(整理)平面向量基本概念与运算法则(含基础练习题).
平面向量(附例题-习题及答案)
向量的线性运算`一.教学目标1.理解向量的概念;2.掌握向量的线性运算;3.理解向量线性运算的几何意义、向量共线的含义、平行向量基本定理;4.理解平面向量基本定理,掌握平面向量的正交分解及其坐标表示、平面向量的坐标运算;5.理解用坐标表示平面向量的共线条件。
二.知识清单1.向量基本概念(1)向量的定义:既有又有称为向量;(2)向量的大小(或称模):有向线段的表示向量的大小;^(3)零向量与单位向量:叫做零向量,叫做单位向量;(4)共线向量与相等向量:叫做共线向量(或平行向量),叫做相等向量。
2.向量的线性运算(1)向量的加法a.向量加法的三角形法则、平行四边形法则和多边形法则。
b.向量加法满足的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c).(2)向量的减法\a.定义:a-b=a+(-b),即减去一个向量相当于加上这个向量的相反向量。
一个向量等于终点位置向量减始点位置向量,即=-。
b.三角形法则:“共始点,连终点,指向被减”。
(3)数乘向量a.定义:一般地,实数λ和向量a的乘积是一个向量,记作λa.b.数乘向量满足的运算律:(λ+μ)a=λ(μa)=λ(a+b)=—3.向量共线的条件与轴上向量坐标运算(1)向量共线的条件平行向量基本定理:如果,则;反之,如果,且,则一定存在,使。
(2)轴上向量的坐标运算4. 向量的分解与向量的坐标运算(1)平面向量基本定理如果是一平面内的的向量,那么该平面内的任一向量a,存在,使。
(2)平面向量的正交分解定义:把一个向量分解为,叫做把向量正交分解。
(3)向量的坐标表示>在平面直角坐标系中,分别取与x轴、y轴方向相同的两个_______作为基底。
对于平面内的任一个向量,由平面向量基本定理可知,有且只有一对实数x,y使得____________,这样,平面内的任一向量a都可由__________唯一确定,我们把有序数对________叫做向量的坐标,记作___________此式叫做向量的坐标表示,其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标。
高一数学平面向量的概念及几何运算试题答案及解析
高一数学平面向量的概念及几何运算试题答案及解析1.下列说法正确的是().A.方向相同或相反的向量是平行向量B.零向量是C.长度相等的向量叫做相等向量D.共线向量是在一条直线上的向量【答案】B【解析】选项A:方向相同或相反的非零向量是平行向量;选项C:方向相同且长度相等的向量叫相等向量;选项D:共线向量所在直线可能重合,也可能平行;故选B.【考点】平面向量的有关概念.2.已知点A(-1,5)和向量,则点B的坐标为.【答案】(5,14)【解析】设B(m,n),∵点A(-1,5),∴=(m+1,n-5),∵由已知得,∴m+1=6且n-5=9,解之得m=5,n=14.即点B的坐标为(5,14)故答案为:(5,14).【考点】平面向量的坐标运算.3.已知均为单位向量,它们的夹角为,那么()A.B.C.D.4【答案】C【解析】因为且,所以,所以,因此,选C.【考点】1.平面向量的模;2.平面向量的数量积.4.在平行四边形ABCD中,下列结论中错误的是A.B.C.D.0【答案】C【解析】根据题意,由于向量的大小和方向相等就是相等向量,故成立,对于B,由于,对于D,,故排除法. 应该是,选C.【考点】向量的加减法点评:主要是考查了向量的加减法是运算,属于基础题。
5..【答案】【解析】【考点】向量加减法点评:利用相反向量可将向量减法运算转化为加法运算,向量加法运算首尾相接最终结果是由起点指向终点的向量6.以下说法错误的是()A.零向量与任一非零向量平行B.零向量与单位向量的模不相等C.平行向量方向相同D.平行向量一定是共线向量【答案】C【解析】平行向量的方向相同或相反,所以,说法错误的是“平行向量方向相同”,选C。
【考点】本题主要考查向量的基础知识。
点评:简单题,确定说法错误的选项,应将各选项逐一考察。
7.下列命题正确的是A.若·=·,则=B.若,则·="0"C.若//,//,则//D.若与是单位向量,则·=1【答案】B【解析】解:因为选项A中不能约分,选项B中,两边平方可知成立,选项C中,当为零向量时不成立,选项D中,夹角不定,因此数量积结果不定,选B8.定义平面向量之间的一种运算“”如下:对任意的向量,令,给出下面四个判断:①若与共线,则;②若与垂直,则;③;④.其中正确的有(写出所有正确的序号).【答案】①④【解析】①若,则,即,正确.②由①知错.③错.④,正确.9.已知O,A,B是平面上的三个点,直线AB上有一点C,满足,则()A.B.C.D.【答案】B【解析】解:因为\选B10.如图,在平行四边形中,已知,,,为的中点,则【答案】【解析】解:因为运用平面向量的基本定理可知,,结合向量的数量积公式得到结论为11.下列各说法中,其中错误的个数为⑴向量的长度与向量的长度相等⑵平行向量就是向量所在直线平行⑶⑷ (5)A.2个B.3个C.4个D.5个【答案】C【解析】选C (1)正确(2)因为平行向量是向量所在直线平行或重合,所以此命题错误;(3)若向量,本命题是错误命题.(4)没有说明是非零向量,所以此命题也是错误的.(5)若再加上,才成立.因而此命题也是错误的.故错误命题共有四个.12.已知下列命题:①若向量∥,∥,则∥;②若>,则>;③若,则=或=;④在△中,若,则△是钝角三角形;⑤. 其中正确命题的个数是().A.0B.1C.2D.3【答案】A【解析】时①不正确;向量不能比较大小,②不正确;,③不正确;为锐角,不能判断△的形状,④不正确;,⑤不正确.13.已知平面向量,则向量()A.B.C.D.【答案】D【解析】本题考查向量的坐标运算.若则.故选D14.已知四边形是菱形,点在对角线上(不包括),则()A.B.C.D.【答案】A【解析】设,其中,则。
第1节 平面向量的概念及线性运算--2025年高考数学复习讲义及练习解析
第一节平面向量的概念及线性运算课标解读考向预测1.理解平面向量的意义、几何表示及向量相等的含义.2.掌握向量的加法、减法运算,并理解其几何意义及向量共线的含义.3.了解向量线性运算的性质及其几何意义.预计2025年高考对本节内容的考查会以线性运算、共线向量定理为主,主要以选择题、填空题的形式出现,难度属中、低档.必备知识——强基础1.向量的有关概念名称定义表示向量在平面中,既有大小又有方向的量用a ,b ,c ,…或AB →,BC →,…表示向量的模向量a 的大小,也就是表示向量a 的有向线段AB →的长度(或称模)|a |或|AB →|零向量长度为0的向量用0表示单位向量长度等于1个单位的向量用e 表示,|e |=1平行向量方向相同或相反的非零向量(或称共线向量)a ∥b 相等向量长度相等且方向相同的向量a =b相反向量长度相等,方向相反的向量向量a 的相反向量是-a说明:零向量的方向是不确定的、任意的.规定:零向量与任一向量平行.2.向量的线性运算向量运算法则(或几何意义)运算律加法交换律:a +b =01b +a ;结合律:(a +b)+c =02a+(b +c )减法a -b =03a +(-b )数乘|λa |=|λ||a |,当λ>0时,λa 的方向与a 的方向04相同;当λ<0时,λa 的方向与a 的方向05相反;当λ=0时,λa =060λ(μa )=07(λμ)a ;(λ+μ)a =08λa +μa ;λ(a +b )=09λa +λb3.向量共线定理向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使得b =λa .提醒:当a ≠0时,定理中的实数λ才唯一.1.一般地,首尾顺次相接的多个向量的和等于从第一个向量的起点指向最后一个向量的终点的向量,即A 1A 2→+A 2A 3→+A 3A 4→+…+A n -1A n =A 1A n →.特别地,一个封闭图形,首尾连接而成的向量和为零向量.2.若F 为线段AB 的中点,O 为平面内任意一点,则OF →=12OA →+OB →).3.若A ,B ,C 是平面内不共线的三点,则PA →+PB →+PC →=0⇔P 为△ABC 的重心,AP →=13(AB→+AC →).4.若OA →=λOB →+μOC →(λ,μ为常数),则A ,B ,C 三点共线的充要条件是λ+μ=1.5.对于任意两个向量a ,b ,都有||a |-|b ||≤|a ±b |≤|a |+|b |.1.概念辨析(正确的打“√”,错误的打“×”)(1)|a |与|b |是否相等,与a ,b 的方向无关.()(2)若向量a 与b 同向,且|a |>|b |,则a >b .()(3)若向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上.()(4)起点不同,但方向相同且模相等的向量是相等向量.()答案(1)√(2)×(3)×(4)√2.小题热身(1)如图,D ,E ,F 分别是△ABC 各边的中点,则下列结论错误的是()A .EF →=CD →B .AB →与DE →共线C .BD →与CD →是相反向量D .AE →=12|AC →|答案D解析AE →=12AC →,故D 错误.故选D.(2)(人教B 必修第二册6.2.1例3改编)设向量a ,b 不共线,向量λa +b 与a +2b 共线,则实数λ=________.答案12解析∵λa +b 与a +2b 共线,∴存在实数μ使得λa +b =μ(a +2b )=μ,=2μ,=12,=12.(3)(人教A 必修第二册6.2例6改编)已知▱ABCD 的对角线AC 和BD 交于点O ,且OA →=a ,OB →=b ,则DC →=________,BC →=________.(用a ,b 表示)答案b -a -a -b解析如图,DC →=AB →=OB →-OA →=b -a ,BC →=OC →-OB →=-OA →-OB →=-a -b .(4)(人教A 必修第二册习题6.2T10改编)若a ,b 满足|a |=3,|b |=5,则|a +b |的最大值为________,最小值为________.答案82解析|a +b |≤|a |+|b |=3+5=8,当且仅当a ,b 同向时取等号,所以|a +b |max =8.又|a +b |≥||a |-|b ||=|3-5|=2,当且仅当a ,b 反向时取等号,所以|a +b |min =2.考点探究——提素养考点一平面向量的有关概念例1(多选)下列命题中的真命题是()A .若|a |=|b |,则a =bB .若A ,B ,C ,D 是不共线的四点,则“AB →=DC →”是“四边形ABCD 为平行四边形”的充要条件C .若a =b ,b =c ,则a =cD .a =b 的充要条件是|a |=|b |且a ∥b 答案BC解析A 是假命题,两个向量的长度相等,但它们的方向不一定相同;B 是真命题,∵AB →=DC →,∴|AB →|=|DC →|且AB →∥DC →,又A ,B ,C ,D 是不共线的四点,∴四边形ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形,则|AB →|=|DC →|,AB →∥DC →且AB →,DC →方向相同,因此AB →=DC →;C 是真命题,∵a =b ,∴a ,b 的长度相等且方向相同,又b =c ,∴b ,c 的长度相等且方向相同,∴a ,c 的长度相等且方向相同,故a =c ;D 是假命题,当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件.故选BC.【通性通法】平面向量有关概念的四个关注点关注点一非零向量的平行具有传递性关注点二共线向量即为平行向量,它们均与起点无关关注点三向量可以平移,平移后的向量与原向量是相等向量关注点四a|a |是与a 同方向的单位向量【巩固迁移】1.(多选)下列命题正确的是()A .零向量是唯一没有方向的向量B .零向量的长度等于0C .若a ,b 都为非零向量,则使a |a |+b|b |=0成立的条件是a 与b 反向共线D .若a ∥b ,b ∥c ,则a ∥c 答案BC解析零向量是有方向的,其方向是任意的,故A 错误;由零向量的定义知,零向量的长度为0,故B 正确;因为a |a |与b |b |都是单位向量,所以只有当a |a |与b|b |是相反向量,即a 与b 反向共线时才成立,故C 正确;若b =0,则不共线的a ,c 也有a ∥0,c ∥0,故D 错误.考点二平面向量的线性运算(多考向探究)考向1平面向量加、减运算的几何意义例2设P 为▱ABCD 对角线的交点,O 为平面ABCD 内的任意一点,则OA →+OB →+OC →+OD →=()A .OP →B .2OP →C .3OP →D .4OP→答案D解析由题意知,P 为AC ,BD 的中点,所以在△OAC 中,OP →=12(OA →+OC →),即OA →+OC →=2OP →,在△OBD 中,OP →=12(OB →+OD →),即OB →+OD →=2OP →,所以OA →+OB →+OC →+OD →=4OP →.故选D.【通性通法】1.平面向量的线性运算技巧(1)不含图形的情况:可直接运用相应运算法则求解.(2)含图形的情况:将它们转化到三角形或平行四边形中,充分利用相等向量、相反向量、三角形的中位线等性质,把未知向量用已知向量表示出来.2.三种运算法则的要点(1)加法的三角形法则要求“首尾连”,平行四边形法则要求“共起点”.(2)减法的三角形法则要求“共起点,连终点,指被减”.(3)数乘运算的结果仍是一个向量,运算过程可类比实数运算.【巩固迁移】2.(2024·山东青岛二中月考)若|AB →|=|AC →|=|AB →-AC →|=2,则|AB →+AC →|=________.答案23解析因为|AB →|=|AC →|=|AB →-AC →|=2,所以△ABC 是边长为2的正三角形,所以|AB →+AC →|为△ABC 的边BC 上的高的2倍,所以|AB →+AC →|=23.考向2平面向量的线性运算例3(2022·新高考Ⅰ卷)在△ABC 中,点D 在边AB 上,BD =2DA ,记CA →=m ,CD →=n ,则CB →=()A .3m -2nB .-2m +3nC .3m +2nD .2m +3n答案B解析CD →=23CA →+13CB →,即CB →=-2CA →+3CD →=-2m +3n .故选B.【通性通法】平面向量的线性运算的求解策略【巩固迁移】3.(2023·江苏南通二模)在平行四边形ABCD 中,BE →=12BC →,AF →=13AE →.若AB →=mDF →+nAE →,则m +n =()A .12B .34C .56D .43答案D解析由题意可得AB →=AE →+EB →=AE →+12DA →=AE →+12(DF →+FA →)=AE→+12(DF →-13AE →)=12DF →+56AE →,所以m =12,n =56,所以m +n =43.故选D.考点三向量共线定理的应用(多考向探究)考向1判定向量共线、三点共线例4设两个非零向量a 与b 不共线.若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),求证:A ,B ,D 三点共线.证明∵AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),∴BD →=BC →+CD →=2a +8b +3(a -b )=2a +8b +3a -3b =5(a +b )=5AB →,∴AB →,BD →共线,又它们有公共点B ,∴A ,B ,D 三点共线.【通性通法】共线向量定理的三个应用【巩固迁移】4.已知P 是△ABC 所在平面内的一点,若CB →=λPA →+PB →,其中λ∈R ,则点P 一定在()A .△ABC 的内部B .AC 边所在直线上C .AB 边所在直线上D .BC 边所在直线上答案B解析由CB →=λPA →+PB →,得CB →-PB →=λPA →,CP →=λPA →,则CP →,PA →为共线向量,又CP →,PA →有一个公共点P ,所以C ,P ,A 三点共线,即点P 在AC 边所在直线上.故选B.考向2利用向量共线定理求参数例5若a ,b 是两个不共线的向量,已知MN →=a -2b ,PN →=2a +k b ,PQ →=3a -b ,若M ,N ,Q 三点共线,则k =()A .-1B .1C .32D .2答案B解析由题意知,NQ →=PQ →-PN →=a -(k +1)b ,因为M ,N ,Q 三点共线,所以存在实数λ,使得MN →=λNQ →,即a -2b =λ[a -(k +1)b ],解得λ=1,k =1.【通性通法】一般通过构造三角形,利用向量运算的三角形法则进行加法或减法运算,然后通过建立方程(组)即可求得相关参数的值.【巩固迁移】5.如图,在△ABC 中,AD →=λDC →,E 是BD 上一点,若AE →=1116→+14AC →,则实数λ的值为()A .3B .4C .5D .6答案B解析由AD →=λDC →,得AC →=λ+1λAD →,因为AE →=1116AB →+14AC →,所以AE →=1116AB →+14·λ+1λAD →,因为E ,B ,D 三点共线,所以1116+λ+14λ=1,解得λ=4.故选B.课时作业一、单项选择题1.若a ,b 为非零向量,则“a |a |=b|b |”是“a ,b 共线”的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件答案B解析a |a |,b |b |分别表示与a ,b 同方向的单位向量,a |a |=b|b |,则有a ,b 共线,而a ,b 共线,则a |a |,b |b |是相等向量或相反向量,所以“a |a |=b|b |”是“a ,b 共线”的充分不必要条件.故选B.2.设a =(AB →+CD →)+(BC →+DA →),b 是一个非零向量,则下列结论不正确的是()A .a ∥bB .a +b =aC .a +b =bD .|a +b |=|a |+|b |答案B解析由题意得,a =(AB →+CD →)+(BC →+DA →)=AC →+CA →=0,且b 是一个非零向量,所以a ∥b成立,所以A 正确;因为a +b =b ,所以B 不正确,C 正确;因为|a +b |=|b |,|a |+|b |=|b |,所以|a +b |=|a |+|b |,所以D 正确.故选B.3.已知AB →=a +5b ,BC →=-3a +6b ,CD →=4a -b ,则()A .A ,B ,D 三点共线B .A ,B ,C 三点共线C .B ,C ,D 三点共线D .A ,C ,D 三点共线答案A解析由题意得BD →=BC →+CD →=a +5b =AB →,又BD →,AB →有公共点B ,所以A ,B ,D 三点共线.故选A.4.