(a +c )2﹣b 2______0; ④b 2-4ac ______0 ⑤a +b +2c _____0(2)证明:a +b ≤m (am +b )(m 为实数).练习3.在平面直角坐标系中,二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,证明: a ﹣b ≤m (am +b )(m 为实数);例2二次函数y =ax 2+bx +c (a ≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x =2,(1)试确定代数式的符号4a +b 0;(2)9a +c 3b ;(2)证明:8a +7b +2c >0;(3)若点A (﹣3,y 1)、点B (﹣,y 2)、点C (,y 3)在该函数图象上,判断y 1,y 2,y 3的大小(4)若方程a (x +1)(x ﹣5)=﹣3的两根为x 1和x 2,且x 1<x 2,判断﹣1,5,x 1,x 2的大小变式1:利用抛物线图象求解一元二次方程及二次不等式(1)方程02=++c bx ax 的根为___________;(2)方程23ax bx c ++=-的根为__________;(3)方程24ax bx c ++=-的根为__________;(4)不等式20ax bx c ++>的解集为 ;(5)不等式20ax bx c ++<的解集为 ;(6)若方程|ax 2+bx +c |=1有四个根,则这四个根的和为 ,变式2.抛物线y =ax 2+bx +c (a ≠0)的部分图象如图所示,与x 轴的一个交点坐标为(4,0),抛物线的对称轴是直线x =1.下列结论中:①方程ax 2+bx +c =3有两个不相等的实数根;②抛物线与x 轴的另一个交点坐标为(﹣2,0);③若点A (m ,n )在该抛物线上,则am 2+bm +c ≤a +b +c .其中正确的有变式3.(1)抛物线2(0)y ax bx c a =++≠的图象全部在x 轴上方的条件是(2)抛物线2(0)y ax bx c a =++≠的图象全部在x 轴下方的条件是 例3.如图,抛物线y =ax 2+bx +c 与x 轴交于点A (﹣1,0),顶点坐标(1,n ),与y 轴的交点在(0,3),(0,4)之间(包含端点),(1)求代数式(a +c )2﹣b 2的值(2)若方程|ax 2+bx +c |=2有四个根,求这四个根的和(3)求a 的取值范围 (4)求b 的取值范围例4.在同一平面直角坐标系xOy 中,一次函数y =ax 与二次函数y =ax 2+a 的图象可能是( ) A .B .C .D . 三、课后作业1.如图,抛物线y=ax2+bx+c交x轴于(﹣1,0),(3,0)两点,下列判断中,错误的是()A.图象的对称轴是直线x=1B.当x>2时,y随x的增大而减小C.当﹣1<x<1时,y<0D.一元二次方程ax2+bx+c=0的两个根是﹣1和32.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点A(﹣3,0),顶点为P(﹣1,n).下列结论错误的是()A.abc>0B.4ac﹣b2<0C.3a+c>0D.关于x的方程ax2+bx+c=n+1无实数根3.如图,已知抛物线y=ax2+bx+c开口向上,与x轴的一个交点为(﹣1,0),对称轴为直线x=1.下列结论错误的是()A.abc>0B.b2>4acC.4a+2b+c>0D.2a+b=04.在同一坐标系中,一次函数y=ax+b和二次函数y=ax2+bx+c的图象可能为()A.B.C.D.5.二次函数y=ax2+bx+c的图象如图所示(1).判断正误并说明理由:①abc<0②b2﹣4ac<0③2a>b(2)证明:(a+c)2<b26.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),且与x轴交点的横坐标分别为x1、x2,其中﹣2<x1<﹣1,0<x2<1,下列结论:①abc<0;②2a﹣b<0;③﹣1<a<0;④b2+8a>4ac;⑤a+c<1.其中正确的是7.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=,且经过点(2,0).下列说法:①﹣2b+c=0;;②4a+2b+c<0;③若(0,y1),(1,y2)是抛物线上的两点,则y1=y2;④b+c>m(am+b)+c(其中m≠).其中正确的是8.二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的部分图象如图所示,图象顶点的坐标为(2,1),与x轴的一个交点在点(3,0)和点(4,0)之间,有下列结论:①abc<0;②a﹣b+c>0;③c﹣4a=1;④b2>4ac;⑤am2+bm+c≤1(m为任意实数).其中正确的是9.如图,已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(2,0),且对称轴为直线x=,求证:无论a,b,c取何值,抛物线一定经过(,0)10.已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0;④的最小值为3.其中,正确结论的个数为()A.1个B.2个C.3个D.4个。

二次函数系数a、b、c与图像的关系

二次函数系数a、b、c与图像的关系

二次函数系数a、b、c与图象的关系知识归纳:1.a的作用:决定开口方向和开口大小2.a与b的作用:左同右异(对称轴的位置)3.c的作用:与y轴交点的位置。

4.b2-4ac的作用:与x轴交点的个数。

5.几个特殊点:顶点,与x轴交点,与y轴交点,(1,a+b+c), (-1,a-b+c) (2,4a+2b+c), (-2,4a-2b+c)。

针对训练:1.判断下列各图中的a、b、c及△的符号。

(1)a___0; b___0; c___0;△__0.(2)a___0; b___0; c___0;△__0.(3)a___0; b___0; c___0;△__0.(4)a___0; b___0; c___0;△__0.(5)a___0; b___0; c___0;△__0.2.二次函数y=ax2+bx+c的图象如图,用(>,<,=)填空:a___0; b___0; c___0; a+b+c__0; a-b+c__0.3.二次函数y=ax 2+bx+c 的图象如图1所示,则下列关于a 、b 、c 间的关系判断正确的是( )A.ab<0B.bc<0C.a+b+c>0D.a -b+c<04.二次函数y=ax 2+bx+c 图象如图,则点 A (b 2-4ac ,-ba )在第 象限.5.已知 a <0,b >0,c >0,那么抛物线y=ax 2+bx+c 的顶点在( )A.第一象限B.第二象限C.第三象限D.第四象限6.已知二次函数y=ax 2+bx+c 的图像如图所示,判断下列各式的符号:(1)a ; (2)b ; (3)c ; (4)a+b+c ; (5)a-b+c ;(6)b 2-4ac ;(7)4ac-b 2; (8)2a+b ; (9)2a-b7.练习:填空(1)函数y=ax 2+bx+c (a≠0)的函数值恒为正的条件: ,恒为负的条件: .(2)已知抛物线y=ax 2+bx+c 的图象在x 轴的下方,则方程ax 2+bx+c=0的解得情况为:.3题图 4题图 6题图(3)二次函数y=ax 2+bx+c 中,ac <0,则抛物线与x 轴有 交点。

二次函数的图象与各项系数之间的关系

二次函数的图象与各项系数之间的关系

二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大;⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.⑴ 在0a >的前提下,当0b >时,02b a -<,即抛物线的对称轴在y 轴左侧; 当0b =时,02b a -=,即抛物线的对称轴就是y 轴; 当0b <时,02b a->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02b a ->,即抛物线的对称轴在y 轴右侧; 当0b =时,02b a -=,即抛物线的对称轴就是y 轴; 当0b <时,02b a-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴ab x 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异”总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.。

二次函数的图象与系数a,b,c的关系(PPT课件)

二次函数的图象与系数a,b,c的关系(PPT课件)

与x轴交点的情况 b²-4ac=0,函数图象与x轴有一个交点; b²-4ac>0,函数图象与x轴有两个交点; b²-4ac<0,函数图象与x轴无交点.
有一个交点 b²-4ac=0
无交点 b²-4ac<0
y
x 0
有两个交点 b²-4ac>0
突破练习:已知二次函数y=ax²+bx+c的图象如 图所示,判断下列说法是否正确。
左同右异
∵对称轴在y轴 左侧,a>0
∴b>0
∵对称轴为直线x=0 ∴b=0
x
∵对称轴在y轴右 侧,a>0
∴b<0
练习 判断下列各图中的a、b、c的符号
(1)
y
(2)
y
(3)Oxx Oy xO
(1) a_>__0; b_>__0; c_<__0;
(2)a_<__0; b__>_0; c__=_0;
(3)a_<__0; b__=_0; c__>_0;
y轴交点的位置
c=0,经过原点;
c>0,与y轴正半轴相交;
c<0,与y轴负半轴相交。
c<0
y 抛物线开口 向上,a>0
x 0
c>0
y
0
x
c=0
对称轴的位置 y
①对称轴为直线x=0(y轴), b 0
2a
b=0;
②对称轴在y轴左侧,
b 2a
0
a,b同号;
0
③对称轴在y轴右侧, b 0
2a
a,b异号.
二次函数的图象与系数a,b,c的关系
安化县思源实验学校 陈雅丽
我们学过, y