(2024·安徽铜陵三模)在平行四边形ABCD 中,M 是CD 边上的中点,则2AM →=()A .AC →-2AB →B .AC →+2AB →C .2AC →-AB →D .2AC →+AB→答案C解析因为M 是平行四边形ABCD 的CD 边上的中点,所以CM →=-12AB →,所以AM →=AC →+CM→=AC →-12AB →,所以2AM →=2AC →-AB →.故选C.5.已知向量a 和b 不共线,向量AB →=a +m b ,BC →=5a +3b ,CD →=-3a +3b ,若A ,B ,D 三点共线,则m =()A .3B .2C .1D .-2答案A解析因为A ,B ,D 三点共线,所以存在实数λ,使得BD →=λAB →,BD →=BC →+CD →=2a +6b ,所以2a +6b =λa +mλb ,=λ,=mλ,解得m =3.故选A.6.矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若DE →=λAB →+μAD →(λ,μ为实数),则λ2+μ2=()A .58B .14C .1D .516答案A解析DE →=AE →-AD →=14AC →-AD →=14(AB →+AD →)-AD →=14AB →-34AD →,∴λ=14,μ=-34.∴λ2+μ2=116+916=58.故选A.7.正方形ABCD 中,E 在CD 上且有CE →=2ED →,AE 与对角线BD 交于F ,则AF →=()A .13AB →+23AD→B .34AB →+14AD→C .14AB →+34AD→D .13AD →+AB→答案C解析如图,∵在正方形ABCD 中,E 在CD 上且有CE →=2ED →,AE 与对角线BD 交于F ,∴DE =13AB ,且DE ∥AB ,∴△DEF ∽△BAF ,可得EF AF =13,可得AF =34AE ,∴AF →=34AE →=34(AD→+DE →)+13AB =14AB →+34AD →.故选C.8.(2023·滁州模拟)已知P 为△ABC 所在平面内一点,AB →+PB →+PC →=0,|AB →|=|PB →|=|PC →|=2,则△ABC 的面积为()A .3B .23C .33D .43答案B解析设BC 的中点为D ,AC 的中点为M ,连接PD ,MD ,BM ,如图所示,则有PB →+PC →=2PD →.由AB →+PB →+PC →=0,得AB →=-2PD →,又D 为BC 的中点,M 为AC 的中点,所以AB →=-2DM →,则PD →=DM →,则P ,D ,M 三点共线且D 为PM 的中点,又D 为BC 的中点,所以四边形CPBM 为平行四边形.又|AB →|=|PB →|=|PC →|=2,所以|MC →|=|BP →|=2,则|AC →|=4,且|BM →|=|PC →|=2,所以△AMB 为等边三角形,∠BAC =60°,则S △ABC =12×2×4×32=2 3.故选B.二、多项选择题9.下列式子中,结果为零向量的是()A .AB →+BC →+CA →B .AB →+MB →+BO →+OM →C .OA →+OB →+BO →+CO →D .AB →-AC →+BD →-CD →答案AD解析利用向量运算,易知A ,D 中的式子结果为零向量.故选AD.10.点P 是△ABC 所在平面内一点,且满足|PB →-PC →|-|PB →+PC →-2PA →|=0,则△ABC 不可能是()A .钝角三角形B .直角三角形C .等腰三角形D .等边三角形答案AD解析因为点P 是△ABC 所在平面内一点,且|PB →-PC →|-|PB →+PC →-2PA →|=0,所以|CB →|-|(PB→-PA →)+(PC →-PA →)|=0,即|CB →|=|AB →+AC →|,所以|AB →-AC →|=|AC →+AB →|,等式两边平方并化简得AC →·AB →=0,所以AC →⊥AB →,∠BAC =90°,则△ABC 一定是直角三角形,也有可能是等腰直角三角形,不可能是钝角三角形和等边三角形.故选AD.11.(2023·安徽合肥期末)在△ABC 中,D ,E ,F 分别是边BC ,CA ,AB 的中点,点G 为△ABC 的重心,则下列结论中正确的是()A .AB →-BC →=CA →B .AG →=13(AB →+AC →)C .AF →+BD →+CE →=0D .GA →+GB →+GC →=0答案BCD解析如图,对于A ,AB →-BC →=AB →+CB →=2EB →≠CA →,故A 错误;对于B ,点G 为△ABC 的重心,则AG →=23→=23×12(AB →+AC →)=13(AB →+AC →),故B 正确;对于C ,AF →+BD →+CE →=12(AB →+BC →+CA →)=0,故C 正确;对于D ,GA →=-2GD →=-2×12(GB →+GC →),故GA →+GB →+GC →=0,故D 正确.故选BCD.三、填空题12.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=________.答案12解析∵向量a ,b 不平行,∴a +2b ≠0,又向量λa +b 与a +2b 平行,则存在唯一的实数μ,使λa +b =μ(a +2b )成立,即λa +b =μa +2μb ,=μ,=2μ,解得λ=μ=12.13.已知D ,E ,F 分别为△ABC 的边BC ,CA ,AB 的中点,且BC →=a ,CA →=b ,给出下列命题:①AD →=12a -b ;②BE →=a +12b ;③CF →=-12a +12b ;④AD →+BE →+CF →=0.其中正确的命题是________.答案②③④解析BC →=a ,CA →=b ,AD →=12AB →+12AC →=12(AC →+CB →)+12AC →=12CB →+AC →=-12a -b ,故①错误;BE →=BC →+12CA →=a +12b ,故②正确;CF →=12(CB →+CA →)=12(-a +b )=-12a +12b ,故③正确;AD→+BE →+CF →=-b -12a +a +12b +12b -12a =0,故④正确.14.(2024·丽江模拟)在△ABC 中,点D 在线段AC 上,且满足|AD →|=13|AC →|,点Q 为线段BD上任意一点,若实数x ,y 满足AQ →=xAB →+yAC →,则1x +1y 的最小值为________.答案4+23解析由题意知,点D 满足AD →=13AC →,故AQ →=xAB →+yAC →=xAB →+3yAD →,由Q ,B ,D 三点共线,可得x +3y =1,x >0,y >0,则1x +1y=x +3y )=4+3y x +x y ≥4+23,当且仅当3yx =x y ,即x =3-12,y =3-36时等号成立.所以1x +1y 的最小值为4+2 3.15.如图,在平行四边形ABCD 中,AB →=2AE →,AF →=FD →,点G 为CE 与BF 的交点,则AG →=()A .25AB →+15AC→B .15AB →+25AC→C .15AB →+415AC→D .310AB →+25AC→答案A解析由AB →=2AE →,AF →=FD →,知E ,F 分别为AB ,AD 的中点.如图,设AC 与BF 的交点为P ,易得△APF ∽△CPB ,所以AP CP =AF CB =AF AD =12,所以AP →=13AC →.因为E 是AB 的中点,所以AE →=12AB →.由P ,G ,B 三点共线知,存在m ∈R ,满足AG →=mAP →+(1-m )AB →=13mAC →+(1-m )AB →.由C ,G ,E 三点共线知,存在n ∈R ,满足AG →=nAE →+(1-n )AC →=12nAB →+(1-n )AC →,所以13mAC →+(1-m )AB →=12nAB →+(1-n )AC →.又因为AC →,AB →为不共线的非零向量,所以m =12n ,=1-n ,=35,=45,所以AG →=25AB →+15AC →.16.(多选)(2024·武汉模拟)瑞士数学家欧拉在1765年发表的《三角形的几何学》一书中有这样一个定理:三角形的外心、垂心和重心都在同一直线上,而且外心和重心间的距离是垂心和重心间的距离之半.这个定理就是著名的欧拉线定理.设△ABC 中,点O ,H ,G 分别是其外心、垂心、重心,BC 边的中点为D ,则下列结论中正确的是()A .GH →=2OG →B .OD ∥AHC .AH →=3OD →D .OA →=OB →=OC→答案AB解析由题意作图,如图所示,易知BC 的中点D 与A ,G 共线.对于A ,由题意,得AG →=2GD →,OD ⊥BC ,AH ⊥BC ,所以OD ∥AH ,所以GH →=2OG →,所以A ,B 正确;对于C ,由题意,知AG =2GD ,又GH =2OG ,∠AGH =∠DGO ,所以△AGH ∽△DGO ,所以AH →=2OD →,所以C 错误;对于D ,向量OA →,OB →,OC →的模相等,方向不同,所以D 错误.故选AB.17.如图,已知正六边形ABCDEF ,M ,N 分别是对角线AC ,CE 上的点,使得AM AC =CNCE=r ,则B ,M ,N 三点共线时,r 的值为________.答案33解析连接AD ,交EC 于点G ,设正六边形的边长为a ,由正六边形的性质知,AD ⊥CE ,AD ∥CB ,G 为EC 的中点,且AG =32a ,则CA →=CG →+GA →=12CE →+32CB →,又AM AC =CNCE =r (r >0),则CA →=CM →1-r ,CE →=CN →r ,故CM →1-r =CN →2r +32CB →,即CM →=1-r 2r CN →+3(1-r )2CB →,若B ,M ,N三点共线,则1-r 2r +3(1-r )2=1,解得r =33或r =-33(舍去).18.经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m >0,n >0,则m +n 的最小值为________.答案43解析设OA →=a ,OB →=b .由题意知OG →=23×12(OA →+OB →)=13(a +b ),PQ →=OQ →-OP →=n b -m a ,PG→=OG →-OP →+13b ,由P ,G ,Q 三点共线,得存在实数λ,使得PQ →=λPG →,即n b -m a =+13λb ,m ==13λ,消去λ,得1n +1m =3.于是m +nm +n )+n m +≥13×(2+2)=43,当且仅当m =n =23时,m +n 取得最小值,为43.。
高中数学平面向量知识点总结
高中数学平面向量知识点总结一、平面向量的基本概念1. 定义:平面向量是有大小和方向的量,可以用有序实数对表示。
2. 表示法:通常用小写字母加箭头表示,如 $\vec{a}$。
3. 相等:两个向量大小相等且方向相同时,这两个向量相等。
4. 零向量:大小为零的向量,没有特定方向。
二、平面向量的运算1. 加法:- 规则:平行四边形法则或三角形法则。
- 交换律:$\vec{a} + \vec{b} = \vec{b} + \vec{a}$。
- 结合律:$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$。
2. 减法:- 规则:与加法类似,但方向相反。
- 逆向量:$\vec{a} - \vec{a} = \vec{0}$。
3. 数乘:- 定义:向量与实数相乘。
- 规则:$k\vec{a} = \vec{a}$ 的长度变为 $|k|$ 倍,方向与$k$ 的符号一致。
- 分配律:$(k + l)\vec{a} = k\vec{a} + l\vec{a}$。
- 结合律:$k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}$。
三、平面向量的坐标表示1. 坐标表示:$\vec{a} = (x, y)$,其中 $x$ 和 $y$ 是向量在坐标轴上的分量。
2. 几何意义:$x$ 分量表示向量在 $x$ 轴上的长度,$y$ 分量表示向量在 $y$ 轴上的长度。
3. 坐标运算:- 加法:$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$。
- 减法:$(x_1, y_1) - (x_2, y_2) = (x_1 - x_2, y_1 - y_2)$。
- 数乘:$k(x, y) = (kx, ky)$。
四、平面向量的模与单位向量1. 模(长度):- 定义:向量从原点到其终点的距离。
平面向量基本定理基础训练题(含详解)
平面向量基本定理基础训练题(含详解)学校:___________姓名:___________班级:___________考号:___________一、单选题1.在ABC 中,E 是AC 的中点,3BC BF =,若AB a =,AC b =,则EF =( )A .2136a b - B .1133a b +C .1124a b D .1133a b -2.如图,已知AB a =,AC b =,3BD DC =,用a 、b 表示AD ,则AD 等于( )A .34a b + B .3144a b + C .1144a b +D .1344a b +3.已知A ,B ,C 三点不共线,且点O 满足0OA OB OC ++=,则下列结论正确的是( ) A .1233OA AB BC =+ B .2133OA AB BC =+ C .1233OA AB BC =- D .2133OA AB BC =-- 4.在ABC 中,E 为AC 上一点,3AC AE =,P 为BE 上任一点,若(0,0)AP mAB nAC m n =+>>,则31m n+的最小值是 A .9 B .10 C .11D .125.在等腰梯形ABCD 中,//AB DC ,2AB DC =,E 为BC 的中点,则( )A .3142AE AB AD →→→=+B .3122AE AB AD →→→=+C .1142AE AB AD →→→=+D .3144AE AB AD →→→=+6.在平行四边形ABCD 中,若4CE ED =,则BE =( )A .45AB AD -+ B .45AB AD - C .45AB AD -+D .34AB AD -+二、填空题7.在正方形ABCD 中,,M N 分别是,BC CD 的中点,若AC AM AN λμ=+,则实数λμ+=_______.8.已知ABC ,若点D 满足34AB ACAD +=,且()BD CD λλ=∈R ,则λ=________.参考答案1.A 【解析】 【分析】根据向量的运算法则计算得到答案. 【详解】1223EF EC CF AC CB =+=+()12212336AC AB AC AB AC =+-=-2136a b =-. 故选:A . 【点睛】本题考查了向量的基本定理,意在考查学生的计算能力和转化能力. 2.D 【解析】分析:用向量的加法法则表示出AD ,再由数乘与减法运算可得. 详解:由题意34AD AB BD a BC =+=+3()4a AC AB =+-3()4a b a =+-1344a b =+, 故选D .点睛:本题考查平面向量基本定理,考查平面向量的线性运算,解题时抓住向量线性运算的运算法则(加法、减法、数乘等)就可以把任一向量用基底表示出来. 3.D 【解析】 【分析】由0OA OB OC ++=可知,所以O 为ABC ∆的重心,运用向量的加法运算,21()32OA AB AC →→→=-⨯+,整理后可求结果.【详解】因为0OA OB OC ++=,所以O 为ABC ∆的重心,所以211121()()()323333OA AB AC AB AC AB AB BC AB BC →→→→→→→→→→=-⨯+=-+=-++=--.故选:D. 【点睛】本题考查了向量加法的运算,考查了向量的线性表示,考查了平面向量的基本定理,属于基础题. 4.D 【解析】 【分析】由题意结合向量共线的充分必要条件首先确定,m n 的关系,然后结合均值不等式的结论整理计算即可求得最终结果. 【详解】由题意可知:3AP mAB nAC mAB nAE =+=+,,,A B E 三点共线,则:31m n +=,据此有:()3131936612n m m n m n m n m n ⎛⎫+=++=++≥+= ⎪⎝⎭, 当且仅当11,26m n ==时等号成立. 综上可得:31m n+的最小值是12.本题选择D 选项. 【点睛】本题主要考查三点共线的充分必要条件,均值不等式求最值的方法等知识,意在考查学生的转化能力和计算求解能力. 5.A 【解析】 【分析】根据题意,选基底AB →,AD →表示向量AE →即可求解. 【详解】由等腰梯形ABCD 中,2AB DC =,E 为BC 的中点可知,AE AB BE →→→=+,①12AE AD DC CE AD AB CE→→→→→→→=++=++②①+②得:322AE AD AB →→→=+,即3142AE AB AD →→→=+,故选:A 【点睛】本题主要考查了向量的加法,向量的基底,属于容易题. 6.A 【解析】 【分析】由4,CE ED =得45CE CD =,在BEC △中,利用向量加法可得. 【详解】44,,5CE ED CE CD =∴=4455BE BC CE AD CD AB AD ∴=+=+=-+故选:A. 【点睛】本题考查平面向量的线性运算. 用已知向量表示某一向量的两个关键点:(1)用已知向量来表示某一向量,一定要结合图形,以图形为指导是解题的关键. (2)要正确理解向量加法、减法与数乘运算的几何意义,如首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量. 7.43【解析】 【分析】由题意结合平面向量线性运算法则可得22AC AB AB A A D D μλλμ⎛⎫⎛⎫=+++= ⎪ ⎪⎝+⎭⎝⎭,由平面向量基本定理可得1212μλλμ⎧+=⎪⎪⎨⎪+=⎪⎩,即可得解.【详解】由题意画出图形,如图所示:由题意可得()()AC AB BM A AM AN D DN λμλμ=++++=11112222AB BC AD DC AB AD AB AD λμλμ⎛⎫⎛⎫⎛⎫⎛⎫=+++=+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭22AB AD μλλμ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,又AC AB AD =+,所以1212μλλμ⎧+=⎪⎪⎨⎪+=⎪⎩,从而3()22λμ+=,即43λμ+=. 故答案为:43.【点睛】本题考查了平面向量线性运算法则、平面向量基本定理的应用,考查了运算求解能力,属于基础题. 8.13-【解析】【分析】根据题意,利用平面向量的基本定理,化简即可得到结论. 【详解】由34AB ACAD+=,可得43AD AB AC=+,所以,33AD AD AB AC+=+,即()3AD AB AC AD-=-,所以,3BD DC=,故13BD CD=-.故答案为:1 3 -.【点睛】本题考查平面向量的基本定理,属于基础题.。
平面向量基本概念及运算
第六章平面向量【知识框架】向量及基本概念 二向量的表示''几何意义向量的加法 < 运算律 向量的减法n 几何意义向量的线性运算运算律数乘向量』向量共线的条件平面向量基本定理• I'物理背景与集合意义向量的数量积《运算律性质向量的应用'向量在几何中的应用二平面几何和解析几何i向量在物理中的应用二位移、力学等6. 1向量的基本概念及基本运算(1)定义:既有大小又有方向的量叫做向量;向量的大小叫做向量的模 _(2 )特定大小或关系的向量T① 零向量:模为0的向量,记作 0,其方向是任意的② 单位向量:模为1个单位长度的向量③ 共线向量(平行向量):方向相同或相反的非零向量。
规定:零向量与任何向量共线 ④ 相等向量:模长相等且方向相同的向量⑤ 相反向量:模长相等但方向相反的向量。
规定:零向量的相反向量是它本身 2.向量的表示法① 字母表示法:如小写字母 a , b , c 等,或AB , CD 等 ② 几何表示法:用一条有向线段表示1. 向量的加法、减法(1 )法则:平行四边形法则、三角形法则 (2 )运算律:交换律、结合律 (3)几何意义:平面向量:向量线性运算的坐标表i 向量数量积的坐标表示知识点三:定理与公式1共线定理:向量b 与非零向量a 共线的充要条件是:有且只有一个实数’,使得b - ■ a2. 平面向量基本定理:女口果 0(2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数■ 1, '2,使a ='心一心色3 .三点共线定理:平面上三点A 、B 、C 共线的充要条件是:存在实数:■ J ,使得OA = -OB • IOC ,其中-■ - - -1 , 0为平面上任意一点 4.①平面内有任意三点。
、A 、B ,若M是线段AB的中点,则0M 冷0A 0B②ABC 中,M 为BC 边的中点,G 为重心,则 AB BC C^ 0 , GA GB 0③ 向量加法的多边形法则【自主学习】1. 以下命题中,正确命题的序号是 _________ (1 )若 a=b ,贝y a = b (2) 若a,b 都是单位向量,则a =b-fe-f —Ifc—*■—>rf(3) 若a = o,b 二 o,则a 二 b (4)若 a = b 且 a // b,则 a = b(5) 若四边形ABCD 是平行四边形,则 AB 二DC,BC 二DA2. 已知直线x +y =a 与圆x 2 +y 2 =4交于AB 两点,且 OA + OB = OA —OB 。
平面向量知识点+例题+练习+答案
五、平面向量1.向量的概念①向量 既有大小又有方向的量。
向量的大小即向量的模(长度),记作|AB |即向量的大小,记作|a |。
向量不能比较大小,但向量的模可以比较大小。
向量表示方法:(1)几何表示法:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后;(2)符号表示法:用一个小写的英文字母来表示,如a ,b ,c 等;(3)坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量i ,j 为基底,则平面内的任一向量a 可表示为(),a xi y j x y =+=,称(),x y 为向量a 的坐标,a =(),x y 叫做向量a 的坐标表示。
如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。
向量和数量的区别:向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。
如已知A (1,2),B (4,2),则把向量AB 按向量a =(-1,3)平移后得到的向量是_____(答:(3,0))②零向量长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a =0 ⇔|a |=0。
由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件。
(注意与0的区别)③单位向量 模为1个单位长度的向量,向量0a 为单位向量⇔|0a |=1。
(与AB 共线的单位向量是||AB AB ±);④平行向量(共线向量)方向相同或相反的非零向量。
任意一组平行向量都可以移到同一直线上,方向相同或相反的向量,称为平行向量,记作a ∥b ,规定零向量和任何向量平行。
由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量。
提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0);④三点A B C 、、共线⇔ AB AC 、共线;数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的。
向量练习题
平面向量知识点归纳一.平面向量的概念及线性运算1.向量的有关概念:向量;向量的模;零向量;单位向量;平行向量(共线向量:规定:0与任一向量共线);,相等向量;相反向量.2. 线性运算:(1)加法:三角形法则、平行四边形法则减法:平行四边形法则推广:一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量.(2) 数乘运算:实数λ与向量a 的积是一个向量,这种运算叫向量的数乘,记作λa ,它的长度与方向规定如下:①|λa |=|λ||a |;②当λ>0时,λa 与a 的方向相同;当λ<0时,λa 与a 的方向相反;当λ=0时,λa =0.(2)运算律:设λ,μ是两个实数,则①λ(μa )=(λμ)a ;②(λ+μ)a =λa +μa ;③ λ(a +b )=λa +λb .二.两个定理1.共线向量定理向量a (a ≠0)与b 共线的充要条件是存在唯一一个实数λ,使得b =λa .注:向量共线的充要条件中要注意“a ≠0”,否则λ可能不存在,也可能有无数个.2.平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2,其中不共线的向量e 1,e 2叫表示这一平面内所有向量的一组基底.方法总结:1.进行向量运算时,要尽可能地将它们转化到平行四边形或三角形中,充分利用相等向量、相反向量、三角形的中位线定理、相似多边形对应边成比例等性质,把未知向量用已知向量表示出来.2. 用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.在基底未给出的情况下,合理地选取基底会给解题带来方便.3.当向量表示平面图形中的一些有向线段时,要根据向量加减法运算的几何法则进行转化,把题目中未知的向量用已知的向量表示出来,在这个过程中要充分利用共线向量定理和平面向量基本定理、以及解三角形等知识.三.平面向量的坐标运算1.向量加法、减法、数乘向量及向量的模设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.2.①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=(x 2-x 1)2+(y 2-y 1)2.3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,当且仅当x 1y 2-x 2y 1=0时,向量a ,b 共线. 注:(1)向量的坐标与点的坐标不同:向量平移后,其起点和终点的坐标都变了,但向量的坐标不变.(2)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,所以应表示为x 1y 2-x 2y 1=0.方法总结:1.向量的坐标运算实现了向量运算代数化,将数与形结合起来,从而使几何问题可转化为数量运算.2.两个向量相等当且仅当它们的坐标对应相同.此时注意方程(组)思想的应用.四.平面向量的数量积1.两个向量的夹角已知两个非零向量a 和b (如图),作OA →=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a与b 的夹角,当θ=0°时,a 与b 同向;当θ=180°时,a 与b 反向;如果a 与b 的夹角是90°,我们说a 与b 垂直,记作a ⊥b .注:求向量的夹角“两向量共起点”一定把两向量平移到同一个顶点.2.两个向量的数量积的定义已知两个非零向量a 与b ,它们的夹角为θ,则数量|a ||b |cos θ叫做a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos θ,规定零向量与任一向量的数量积为0,即0·a =0.2.投影:3.向量数量积的几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的数量积.4.向量数量积的性质设a 、b 都是非零向量,e 是单位向量,θ为a 与b (或e )的夹角.则(1)e ·a =a ·e =|a |cos θ;(2)a ⊥b ⇔a ·b =0;(3)当a 与b 同向时,a ·b =|a |·|b |;当a 与b 反向时,a ·b =-|a ||b |,特别的,a ·a =|a |2或者|a |=a ·a (求模公式);(4)cos θ=a ·b |a ||b |;(求夹角公式); (5)|a ·b |≤|a ||b |.5.向量数量积的运算律(1)a ·b =b ·a ;(2)λa ·b =λ(a ·b )=a ·(λb );(3)(a +b )·c =a ·c +b ·c .注:(1)若向量a ,b ,c 若满足a ·b =a ·c (a ≠0),则不一定有b =c ,即等式两边不能同时约去一个向量,但可以同时乘以一个向量.(2)数量积运算不适合结合律,即(a ·b )c ≠a (b ·c ).6.平面向量数量积的坐标运算设向量a =(x 1,y 1),b =(x 2,y 2),向量a 与b 的夹角为θ,则(1)a ·b(2)|a |(3)cos 〈a ,b 〉=x 1x 2+y 1y 2x 21+y 21 x 22+y 22; (4)a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0.7.若A (x 1,y 1),B (x 2,y 2),AB →=a ,则|a |=(x 1-x 2)2+(y 1-y 2)2(平面内两点间的距离公式).两个探究(1)若a ·b >0,能否说明a 和b 的夹角为锐角?(2)若a ·b <0,能否说明a 和b 的夹角为钝角? 方法总结:(1)求平面向量的夹角常见类型:①依条件等式,运算求夹角,此类问题求解过程中应关注夹角取值范围;②依已知图形求两向量夹角,此类题求解过程应抓住“两向量共起点”,便可避开陷阱,顺利求解.(2) 求平面向量的模常考查类型:①把向量放在适当的坐标系中,给有关向量赋予具体坐标求向量的模,如向量a =(x ,y ),利用公式|a |=x 2+y 2即可求解.②不把向量放在坐标系中研究,求解此类问题的通常做法是利用向量运算法则及其几何意义或应用向量的数量积公式,关键是会把向量a 的模进行如下转化:|a |=a 2.3.求向量的数量积的公式有两个:一是定义式a ∙b =cos a b θ;二是坐标式a b ⋅=1212x x y y +.定义式的特点是具有强烈的几何含义,需要明确两个向量的模及夹角五.向量的综合应用1.平面向量在平面几何中的应用主要是用向量的线性运算及数量积解决平面几何中的平行、垂直、长度、夹角等问题.(1)证明线段平行或点共线问题,常用共线向量定理:a ∥b ⇔a =λb (b ≠0)⇔x 1y 2-x 2y 1=0.(2)证明垂直问题,常用数量积的运算性质: a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0.(3)求夹角问题,利用夹角公式cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21 x 22+y 22(θ为a 与b 的夹角). 2.实现平面向量与三角函数、平面向量与解析几何之间的转化的主要手段是向量的坐标运算.向量练习题,= -2,则的 32.∆ABC 的外接圆的圆心为O ,AB=2,AC=3,BC=7,则BC AO ⋅等于 ( )A 23B 25 C 2 D 3 3.若c b a ,,均为单位向量,且21-=⋅b a ,),(R y x y x ∈+=b a c ,则y x +的最大值( )A .2 B.C D. 1 4.已知,a b 是单位向量,0a b =.若向量c 满足1,c a b c --=则的取值范围是(A )A .⎤⎦B .⎤⎦C .1⎡⎤⎣⎦D .1⎡⎤⎣⎦5.半圆的直径AB=4,O 为圆心,C 为半圆上不同于A,B 的任意一点,若P 为半径OC 的中点,则PC PB PA ⋅+)(的值是 ( )A -2B -1C 2D 无法确定,与C 点位置有关6.设A、B、C为单位圆O 上不同的三点,则点集{}20,20,|),(<<<<+==y x y x y x A ,所对应的平面区域的面积为( )A 1B 2C 2D 25 7.在ABC ∆中,有命题:①AB AC BC -= ②若()()0AB AC AB AC +⋅-=,则ABC ∆为等腰三角形③对任意||||,m R m ≥-∈恒成立,则ABC ∆的形状为直角三角形④若0AC AB ⋅>,则ABC ∆为锐角三角形.上述命题正确的是 ( )A.①②B.①④ C .②③ D.②③④8.已知点P 为∆ABC 所在平面上的一点,且AC t AB AP +=31 ,其中t 为实数。
平面向量练习题及答案
平面向量练习题及答案平面向量练习题及答案在数学学科中,平面向量是一个非常重要的概念。
它不仅在几何学中有广泛的应用,还在物理学、工程学等领域中发挥着重要的作用。
掌握平面向量的基本概念和运算法则对于解决各种实际问题具有重要意义。
本文将为大家提供一些平面向量练习题及答案,希望能够帮助大家更好地理解和掌握这一概念。
1. 题目:已知向量a = (3, -2)和向量b = (-1, 4),求向量a + b的结果。
解答:向量a + b的结果可以通过将向量a和向量b的对应分量相加得到。
所以,向量a + b = (3 + (-1), -2 + 4) = (2, 2)。
2. 题目:已知向量a = (2, -5)和向量b = (4, 3),求向量a - b的结果。
解答:向量a - b的结果可以通过将向量a和向量b的对应分量相减得到。
所以,向量a - b = (2 - 4, -5 - 3) = (-2, -8)。
3. 题目:已知向量a = (3, -2)和向量b = (-1, 4),求向量a与向量b的数量积。
解答:向量a与向量b的数量积可以通过将向量a和向量b的对应分量相乘,并将结果相加得到。
所以,向量a与向量b的数量积为3*(-1) + (-2)*4 = -3 - 8 = -11。
4. 题目:已知向量a = (2, -5),求向量a的模长。
解答:向量a的模长可以通过计算向量a的坐标分量的平方和的平方根得到。
所以,向量a的模长为√(2^2 + (-5)^2) = √(4 + 25) = √29。
5. 题目:已知向量a = (3, -2)和向量b = (-1, 4),求向量a与向量b的夹角的余弦值。
解答:向量a与向量b的夹角的余弦值可以通过计算向量a与向量b的数量积与向量a和向量b的模长的乘积的商得到。
所以,向量a与向量b的夹角的余弦值为(-11) / (√(3^2 + (-2)^2) * √((-1)^2 + 4^2)) = -11 / (√13 * √17)。
平面向量基础知识梳理
__________________________________________________平面向量基础知识梳理一、向量的概念:⒈有向线段:叫做有向线段.⒉向量:叫做向量.向量通常用有向线段→AB或a 表示.⒊向量的模:向量→AB的又叫做向量的模,记作 .⒋两个重要概念:①零向量:叫做零向量.记作 .注意:零向量没有规定它的方向,因此零向量的方向是任意的.②单位向量:叫做单位向量.注意:单位向量的方向与它所在向量的方向相同.⒌相等向量:叫做相等向量. 向量a 与b 相等记作 .⒍平行向量:叫做平行向量. 向量a 与b 平行可记作 .规定:0 与任一向量平行.即0 ∥a ,→AB∥0 ,0 ∥0 .⒎共线向量:叫做共线向量.注意:若a 与b 是共线向量,则a 与b 的方向,它们所在的直线它们的夹角是 .⒏相反向量:叫做相反向量.的相反向量是,−a 的相反向量是,0 的相反向量是 .a__________________________________________________⒐两个非零向量a和b的夹角: . 二、向量的运算:⒈向量的加法:⑴向量a 与b的和的定义:⑵向量加法法则:①三角形法则(请画图于右)→AB +→BC (首尾相连) ②平行四边形法则(请画图于右)→AB +→AC (起点相同) ⑶向量加法运算律:①交换律:②结合律:⑷特例:0+a = ,a +0= ,00 += .⑸向量加法的坐标运算:设a=(x 1,y 1),b =(x 2,y 2),则b a+= .⒉向量的减法:⑴向量a 与b 的差的定义:向量a 加上b 的相反向量叫做a与b的差,记作a+(−b )=a −b.a−b是怎样的一个向量?答: .⑵向量减法法则:设a =→OA ,b=→OB ,则a −b=→OA -→OB = .(请画图于右).重要结论:设AB ,AD 是两个不共线向量,则以AB 、AD 为邻边的平行四边形的两条对角线的长分别是这两个向量和与差的模.⑶特例:0-a= ,a-0= ,00-= . ⑷向量减法的坐标运算:设a=(x 1,y 1),b =(x 2,y 2),则b a-= . ⒊实数与向量的积:⑴定义:实数λ与向量a 的积是一个向量,记作λa,它的长度与方向规定如下: ①|λa |= ;OB__________________________________________________②当λ>0时,λa 的方向与a 的方向 ,当λ<0时,λa的方向与a 的方向 ;当λ=0时,λa = .⑵运算律:①λ(μa )= ;②(λ+μ)a = ;③λ(b a+)= . ⑶实数与向量的积的坐标运算: ⑷特例:若λ∈R ,则λ0= . ⒋向量的数量积(或内积):⑴定义:已知非零向量a和b,它们的夹角为θ,则b a⋅= . ⑶运算律:①ba⋅= ;②(λa)·b= = ;③(a +b)·c = .注意:向量的数量积没有结合律!特别地,a a ⋅= ,或|a |= .⑸向量的数量积的坐标运算:设a=(x 1,y 1),b=(x 2,y 2),则b a⋅= . ⑹特例:a⋅0= ,00⋅= .三、重要定理、公式及方法: ⒈平面向量基本定理:如果1e 和2e 是同一平面内的两个不共线...向量,那么对该平面内的任一向量a 有且只有一对实数λ1、λ2,使a =λ11e +λ22e .⒉向量模的计算公式:设a =(x ,y ),则|a |= .⒋如何证明A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3)三点共线?⒌两个向量平行、垂直的充要条件:⑴向量a =(x1,y1),和b =(x2,y2)平行的充要条件....是x1y2-x2y1=0.⑵向量a =(x1,y1),和b =(x2,y2)垂直的必要不充分条件.......是x1x2+y1y2=0.⒎已知向量a =(x1,y1),和b =(x2,y2),它们的夹角为θ,则cosθ= .⒐线段的中点坐标公式:已知P1(x1,y1),P2(x2,y2),则线段P1P2的中点坐标是 .⒑三角形的重心坐标公式:设△ABC三顶点的坐标为A(x1,y1),B(x2,y2),C(x3,y3),则△ABC的重心G的坐标是 .。
职高数学第七章复习