二次函数图像与系数的关系

二次函数图像与系数的关系

二次函数图像与系数间的关系一 知识梳理1,二次函数y=ax 2+bx+c(a ≠0)的图像与系数a 、b 、c 、ac b 42-的关系 :注 ①a 的正否决定抛物线的开口方向和大小 ②a,b 决定对称轴的位置,左同右异。

③c 决定抛物线与Y 轴的交点的位置。

④取特值:如当x=1,y=a+b+c ,当x=2是,y=4a+2b+c 等。

2、二次函数与一元二次方程的关系(二次函数与x 轴交点情况):(1) 一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况.图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >;2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 题型一、二次函数、一次函数及反比例函数图像确定例1、在同一坐标系内,一次函数y=ax+b 与二次函数y=ax 2+8x+b 的图像可能是( )A.B.C.D.例2、二次函数y=ax2+bx+c的图象如图所示,反比例函数与一次函数y=cx+a在同一平面直角坐标系中的大致图象是()A.B.C.D.例3、一次函数y=ax+b和二次函数y=ax2+bx+c在同一直角坐标系内的图象位置大致是( )课堂练习:1、二次函数y=ax2+bx的图像如图所示,那么一次函数y=ax+b的图像大致是()A.B.C.D.2、二次函数y=ax2+bx+c(a≠0)的图像如图所示,则函数y=ax与y=bx+c在同一直角坐标系内的大致图像是()A.B.C.D.3、在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()A.B.C。D.题型二、二次函数图像与系数之间的关系基础题型例1、二次函数y=ax2+bx+c的图像如图所示,则下列结论正确的是()A.a<0,b<0,c>0,b2﹣4ac>0 B.a>0,b<0,c>0,b2﹣4ac<0C.a<0,b>0,c<0,b2﹣4ac>0 D.a<0,b>0,c>0,b2﹣4ac>0例2、已知二次函数()20y ax bx c a =++≠的图像如图所示,下列说法错误的是( )A .图像关于直线x=1对称B .函数()20y ax bx c a =++≠的最小值是﹣4C .﹣1和3是方程()200ax bx c a ++=≠的两个根D .当x <1时,y 随x 的增大而增大例3、如图所示,二次函数y=ax 2+bx+c 的图像中,王刚同学观察得出了下面四条信息:(1)b 2-4ac >0;(2)c >1;(3)2a ﹣b <0;(4)a+b+c <0,其中错误的有( )A .1个B .2个C .3个D .4个课堂练习:1、(2011•重庆)已知抛物线y=ax 2+bx+c (a ≠0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是( )A 、a >0B 、b <0C 、c <0D 、a+b+c >02、二次函数y=ax 2+bx+c (a≠0)的图象如图所示,则点P (b 2﹣4ac ,a+b+c )所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限3、(2011•雅安)已知二次函数y=ax2+bx+c的图象如图,其对称轴x=-1,给出下列结果①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a-b+c<0,则正确的结论是()A、①②③④B、②④⑤C、②③④D、①④⑤题型三、二次函数图像与系数之间的关系能力题型例1、已知二次函数的y=ax2+bx+c(a≠0)图象如图所示,有下列5个结论:①abc<0;②b <a+c;③4a+2b+c>0;④2c<3b;⑤a+b<m(am+b)(m≠1的实数),其中正确结论的番号有.例2、如图为二次函数y=ax2+bx+c的图象,在下列说法中:①abc<0;②方程ax2+bx+c=0的根是x1=﹣1,x2=3;③a+b+c>0;④当x>1时,y随x的增大而增大;⑤9a﹣3b>16a+4b正确的说法有.(把正确的答案的序号都填在横线上)例3、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,与y轴相交一点C,与x轴负半轴相交一点A,且OA=OC,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2a+b=0;⑤c+=﹣2,其中正确的结论有 .(请填序号)课堂练习1、已知二次函数()20y ax bx c a =++≠的图像如图所示,给出以下结论:①24b ac >;②0abc >;③20a b -=;④80a c +<;⑤930a b c ++<,其中结论正确的是 .(填正确结论的序号)2、.二次函数y=ax 2+bx+c 的图象如图所示,以下结论:①a+b+c=0;②4a+b=0;③abc <0;④4ac-b 2<0;⑤当x≠2时,总有4a+2b >ax 2+bx 其中正确的有 (填写正确结论的序号).3、已知二次函数的图象与轴交于点、,且,与轴的正半轴的交点在的下方.下列结论:①;②;③;④.其中正确结论的个数是 个.课堂测试:1、如图,二次函数y=ax 2+bx+c 的图象与y 轴正半轴相交,其顶点坐标为( 12,1),下列结论:①ac <0;②a+b=0;③4ac-b 2=4a ;④a+b+c <0.其中正确结论的个数是( )2y ax bx c =++x (20)-,1(0)x ,112x <<y (02),420a b c -+=0a b <<20a c +>210a b -+>A、1B、2C、3D、42、(2011•山西)已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,则下列结论正确的是()A、ac>0B、方程ax2+bx+c=0的两根是x1=-1,x2=3C、2a-b=0D、当x>0时,y随x的增大而减小3、(2011•泸州)已知二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的图象如图所示,有下列结论:①abc>0,②b2-4ac<0,③a-b+c>0,④4a-2b+c<0,其中正确结论的个数是()A、1B、2C、3D、44、(2011•兰州)如图所示的二次函数y=ax2+bx+c的图象中,刘星同学观察得出了下面四条信息:(1)b2-4ac>0;(2)c>1;(3)2a-b<0;(4)a+b+c<0.你认为其中错误的有()A、2个B、3个C、4个D、1个5、.如图,已知二次函数y=ax2+bx+c(a≠0)的图象,则下列结论正确序号是(只填序号).①abc>0,②c=-3a,③b2-4ac>0,④a+b<m(am+b)(m≠1的实数).6、如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(x 1,0),-3<x1<-2,对称轴为x=-1.给出四个结论:①abc>0;②2a+b=0;③b2>4ac;④a-b>m(ma+b)(m≠-1的实数);⑤3b+2c>0.其中正确的结论有()A.2个 B.3个 C.4个 D.5个课后作业:1、已知二次函数y=ax2的图象开口向上,则直线y=ax-1经过的象限是()A、第一、二、三象限B、第二、三、四象限C、第一、二、四象限D、第一、三、四象限2、二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()A、a<0,b<0,c>0,b2-4ac>0B、a>0,b<0,c>0,b2-4ac<0C、a<0,b>0,c<0,b2-4ac>0D、a<0,b>0,c>0,b2-4ac>03、已知二次函数y=ax2+bx+c的图象如图所示,那么下列判断不正确的是()A、ac<0B、a-b+c>0C、b=-4aD、关于x的方程ax2+bx+c=0的根是x1=-1,x2=54、已知二次函数y=ax2+bx+c的图象如图所示,则a,b,c满足()A、a<0,b<0,c>0,b2-4ac>0B、a<0,b<0,c<0,b2-4ac>0C、a<0,b>0,c>0,b2-4ac<0D、a>0,b<0,c>0,b2-4ac>05、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论,其中正确的结论是()A、abc>0B、b>a+cC、2a-b=0D、b2-4ac<06、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①ac>0;②a-b+c<0;③当x<0时,y<0;④方程ax2+bx+c=0(a≠0)有两个大于-1的实数根.其中错误的结论有()A、②③B、②④C、①③D、①④7、如图所示为二次函数y=ax2+bx+c(a≠0)的图象,在下列选项中错误的是()A、ac<0B、x>1时,y随x的增大而增大C、a+b+c>0D、方程ax2+bx+c=0的根是x1=-1,x2=38、二次函数y=ax2+bx+c的图象如图所示,下列结论错误的是()A、ab<0B、ac<0C、当x<2时,函数值随x增大而增大;当x>2时,函数值随x增大而减小D、二次函数y=ax2+bx+c的图象与x轴交点的横坐标就是方程ax2+bx+c=0的根9、已知二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()A、a>0B、c<0C、b2-4ac<0D、a+b+c>010、二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论①a,b异号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=4时,x的取值只能为0,结论正确的个数有()个.A、1B、2C、3D、411.二次函数y=ax2+bx+c(a≠0)的图像如图所示,则下列结论中正确的是()A.a>0 B.当﹣1<x<3时,y>0C.c<0 D.当x≥1时,y随x的增大而增大12.函数y=x2+bx+c与y=x的图像如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()A .1B .2C .3D .413.如图,二次函数y=ax 2+bx+c (a≠0)的图像与x 轴交于A 、B 两点,与y 轴交于C 点,且对称轴为x=1,点B 坐标为(﹣1,0).则下面的四个结论: ①2a+b=0;②4a﹣2b+c <0;③ac>0;④当y <0时,x <﹣1或x >2. 其中正确的个数是( )A .1B .2C .3D .414、如图,矩形OABC 在平面直角坐标系中的位置如图所示,3OA =,2AB =.抛物线2y ax bx c =++(0a ≠)经过点A 和点B ,与x 轴分别交于点D 、E (点D 在点E 左侧),且1OE =,则下列结论:①0>a ;②3c >;③20a b -=;④423a b c -+=;⑤连接AE 、BD ,则=9ABDE S 梯形,其中正确结论的个数为( )A .1个B .2个C .3个D .4个15、如图,二次函数y=ax 2+bx+c (a>0)图象的顶点为D ,其图象与x 轴的交点为A 、B ,对称轴为直线x=1,与y 轴负半轴交于点C ,且OB=OC>2,下面五个结论:①bc<0;②4a+2b+c>0;③2a+b=0;④一元二次方程ax 2+bx+c=﹣2必有两个不相等的实数根;⑤1c 2a+=-. 那么,其中正确的结论是_____。

二次函数各个系数与图像之间的关系

二次函数各个系数与图像之间的关系

二次函数各个系数与图像之间的关系
二次函数是一种常见的数学函数,它在数学、物理和其他学科中都扮演着重要的角色。

它以Y=ax2+bx+c的形式出现,其中a、b、c 都是二次函数的系数。

本文将讨论二次函数系数与图像之间的关系。

首先,我们来看看a是如何影响图像的。

a是二次函数的系数,它代表着函数Y的曲率。

如果其值大于0,则函数图像弯曲向上,函数叫做凸函数;如果其值小于0,则函数图像弯曲向下,函数叫做凹函数。

通常来说,当a变化时,函数的曲率也会变化,从而影响函数的图像。

接下来,我们来看看b的作用。

b是二次函数的系数,它代表着函数Y的轴对称性。

如果值为正,则图像关于Y轴对称;如果值为负,则图像关于X轴对称。

随着b的变化,函数图像的轴对称性也会改变,从而影响整体图像。

最后,我们来看看c的作用。

c是二次函数的系数,它代表着函数Y的平移性。

当c变化时,函数图像的纵坐标会发生变化,但函数的形状不会受到影响。

由此可见,c系数有着重要的意义,它会影响函数图像的整体位置。

综上所述,可以清楚地看出,a,b,c是二次函数的三个重要系数,它们与函数的图像有着密切的关系。

a决定了函数的曲率,b决定了函数的轴对称性,c决定了整体图像的整体位置。

因此,当计算二次函数时,我们要特别注意这三个系数,以便根据它们了解函数的图像特征。

二次函数中各项系数a,b,c与图像的关系

二次函数中各项系数a,b,c与图像的关系

二次函数中各项系数 a ,b, c 与图像的关系 一、首先就y=ax 2 +bx+c (a 工0)中的a ,b ,c 对图像的作用归纳如下: a 的作用:决定开口方向:a > 0开口向上;a < 0开口向下; 决定张口的大小:l a I 越大,抛物线的张口越小. b 的作用:b 和a 与抛物线图像的对称轴、顶点横坐标有关. b 与a 同号,说明 _L .. o ,则对称轴在y 轴的左边; 2a b 与a 异号,说明 b -> 0 '口 ,则对称轴在y 轴的右边; 特别的,b = 0,对称轴为y 轴.c 的作用:c 决定了抛物线与y 轴的交点纵坐标.抛物线与y 轴的交点(0,c ) c > 0抛物线与y 轴的交点在y 轴的正半轴;c < 0抛物线与y 轴的交点在y 轴的负半轴; 特别的,c = 0 ,抛物线过原点. ■ . 2 a,b,c 共同决定判别式 b 2 - 4ac > 0 b 2 - 4ac = 0 b 2 - 4ac < 0 * = b ~4ac 的符号进而决定图象与X 轴的交点 与X 轴两个交点 与X 轴一个交点 与X 轴没有交点 x=1 时,y=a + b + c ; x= -1 时,y=a - b + c .当 x = 1 时,①若 y > 0,贝U a + b + c >0 ; ® 若 y < 时 0,贝Ua +b +c < 0 当 x = -1 时,①若 y > 0,贝U a - b + c >0 ;②若 y < 0,贝U a - b + 扩:x=2, y=4a + 2b + c ; x= -2, y=4a -2b + c ; x=3, y=9a +3 b + c 一.选择题(共8小题) 1 .已知二次函数y=ax +bx+c 的图象大致如图所示,贝U 下列关系式中成立的是 A. a >0 B . b v 0 C. c v 0D . b+2a >0 2.如果二次函数y=a£+bx+c (a ^ 0)的图象如图所示,那么下列不等式成立 几种特殊情况: c < 0 . ;x= -3, y=9a -3b + c 。

二次函数的图象与各项系数之间的关系

二次函数的图象与各项系数之间的关系

二次函数的图象与各项系数之间的关系资料编号:202209251655二次函数的图象开口方向取决于的符号,开口大小取决于c bx ax y ++=2a a 的大小;对称轴为直线,当,对称轴与轴的相对位置关系取决于a b x 2-=0>ab y b a ,的符号;图象与轴的交点为,交点在轴上的位置取决于的符号. y ()c ,0y c 与二次项系数的关系a (1)当时,抛物线开口向上,的值越大,开口越小,的值越小,开口越大;0>a a a (2)当时,抛物线开口向下,的值越大,开口越大,的值越小,开口越小. 0<a a a 总之,的值越大,抛物线的开口越小.a 与一次项系数的关系b 二次项系数和一次项系数共同决定了抛物线的对称轴.a b 若抛物线的对称轴在轴的右侧,即,则异号;若抛物线的对称y 02>-=ab x b a ,轴在轴的左侧,即,则同号. y 02<-=a b x b a ,总之,的符号遵循“左同右异”的规律.b a ,特别地,当对称轴是轴时,,此时. y 02=-=a b x 0=b 与常数项的关系c 对于二次函数,当时,,函数图象与轴的交点为c bx ax y ++=20=x c y =y :()c ,0(1)当时,抛物线与轴的交点在轴上方,即交于轴的正半轴;0>c y x y (2)当时,抛物线经过坐标原点;0=c (3)当时,抛物线与轴的交点在轴下方,即交于轴的负半轴. 0<c y x y 上述结论反之亦成立.例题讲解例1. 已知二次函数的图象如图所示,则【 】c bx ax y ++=2(A ) (B )0,0,0<<<c b a 0,0,0><<c b a (C ) (D )0,0,0>><c b a 0,0,0><>c b a 解析 图象开口向下,所以;0<a 图象的对称轴在轴右侧,所以异号,故;y b a ,0>b 图象与轴交于正半轴,所以.y 0>c 综上,.选择答案【 C 】.0,0,0>><c b a 例2. 已知二次函数的图象如图所示,则下列错误的是【】c bx ax y ++=2(A ) (B ) (C ) (D )0<a 0>c 042>-ac b 0<ab 解析 图象开口向下,所以.故(A )正确;0<a 图象与轴交于正半轴,所以.故(B )正确;y 0>c 图象与轴有两个不同的交点,所以.故(C )正确;x 042>-ac b图象的对称轴在轴左侧,同号,所以.故(D )错误.y b a ,0>ab ∴选择答案【 D 】.例3. 二次函数的函数值恒小于0的条件是____________.c bx ax y ++=2解析 二次函数的函数值恒小于0,即二次函数的图象开口向下,且c bx ax y ++=2图象与轴没有交点x ∴.04,02<-<ac b a。