第七章 平面向量 复习卷第一节 平面向量的基本概念与其基本运算 1.向量的概念(1)定义:既有大小又有方向的量.(2)向量的表示:用a 、b 、m 等来表示,或用AB →来表示(它表示以A 为始点,B 为终点的向量).(3)向量的长度(或模):记为|a |或|AB →|.(4)0(零向量):长度为0的向量,其方向任意,零向量没有确定的方向. (5)e (单位向量):|e |=(6) a 的相反向量:是指与a 长度相等且方向相反的向量,记为 (7) 相等向量(同一向量):大小相等且方向相同的向量. 2.向量的加法运算(1)加法法则:三角形法则与平行四边形法则. (2)若干个向量相加的多边形法则A 1A 2→+A 2A 3→+A 3A 4→+A 4A 5→+…+A n-1A n= (首尾相接)(3)加法运算律:a +b =b +a (交换律) (a +b )+c =a +(b +c )(结合律) a +0=0+a =a ;a +(-a )=0; AB →+BA →=0.3.向量的减法运算(1)减法法则(如图所示).(2)a-b=a+(-b)即OA→-OB→=BA→(连接两个向量的终点,且方向指向被减向量).(3)向量不等式 ||a|-|b||≤|a±b|≤|a|+|b|4.实数与向量的积(数乘向量)实数λ与向量a的乘积,叫做数乘向量,记作λa.(1)大小:|λa|=(2)方向:λ>0,λa与方向;λ<0,λa与a方向;λ=0,λa=0.(3)运算律:λ(μa)=(λμ)a; (λ+μ)a=λa+μa ;λ(a+b)=λa+λb,(λ,μ为实数)5.两个向量平行(共线)的充要条件: a∥b⇔ (a≠0,λ∈R,λ存在且唯一)练习题1.下列说法正确的是( )A.相等向量就是与向量长度相等的向量 B.长度相等的向量叫做相等向量C.共线向量是指在一条直线上的向量 D.0与任一向量共线2.a的负向量是( )A.与a方向相反的向量 B.与|a|符号相反的向量C.与a反向且大小相等的向量 D.以上均不对3.下列关于向量的关系式中,正确的是( )A.AB→+BA→=0 B.AB→-AC→=BC→ C.AB→+AC→=CB→ D.AB→-AC→=CB→4.-3(a-b)+4(a-34b)=( )A.a B.a+b C.a-b D.2a+b5.AB→+CA→+BC→=.6.在菱形ABCD中,若AB→=a,BC→=b,则CD→=________,CA→=________.7.若向量a表示“向东走6km”,向量b表示“向北走6km”,则向量a+b表示________.8.下列命题正确的是( )A.若|a|=0,则a=0 B.若|a|=|b|,则a=b或a=-b C.若a∥b,则|a|=|b| D.若a=0,则-a=09.平行四边形ABCD中,AB→=a,BC→=b,则BD→=( )A.a-b B.b-a C.a+b D.-a-b10.2(a+b)-3(2a-b)=( )A.4a+5b B.-4a+5b C.5a+4b D.-5a+4b 11.AB→+CA→+DE→-DF→+BD→+EF→=________.12.已知AB→=(1,3),CD→=(3,9),CD→=λAB→,则λ=________.第二节平面向量的坐标表示1.向量的坐标与其运算(1)向量的坐标在直角坐标系中,i、j分别为x,y轴正方向上的单位向量,则i、j称为基底,从而平面内任一向量a都可以表示成a=x i+y j,把(x,y)叫做a的坐标,记作a=(x,y),其中x称为a在x轴上的坐标,y称为a在y轴上的坐标.(2)在坐标平面内,把任一向量的始点移到坐标原点后,向量的终点坐标即为该向量的坐标.即:若OA→=a,且A(x,y),则有a=(x,y).(3)已知A(x1,y1),B(x2,y2),则有AB→=(x2-x1,y2-y1).(4)向量的坐标运算若a=(x1,y1),b=(x2,y2),则有a+b=(x1+x2,y1+y2);a-b=(x1-x2,y1-y2);λa=(λx1,λy1);a=b⇔x1=x2且y1=y2.2.a=(x1,y1),b=(x2,y2),则a∥b⇔x1y2-x2y1=0.3.中点坐标公式:设A(x1,y1),B(x2,y2),A、B中点记为C(x,y),则有x=x1+x22,y=y1+y22.4.向量的长度(模)计算公式:若a=(x1,y1),则|a|=x21+y21.5.两点间距离公式:若A(x1,y1),B(x2,y2),则|AB→|=(x1-x2)2+(y1-y2)2.练习题1.若向量a=(3,-1),b=(-1,2),则-3a-2b等于( ) A.(7,1) B.(-7,-1) C.(-7,1) D.(7,-1) 2.点A(2,-1),B(-1,3)则AB→=( )A.5 B. 5 C.(-3,4) D.(3,-4)3.已知点A(2,3),B(4,3),则其中点D的坐标为( )A.(2,1) B.(2,2) C.(3,3) D.(6,6)4.已知A(1,-1),B(1,3),则|AB→|=________.5.已知a=(2,5),b=(λ,3),a∥b,则λ=________.6.已知点A(-2,1)和B(3,-2)且AP→=4PB→,则点P的坐标为________.7.已知平面上三点A(1,2)、B(4,3)、C(6,1),若AB→=CD→,则点D坐标为________.8.若平行四边形ABCD的三个顶点A(-3,0),B(2,-2),C(5,2),求顶点D的坐标.第三节平面向量的内积1.向量a与b的夹角:把向量a与b的始点移到同一点O,作OA→=a,OB→=b,则∠AOB称为向量a、b的夹角,记作〈a,b〉,则〈a,b〉∈[0,π].2.向量a与b的内积:a·b=|a||b|cos〈a,b〉.3.两向量a、b夹角的计算公式:cos〈a,b〉=a·b|a||b|=x1x2+y1y2x21+y21x22+y22.4.向量内积的重要结论:设a、b是两个非零向量,则有(1)a⊥b⇔〈a,b〉=90°⇔a·b=0⇔x1x2+y1y2=0(2)a与b平行,则a·b=±|a||b|,且同向取正,反向取负.特别地,a·a=a2=|a|2即|a|=a·a.5.向量内积的坐标表示设a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2 6.向量内积的运算律 (1)a·b=b·a (2)(λa)·b=λ(a·b)=a·(λb)(3)(a+b)·c=a·c+b·c练习题1.若四边形ABCD中,AB→=DC→,且AB→·BC→=0,则四边形ABCD一定是( ) A.平行四边形 B.矩形 C.菱形 D.正方形2.已知向量a=(3,2),b=(13,4),则a·b=( )A.6 B.7 C.8 D.93.下列等式正确的为( )A.0·a=0 B.0·a=0 C.|a·b|=|a|·|b| D.a -a=04.设|a|=3,|b|=2,且〈a,b〉=120°,则a·b=( ) A.3 B.-3 C.6 D.-65.向量a=(-2,3),b=(x,4),且a⊥b,则x=( )A.6 B.-6 C.83D.-836.已知a·b=3,|a|=3,|b|=2,则〈a,b〉=________.7.已知a=(2,2),b=(0,2),则a·(2b)=________.8.已知a=(k,-2),b=(2k,k+1),求k的值,分别使:(1)a⊥b;(2)a ∥b.9.若向量a=(4,-3),则下列向量中与a垂直的向量是( )A.(3,-4) B.(3,4) C.(-35,45) D.(35,-45)10.已知a=(3,-4),b=(-2,3),则a·(a+b)=( ) A.-13 B.7 C.6 D.26。
平面向量知识点总结(精华)
平面向量知识点总结(精华)一、向量的基本概念1. 向量的定义向量是既有大小又有方向的量。
例如,物理学中的力、位移等都是向量。
我们可以用有向线段来表示向量,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。
向量的表示:几何表示:用有向线段AB表示,其中\(A为起点,\(B为终点。
字母表示:用小写字母a、b、c等表示。
2. 向量的模向量AB或a的大小称为向量的模,记作AB或a。
模是一个非负实数,例如,若a=(x,y),则a=x^2+y^2。
3. 零向量长度为\(0的向量称为零向量,记作0。
零向量的方向是任意的。
4. 单位向量模等于\(1的向量称为单位向量。
对于非零向量a,与它同方向的单位向量记作e=aa。
例如,向量a=(3,4),则a= 5,同方向的单位向量e=(35,45)。
5. 平行向量(共线向量)方向相同或相反的非零向量称为平行向量。
规定:零向量与任意向量平行。
若向量a与b平行,记作a。
例如,a=(1,2),b=(2,4),因为b = 2a,所以a。
6. 相等向量长度相等且方向相同的向量称为相等向量。
若AB=CD,则\(A与\(C重合,\(B与\(D重合,且AB=CD,方向相同。
二、向量的运算1. 向量的加法三角形法则:已知向量a、b,在平面内任取一点\(A,作AB=a,BC=b,则AC=a+b。
平行四边形法则:已知向量a、b,以同一点\(O为起点作OA=a,OB=b,以\(OA、\(OB为邻边作平行四边形\(OACB,则OC=a+b。
向量加法的运算律:交换律:a+b=b+a。
结合律:\((a+b)+c=a+(b+c)。
2. 向量的减法相反向量:与向量a长度相等,方向相反的向量称为a 的相反向量,记作a。
向量减法的定义:ab=a+(b)。
其几何意义是:已知向量a、b,在平面内任取一点\(O,作OA=a,OB=b,则BA=ab。
3. 向量的数乘定义:实数\(与向量a的乘积是一个向量,记作a。
(完整版)平面向量基础题
平面向量基础题一、高考真题体验1.(2015新课标卷I )已知点(0,1),(3,2)A B ,向量(4,3)AC =--,则向量BC =( ) (A ) (7,4)-- (B )(7,4) (C )(1,4)- (D )(1,4) 2.(2015新课标卷II )已知()1,1=-a ,()1,2=-b ,则(2)+⋅=a b a ( )A .1-B .0C .1D .23.(2014新课标卷I )设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+FC EB A.AD B.D. BC 二、知识清单训练 【平面向量概念】1、定义:大小、方向2、几何表示:有向线段AB ,a 、3、基本概念:单位向量、相等向量、相反向量、共线(平行)向量4.下列判断正确的是 ( )A.若向量AB 与CD 是共线向量,则A,B,C,D 四点共线;B.单位向量都相等;C.共线的向量,若起点不同,则终点一定不同;D.模为0的向量的方向是不确定的。
5.下列命题正确的是( ) A .单位向量都相等B .若a 与b 共线,b 与c 共线,则a 与c 共线C .若||||a b a b +=-,则0a b ⋅=D .若a 与b 都是单位向量,则1a b ⋅=6.已知非零向量b a 与反向,下列等式中成立的是( )A .||||||b a b a -=-B .||||b a b a -=+C .||||||b a b a -=+D .||||||b a b a +=+【线性运算】1、 加法:首尾相连,起点到终点ACBC AB =+2、 减法:同起点、连终点、指向被减 CB AC AB =-3、数乘:⎪⎩⎪⎨⎧=<>=a a a a a a a λλλλλλλ方向相反方向与方向相同;方向与,0,07.空间任意四个点A 、B 、C 、D ,则等于 ( )A .B .C .D .8.设四边形ABCD 中,有DC =21AB ,且|AD |=|BC |,则这个四边形是 A.平行四边形B.等腰梯形C. 矩形D.菱形9.设D ,E ,F 分别为∆ABC 的三边BC ,CA ,AB 的中点,则EB FC += A .BC B .AD C .12BC D .12AD 10.设P 是△ABC 所在平面内的一点,+=2,则( )A .+=B .+=C .+= D .++=11.如图.点M 是ABC ∆的重心,则MC MB MA -+为( )A .0B .4MEC .4MD D .4MF【平面向量基本定理】b a c μλ+=,基底12.如图所示,已知2AB BC =,OA a =,OB b =,OC c =,则下列等式中成立的是( )(A)31c b a =- (B)2c b a =- (C)2c a b =- (D)31c a b =- 13.在空间四边形ABCD 中,AB a =,AC b =,AD c =,M ,N 分别为AB 、CD 的中点,则MN 可表示为( )()a b c +- ()a b c -+ )a b c -++ ()a b c ++ 14.在ABC ∆中,已知D 是AB边上一点,若12,3AD DB CD CA CB λ==+,则λ=( )A B 【共线定理】1221//y x y x a b b a -==⇒λ15.已知1232a e e =+,则与a 共线的向量为(A) 1223e e -- (B) 1264e e - (C) 1264e e + (D) 1232e e -+ 16.平面向量(1,2)=-a ,(2,)n =-b ,若a // b ,则n 等于A .4B .4-C .1-D .2【坐标运算】1、已知()()2211,,,y x B y x A ==,则()1212,y y x x AB --=2、已知()()2211,,,y x b y x a == 则()2121,y y x x b a ++=+,()2121,y y x x b a --=-,),(11y x a λλλ=,2121y y x x b a +=•17.已知向量()()2,1,3,4==-a b ,则+=a bA .()1,5-B .()1,5C .()1,3--D .()1,318.若向量(2,4)AB =,(1,3)AC =,则BC =( ) A .(1,1) B .(1,1)-- C .(3,7) D .(3,7)-- 19.已知向量(2,4)a =,(1,1)b =-,则2a b -=A . (5,7)B . (5,9)C . (3,7)D . (3,9)【数量积】 1、2、3、模:2121y x a +==4、5、垂直:02121=+⇒=⋅⇒⊥y y x x b a b a20.已知||6a =,||3b =,12a b ⋅=-,则向量a 在向量b 方向上的投影是( ) A .-4 B .4 C .-2 D .2 213a =,23b =,3a b =-,则a 与b 的夹角是 A. 30︒ B. 60︒ C. 120︒ D. 150︒22.设(1,2)a =,(2,)b k =,若(2)a b a +⊥,则实数k 的值为( ) A .2- B .4- C .6- D .8- 23.已知,a b是平面向量,若(2)a ab ⊥-,(2)b b a ⊥-,则a 与b 的夹角是 A24.空间四边形OABC 中,OB OC =,,则cos <,OA BC >的值是( )D.025.设向量,a b 满足||1,||3,()0a a b a a b =-=⋅-=,则|2|a b +=( )A .2B .4 D26.已知等边ABC ∆的边长为1,则=⋅BC ABA27.在Rt ABC ∆中,D 为BC 的中点,且AB 6AC 8==,,则AD BC ⋅的值为 A 、28- B 、28 C 、14- D 、1428.若同一平面内向量a ,b ,c 两两所成的角相等,1a =,1b =,3c =,a b c ++等于( ) A .2 B .5 C .2或5 D【课后练习】29.已知和点满足.若存在实数使得成立,则=( )A .2B .3C .4D . 30.设向量12,ee是夹角为的单位向量,若13a e =,12b e e =-,则向量b 在a 方向的投影为( ) A 2.131.已知平面向量a ,b 满足3a=,2b =,3a b ⋅=-,则2a b +=( ) A .1 B 321,2,()a b a a b ==⊥-且,则向量a 与向量b 的夹角为( ).(A )30 (B )45 (C ) 90 (D )135 33.在平行四边形ABCD 中,下列结论中错误的是 ( ) A .AB DC = B .AD AB AC += C .AB AD BD -= D .AD CD BD +=34.在平行四边形ABCD 中,AC 为一条对角线,(2,4)AB =,(1,3)AC =,则DA =( ) A .(2,4) B .(3,5) C .(1,1) D .(-1,-1)ABC M 0=++MC MB MA m AM m AC AB =+m3235.如下图,在△OAB 中,P 为线段AB 上的一点,OP =x OA +y OB ,且BP =3PA ,则( ).A 、x =23,y =13 B 、x =13,y =23 C 、x =14,y =34 D 、x =34,y =1436.已知向量(1,2),(4,)a b m ==-,若2a b +与a 垂直,则m =( ) A .-3 B .3 C .-8 D .8 37.已知平面向量,a b 满足()=3a a +b ⋅,且2,1ab ,则向量a 与b 的夹角为( )A .6πB .3πC .32πD .65π38.已知向量(2,1),(5,3)a b →→==-,则a b →→⋅的值为 A .-1 B .7 C .13 D .1139.已知平面向量(1,2),(2,)a b m ==-,且//a b ,则实数m 的值为 ( ) A .1 B .4 C .1- D .4-40.已知平面向量AB ()1,2=,AC ()3,4=,则向量CB =( ) A .(4,6)-- B .(4,6) C .(2,2)-- D .(2,2)41.已知向量()21=,a ,()2x =-,b ,若a ∥b ,则a +b 等于( ) A .()2,1-- B .()2,1 C .()3,1- D .()3,1-42. 已知两点A(4,1),B(7,-3),则与向量AB 同向的单位向量是( ) A .(53,-54) B .(-53,54) C .(-54,53) D .(54,-53) 43.若向量,满足条件,则x=( )A .6B .5C .4D .344.设R y x ∈,,向量()()(),4,2,,1,1,-===c y b x a 且c b c a //,⊥,则=+b a ( ) A.5 B.10 C .25 D .10 45.已知向量(1,2),(2,1)a b ==-,下列结论中不正确...的是( ) A .//a bB .a b ⊥C .||||a b =D .||||a b a b +=-平面向量基础题参考答案1.A 【解析】试题分析:∵AB OB OA =-=(3,1),∴BC =AC AB -=(-7,-4),故选A. 考点:向量运算 2.C 【解析】试题分析:由题意可得2112=+=a ,123,⋅=--=-a b 所以()222431+⋅=+⋅=-=a b a a a b .故选C.考点:本题主要考查向量数量积的坐标运算. 3.A 【解析】试题分析:根据平面向量基本量的加减运算可得:在BEF ∆中,12EB EF FB EF AB =+=+,12FC FE EC FE AC =+=+,则11111()()()()22222EB FC EF AB FE AC AB AC AB AC AD+=+++=+=+=. 考点:向量的运算 4.D【解析】解:因为A.若向量AB 与CD 是共线向量,则A,B,C,D 四点共线;可能构成四边形。