二次函数的图象与各项字母系数之间的关系

二次函数的图象与各项字母系数之间的关系

x
a-b+c的值 是负数
a
开口方向向上a>0 向下a<o
b c 2a+b
2a-b b2-4ac a+b+c a-b+c
对称轴与y轴比较 左侧ab同号 右侧ab异号 与y轴交点:交于上半轴c>o,下半轴c<0,交于原点c=0
- b 与1比较,等于1,大于1,小于1
2a
- b 与-1比较,等于-1,大于-1,小于-1 2a 与x轴交点个数
谈收获
1.(天津)已知二次函数y=ax2+bx+c,
且a<0,a-b+c>0,则一定有( A )
A.b2-4ac>0
B. b2-4ac=0
C.b2-4ac<0
D. b2-4ac≤0
2.(重庆)二次函数y=ax2+bx+c的图
像如图所示,则点M(b,c/a)在( D )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
图像如图所示,下列结论:
① a+b+c<0,②a-b+c>0;
③ abc>0;④b=2a
中正确个数为
( A)
A.4个
B.3个
C.2个
D.1个
6、无论m为任何实数,二次函数y=x2-(2-m)x+m
的图像总是过点 ( C )
A.(1,3) B.(1,0) C.(-1,3) D.(-1,0)
7.(安徽)二次函数y=ax2+bx+c
y
-1 0
1
x

5.二次函数图象的对称轴特殊情况
(5)当对称轴在直线x=-1的右侧
y
-1 0

二次函数中各项系数与图像的关系

二次函数中各项系数与图像的关系

二次函数中各项系数a ,b ,c 与图像的关系一、首先就y=ax 2+bx+c (a≠0)中的a ,b ,c 对图像的作用归纳如下:1 a 的作用:决定开口方向:a > 0开口向上;a < 0开口向下;决定张口的大小:∣a ∣越大,抛物线的张口越小.2 b 的作用:b 和a 与抛物线图像的对称轴、顶点横坐标有关.b 与a 同号,说明02<-a b ,则对称轴在y 轴的左边; b 与a 异号,说明−b 2a >0,则对称轴在y 轴的右边;特别的,b = 0,对称轴为y 轴.3 c 的作用:c 决定了抛物线与y 轴的交点纵坐标.抛物线与y 轴的交点(0,c )c > 0 抛物线与y 轴的交点在y 轴的正半轴;c < 0 抛物线与y 轴的交点在y 轴的负半轴;特别的,c = 0,抛物线过原点.4 a,b,c 共同决定判别式?=b 2−4ac 的符号进而决定图象与x 轴的交点b 2−4ac >0 与x 轴两个交点b 2−4ac =0 与x 轴一个交点b 2−4ac <0 与x 轴没有交点5 几种特殊情况:x=1时,y=a + b + c ;x= -1时,y=a - b + c .当x = 1时,① 若y > 0,则a + b + c >0;② 若y < 时0,则a + b + c < 0当x = -1时,① 若y > 0,则a - b + c >0;② 若y < 0,则a - b + c < 0.扩:x=2, y=4a + 2b + c ;x= -2, y=4a -2b + c ; x=3, y=9a +3 b + c ;x= -3, y=9a -3b + c 。

一.选择题(共8小题)1.已知二次函数y=ax 2+bx+c 的图象大致如图所示,则下列关系式中成立的是( )A .a >0B .b <0C .c <0D .b+2a >02.如果二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,那么下列不等式成立的是( )A .a >0B .b <0C .ac <0D .bc <0.3.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,有下列4个结论:①abc >0;②b <a+c ;③4a+2b+c >0;④b 2﹣4ac >0;其中正确的结论有( )A .1个B .2个C .3个D .4个4.二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,对于下列结论:①a <0;②b <0;③c >0;④2a+b=0;⑤a ﹣b+c <0,其中正确的个数是( )A .4个B .3个C .2个D .1个第3题图 第4题图 第5题图 第6题图5.二次函数y=ax 2+bx+c (a ≠0)的图象如图,给出下列四个结论::①a <0;②b >0;③b 2﹣4ac >0;④a+b+c <0;其中结论正确的个数有( )A .1个B .2个C .3个D .4个6.如图所示,抛物线y=ax 2+bx+c 的顶点为(﹣1,3),以下结论:①b 2﹣4ac <0;②4a ﹣2b+c <0;③2c﹣b=3;④a+3=c,其中正确的个数()A.1 B.2 C.3 D.47.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,下列给出四个结论中,正确结论的个数是()个①c>0;②若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2;③2a﹣b=0;④<0;⑤4a﹣2b+c>0.A.2 B.3 C.4 D.58.二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④当x<时,y随x的增大而减小;⑤a+b+c>0.其中正确的有()A.5个B.4个C.3个D.2个二.填空题(共4小题)9.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0;④当y>0时,x的取值范围是﹣1≤x<3;⑤当x<0时,y随x增大而增大;其中结论正确有.10.一抛物线和抛物线y=﹣2x2的形状、开口方向完全相同,顶点坐标是(﹣1,3),则该抛物线的解析式为.11.抛物线y=ax2+12x﹣19顶点横坐标是3,则a= .12.将二次函数y=x2+6x+5化为y=a(x﹣h)2+k的形式为.三.解答题(共7小题)13.已知:抛物线y=﹣x2+bx+c经过点B(﹣1,0)和点C(2,3).(1)求此抛物线的表达式;(2)如果此抛物线沿y轴平移一次后过点(﹣2,1),试确定这次平移的方向和距离.14.函数y=(m+2)是关于x的二次函数,求:(1)满足条件的m值;(2)m为何值时,抛物线有最低点?求出这个最低点.这时,当x为何值时,y随x的增大而增大?(3)m为何值时,函数有最大值?最大值是多少?这时,当x为何值时,y随x的增大而减小.15.已知二次函数的图象经过(0,0)(﹣1,﹣1),(1,9)三点.(1)求这个函数的解析式;(2)求这个函数图象的顶点坐标.16.已知抛物线的顶点坐标是(1,﹣4),且经过点(0,﹣3),求与该抛物线相应的二次函数表达式.17.已知二次函数y=x2﹣4x+5.(1)将y=x2﹣4x+5化成y=a (x﹣h)2+k的形式;(2)指出该二次函数图象的对称轴和顶点坐标;(3)当x取何值时,y随x的增大而增大?18.如图,二次函数的图象的顶点坐标为(1,),现将等腰直角三角板直角顶点放在原点O,一个锐角顶点A在此二次函数的图象上,而另一个锐角顶点B在第二象限,且点A的坐标为(2,1).(1)求该二次函数的表达式;(2)判断点B是否在此二次函数的图象上,并说明理由.19.已知二次函数y=a(x﹣h)2,当x=4时有最大值,且此函数的图象经过点(1,﹣3).(1)求此二次函数的解析式;(2)当x为何值时,y随x的增大而增大?。

二次函数图象与系数的关系最全总结

二次函数图象与系数的关系最全总结

二次函数图象与系数的关系最全总结二次函数是初中数学的重点也是难点内容之一,它的图象是一条抛物线,其形状、开口方向、位置等与表达式中的系数的关系非常密切。

所以,二次函数图象与a、b、c的关系是非常重要的一个知识点,今天,小培就为大家总结一下二次函数图像与系数的关系变化。

1. a决定抛物线的开口方向及大小具体内容:•a>0,抛物线开口向上•a<0,抛物线开口向下•|a|越大,抛物线的开口越小•|a|越小,抛物线的开口越大我们知道抛物线平移前后形状及开口方向不变,只是位置发生改变,那么只要两个二次函数的a相同,那么就可以由其中一个二次函数通过平移得到另一个二次函数.图象:抛物线开口向上,a>0,抛物线开口向下,a<0,开口大的抛物线的|a|小于开口小的抛物线的|a|.图象示例:2. a、b共同决定抛物线对称轴的位置对称轴的位置具体内容:•b=0时,对称轴为y轴•b/a>0,对称轴在y轴左侧(即a、b同号,则对称轴在y轴左侧,简记为“左同”)•b/a<0,对称轴在y轴右侧(即a、b异号,则对称轴在y轴右侧,简记为“右异”)上述当b≠0时,a、b的符号及对称轴与y轴的位置可简记为“左同右异”图象:对称轴在y轴,则b=0,对称轴在y轴左侧,根据“左同右异”判断a、b同号,对称轴在y轴右侧,根据“左同右异”判断a、b异号.图象示例:3. c决定抛物线与y轴交点的位置具体内容:•c=0,抛物线过原点•c>0,抛物线与y轴交于正半轴•c<0,抛物线与y轴交于负半轴可根据c是抛物线与y轴交点的纵坐标来理解记忆这一点内容图象示例:4. b2-4ac决定抛物线与x轴的交点的个数具体内容:•b2-4ac=0时,与x轴有唯一交点(即顶点)•b2-4ac>0时,与x轴有两个交点(即开口向上时顶点在x轴下方,开口向下顶点在x轴上方)•b2-4ac<0时,与x轴没有交点(即开口向上时顶点在x轴上方,开口向下顶点在x轴下方)图象示例:5. 特例•当x=1时,y=a+b+c•当x=-1时,y=a-b+c•当x=2时,y=4a+2b+c•当x=-2时,y=4a-2b+c•若a+b+c<0,即当x=1时,y<0•若a-b+c>0,即当x=-1时,y>0•当对称轴为直线x=1时,则2a+b=0•当对称轴为直线x=-1时,则2a-b=0从上述中我们可以得出从二次函数的图象也可以得出关于系数a、b、c的相关信息,做此类问题一定要注意数形结合.例题讲解例1二次函数y=ax2+bx+c的图象如图所示,则点在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据图象开口向下可得a<0,根据对称轴在y轴右侧可得a、b异号,则b>0,抛物线与y轴交于正半轴,可得c>0,所以<0,则点M(b,)符合第四想象点的坐标特征(+,-),故选D.例2若抛物线y=ax2+3x+1与x轴有两个交点,则a的取值范围是()A.a>0B.a>- 4/9C.a>9/4D.a<9/4且a≠0【分析】根据抛物线与x轴有两个交点,则b2-4ac>0,即32-4a×1>0,解得a<9/4,根据二次函数定义可知a≠0.故选D.▲易错警示▲不要忽视二次函数表达式中二次项系数不为0这一条件.例3 已知二次函数y=ax2+bx+c的图象如图所示,下列结论:①a+b+c<0,②a-b+c>0;③abc>0;④b=2a 中正确个数为()A.4个B.3个C.2个D.1个【分析】•a+b+c是当x=1时y的值,根据图象可知当x=1时,图象上对应的点在x轴下方,则y=a+b+c<0,故①正确;•a-b+c是当x=-1时y的值,根据图象可知当x=-1时,图象上对应的点在x 轴上方,则y=a-b+c>0,故②正确;•根据图象开口向下可得a<0,根据对称轴在y轴左侧,可得a、b同号,故b<0,根据图象与y轴交于正半轴可得c>0,所以abc>0,故③正确;•由图象得抛物线的对称轴为直线•x=-b/2a=-1,则b=2a,故④正确;故本题选A.。

39.二次函数y=ax2+bx+c的图象特征与各项系数之间的关系

39.二次函数y=ax2+bx+c的图象特征与各项系数之间的关系

4. Δ>0⇔与x轴有两个交点; Δ=0⇔与x轴有一个交点,即顶点在x轴上; Δ<0⇔与x轴没有交点;
5.当x=1时,y的值为a+b+c; 当x=-1时,y的值为a-b+c.
6.当对称轴x=1时,x= b =1,∴-b=2a,此时2a+b=0;
2a
当对称轴x=-1时,x=
b 2a
=-1,∴b=2a,此时2a-b=0.
因此,判断2a+b的符号,需判断对称轴x=
b 2a
与1的大小,若对称轴
在直线x=1的左边,则-
b 2a
< 1 ,再根据a的符号即可得出结果;
判断2a-b的符号,同理需判断对称轴与-1的大小.
典例解析

确定二次函数y=ax2+bx+c中a、b、c及相关代数式的值或符号
例.已知二次函数y=ax2+bx+c的图象如图所示,下列结论:①abc>0;
知识梳理
二次函数y=ax2+bx+c的图象与系数a、b、c的关系
1.a决定开口方向:a>0⇔开口向上;a<0⇔开口向下;
2.a、b同号对称轴在y轴的左侧(左同); a、b异号对称轴在y轴的右侧(右异);
b=0对称轴为y轴; 3.c>0⇔与y轴正半轴相交;
c=0⇔经过原点; c<0⇔与y轴负半轴相交;
总结归纳
知识点
二次函数y=ax2+bx+c的图象与系数a、b、c的关系
考点
确定二次函数y=ax2+bx+c中a、b、c及相关代数式的值或符号
再见
②2a-b<0;③4a-2b+c<0;④(a+c)2<b2. 其中正确的个数是 ( D)
A.1
B.2