初中数学平面向量知识点详解,掌握向量基本性质和运算法则
初中数学平面向量知识点详解,掌握向量基本性质和运算法则介绍:平面向量是初中数学中重要的一个知识点,掌握它可以帮助我们更好地理解平面几何中的许多概念和问题,也可以帮助我们更好地理解物理学中的运动和力的性质。
本文将详细介绍初中数学中平面向量的相关知识点和运算法则,并提供大量练习题,帮助读者掌握和应用这些知识。
一、向量的基本概念1. 向量的定义:向量是大小和方向都有明确意义的量。
2. 向量的表示法:通常用有向线段表示。
箭头表示向量的方向,线段的长度表示向量的模。
3. 向量的模:代表向量的长度大小,通常用单竖线表示,如|AB|表示向量AB的长度。
4. 向量的方向角:表示向量与x轴正方向的夹角。
通常用小写希腊字母表示,如α表示向量的方向角。
5. 向量的共线性:若两个向量的方向相同或相反,则这两个向量共线。
6. 向量的相等:若两个向量的模相等,且方向相同,则这两个向量相等。
表示为AB=CD。
二、向量的常用运算法则1. 向量的加减法:将向量首尾相接,求得连接两个向量首尾的向量即为两个向量的和。
两个向量相减,是将被减向量的方向取反后再相加。
2. 标量乘法:一个向量乘以一个标量,相当于将向量的模变成原来的k倍,方向不变。
表示为k*a。
3. 向量的数量积:向量a和向量b的数量积,等于向量a的模与向量b在a方向上的投影的乘积,表示为a·b。
其中,投影是指线段b在线段a所在的直线上的投影。
若两个向量之间的夹角为θ,则向量a的模与向量b在a方向上的投影的乘积为|a|*|b|*cosθ。
4. 向量的叉积:向量a和向量b的叉积,等于向量a和向量b所在平行四边形的面积,表示为a×b。
其中,面积的大小等于向量a和向量b所在的平行四边形的底边长度(即|a|)与高的乘积(即|b|×sinθ),其中θ为向量a和向量b之间的夹角。
三、练习题1. 设向量a=(-1,1),向量b=(2,-3),求a+b的坐标。
平面向量专题练习(带答案详解) (3)
平面向量专题练习(带答案详解)一、单选题1.已知向量()1,2a =-,()1,1b =,则a b ⋅=( ) A .3B .2C .1D .02.已知向量()1,2a =-,()2,x b =,若//a b ,则x 的值是( ) A .-4B .-1C .1D .43.已知向量()()1,1,0,1,0,2a b ==-,且ka b +与2a b -互相垂直,则k 的值是( ) A .1B .15C .35D .754.等腰直角三角形ABC 中,2ACB π∠=,2AC BC ==,点P 是斜边AB 上一点,且2BP PA =,那么CP CA CP CB ⋅+⋅=( ) A .4-B .2-C .2D .45.设,a b 是非零向量,则2a b =是a ba b=成立的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件6.在ABC ∆中,4,3A b c E F π=+=、为边BC 的三等分点,则AE AF ⋅的最小值为()A .932B .83C .269D .37.若2a =,2b =,且()-⊥a b a ,则a 与b 的夹角是( ) A .6πB .4πC .3πD .2π8.已知非零向量,a b 满足||6||a b =,,a b 的夹角的余弦值为13,且()a a kb ⊥-,则实数k 的值为( ) A .18B .24C .32D .369.已知向量, m n 的夹角为60︒,且13213m m n -==,,则n =( )A .3212-B .3212+C .2132-D .210.已知向量0.52logsin log cos OA OB OC θθ=⋅+⋅,若A 、B 、C 三点共线,则sin cos θθ+=( )A .355-B .355C .55-D .5511.在ABC ∆中,22AB AC ==,60BAC ∠=︒,且2BD DC =,则AD BC ⋅=( ). A .1-B .1C .7D .7212.已知椭圆222:19x y C b +=的离心率为223,且,M N 是椭圆C 上相异的两点,若点()2,0P 满足PM PN ⊥,则PM MN ⋅的取值范围为( )A .125,2⎡⎤--⎢⎥⎣⎦B .15,2⎡⎤--⎢⎥⎣⎦C .[]25,1--D .[]5,1--13.已知向量()2,a m =-,()1,b n =,若a b b ∥,且2b =,则实数m 的值为( ) A .2B .4C .2-或2D .4-或414.著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点O ,H 分别是△ABC 的外心、垂心,且M 为BC 中点,则 ( )A .33AB AC HM MO +=+ B .33AB AC HM MO +=- C .24AB AC HM MO +=+D .24AB AC HM MO +=-15.已知向量a ,b 满足22a a b a b =⋅=-,,当a ,b 的夹角最大时,则a b ⋅=( ) A .0B .2C .22D .416.已知O 是ABC ∆的重心,且20OA OB BC λ++=,则实数λ=( )A .3B .2C .1D .1217.设a ,e 均为单位向量,当a ,e 的夹角为4π时,a 在e 方向上的投影为( )A .22-B .12C .22D .3218.若向量a ,b 满足||3a =,||26b =,且满足(2)a b a +⊥,则a 与b 的夹角为( )A .3πB .23πC .4πD .34π19.已知向量()()1,3,2a m b ==-,,且()a b b +⊥,则m =( ) A .−8 B .−6 C .6 D .8二、填空题20.若D 点在三角形ABC 的边BC 上,且4CD DB r AB sAC ,则3r s +的值为__________.21.已知1a =,2b =,且()a ab ⊥-,则向量a 与向量b 的夹角是________. 22.已知在Rt △ABC 中,AC ⊥BC ,()()()1,,3,1,4,AC m AB BD n ===,若B 、C 、D 三点共线,则m +n =_____.23.ABC △中,2A B =,1BC =,则AC 的取值范围是__________,BA BC ⋅的取值范围是__________.24.已知向量(4,3)a =-,若向量(2,1)b =-,则向量a 在向量b 方向上的投影是_____. 25.已知()3,4a =,()2,1b =,则a 在b 方向上的投影为______.26.设向量(1,)AB m =,(2,1)BC m =-,其中[1,)m ∈-+∞,则AB AC ⋅的最小值为__________.27.设向量a ,b 满足10a b +=,6a b -=,则⋅=a b ___________28.已知||1,||2,0,()()0a b a b a c b c ==⋅=-⋅-=,则||c 的最大值为_________________.三、解答题29.已知以F 为焦点的抛物线2:2(0)C y px p =>过点(1,2)P -,直线l 与C 交于A ,B 两点,M 为AB 中点,且OM OP OF λ+=.(1)当3λ=时,求点M 的坐标; (2)当12OA OB ⋅=时,求直线l 的方程.30.已知OA a OB b ==,,对于任意点M ,点M 关于点A 的对称点为点S ,点S 关于点B 的对称点为点N . (1)用a ,b 表示向量MN ;(2)设122327a b MN ⎡⎤==∈⎣⎦,,,,求a 与b 的夹角θ的取值范围.参考答案1.C直接根据向量数量积的坐标表示即可得出结果. 【详解】∵()1,2a =-,()1,1b = ∴11211a b ⋅=-⨯+⨯=, 故选:C . 【点睛】本题主要考查了平面向量数量积的坐标表示,属于基础题. 2.A利用向量平行的坐标表示直接求解即可. 【详解】∵向量()1,2a =-,()2,x b =,//a b , ∴()122x ⨯=-⨯,解得4x =-, ∴x 的值为4-, 故选:A . 【点睛】本题主要考查向量平行的坐标表示,属于基础题. 3.D由ka b +与2a b -互相垂直得()()20a b ka b +⋅=-,再代入()()1,1,0,1,0,2a b ==-求解即可. 【详解】由题()()20a b ka b +⋅=-,即()()31,,202,,2k k --⋅=.故7332405k k k -+-=⇒= .故选:D 【点睛】本题主要考查了空间向量的基本运算与垂直的运用,属于基础题型. 4.D 【解析】【分析】将CP 用CA 与CB 进行表示,代入可得答案. 【详解】解:由题意得:1121()3333CP CA AP CA AB CA AC CB CA CB =+=+=++=+22218443333CP CA CP CB CA CB ⋅+⋅=+=+=,故选:D. 【点睛】本题主要考查平面向量的基本定理及平面向量的数量积,相对不难. 5.B利用||aa 的意义,即a 方向上的单位向量,再根据充分条件与必要条件的定义,即可求得答案. 【详解】由2a b =可知,a b 方向相同,||a a ,||b b 表示,a b 方向上的单位向量,所以||||a ba b =成立;反之不成立. 故选:B . 【点睛】本题考查单位向量的概念、向量共线、简易逻辑知识,考查逻辑推理能力和运算求解能力,求解时注意向量的方向. 6.C 【解析】()22122125 (33339)9AE AF AB AC AB AC AB AC AB AC ⎛⎫⎛⎫=++=++ ⎪ ⎪⎝⎭⎝⎭()()()()22222251212126992969649b c c b bc b c bc b c +=++⨯=+-≥+-⨯=(b c = 时等号成立),即AB AC 的最小值为269, 故选C. 【易错点晴】本题主要考查平面向量的基本运算以及利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立).7.B根据相互垂直的向量数量积为零,求出a 与b 的夹角. 【详解】由题有()20a b a a b a -⋅=-⋅=,即22b a a ⋅==,故2cos 2cos 2b a a b θθ⋅=⨯⨯=⇒=,因为[]0,θπ∈,所以4πθ=.故选:B. 【点睛】本题考查了向量的数量积运算,向量夹角的求解,属于基础题. 8.A根据向量垂直关系和数量积运算公式()0a a kb ⋅-=,可得关于k 的方程,解得k . 【详解】由||6||a b =可设||b t =,则||6(0)a t t =>.因为221()||36603a a kb a ka b t k t t ⋅-=-⋅=-⨯⨯⨯=,所以18k =.故选:A . 【点睛】本题考查平面向量数量积及其运算,同时考查向量垂直关系的运算,属于简单题. 9.D把向量的模用向量的数量积表示出来,由数量积的定义求解. 【详解】222232(32)912cos 60413m n m n m m n n︒-=-=-+=,又1m=,∴22320n n--=,解得2n=,故选:D【点睛】本题考查求向量模,掌握数量积的定义和性质是解题关键.10.B由A、B、C三点共线和对数的运算性质,可得sin1cos2θθ=,再结合三角函数的基本关系式,求得12sin,cos55θθ==,即可求解.【详解】由题意,向量0.52log sin log cosOA OB OCθθ=⋅+⋅,若A、B、C三点共线,根据平面向量的基本定理,可得0.52log sin log cos1θθ+=,即0.50.5log sin log cos1θθ-=,即0.5sinlog1cosθθ=,可得sin1cos2θθ=,且sin0,cos0θθ,又由22sin cos1θθ+=,解得12sin,cos55θθ==,所以sin cosθθ+=355.故选:B.【点睛】本题主要考查了向量的共线定理,以及同角三角函数的基本关系式的应用,着重考查了推理与运算能力,属于基础题.11.A由向量的运算法则,可得1233AD AB AC=+,BC AC AB=-,结合向量的数量积的运算,即可求解,得到答案.【详解】由向量的运算法则,可得2212()3333AD AB BC AB AC AB AB AC=+=+-=+,BC AC AB =-,又由22AB AC ==,60BAC ∠=︒,所以AD BC ⋅=2212112()()33333AB AC AC AB AB AB AC AC +⋅-=--⋅+22112221cos6011333=-⨯-⨯⨯⨯+⨯=-.故选:A . 【点睛】本题主要考查了平面向量的基本定理,以及向量的数量积的运算,其中解答中熟记向量的基本定理,以及向量的数量积的运算公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题. 12.A根据椭圆的离心率,求出b 的值,得到椭圆的标准方程,然后根据()PM MN PM PN PM ⋅=⋅-,结合PM PN ⊥,得到PM MN ⋅的坐标表示,得到关于x 的函数,结合x 的范围,得到答案. 【详解】椭圆222:19x y C b +=的3a =, 其离心率为223,所以223c a =,所以22c =,所以2221b a c =-=,所以椭圆标准方程为22+19x y =,设(),P x y ,[]3,3x ∈-,则()PM MN PM PN PM ⋅=⋅-2PM PN PM=⋅-因为PM PN ⊥,所以0PM PN ⋅=,所以()2222PM MN PM x y ⎡⎤⋅=-=--+⎣⎦()22219x x ⎡⎤=--+-⎢⎥⎣⎦2891942x ⎛⎫=--- ⎪⎝⎭所以PM MN ⋅是关于x 的二次函数,开口向下,对称轴为94x =,所以当94x =时,取得最大值为12-当3x =-时,取得最小值为25-,所以125,2PM MN ⎡⎤⋅∈--⎢⎥⎣⎦.故选:A. 【点睛】本题考查根据离心率求椭圆的标准方程,向量数量积的坐标表示,二次函数求值域,属于中档题. 13.C根据已知得到a b -的坐标,然后根据a b b ∥,2b =得到关于m ,n 的方程组,从而得到答案. 【详解】向量()2,a m =-,()1,b n =, 所以()3,a b m n -=--, 因为a b b ∥,2b =,所以()2312n m n n ⎧-=-⎨+=⎩,解得21m n =-⎧⎨=⎩或21m n =⎧⎨=-⎩ 所以m 的值为2-或2. 故选:C. 【点睛】本题考查根据向量平行求参数的值,根据向量的模长求参数的值,属于简单题. 14.D构造符合题意的特殊三角形(例如直角三角形),然后利用平面向量的线性运算法则进行计算即可得解. 【详解】解:如图所示的Rt ABC ∆,其中角B 为直角,则垂心H 与B 重合,O 为ABC ∆的外心,OA OC ∴=,即O 为斜边AC 的中点, 又M 为BC 中点,∴2AH OM =,M 为BC 中点,∴22()2(2)AB AC AM AH HM OM HM +==+=+.4224OM HM HM MO =+=-故选:D .【点睛】本题考查平面向量的线性运算,以及三角形的三心问题,同时考查学生分析问题的能力和推理论证能力.15.D先建系, 设(2,0),(,)OA a OB b x y ====,再结合平面向量数量积的坐标及运算性质,将a ,b 的夹角最大转化为直线OB 与抛物线相切,利用0∆=求出,即可(,)b x y =,即可解得所求.【详解】设(2,0),(,)OA a OB b x y ====,因为2||a b a b ⋅=-,所以2222(2)x x y =-+,即24(1)y x =-,为点B 的轨迹方程. 由上图易知,当直线OB 与抛物线相切时,,a b 的夹角最大.由24(1)y kx y x =⎧⎨=-⎩消去y 得22244016160,1k x x k k -+=∆=-==±,. 所以2x =,即点(2,2)B 或1(2,2)B -时,即(2,2)b =或(2,2)b =-时,,a b 的夹角最大.此时,4a b ⋅=.故选:D .【点睛】本题考查平面向量数量积的坐标运算,考查转化与化归思想, ,将a ,b 的夹角最大转化为直线OB 与抛物线相切,考查数形结合的解题思想,难度一般.16.C 将BC 用OA ,OB 表示出来,根据O 是重心,即可列方程求得参数的值.【详解】()()2220OA OB BC OA OB OC OB OA OB OC λλλλ++=++-=+-+= 因为O 是ABC ∆的重心,所以211λλ-=⎧⎨=⎩,解得1λ=. 故选:C.【点睛】本题考查向量的线性运算,涉及三角形重心的向量表示,属基础题.17.C 利用向量投影公式,结合向量数量积的运算,求得a 在e 方向上的投影.【详解】a 在e 方向上的投影为2cos 42a e a eπ⋅=⋅=. 故选:C【点睛】本小题主要考查向量投影的计算,属于基础题.18.D【解析】利用向量垂直关系,可得a b ⋅,然后根据向量夹角公式,可得结果.【详解】由(2)a b a +⊥,所以(2)0a b a +⋅=则220a a b +⋅=,又||3a =,所以6a b ⋅=-,由||26b =则2cos ,2ab ab a b⋅==-, 又[],0,a b π∈,所以3,4a b π= 故选:D【点睛】本题考查向量的垂直关系以及向量的夹角公式,掌握公式,细心计算,属基础题. 19.D由已知向量的坐标求出a b +的坐标,再由向量垂直的坐标运算得答案.【详解】 ∵(1,),(3,2),(4,2)a m b a b m ==-∴+=-,又()a b b +⊥,∴3×4+(﹣2)×(m ﹣2)=0,解得m =8. 故选D .【点睛】本题考查平面向量的坐标运算,考查向量垂直的坐标运算,属于基础题. 20.85根据4CD DB =得到4455CD AB AC ,再由CD r AB sAC =+,根据平面向量的基本定理,求得,r s 的值,代入即可求解.【详解】如图所示,由4CD DB =,可得444555CD CB AB AC ==-,又由CD r AB sAC =+,所以44,55r s ==-,所以44833555r s +=⨯-=, 故答案为:85. 【点睛】本题主要考查了平面向量的基本定理的应用,其中解答中熟记向量的运算法则,以及平面向量的基本定理是解答的关键.着重考查了推理与计算能力,属于基础题. 21.4π根据()a a b ⊥-得到1a b =,再带入夹角公式即可.【详解】因为()a a b ⊥-,所以()0a a b ⋅-=.即20a a b -⋅=,10a b -⋅=,1a b ⋅=. 12cos 22a b a b θ===.所以夹角是4π. 故答案为:4π【点睛】本题主要考查向量的夹角公式,熟练掌握夹角公式为解题的关键,属于简单题。