二次函数系数a、b、c与图像的关系

二次函数系数a、b、c与图像的关系

二次函数系数a 、b 、c 与图像的关系若抛物线与 x 轴交于(1,0),则a + b + c = 0;若抛物线与 x 轴交于(-1,0),则a - b + c = 0. (1) 当x = 1时,①若y > 0,则a + b + c >0;②若y < 0,则a + b + c < 0 (2) 当x = -1时,①若y > 0,则a - b + c >0;②若y < 0,则a - b + c < 0.5 例1(重庆2004年)二次函数()02≠++=a c b a χχγ的图像如图,则点M (b ,ac )在( )A .第一象限B .第二象限C .第三象限D .第四象限 分析:∵开口向下,∴a < 0;∵抛物线与y 轴的交点在y 轴的正半轴,∴c > 0∵顶点在y 轴的右边,∴b 与a 异号,即b > 0;∴ac < 0;∴点M 在第四象限选D例2、(2004陕西)二次函数()02≠++=a c b a χχγ的图像如图,则下列关系判断正确的是( )A .ab < 0B .bc < 0C .a + b + c > 0D .a - b + c < 0分析:∵开口向下,∴a < 0; ∵抛物线与y 轴的交点在y 轴的负半轴,∴c < 0∵顶点在y 轴的左边,∴b 与a 同号,即b < 0; ∴ab > 0, bc > 0 故A 、B 均错 ∵x = 1时,y < 0,∴a + b + c < 0,故C 错 ∵x = -1时,y < 0,∴a - b + c < 0.故选D例3(2004呼和浩特)如图,四个二次函数的图像中分别对应的是:①2χγa =②2χγb =③2χγc =④2χγd =,则a , b , c , d 的大小关系是 . A .a > b > c > d B .a > b > d > c C .b > a > c > dD .b > a > d > c分析:∵③、④的图像开口向下,∴c < 0,d < 0; ∵④的张口比③的张口小,∴∣d ∣ > ∣c ∣, ∴c > d ; ∵①、②的图像开口向上,∴a > 0,b > 0;∵①的张口比②的张口小,∴∣a ∣ > ∣b ∣, ∴a > b例4、已知二次函数()02≠++=a c b aχχγ的图像如图,则a 、b 、c 满足( )A .a < 0,b < 0,c > 0 ;B .a < 0,b < 0,c < 0 ;C .a < 0,b > 0,c > 0 ;D .a > 0,b < 0,c > 0 ;分析:∵开口向下,∴a < 0;∵抛物线与y 轴的交点在y 轴的正半轴,∴c > 0∵顶点在y 轴的左边,∴b 与a 同号,即b < 0; ∴选A 例5 二次函数()02≠++=a c b a χχγ的图像如图,13χ=为该函数图像的对称轴,根据这个函数图像,你能得到关于该函数的那些性质和结论呢?(写4个即可). 解: ①∵开口向上,∴a > 0;②∵抛物线与y 轴的交点在y 轴的负半轴,∴c < 0; ③∵顶点在y 轴的右边,∴b 与a 异号,即b < 0; ④∵x = 1时,y < 0,∴a + b + c < 0;⑤∵x = -1时,y > 0,∴a - b + c > 0.例1、已知y=ax 2+bx+c 图象如图1,则下列关系中成立的是( )120.<-<a bA 220.<-<abB 221.<-<a bC12.=abD 剖析 特别位置判定法,若抛物过O(0,0)(2,0)则x=12=-a b 这里221<-<ab ,所以选C .求值判定法,设抛物线过(α,0)(0<α<2),(2,0),则α2a+αb+c=0①,4a+2b+c=0②,①②(α2-4)a+(α-2)b=0∵α-2≠0∴(α+2)a+b=0b=-(α+2)a.121222)2(2>+=+=+=-∴αααa a a b 221<-<∴ab求中点坐标判定法,设抛物线与x 轴交于点A(α,0)(0<α<2),B(2,0), 则A 、B 中点坐标是12122>+=+αα 221<-<∴ab所以选 C . 注意:若题目为“已知抛物线y=ax 2+bx+c 过A(1,5),B(4,5),求对称轴直线”应怎样求?例2为了备战世界杯,中国足球队在某次训练中,一队员在距离球门12米处挑射,正好射中了2.4米高的球门横梁,若足球运动路线是抛物线y=ax 2+bx+c 如图2,则下列结论: ①601-<a ,②0601<<-a ,③a-b+c>0,④a<b<-12aA .①③ B. ①④ C . ②③ D . ②④剖析 排除法判定,易知c=2.4把(12,0)代入y=ax 2+bx+c 中得: 144a+12b+2.4=0,11205a b ++=,由图象知a<0,对称轴2b x a-=11120560a a ∴+<<-,, 即①成立, ②不成立,故不可能选C 与D . 111201201255a b a b b a++=∴+-<<- ,,,000022b ba b a a<->∴<> ,,,.,12a b a -<<∴④正确,故在A ,B 中只能选B .例3、已知抛物线y=ax 2+bx+c(a<0)经过点(-1,0)且满足4a+2b+c>0以下结论:①a+b>0,②a+c>0,③-a+b+c>0,④b 2-2ac>5a 2其中正确的个数有( )A .1个B .2个C .3个D .4个剖析: 特殊值判定法,∵抛物线过(-1,0)点,∴a-b+c=0, c=b-a 代入4a+2b+c>0中得.a+b>0,①正确.∵a<0,a+b>0,∴b>0,∵a-b+c=0,∴a+c=b>0,a+c>0,②正确.∵a<0,b>0,∴c=b-a>0,-a>0,∴-a+b+c>0,③正确.∵a-b+c=0,∴a+c=b ,2a+c=a+b>0,2a+c>0,∵a<0,c>0,∴c-2a>0, ∴(c-2a)(c+2a)>0,c 2-4a 2>0,c 2>4a 2,∵b=a+c ,∴b 2=c 2+a 2+2ac ,c 2=b 2-a 2-2ac ,b 2-a 2-2ac>4a 2,b 2-2ac>5a 2, ④正确. 所以选D .注意 :有时利用x=±1时,y=a±b+c ,x=±2时,y=4a±2b+c 中,y 符号判定a±b+c 和4a±2b+c 的符号.例4、已知二次函数y=ax 2+bx+c 图象与x 轴交于(-2,0)(x ,0)且1<x 1<2,与y 轴正半轴交点在(0,2)下方,下列结论,①a<b<0,②2a+c>0,③4a+c<0,④2a-b+1>0其中正确个数为( )A .1个B .2个C .3个D .4个剖析: 数形判定法,根据题意可画草图3, 1122b b x a a=->-∴< 对称轴,, 00022b ba a a<-<∴> ,, ∴a<b<0 ①正确. ∵抛物线过(-2,0),∴4a-2b+c=0, 2a+c=-2a+2b=-2(a-b)>0∴2a+c>0,②正确. ∵4a-2b+c=0,4a+c=2b<0∴4a+c<0,③正确. ∵4a-2b+c=0,2cb a 2-=-∴ ∵0<c<2,12c->-∴,2a-b>-1,即2a-b+1>0 ④正确. 所以选D .补充练习:1、二次函数y =ax 2+bx +c (a ≠0)的图象如图2所示,则点c M b a ⎛⎫ ⎪⎝⎭,在( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 2、如图,若a <0,b >0,c <0,则抛物线y=ax 2+bx +c 的大致图象为( )3、二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列说法不正确的是( ) A 、240b ac ->B 、0a >C 、0c >D 、02ba-< 4、二次函数y =ax 2+bx +c 的图象如图3所示,则下列关于a ,b ,c 间关系的判断正确的是( ) A 、ab <0B 、bc <0C 、a +b +c >0D 、a -b +c <05、 二次函数c bx ax y ++=2,图象如图所示,则反比例函数xab y =的图象的两个分支分别在第 象限。

二次函数图象与系数a、b、c的关系

 二次函数图象与系数a、b、c的关系

模块三 函数第五讲 二次函数图象与a 、b 、c 的关系知识梳理 夯实基础二次函数图象的特征与a ,b ,c 的关系字母的符号图象的特征a >0开口向上aa <0开口向下b =0对称轴为y 轴ab >0(a 与b 同号)对称轴在y 轴左侧bab <0(a 与b 异号)对称轴在y 轴右侧c =0经过原点c >0与y 轴正半轴相交cc <0与y 轴负半轴相交b 2–4ac =0与x 轴有唯一交点(顶点)b 2–4ac >0与x 轴有两个交点b 2–4acb 2–4ac <0与x 轴没有交点常用公式及方法:(1)二次函数三种表达式:表达式顶点坐标对称轴一般式c bx ax y ++=2⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22abx 2-=顶点式()kh x a y +-=2()k h ,hx =交点式()()12y a x x x x =--()⎪⎪⎭⎫ ⎝⎛--+4,222121x x a x x 221x x x +=(2)韦达定理:若二次函数c bx ax y ++=2图象与x 轴有两个交点且交点坐标为(1x ,0)和(2x ,0),则a b x x -=+21,acx x =⋅21。

(3)赋值法:在二次函数c bx ax y ++=2中,令1=x ,则c b a y ++=;令1-=x ,则c b a y +-=;令2=x ,则c b a y ++=24;令2-=x ,则c b a y +-=24;利用图象上对应点的位置来判断含有a 、b 、c 的关系式的正确性。

直击中考 胜券在握1.(2021·山东日照中考)抛物线()20y ax bx c a =++¹的对称轴是直线1x =-,其图象如图所示.下列结论:①0abc <;②()()2242a c b +<;③若()11,x y 和()22,x y 是抛物线上的两点,则当1211x x +>+时,12y y <;④抛物线的顶点坐标为()1,m -,则关于x 的方程21ax bx c m ++=-无实数根.其中正确结论的个数是( )A .4B .3C .2D .12.(2021·四川巴中中考)已知二次函数y =ax 2+bx +c 的自变量x 与函数y 的部分对应值见表格,则下列结论:①c =2;②b 2﹣4ac >0;③方程ax 2+bx =0的两根为x 1=﹣2,x 2=0;④7a +c <0.其中正确的有( )x …﹣3﹣2﹣112…y…1.8753m1.875…A .①④B .②③C .③④D .②④3.(2021·牡丹江中考)如图,抛物线y =ax 2+bx +c (a ≠0)的顶点为(1,n ),与x 轴的一个交点B (3,0),与y 轴的交点在(0,﹣3)和(0,﹣2)之间.下列结论中:①ab c>0;②﹣2<b 53<-;③(a +c )2﹣b 2=0;④2c ﹣a <2n ,则正确的个数为()A .1B .2C .3D .44.(2021·湖北荆门中考)抛物线2y ax bx c =++(a ,b ,c 为常数)开口向下且过点(1,0)A ,(,0)B m (21m -<<-),下列结论:①20b c +>;②20a c +<;③ (1)0a m b c +-+>;④若方程()(1)10a x m x ---=有两个不相等的实数根,则244ac b a -<.其中正确结论的个数是( )A .4B .3C .2D .15.(2021·辽宁丹东中考)已知抛物线2(0)y ax bx c a =++>,且13,22a b c a b c ++=--+=-.判断下列结论:①0abc <;②220a b c ++>;③抛物线与x 轴正半轴必有一个交点;④当23x ££时,3y a =最小;⑤该抛物线与直线y x c =-有两个交点,其中正确结论的个数()A .2B .3C .4D .56.(2021·山东枣庄中考)二次函数()20y ax bx c a =++¹的部分图象如图所示,对称轴为12x =,且经过点()2,0.下列说法:①0abc <;②20b c -+=;③420a b c ++<;④若11,2y ⎛⎫-⎪⎝⎭,25,2y ⎛⎫⎪⎝⎭是抛物线上的两点,则12y y <;⑤()14b c m am b c +>++(其中12m ¹).正确的结论有()A .2个B .3个C .4个D .5个7.(2021·四川广安中考)二次函数()20y ax bx c a =++¹的图象如图所示,有下列结论:①0abc >,②420a b c -+<,③()a b x ax b -³+,④30a c +<,正确的有()A .1个B .2个C .3个D .4个8.(2021·湖南株洲中考)二次函数()20y ax bx c a =++¹的图像如图所示,点 P 在x 轴的正半轴上,且1OP =,设()M ac a b c =++,则 M 的取值范围为( )A .1M <-B .10M -<<C .0M <D .0M >9.(2021·齐齐哈尔中考)如图,二次函数2(0)y ax bx c a =++¹图象的一部分与x 轴的一个交点坐标为()1,0,对称轴为1x =-,结合图象给出下列结论:①0a b c ++=;②20a b c -+<;③关于x 的一元二次方程20(a 0)++=¹ax bx c 的两根分别为-3和1;④若点()14,y -,()22,y -,()33,y 均在二次函数图象上,则123y y y <<;⑤()a b m am b -<+(m 为任意实数).其中正确的结论有()A .1个B .2个C .3个D .4个10.(2021·湖北鄂州中考)二次函数()20y ax bx c a =++¹的图象的一部分如图所示.已知图象经过点()1,0-,其对称轴为直线1x =.下列结论:①0abc <;②420a b c ++<;③80a c +<;④若抛物线经过点()3,n -,则关于x 的一元二次方程()200ax bx c n a ++-=¹的两根分别为3-,5,上述结论中正确结论的个数为( )A .1个B .2个C .3个D .4个11.(2021·江苏宿迁·中考真题)已知二次函数2y ax bx c =++的图像如图所示,有下列结论:①0a >;②24b ac ->0;③40a b +=;④不等式21ax b x c +-+()<0的解集为1≤x <3,正确的结论个数是()A .1B .2C .3D .412.(2021·四川达州中考)如图,已知抛物线2y ax bx c =++(a ,b ,c 为常数,0a ¹)经过点()2,0,且对称轴为直线12x =,有下列结论:①0abc >;②0a b +>;③4230a b c ++<;④无论a ,b ,c 取何值,抛物线一定经过,02c a ⎛⎫⎪⎝⎭;⑤2440am bm b +-≥.其中正确结论有()A .1个B .2个C .3个D .4个13.(2021·湖北随州中考)如图,已知抛物线2y ax bx c =++的对称轴在y 轴右侧,抛物线与x 轴交于点()2,0A -和点B ,与y 轴的负半轴交于点C ,且2OB OC =,则下列结论:①0a bc->;②241b ac -=;③14a =;④当10b -<<时,在x 轴下方的抛物线上一定存在关于对称轴对称的两点M ,N (点M 在点N 左边),使得AN BM ^.其中正确的有( )A .1个B .2个C .3个D .4个14.(2021·天津中考)已知抛物线2y ax bx c =++(,,a b c 是常数,0a ¹)经过点(1,1),(0,1)--,当2x =-时,与其对应的函数值1y >.有下列结论:①0abc >;②关于x 的方程230ax bx c ++-=有两个不等的实数根;③7a b c ++>.其中,正确结论的个数是( )A .0B .1C .2D .315.(2021·四川遂宁中考)已知二次函数2(0)y ax bx c a =++¹的图象如图所示,有下列5个结论:①0abc >;②24b ac <;③23c b <;④2()a b m am b +>+(1m ¹);⑤若方程2ax bx c ++=1有四个根,则这四个根的和为2,其中正确的结论有( )A .2个B .3个C .4个D .5个16.(2013·山东德州中考)函数y=x 2+bx+c 与y=x 的图象如图所示,有以下结论:①b 2﹣4c >0;②b+c+1=0;③3b+c+6=0;④当1<x <3时,x 2+(b ﹣1)x+c <0.其中正确的个数为A .1B .2C .3D .4。

二次函数a、b、c与图像的关系

二次函数a、b、c与图像的关系
二二次函数系数 a、b、c 与图像的关系
一一、首首先就 y=ax +bx+c(a≠0)中的 a,b,c 对图像的作用用归纳如 下:
1 a 的作用用:决定开口口方方向:a > 0 开口口向上;a < 0 开口口向下;
决定张口口的大大小小:∣ a∣ 越大大,抛物线的张口口越小小.
2 b 的作用用:b 和 a 与抛物线图像的对称轴、顶点横坐标有关.
3.(2015•泸州)已知二二次函数 y=ax2+bx+c(a,b,c 为常数,a≠0)的图象如图所示,有下
列列结论:①abc<0,②b2- 4ac>0,③a-b+c=0,④a+b+c>0,其中正 确结论的个数是( )
A、1 B、2
C、3 D、4
4.(2015•仙游县二二模)已知二二次函数 y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:y ①② NhomakorabeaO
x
③④ 例例 3 已知二二次函数 y=ax2+bx+c 的图象如图,其对称轴 x=-1,给出下列列结果 ①b2>4ac ;②abc >0;③2a+b=0;④a+b+ c>0;⑤4a-2b+c<0,则正确的结论 是( ) A、①②③④ B、②④⑤ C、②③④ D、①④⑤
2
练习
1. (2015•重庆)已知抛物线 y=ax2+bx+c(a≠0)在平面面直⻆角坐标系中的
4 a,b,c 共同决定判别式的符号进而而决定图象与 x 轴的交点 与 x 轴两个交点 与 x 轴一一个交点 与 x 轴没有交点
5 几几种特殊情况:x=1 时,y=a + b + c ; x= -1 时,y=a - b + c .

二次函数图象与系数之间的关系

二次函数图象与系数之间的关系

二次函数y=ax2+bx+c(a≠0)图象与各项系数之间的关系一、知识梳理1、二次项系数a:①a>0时,抛物线开口向上;a<0时,抛物线开口向下。

②|a|越大,开口越小;|a|越小,开口越大。

2、一次项系数b:a,b共同决定了抛物线对称轴的位置,“左同右异”。

3、常数项c:决定抛物线与y轴交点的位置4、△= b2-4ac>0方程ax2+bx+c=0有两个不相等的实数根函数y=ax2+bx+c与x轴有两个交点;△= b2-4ac=0方程ax2+bx+c=0有两个相等的实数根函数y=ax2+bx+c与x轴只有一个交点;△= b2-4ac<0方程ax2+bx+c=0没有实数根函数y=ax2+bx+c与x轴没有交点;5、抛物线的特殊位置与系数的关系:(1)顶点在x轴上:b²-4ac=0;(2)顶点在y轴上:b=0;(3)顶点在原点:b=c=0;(4)抛物线经过原点:c=0.6、特殊代数式:二、典型例题例1.已知二次函数y=ax2+bx+c(a≠0)的图象如图,现有下列结论:①b2-4ac>0;②abc>0;③a-b+c>0;④9a+3b+c<0;⑤2a+b=0,⑥3a+c<0,⑦8a+c>0;⑧am2+bm>a+b(m≠1).则其中结论正确的是( )例2.二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①;②;③;④当x<0时,y随x增大而增大;则其中结论正确的是( )例3.当b<0时,一次函数与二次函数在同一坐标系内的图象可能是()x变式练习1、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①②当x=1时,函数有最大值。