高一 平面向量基本定理及坐标表示知识点+例题+练习 含答案
1.平面向量基本定理如果e 1、e 2是同一平面内两个不共线的向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1、λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算(1)向量加法、减法、数乘及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21. (2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示设向量a =(x 1,y 1),b =(x 2,y 2) (a ≠0),如果a ∥b ,那么x 1y 2-x 2y 1=0;反过来,如果x 1y 2-x 2y 1=0,那么a ∥b . 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)平面内的任何两个向量都可以作为一组基底.( × )(2)若a ,b 不共线,且λ1a +μ1b =λ2a +μ2b ,则λ1=λ2,μ1=μ2.( √ )(3)平面向量的基底不唯一,只要基底确定后,平面内的任何一个向量都可被这组基底唯一表示.( √ )(4)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件可表示成x 1x 2=y 1y 2.( × )(5)当向量的起点在坐标原点时,向量的坐标就是向量终点的坐标.( √ )1.设e 1,e 2是平面内一组基底,那么下列说法正确的是________(填序号). ①若实数λ1,λ2使λ1e 1+λ2e 2=0,则λ1=λ2=0;②空间内任一向量a 可以表示为a =λ1e 1+λ2e 2(λ1,λ2为实数); ③对实数λ1,λ2,λ1e 1+λ2e 2不一定在该平面内;④对平面内任一向量a ,使a =λ1e 1+λ2e 2的实数λ1,λ2有无数对. 答案 ①2.在△ABC 中,点D 在BC 边上,且CD →=2DB →,CD →=rAB →+sAC →,则r +s =________. 答案 0解析 因为CD →=2DB →,所以CD →=23CB →=23(AB →-AC →)=23AB →-23AC →,则r +s =23+⎝⎛⎭⎫-23=0. 3.在▱ABCD 中,AC 为一条对角线,AB →=(2,4),AC →=(1,3),则向量BD →的坐标为__________. 答案 (-3,-5)解析 ∵AB →+BC →=AC →,∴BC →=AC →-AB →=(-1,-1), ∴BD →=AD →-AB →=BC →-AB →=(-3,-5).4.设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________.答案 12解析 ∵a ∥b ,∴sin 2θ×1-cos 2 θ=0, ∴2sin θcos θ-cos 2 θ=0,∵0<θ<π2,∴cos θ>0,∴2sin θ=cos θ,∴tan θ=12.5.(教材改编)已知▱ABCD 的顶点A (-1,-2),B (3,-1),C (5,6),则顶点D 的坐标为________. 答案 (1,5)解析 设D (x ,y ),则由AB →=DC →,得(4,1)=(5-x,6-y ),即⎩⎪⎨⎪⎧ 4=5-x ,1=6-y ,解得⎩⎪⎨⎪⎧x =1,y =5.题型一 平面向量基本定理的应用例1 (1)在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点,若AB →=λAM →+μAN →,则λ+μ=________.(2)如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________. 答案 (1)45 (2)311解析 (1)因为AB →=AN →+NB →=AN →+CN →=AN →+(CA →+AN →)=2AN →+CM →+MA →=2AN →-14AB →-AM →,所以AB →=85AN →-45AM →,所以λ+μ=45.(2)设BP →=kBN →,k ∈R . 因为AP →=AB →+BP →=AB →+kBN → =AB →+k (AN →-AB →)=AB →+k (14AC →-AB →)=(1-k )AB →+k 4AC →,且AP →=mAB →+211AC →,所以1-k =m ,k 4=211,解得k =811,m =311.思维升华 (1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.(1)在平行四边形ABCD 中,AB →=e 1,AC →=e 2,NC →=14AC →,BM →=12MC →,则MN →=________.(用e 1,e 2表示)(2)如图,已知点G 是△ABC 的重心,过G 作直线与AB ,AC 两边分别交于M ,N 两点,且AM →=xAB →,AN →=yAC →,则xy x +y的值为________.答案 (1)-23e 1+512e 2 (2)13解析 (1)如图,MN →=CN →-CM →=CN →+2BM →=CN →+23BC →=-14AC →+23(AC →-AB →)=-14e 2+23(e 2-e 1)=-23e 1+512e 2.(2)易知AG →=13AB →+13AC →,MN →=-xAB →+yAC →,故MG →=⎝⎛⎭⎫13-x AB →+13AC →.由于MG →与MN →共线,所以⎝⎛⎭⎫13-x y =-13x , 即xy =13(x +y ),因此xy x +y =13.题型二 平面向量的坐标运算例2 (1)已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则c =________. (2)已知点A (1,3),B (4,-1),则与向量A B →同方向的单位向量为__________. 答案 (1)⎝⎛⎭⎫-133,-43 (2)⎝⎛⎭⎫35,-45 解析 (1)由已知3c =-a +2b =(-5,2)+(-8,-6)=(-13,-4).所以c =⎝⎛⎭⎫-133,-43. (2)A B →=O B →-O A →=(4,-1)-(1,3)=(3,-4), ∴与A B →同方向的单位向量为A B→|A B →|=⎝⎛⎭⎫35,-45. 思维升华 向量的坐标运算主要是利用加、减、数乘运算法则进行计算.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则.(1)已知点A (-1,5)和向量a =(2,3),若AB →=3a ,则点B 的坐标为__________.(2)在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点,若P A →=(4,3),PQ →=(1,5),则BC →=________.答案 (1)(5,14) (2)(-6,21)解析 (1)设点B 的坐标为(x ,y ),则AB →=(x +1,y -5).由AB →=3a ,得⎩⎪⎨⎪⎧ x +1=6,y -5=9,解得⎩⎪⎨⎪⎧x =5,y =14.(2)BC →=3PC →=3(2PQ →-P A →)=6PQ →-3P A →=(6,30)-(12,9)=(-6,21).题型三 向量共线的坐标表示命题点1 利用向量共线求向量或点的坐标例3 (1)已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =________.(2)已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________. 答案 (1)(-4,-8) (2)(2,4)解析 (1)由a =(1,2),b =(-2,m ),且a ∥b , 得1×m =2×(-2),即m =-4. 从而b =(-2,-4),那么2a +3b =2(1,2)+3(-2,-4)=(-4,-8). (2)∵在梯形ABCD 中,AB ∥CD ,DC =2AB , ∴DC →=2AB →.设点D 的坐标为(x ,y ),则DC →=(4,2)-(x ,y )=(4-x,2-y ), AB →=(2,1)-(1,2)=(1,-1),∴(4-x,2-y )=2(1,-1),即(4-x,2-y )=(2,-2),∴⎩⎪⎨⎪⎧ 4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4). 命题点2 利用向量共线求参数例4 若三点A (1,-5),B (a ,-2),C (-2,-1)共线,则实数a 的值为________. 答案 -54解析 AB →=(a -1,3),AC →=(-3,4),根据题意AB →∥AC →,∴4(a -1)=3×(-3),即4a =-5, ∴a =-54.命题点3 求交点坐标例5 已知点A (4,0),B (4,4),C (2,6),则AC 与OB 的交点P 的坐标为________. 答案 (3,3)解析 方法一 由O ,P ,B 三点共线,可设OP →=λOB →=(4λ,4λ),则AP →=OP →-OA →=(4λ-4,4λ). 又AC →=OC →-OA →=(-2,6),由AP →与AC →共线,得(4λ-4)×6-4λ×(-2)=0,解得λ=34,所以OP→=34OB →=(3,3),所以点P 的坐标为(3,3). 方法二 设点P (x ,y ),则OP →=(x ,y ),因为OB →=(4,4),且OP →与OB →共线,所以x 4=y 4,即x =y .又AP →=(x -4,y ),AC →=(-2,6),且AP →与AC →共线, 所以(x -4)×6-y ×(-2)=0,解得x =y =3, 所以点P 的坐标为(3,3).思维升华 平面向量共线的坐标表示问题的常见类型及解题策略(1)利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,利用“若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2=x 2y 1”解题比较方便.(2)利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R ),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量.(3)三点共线问题.A ,B ,C 三点共线等价于AB →与AC →共线.设OA →=(-2,4),OB →=(-a,2),OC →=(b,0),a >0,b >0,O 为坐标原点,若A ,B ,C 三点共线,则1a +1b 的最小值为________.答案3+222解析 由题意得AB →=(-a +2,-2),AC →=(b +2,-4), 又AB →∥AC →,所以(-a +2,-2)=λ(b +2,-4),即⎩⎪⎨⎪⎧-a +2=λ(b +2),-2=-4λ,整理得2a +b =2, 所以1a +1b =12(2a +b )(1a +1b )=12(3+2a b +b a )≥12(3+22a b ·b a )=3+222(当且仅当b =2a 时,等号成立).11.解析法(坐标法)在向量中的应用典例 (14分)给定两个长度为1的平面向量OA →和OB →,它们的夹角为2π3.如图所示,点C 在以O 为圆心的AB 上运动.若OC →=xOA →+yOB →,其中x ,y ∈R ,求x +y 的最大值.思维点拨 可以建立平面直角坐标系,将向量坐标化,求出点A ,B 的坐标,用三角函数表示出点C 的坐标,最后转化为三角函数求最值. 规范解答解 以O 为坐标原点,OA →所在的直线为x 轴建立平面直角坐标系,如图所示,则A (1,0),B (-12,32).[4分]设∠AOC =α(α∈[0,2π3]),则C (cos α,sin α),由OC →=xOA →+yOB →,得⎩⎨⎧cos α=x -12y ,sin α=32y ,所以x =cos α+33sin α,y =233sin α,[8分] 所以x +y =cos α+3sin α=2sin(α+π6),[11分]又α∈[0,2π3],所以当α=π3时,x +y 取得最大值2.[14分]温馨提醒 本题首先通过建立平面直角坐标系,引入向量的坐标运算,然后用三角函数的知识求出x +y 的最大值.引入向量的坐标运算使得本题比较容易解决,体现了解析法(坐标法)解决问题的优势,凸显出了向量的代数特征,为用代数的方法研究向量问题奠定了基础.[方法与技巧]1.平面向量基本定理的本质是运用向量加法的平行四边形法则,将向量进行分解. 向量的坐标表示的本质是向量的代数表示,其中坐标运算法则是运算的关键. 2.根据向量共线可以证明点共线;利用两向量共线也可以求点的坐标或参数值. [失误与防范]1.要区分点的坐标和向量的坐标,向量坐标中包含向量大小和方向两种信息;两个向量共线有方向相同、相反两种情况.2.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,所以应表示为x 1y 2-x 2y 1=0.A 组 专项基础训练 (时间:40分钟)1.如图,设O 是平行四边形ABCD 两对角线的交点,给出下列向量组: ①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →.其中可作为该平面内其他向量的基底的是________. 答案 ①③解析 ①中AD →,AB →不共线;③中CA →,DC →不共线.2.已知平面向量a =(1,1),b =(1,-1),则向量12a -32b =________.答案 (-1,2)解析 12a =(12,12),32b =(32,-32),故12a -32b =(-1,2). 3.已知a =(1,1),b =(1,-1),c =(-1,2),则c =________. 答案 12a -32b解析 设c =λa +μb ,∴(-1,2)=λ(1,1)+μ(1,-1),∴⎩⎪⎨⎪⎧-1=λ+μ,2=λ-μ,∴⎩⎨⎧λ=12,μ=-32,∴c =12a -32b .4.已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ=________. 答案 12解析 ∵a +λb =(1+λ,2),c =(3,4), 且(a +λb )∥c ,∴1+λ3=24,∴λ=12.5.已知|OA →|=1,|OB →|=3,OA →·OB →=0,点C 在∠AOB 内,且OC →与OA →的夹角为30°,设OC →=mOA →+nOB →(m ,n ∈R ),则m n 的值为________.答案 3解析 ∵OA →·OB →=0,∴OA →⊥OB →,以OA 为x 轴,OB 为y 轴建立直角坐标系,OA →=(1,0),OB →=(0,3),OC →=mOA →+nOB →=(m ,3n ).∵tan 30°=3n m =33,∴m =3n ,即mn=3. 6.已知A (7,1),B (1,4),直线y =12ax 与线段AB 交于点C ,且AC →=2CB →,则实数a =________.答案 2解析 设C (x ,y ),则AC →=(x -7,y -1),CB →=(1-x,4-y ),∵AC →=2CB →,∴⎩⎪⎨⎪⎧ x -7=2(1-x ),y -1=2(4-y ),解得⎩⎪⎨⎪⎧x =3,y =3.∴C (3,3).又∵C 在直线y =12ax 上,∴3=12a ·3,∴a =2.7.已知点A (-1,2),B (2,8),AC →=13AB →,DA →=-13BA →,则CD →的坐标为________.答案 (-2,-4)解析 设点C ,D 的坐标分别为(x 1,y 1),(x 2,y 2). 由题意得AC →=(x 1+1,y 1-2),AB →=(3,6), DA →=(-1-x 2,2-y 2),BA →=(-3,-6). 因为AC →=13AB →,DA →=-13BA →,所以有⎩⎪⎨⎪⎧ x 1+1=1,y 1-2=2和⎩⎪⎨⎪⎧-1-x 2=1,2-y 2=2.解得⎩⎪⎨⎪⎧ x 1=0,y 1=4和⎩⎪⎨⎪⎧x 2=-2,y 2=0.所以点C ,D 的坐标分别为(0,4),(-2,0), 从而CD →=(-2,-4).8.已知向量OA →=(3,-4),OB →=(0,-3),OC →=(5-m ,-3-m ),若点A ,B ,C 能构成三角形,则实数m 满足的条件是________. 答案 m ≠54解析 由题意得AB →=(-3,1),AC →=(2-m,1-m ),若A ,B ,C 能构成三角形,则AB →,AC →不共线,则-3×(1-m )≠1×(2-m ),解得m ≠54. 9.已知A (1,1),B (3,-1),C (a ,b ).(1)若A ,B ,C 三点共线,求a ,b 的关系式;(2)若AC →=2AB →,求点C 的坐标.解 (1)由已知得AB →=(2,-2),AC →=(a -1,b -1),∵A ,B ,C 三点共线,∴AB →∥AC →.∴2(b -1)+2(a -1)=0,即a +b =2.(2)∵AC →=2AB →,∴(a -1,b -1)=2(2,-2).∴⎩⎪⎨⎪⎧ a -1=4,b -1=-4,解得⎩⎪⎨⎪⎧a =5,b =-3.∴点C 的坐标为(5,-3).10.已知点O 为坐标原点,A (0,2),B (4,6),OM →=t 1OA →+t 2AB →.(1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A ,B ,M 三点共线.(1)解 OM →=t 1OA →+t 2AB →=t 1(0,2)+t 2(4,4)=(4t 2,2t 1+4t 2). 当点M 在第二或第三象限时,有⎩⎪⎨⎪⎧4t 2<0,2t 1+4t 2≠0, 故所求的充要条件为t 2<0且t 1+2t 2≠0.(2)证明 当t 1=1时,由(1)知OM →=(4t 2,4t 2+2).