③当x=-1或x=3时,函数y的值都等于0. ④4a+2b+c<0其中正确结论的个数是()A.1B.2C.3D.4(第1题)(第2题)(第3题)2、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①ab c>0;②b<a+c;③4a+2b+c >0;④b2-4ac>0;其中正确的结论有()A.1个B.2个C.3个D.4个3、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,那么下列判断不正确的是()A、abc>0;B、b2-4ac>0;C、2a+b>0;D、4a+2b+c<04、二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的个数是()①a+b+c<0;②a-b+c>0;③abc>0;④b=2aA、4B、3C、2D、15、已知二次函数y=ax2+bx+c其中a,b,c满足a+b+c=3和9a+3b+c=3,则该二次函数图象的对称轴是直线.6、已知y=ax2+bx+c中a<0,b>0,c<0,△<0,函数的图象经过象限。

二次函数图象的位置与系数之间的关系

二次函数图象的位置与系数之间的关系

★■江苏兴化陈德前(特级教师)对于抛物线y =ax 2+bx +c(a ≠0),其函数图象的位置与系数之间有如下关系:(1)a>0$抛物线开口向上,a<0$抛物线开口向下;(2)a 、b 同号$对称轴在y 轴的左侧,a 、b 异号$对称轴在y 轴的右侧;(3)c>0$抛物线交y 轴于正半轴,c<0$抛物线交y 轴于负半轴,c=0$抛物线过原点;(4)△>0$抛物线与x 轴有两个交点,△=0$抛物线与x 轴有一个交点,△<0$抛物线与x 轴没有交点;(5)a+b+c 的值的正负号,由x=1时y 的正负号确定;(6)a-b+c 的值的正负号,由x=-1时y 的正负号确定.下面举例说明这些关系的应用.例1(徐州市中考试题)函数y =ax 2+a 与y =a x(a ≠0)在同一坐标系中的图象可能是图1中的().A BC D二次函数图象的位置与系数之间的关系★分析:在A中,由反比例函数图象有a>0,而二次函数的图象过原点,则a=0,矛盾,排除;在B中,由反比例函数图象有a>0,而由二次函数的图象有a<0,矛盾,排除;在C中,由反比例函数图象有a>0,而二次函数的图象交y 轴于负半轴,则a<0,矛盾,排除;所以应选D.例2(淮安市中考试题)已知直线y=ax+b(a≠0)不经过第二象限,则抛物线y=ax2+bx的图象一定经过().A.第一、二、四象限B.第一、二、三象限C.第一、二象限D.第三、四象限分析:由于直线y=ax+b(a≠0)不经过第二象限,所以a>0,b≤0.当b =0时,抛物线一定过一、二象限;当b<0时,抛物线顶点坐标为-b2a,-b24a$%,因为-b2a >0,-b24a<0,所以抛物线顶点在第四象限,且该抛物线必过原点,又由a、b异号知,抛物线的对称轴在y轴的右侧,所以抛物线过一、二、四象限.综上所述,图象必定经过的象限为第一、二象限,选C.例3(随州市中考试题)已知二次函数y=ax2+bx+c的图象如图2所示,且OA=OC,则由抛物线的特征写出如下含有a、b、c三个字母的等式或不等式:①4ac-b24a=-1;②ac+b+1=0;③abc>0;④a-b+c>0.其中正确结论的序号是.(把你认为正确的都填上)解:这里a>0,c<0,b<0,故③正确;由图知顶点的纵坐标为-1,故①正确;又C(0,c),而OA=OC,∴A(c,0),代入有ac2+bc+c=0,即ac+b+1=0,故②也正确;当x=-1时,y=a-b+c>0,④正确.故应填①②③④.例4(绍兴市中考试题)已知抛物线y=x2+(m+1)x-14m2-1(m为实数).(1)若该抛物线的对称轴在y轴的右侧,求m的取值范围;(2)设A、B两点分别是该抛物线与x轴、y轴的交点,OA=OB(O是坐标原点),求m的值.分析:(1)由于抛物线的对称轴在y轴的右侧,所以a、b异号,即ab<0,又a=1>0,所以b<0;(2)由于a=1>0,常数项c=-14(m2+1)<0,∴抛物线与x★轴的交点在原点两侧,求出抛物线与y 轴的交点坐标为B 0,-14m 2-"#1,再利用OA=OB 得到抛物线与x 轴的交点坐标,将交点坐标代入抛物线的解析式得到关于m 的方程,求出m 的值即可.解:(1)由于抛物线的对称轴在y 轴的右侧,所以a 、b 异号,即ab<0,又a=1>0,所以b<0,∴m+1<0,即m<-1.(2)∵常数项c=-14(m 2+1)<0,∴抛物线与x 轴的交点在原点两侧,而B 0,-14m 2-"$1,OA=OB,故点A 的坐标为-14m 2-1,%$0或14m 2+1,"$,将点A 的坐标分别代入解析式,可解得m =±2.练习题1.二次函数y =ax 2+bx +c (a ≠0)的图象如图3所示,则下列结论:①a>0;②c>0;③b 2-4ac>0.其中正确的个数是().A.0个B.1个C.2个D.3个2.如图4,二次函数y=ax 2+bx+c 的图象开口向上,图象经过点(-1,2)和(1,0),且与y 轴相交于负半轴.(1):给出四个结论:①a>0;②b>0;③c>0;④a+b +c=0.其中正确结论的序号是;(2):给出四个结论:①abc<0;②2a+b>0;③a+c=1;④a>1.其中正确结论的序号是.参考答案1.C;2.(1)①④;(2)②③④.责任编辑/沈红艳czsshy@。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数的图象与各项系数之间的关系
姓名________ 组号_____
一、知识基础
1. 二次项系数a
二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.
⑴ 当0a >时,抛物线开口向上, ⑵ 当0a <时,抛物线开口向下,
a 的值越大,函数图象越靠近y 轴,开口越小,反之a 的值越小,函数图象越远离y 轴,开口越大;一次函数图象有类似特点。

总结:a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.
2. 一次项系数b
在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.
⑴ 在0a >的前提下,
当0b >时,02b a -
<,即抛物线的对称轴在y 轴左侧; 当0b =时,02b a -
=,即抛物线的对称轴就是y 轴; 当0b <时,02b a
->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即
当0b >时,02b a -
>,即抛物线的对称轴在y 轴右侧; 当0b =时,02b a -
=,即抛物线的对称轴就是y 轴; 当0b <时,02b a
-<,即抛物线对称轴在y 轴的左侧. 总结:在a 确定的前提下,b 决定了抛物线对称轴的位置.
ab 的符号的判定:对称轴a
b x 2-
=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异”
3. 常数项c ⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正;
⑵当0
c=时,抛物线与y轴的交点为坐标原点,即抛物线与y轴交点的纵坐标为0;
⑶当0
c<时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐标为负.总结:c决定了抛物线与y轴交点的位置.
总之,只要a b c
,,都确定,那么这条抛物线就是唯一确定的.
4.当x=1时,可以求出a+b+c的值;若x=1时,y>0,则a+b+c>0; 若x=1时,y<0,则a+b+c<0; 若x=1时,y=0,则a+b+c=0;
当x=-1时,可以求出a-b+c的值;若x=-1时,y>0,则a-b+c>0; 若x=-1时,y<0,则a-b+c<0; 若x=-1时,y=0,则a-b+c=0;
思考:x=2时,可以通过函数图象得出哪些值?
5.根的别式b2-4ac,可以用来判断抛物线与x轴的交点个数,当b2-4ac>0时,方程
2
=++=0有两个根,也就是说y=0时,函数在x轴上可以找到2个对应的自变量值,y ax bx c
即断抛物线与x轴有2个交点;同理b2-4ac=0,二次函数图象与x轴有一个交点;b2-4ac <0时,抛物线与x轴没有交点。

二、精典练习
1.(烟台市中考题)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是抛物线上两点,则y1>y2.其中说法正确的是()
A.①②B.②③C.①②④D.②③④
2、如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0,其中正确结论的个数是()
A.5个B.4个C.3个D.2个。

相关文档
最新文档