∵AB →=OB →-OA →=(4,4),AM →=OM →-OA →=(4t 2,4t 2)=t 2(4,4)=t 2AB →,∴AM →与AB →共线,又有公共点A ,∴A ,B ,M 三点共线.B 组 专项能力提升(时间:15分钟)11.在△ABC 中,点P 是AB 上的一点,且CP →=23CA →+13CB →,Q 是BC 的中点,AQ 与CP 的交点为M ,又CM →=tCP →,则t 的值为________.答案 34解析 ∵CP →=23CA →+13CB →, ∴3CP →=2CA →+CB →,即2CP →-2CA →=CB →-CP →.∴2AP →=PB →,因此P 为AB 的一个三等分点.∵A ,M ,Q 三点共线,∴CM →=xCQ →+(1-x )CA →=x 2CB →+(x -1)AC → (0<x <1). ∵CB →=AB →-AC →,∴CM →=x 2AB →+⎝⎛⎭⎫x 2-1AC →. ∵CP →=CA →-P A →=-AC →+13AB →, 且CM →=tCP →(0<t <1),∴x 2AB →+⎝⎛⎭⎫x 2-1AC →=t ⎝⎛⎭⎫-AC →+13AB →. ∴x 2=t 3且x 2-1=-t ,解得t =34. 12.已知向量a =(1,2),b =(0,1),设u =a +k b ,v =2a -b ,若u ∥v ,则实数k 的值为________.答案 -12解析 ∵u =(1,2)+k (0,1)=(1,2+k ),v =(2,4)-(0,1)=(2,3),又u ∥v ,∴1×3=2(2+k ),得k =-12. 13.已知向量a =(1,1),b =(1,-1),c =(2cos α,2sin α)(α∈R ),实数m ,n 满足m a +n b =c ,则(m -3)2+n 2的最大值为________.答案 16解析 由m a +n b =c ,可得⎩⎪⎨⎪⎧m +n =2cos α,m -n =2sin α,故(m +n )2+(m -n )2=2,即m 2+n 2=1,故点M (m ,n )在单位圆上,则点P (3,0)到点M 的距离的最大值为OP +1=3+1=4,故(m -3)2+n 2的最大值为42=16.14.已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m ,使得AB →+AC →=mAM →成立,则m =________.答案 3解析 ∵MA →+MB →+MC →=0,∴M 为△ABC 的重心.如图所示,连结AM 并延长交BC 于D ,则D 为BC 的中点.∴AM →=23AD →. 又AD →=12(AB →+AC →), ∴AM →=13(AB →+AC →), 即AB →+AC →=3AM →,∴m =3.15.如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,若OC →=mOA →+nOB →,则m +n 的取值范围是________.答案 (-1,0)解析 由题意得,OC →=kOD →(k <0),又|k |=|OC →||OD →|<1,∴-1<k <0. 又∵B ,A ,D 三点共线,∴OD →=λOA →+(1-λ)OB →,∴mOA →+nOB →=kλOA →+k (1-λ)OB →,∴m =kλ,n =k (1-λ),∴m +n =k ,从而m +n ∈(-1,0).。
平面向量复习(含练习+答案)
向量知识清单一、向量的有关概念1.向量:既有大小又有方向的量叫做向量.向量的大小叫向量的模(也就是用来表示向量的有向线段的长度).2.向量的表示方法:⑴字母表示法:如,,,a b c r r rL 等.⑵几何表示法:用一条有向线段表示向量.如AB uuu r ,CD uuu r等.⑶坐标表示法:在平面直角坐标系中,设向量OA u u u r的起点O 为在坐标原点,终点A 坐标为(),x y ,则(),x y 称为OA u u u r 的坐标,记为OA u u u r=(),x y .注:向量既有代数特征,又有几何特征,它是数形兼备的好工具.3.相等向量:长度相等且方向相同的向量.向量可以自由平移,平移前后的向量相等.两向量ar与b r相等,记为a b =r r .注:向量不能比较大小,因为方向没有大小.4.零向量:长度为零的向量叫零向量.零向量只有一个,其方向是任意的.5.单位向量:长度等于1个单位的向量.单位向量有无数个,每一个方向都有一个单位向量.6.共线向量:方向相同或相反的非零向量,叫共线向量.任一组共线向量都可以移到同一直线上.规定:0r与任一向量共线.注:共线向量又称为平行向量.7.相反向量: 长度相等且方向相反的向量. 二、向量的运算 (一)运算定义①向量的加减法,②实数与向量的乘积,③两个向量的数量积,这些运算的定义都是 “自然的”,它们都有明显的物理学的意义及几何意义.其中向量的加减法运算结果仍是向量,两个向量数量积运算结果是数量。
研究这些运算,发现它们有很好地运算性质,这些运算性质为我们用向量研究问题奠定了基础,向量确实是一个好工具.特别是向量可以用坐标表示,且可以用坐标来运算,向量运算问题可以完全坐标化.运 算 图形语言 符号语言 坐标语言加法与减法 OA --→+OB --→=OC --→ OB --→OA --→-=AB --→记OA --→=(x 1,y 1),OB --→=(x 1,y 2) 则OA OB +uu u r uuu r =(x 1+x 2,y 1+y 2)OB OA -uuu r uu u r=(x 2-x 1,y 2-y 1)OA --→+AB --→=OB --→实数与向量的乘积 AB --→=λa → λ∈R 记a →=(x ,y ) 则λa →=(λx ,λy )两个向量的数量积 cos ,a b a b a b ⋅=⋅r r r r r r记1122(,),(,)a x y b x y ==r r 则a →·b →=x 1x 2+y 1y 2 加法:①a b b a +=+r r r r (交换律); ②()()a b c a b c ++=++r r r r r r(结合律)实数与向量的乘积:①()a b a b λλλ+=+r r r r ; ②()a a a λμλμ+=+r r r;③()()a a λμλμ=r r两个向量的数量积: ①a →·b →=b →·a →; ②(λa →)·b →=a →·(λb →)=λ(a →·b →);③(a →+b →)·c →=a →·c →+b →·c →注:根据向量运算律可知,两个向量之间的线性运算满足实数多项式乘积的运算法则,正确迁移实数的运算性质可以简化向量的运算, 例如(a →±b →)2=222a a b b →→→→±⋅+ (三)运算性质及重要结论⑴平面向量基本定理:如果12,e e u r u u r是同一平面内两个不共线的向量,那么对于这个平面内任一向量a r ,有且只有一对实数12,λλ,使1122a e e λλ=+r u r u u r ,称1122e e λλ+u r u u r 为12,e e u r u u r的线性组合。
平面向量知识点总结(精华)
必修4 平面向量知识点小结一、向量的基本概念1.向量的概念:既有大小又有方向的量,注意向量和数量的区别.向量常用有向线段来表示.注意:不能说向量就是有向线段,为什么? 提示:向量可以平移.举例1 已知,,则把向量按向量平移后得到的(1,2)A (4,2)B AB(1,3)a =-向量是_____. 结果:(3,0)2.零向量:长度为0的向量叫零向量,记作:,规定:零向量的0方向是任意的;3.单位向量:长度为一个单位长度的向量叫做单位向量(与共AB线的单位向量是);||AB AB ±4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;5.平行向量(也叫共线向量):方向相同或相反的非零向量、a叫做平行向量,记作:∥,b ab 规定:零向量和任何向量平行.注:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有);④三点共线共线.A B C 、、AB AC ⇔、6.相反向量:长度相等方向相反的向量叫做相反向量.的相反向a量记作.a -举例2 如下列命题:(1)若,则.||||a b = a b =(2)两个向量相等的充要条件是它们的起点相同,终点相同.(3)若,则是平行四边形.AB DC =ABCD (4)若是平行四边形,则.ABCD AB DC =(5)若,,则.ab = bc = a c =(6)若,则.其中正确的是 . 结果:(4)//ab //bc //a c(5)二、向量的表示方法1.几何表示:用带箭头的有向线段表示,如,注意起点在前,AB终点在后;2.符号表示:用一个小写的英文字母来表示,如,,等;a b c3.坐标表示:在平面内建立直角坐标系,以与轴、轴方向相同x y 的两个单位向量为基底,则平面内的任一向量可表示为,i j a,称为向量的坐标,叫做向量的坐标表示.(,)a xi yj x y =+= (,)x y a (,)a x y =a 结论:如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同.三、平面向量的基本定理定理 设同一平面内的一组基底向量,是该平面内任一向量,12,e ea 则存在唯一实数对,使.12(,)λλ1122a e e λλ=+(1)定理核心:;(2)从左向右看,是对向量的分解,1122aλe λe =+ a且表达式唯一;反之,是对向量的合成.a(3)向量的正交分解:当时,就说为对向量的正交12,e e 1122aλe λe =+a 分解.举例3 (1)若,,,则 . 结果:(1,1)a =(1,1)b =- (1,2)c =- c = .1322a b - (2)下列向量组中,能作为平面内所有向量基底的是 BA.,B.,C.,1(0,0)e = 2(1,2)e =- 1(1,2)e =- 2(5,7)e = 1(3,5)e = 2(6,10)e = D.,1(2,3)e =- 213,24e ⎛⎫=- ⎪⎝⎭(3)已知分别是的边,上的中线,且,,则,AD BEABC △BC AC AD a =BE b = 可用向量表示为 . 结果:.BC ,a b2433a b + (4)已知中,点在边上,且,,则的ABC △D BC 2CDDB = CD r AB s AC =+r s +=值是 . 结果:0.四、实数与向量的积实数与向量的积是一个向量,记作,它的长度和方向规定如λa a λ下:(1)模:;||||||a a λλ=⋅(2)方向:当时,的方向与的方向相同,当时,0λ>a λ a0λ<的方向与的方向相反,当时,,a λ a 0λ=0a λ= 注意:.0aλ≠五、平面向量的数量积1.两个向量的夹角:对于非零向量,,作,,则把ab OA a = OB b = 称为向量,的夹角.(0)AOB θθπ∠=≤≤ab 当时,,同向;当时,,反向;当时,,垂θ=a b θπ=a b 2πθ=a b 直.2.平面向量的数量积:如果两个非零向量,,它们的夹角为,abθ我们把数量叫做与的数量积(或内积或点积),记作:||||cos a b θ ab ,即.a b ⋅||||cos a b a b θ⋅=⋅ 规定:零向量与任一向量的数量积是0.注:数量积是一个实数,不再是一个向量.举例4 (1)中,,,,则_________. ABC △||3AB =||4AC = ||5BC = AB BC ⋅=结果:.9-(2)已知,,,,与的夹角为,则 11,2a ⎛⎫= ⎪⎝⎭ 10,2b ⎛⎫=- ⎪⎝⎭c a kb =+d a b =- c d 4πk =____. 结果:1.(3)已知,,,则____. .||2a =||5b = 3a b ⋅=- ||a b += (4)已知是两个非零向量,且,则与的夹角为,ab ||||||a b a b ==- a a b +____. 结果:.303.向量在向量上的投影:,它是一个实数,但不一定大b a||cos b θ 于0.举例5 已知,,且,则向量在向量上的投影为||3a=||5b = 12a b ⋅= a b ______. 结果:.1254.的几何意义:数量积等于的模与在上的投影的积.a b ⋅ a b ⋅a ||ab a 5.向量数量积的性质:设两个非零向量,,其夹角为,则:ab θ(1);0a b a b ⊥⇔⋅=(2)当、同向时,,特别地,;a b ||||a b a b ⋅=⋅ 22||||aa a a a =⋅=⇔= 是、同向的充要分条件;||||a b a b ⋅=⋅ ab 当、反向时,,是、反向的充要分条a b ||||a b a b ⋅=-⋅ ||||a b a b ⋅=-⋅ ab 件;当为锐角时,,且、不同向,是为锐角的必要不θ0a b ⋅>a b0a b ⋅>θ充分条件;当为钝角时,,且、不反向;是为钝角的必要不θ0a b ⋅< a b 0a b ⋅<θ充分条件.平面向量基础知识复习(3)非零向量,夹角的计算公式:;④.a b θcos ||||a ba b θ⋅= ||||a b a b ⋅≤ 举例6 (1)已知,,如果与的夹角为锐角,则的(,2)a λλ=(3,2)b λ= a b λ取值范围是______. 结果:或且;43λ<-0λ>13λ≠(2)已知的面积为,且,若,则,夹角的OFQ △S 1OF FQ ⋅= 12S <OF FQ θ取值范围是_________. 结果:;,43ππ⎛⎫⎪⎝⎭(3)已知,,且满足(其中).(cos ,sin )a x x =(cos ,sin )b y y = |||ka b a kb +- 0k >①用表示;②求的最小值,并求此时与的夹角的大小. k ab ⋅ a b ⋅a b θ结果:①;②最小值为,.21(0)4k ab k k +⋅=> 1260θ=六、向量的运算1.几何运算(1)向量加法运算法则:①平行四边形法则;②三角形法则.运算形式:若,,则向量叫做与的和,即AB a = BC b = AC ab ;a b AB BC AC +=+=作图:略.注:平行四边形法则只适用于不共线的向量.(2)向量的减法运算法则:三角形法则.运算形式:若,,则,即由减向量的终AB a = AC b = a b AB AC CA -=-=点指向被减向量的终点.作图:略.注:减向量与被减向量的起点相同.举例7 (1)化简:① ;② ;③AB BC CD ++= AB AD DC --=. 结果:①;②;③;()()AB CD AC BD ---= AD CB 0(2)若正方形的边长为1,,,,则 . ABCD AB a =BC b = AC c = ||a b c ++=结果:(3)若是所在平面内一点,且满足,则O ABC △2OB OC OB OC OA -=+-的形状为. 结果:直角三角形;ABC △(4)若为的边的中点,所在平面内有一点,满足D ABC △BC ABC △P ,设,则的值为 . 结果:2;0PA BP CP ++= ||||AP PD λ=λ(5)若点是的外心,且,则的内角为 . O ABC △0OAOB CO ++=ABC △C结果:.1202.坐标运算:设,,则11(,)a x y =22(,)b x y = (1)向量的加减法运算:,.1212(,)a b x x y y +=++ 1212(,)a bx x y y -=--举例8 (1)已知点,,,若,则当(2,3)A (5,4)B (7,10)C ()AP AB AC λλ=+∈R____时,点在第一、三象限的角平分线上. 结果:;λ=P 12(2)已知,,且,,则 .结(2,3)A (1,4)B 1(sin ,cos )2AB x y = ,(,)22x y ππ∈-x y +=果:或;6π2π-(3)已知作用在点的三个力,,,则合力(1,1)A 1(3,4)F =2(2,5)F =- 3(3,1)F =的终点坐标是 . 结果:.123F F F F =++(9,1)(2)实数与向量的积:.1111(,)(,)a x y x y λλλλ==(3)若,,则,即一个向量的坐标等11(,)A x y 22(,)B x y 2121(,)AB x x y y =--于表示这个向量的有向线段的终点坐标减去起点坐标.举例9 设,,且,,则的坐标分别是(2,3)A (1,5)B -13AC AB =3AD AB = ,C D __________. 结果:.11(1,7,9)3-(4)平面向量数量积:.1212a b x x y y ⋅=+举例10 已知向量,,.(sin ,cos )a x x =(sin ,sin )b x x = (1,0)c =- (1)若,求向量、的夹角;3x π=a c(2)若,函数的最大值为,求的值.结果:3[,]84x ππ∈-()f x a b λ=⋅ 12λ(1);(2)或.150121(5)向量的模:2222||||aa x y a ==+⇔=举例11 已知均为单位向量,它们的夹角为,那么= .,ab 60|3|a b +=(6)两点间的距离:若,,则11(,)A x y 22(,)B x y ||AB =举例12 如图,在平面斜坐标系中,关xOy 60xOy ∠=P 于斜坐标系的斜坐标是这样定义的:若,其中轴同12OP xe ye =+ 12,e ey 方向的单位向量,则点斜坐标为.P (,)x y (1)若点的斜坐标为,求到的距离;P (2,2)-P O ||PO (2)求以为圆心,1为半径的圆在斜坐标系中的方程.O xOy 结果:(1)2;(2).2210x y xy ++-=七、向量的运算律1.交换律:,,;a b b a +=+ ()()a a λμλμ=a b b a ⋅=⋅ 2.结合律:,,;()ab c a b c ++=++ ()a b c a b c --=-+ ()()()a b a b a b λλλ=⋅=⋅3.分配律:,,.()a a a λμλμ+=+()a b a b λλλ+=+ ()a b c a c b c +⋅=⋅+⋅举例13 给出下列命题:① ;② ;③ ()ab c a b a c ⋅-=⋅-⋅ ()()a b c a b c ⋅⋅=⋅⋅;222()||2||||||a b a a b b -=-+④ 若,则或;⑤若则;⑥;⑦;⑧0a b ⋅= 0a = 0b = a b c b ⋅=⋅ a c = 22||a a = 2a b ba a⋅= ;⑨.222()a b a b ⋅=⋅ 222()2ab a a b b -=-⋅+ 其中正确的是 . 结果:①⑥⑨.说明:(1)向量运算和实数运算有类似的地方也有区别:对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一个向量,切记两向量不能相除(相约);(2)向量的“乘法”不满足结合律,即,为什么?()()ab c a b c ⋅⋅≠⋅⋅八、向量平行(共线)的充要条件.221212//()(||||)0a b a b a b a b x y y x λ⇔⇔⋅=⇔-=举例14 (1)若向量,,当_____时,与共线且方向(,1)ax =(4,)b x = x =a b 相同. 结果:2.(2)已知,,,,且,则 . (1,1)a =(4,)b x = 2u a b =+ 2v a b =+ //u v x =结果:4.(3)设,,,则 _____时,共线. 结(,12)PA k =(4,5)PB = (10,)PC k =k =,,A B C 果:或11.2-九、向量垂直的充要条件.12120||||0a b a b a b a b x x y y ⊥⇔⋅=⇔+=-⇔+=特别地.||||||||AB AC AB AC AB AC AB AC ⎛⎫⎛⎫+⊥- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭举例15 (1)已知,,若,则 .结果:(1,2)OA=- (3,)OB m = OA OB ⊥m =;32m =(2)以原点和为两个顶点作等腰直角三角形,,则O (4,2)A OAB 90B ∠=︒点的坐标是 .结果:(1,3)或(3,-1));B (3)已知向量,且,则的坐标是 .结果:(,)n a b = n m ⊥ ||||n m =m = 或.(,)b a -(,)b a -十、线段的定比分点1.定义:设点是直线上异于、的任意一点,若存在一个P 12P P 1P 2P 实数 ,使,则实数叫做点分有向线段所成的比,λ12P P PP λ=λP 12P P λ点叫做有向线段的以定比为的定比分点.P 12P Pλ2.的符号与分点的位置之间的关系λP (1)内分线段,即点在线段上;P 12P PP 12P P 0λ⇔>(2)外分线段时,①点在线段的延长线上,②P 12P PP 12P P 1λ⇔<-点在线段的反向延长线上.P 12P P 10λ⇔-<<注:若点分有向线段所成的比为,则点分有向线段所成P 12PPλP 21P P的比为.1λ举例16 若点分所成的比为,则分所成的比为 . P AB34A BP 结果:.73-3.线段的定比分点坐标公式:设,,点分有向线段所成的比为,则定比111(,)P x y 222(,)P x y (,)P x y 12P Pλ分点坐标公式为. 1212,1(1).1x x x y y y λλλλλ+⎧=⎪⎪+≠-⎨+⎪=⎪+⎩特别地,当时,就得到线段的中点坐标公式1λ=12P P 1212,2.2x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩说明:(1)在使用定比分点的坐标公式时,应明确,、(,)x y 11(,)x y 的意义,即分别为分点,起点,终点的坐标.22(,)x y (2)在具体计算时应根据题设条件,灵活地确定起点,分点和终点,并根据这些点确定对应的定比.λ举例17 (1)若,,且,则点的坐标为 . (3,2)M --(6,1)N -13MP MN =-P 结果:;7(6,)3--(2)已知,,直线与线段交于,且,则(,0)A a (3,2)B a +12y ax =AB M 2AM MB =. 结果:2或.a =4-十一、平移公式如果点按向量平移至,则;曲线(,)P x y (,)a h k = (,)P x y '',.x x h y y k '=+⎧⎨'=+⎩按向量平移得曲线.(,)0f x y =(,)a h k =(,)0f x h y k --=说明:(1)函数按向量平移与平常“左加右减”有何联系?(2)向量平移具有坐标不变性,可别忘了啊!举例18 (1)按向量把平移到,则按向量把点平a (2,3)-(1,2)-a(7,2)-移到点______. 结果:;(8,3)-(2)函数的图象按向量平移后,所得函数的解析式是sin 2y x =a,则________. 结果:.cos21y x =+a = (,1)4π-十二、向量中一些常用的结论1.一个封闭图形首尾连接而成的向量和为零向量,要注意运用;2.模的性质:.||||||||||a b a b a b -≤+≤+(1)右边等号成立条件:同向或中有; ab 、 a b、0||||||a b a b ⇔+=+(2)左边等号成立条件:反向或中有; a b 、 a b 、0 ||||||a b a b ⇔-=+(3)当不共线. ab、||||||||||a b a b a b ⇔-<+<+ 3.三角形重心公式在中,若,,,则其重心的坐标为ABC △11(,)A x y 22(,)B x y 33(,)C x y .123123(,33x x x y y y G ++++举例19 若的三边的中点分别为、、,则的ABC △(2,1)A (3,4)B -(1,1)C --ABC △重心的坐标为 .结果:.24,33⎛⎫- ⎪⎝⎭5.三角形“三心”的向量表示(1)为△的重心,特别地1()3PG PA PB PC G =++⇔ABC 为△的重心.0PA PB PC G ++=⇔ABC (2)为△的垂心.PA PB PB PC PC PA P ⋅=⋅=⋅⇔ABC (3)为△的内心;向量||||||0AB PC BC PA CA PB P ++=⇔ABC 所在直线过△的内心.(0)||||AB AC AB AC λλ⎛⎫+≠ ⎪ ⎪⎝⎭ABC 6.点分有向线段所成的比向量形式P 12P Pλ设点分有向线段所成的比为,若为平面内的任一点,则P 12P PλM ,特别地为有向线段的中点.121MP MPMP λλ+=+ P 12P P 122MP MPMP +⇔=7.向量中三终点共线存在实数,使得,,PA PB PC,,A B C ⇔,αβ且.PA PB PC αβ=+1αβ+=举例20 平面直角坐标系中,为坐标原点,已知两点,O (3,1)A ,若点满足,其中且,则点的轨迹是 . (1,3)B -C 12OC OA OB λλ=+12,λλ∈R 121λλ+=C 结果:直线.AB。
第02讲 平面向量的线性运算(3个知识点+4种题型+强化训练)解析版
第02讲 平面向量的线性运算(3个知识点+4种题型+强化训练)知识点一、向量加法1.向量加法的定义定义:求两个向量和的运算 叫做向量的加法. 对于零向量与任意向量a 规定0+a =a +0=a . 2.向量求和的法则三角形法则已知非零向量a b 在平面内任取一点A 作AB →=a BC →=b 则向量AC →叫做a 与b的和 记作a +b 即a +b =A B →+BC →=A C →.平行四边形法则已知两个不共线向量a b 作AB →=a AD →=b 以AB → AD →为邻边作▱ABCD 则对角线上的向量AC →=a +b .思考:两个向量相加就是两个向量的模相加吗?[提示] 不是 向量的相加满足三角形法则 而模相加是数量的加法. 3.向量加法的运算律 (1)交换律:a +b =b +a .(2)结合律:(a +b )+c =a +(b +c ). 知识点二、向量减法1.相反向量(1)定义:与向量a 长度相等 方向相反的向量 叫做a 的相反向量. (2)性质:①-(-a )=a .②对于相反向量有:a +(-a )=0. ③若a b 互为相反向量 则a =-b a +b =0. 2.向量的减法(1)定义:a -b =a +(-b ) 即减去一个向量相当于加上这个向量的相反向量. (2)作法:在平面内任取一点O 作OA →=a OB →=b 则向量BA →=a -b 如图所示.思考:在什么条件下|a-b|=|a|+|b|?[提示]当a b至少有一者为0或a b非零且反向时成立.知识点三、向量的数乘运算(1)定义:规定实数λ与向量a的积是一个向量这种运算叫做向量的数乘记作:λa它的长度与方向规定如下:①|λa|=|λ||a|;②当λ>0时λa的方向与a的方向相同;当λ<0时λa的方向与a的方向相反.(2)运算律:设λμ为任意实数则有:①λ(μ a)=(λμ)a;②(λ+μ)a=λa+μ a;③λ(a+b)=λa+λb;特别地有(-λ)a=λ(-a)=-(λa);λ(a-b)=λa-λb.(3)线性运算:向量的加、减、数乘运算统称为向量的线性运算向量线性运算的结果仍是向量.对于任意向量a b以及任意实数λμ1μ2恒有λ(μ1a+μ2b)=λμ1a±λμ2b.(4) 共线向量定理向量a(a≠0)与b共线的充要条件是:存在唯一一个实数λ使b=λa.思考:定理中把“a≠0”去掉可以吗?[提示]定理中a≠0不能漏掉.若a=b=0则实数λ可以是任意实数;若a=0b≠0则不存在实数λ使得b=λa.知识复习题型一、向量的加法一、单选题1.在平面四边形ABCD中下列表达式化简结果与AB相等的是()A.AC CD+B.AD DC CB++C.CA CB+--D.CB DA DC【答案】B【分析】根据平面的线性运算求得正确答案.【详解】AC C AD+=不符合题意.D++=+=符合题意.AD DC CB AC CB ABCA CB BA-=不符合题意.=+-+≠不符合题意.CB DA DC CB CA AB故选:B2.(2024下·全国·高一专题练习)下列等式不正确的是()①()()++=++;a b c a c b②0+=;AB BA③AC DC AB BD=++.A.②③B.②C.①D.③【答案】B【分析】根据向量加法的运算律判断即可.【详解】对于① ()()++=++正确;a b c a c b对于② 0+=错误;AB BA对于③ DC AB BD AB BD DC AC++=++=正确.故选:B3.(2024下·全国·高一专题练习)如图所示的方格纸中有定点O P Q E F G H则OP OQ+=()A.OE B.OF C.OG D.OH【答案】B【分析】根据平行四边形法则即可求.【详解】以OP OQ 为邻边作平行四边形 可知OF 为所作平行四边形的对角线故由平行四边形法则可知OF 对应的向量OF 即所求向量. 故选:B4.(2024下·全国·高一专题练习)已知四边形ABCD 为菱形 则下列等式中成立的是( ) A .AB BC CA += B .AB AC BC += C .AC BA AD += D .AC AD DC +=【答案】C【分析】根据菱形的性质 结合平面向量加法的运算性质进行判断即可. 【详解】对于A AB BC AC += 故A 错误;对于B 因为AB BC AC += 所以2AB AC AB BC +=+ 故B 错误; 对于C AC BA BA AC BC AD +=+== 故C 正确;对于D 因为AD DC AC += 所以2AC AD AD DC +=+ 故D 错误. 故选:C5.(2024上·河北石家庄·高一石家庄市第二十四中学校考期末)向量()AB OM BO MB +++= ( ) A .BC B .AB C .AC D .AM【答案】B【分析】利用向量加法的三角形法则及向量加法的运算律即可求解. 【详解】由()AB OM BO MB AB BO OM MB AB +++=+++= 故B 正确. 故选:B. 二、填空题6.(2024下·全国·高一专题练习)已知向量a 表示“向东航行3km” b 表示“向南航行3 km” 则a b +表示 .【答案】向东南航行32km. 【分析】根据向量加法法则分析即可.【详解】根据题意由于向量a 表示“向东航行3km” 向量b 表示“向南航行3km” 那么可知a b +表示向东南航行223332+=km. 故答案为:向东南航行32km 7.(2023·全国·高一随堂练习)化简:(1)AB BC CD ++= ; (2)AB BC CD DE EF ++++= ; (3)AB CB AC --= ; (4)12231n n A A A A A A -++⋅⋅⋅+= . 【答案】 AD AF 0 1n A A 【分析】根据向量加减法的几何意义进行运算即可. 【详解】(1)AB BC CD AC CD AD ++=+=;(2)AB BC CD DE EF AC CD DE EF ++++=+++AD DE EF AE EF AF =++=+=; (3)0AB CB AC AB BC AC AC AC --=+-=-=; (4)122311311111n n n n n n n n A A A A A A A A A A A A A A A A ----++⋅⋅⋅+=+⋅⋅⋅+==+=.故答案为:AD ;AF ;0;1n A A . 三、解答题8.(2023·全国·高一随堂练习)如果0AB BC CA ++= 那么A B C 三点是否一定是一个三角形的三个顶点? 【答案】不一定【分析】考虑A B C 三点是否共线即可回答.【详解】当A B C 三点共线也有0AB BC CA ++= 所以A B C 三点不一定是一个三角形的三个顶点.9.(2024下·全国·高一专题练习)如图 已知a 、b 、c 求作向量a b c ++.【答案】作图见解析【分析】在平面内任取一点O 作OA a = AB b = BC c = 利用平面向量加法的三角形法则可作出向量a b c ++.【详解】作法:如图所示 在平面内任取一点O 作OA a = AB b = BC c = 则OC OA AB BC a b c =++=++.题型二、向量的减法 一、单选题1.(2022上·江西·高三校联考阶段练习)对于非零向量a b “0a b +=”是“a b ∥”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【分析】根据相反向量一定是共线向量 共线向量不一定是相反向量可求解. 【详解】由0a b +=得0a b += 所以a b =- 则a b ∥; 由a b ∥得a 与b 方向相同或相反 模长不一定相等 所以0a b +=不一定成立所以“0a b +=”是“a b ∥”的充分不必要条件. 故选:A.2.(2023下·河北张家口·高一河北省尚义县第一中学校考阶段练习)向量AB CB DA -+=( ) A .BD B .CDC .DCD .0【答案】C【分析】根据向量的概念 以及向量加减法的运算律 即可得出答案. 【详解】由AB CB DA AB BC DA AC AD DC -+=++=-=. 故选:C.3.(2024下·全国·高一专题练习)已知,a b 为非零向量 则下列说法错误的是( ) A .若||||||a b a b +=+ 则a 与b 方向相同B .若||||||a b a b +=- 则a 与b 方向相反C .若||||||a b a b +=- 则a 与b 有相等的模D .若||||||a b a b -=- 则a 与b 方向相同 【答案】C【分析】运用向量三角不等式的取等条件求解即可.【详解】由向量三角不等式可知 只有当非零向量,a b 同向时 有||||||a b a b +=+||||||a b a b -=- 故A D 正确;只有当非零向量,a b 反向时 有||||||||b b a a +=- ||||||a b a b +=- 故B 正确 C 错误.故选:C . 二、多选题4.(2023下·湖南怀化·高一校考期中)下列各式中结果一定为零向量的是( ) A .BO OM MB ++ B .AB BC +C .C BO OB O CO +++D .AB AC BD CD -+-【答案】ACD【分析】利用向量的加法运算 结合零向量的意义逐项计算判断作答. 【详解】对于A 0O M BO M B MO OM ++=+= A 是; 对于B AB BC AC += AC 不一定是零向量 B 不是;对于C ()()000BO O OB OC CO B O C BO C O +++=+++=+= C 是; 对于D ()0AB AC BD CD AB AD AD BD AC CD -+-=+-+=-= D 是. 故选:ACD 5.若a 、b 为相反向量 且1a = 1b = 则a b += a b -= . 【答案】 0 2【分析】利用相反向量的定义结合平面向量的加、减法可求得结果. 【详解】因为a 、b 为相反向量 且1a = 1b = 则0a b += 2a b a -= 因此 0a b += 22a b a -==. 故答案为:0;2.6.(2022下·上海闵行·高一上海市七宝中学校考阶段练习)若向量a 与b 共线 且1==a b 则+=a b . 【答案】0或2【分析】由题可知a 与b 相等或互为相反向量 据此即可求a b + 【详解】向量a 与b 共线 且a b = ∴a 与b 相等或互为相反向量 当a 与b 相等时 22a a b ==+ 当a 与b 互为相反向量时 0=0a b =+. 故答案为:0或2.7.(2022·高一课时练习)如图所示 中心为O 的正八边形1278A A A A 中()11,2,,7i i i a A A i +== ()1,2,,8j j b OA j == 则25257a a b b b ++++= .(结果用i a ib 表示)【答案】6b【分析】根据向量的加减运算即可求得答案. 【详解】由题图可知 25257a a b b b ++++2356257A A A A OA OA OA =++++()()2235567OA A A OA A A OA =++++367OA OA OA =++36366OA OA OA OA b =+-==,故答案为:6b8.已知长度相等的三个非零向量,,OA OB OC 满足OA OB OC ++=0,则由A ,B ,C 三点构成的∴ABC 的形状是 三角形. 【答案】等边【详解】如图,以OA ,OB 为邻边作菱形OAFB ,则OA OB OF +=,∴OF OC +=0,∴OF =-OC . ∴O ,F ,C 三点共线. ∴四边形OAFB 是菱形, ∴CE 垂直平分AB.∴CA=CB. 同理,AB=AC.∴△ABC 为等边三角形. 四、解答题9.(2022下·河南周口·高一校考阶段练习)化简下列各式: (1)()()BA BC ED EC ---; (2)()()AC BO OA DC DO OB ++--- 【答案】(1)DA(2)0【分析】(1)根据平面向量加法和减法的运算法则化简即可得出结果; (2)首先化简出两个向量的结果 再与第三个向量进行加减运算即可求得结果. 【详解】(1)利用平面向量的加减运算法则可得()()()BA BC ED EC BA CB ED CE CA CD CA DC DA ---=+-+=-=+=(2)由平面向量的加减运算法则可得()()()()AC BO OA DC DO OB AC BA DC OD BO ++---=+-++()0BC DC BD BC BC =-+=-=题型三 、向量的数乘运算 一、单选题1.(2023·湖南岳阳·校联考模拟预测)已知向量,a b 则()()2a b a b +--=( ) A .a b + B .a b - C .3a b + D .3ab【答案】D【分析】直接由向量的线性运算即可求解.【详解】由题意()()2223a b a b a b a b a b +--=+-+=+. 故选:D.2.(2024上·河南焦作·高三统考期末)已知ABC 所在平面内一点D 满足102DA DB DC ++=则ABC 的面积是ABD △的面积的( ) A .5倍 B .4倍C .3倍D .2倍【答案】A【分析】利用平面向量的线性运算计算即可.【详解】设AB 的中点为M 因为102DA DB DC ++=所以2()CD DA DB =+ 所以4CD DM = 所以点D 是线段CM 的五等分点所以5ABC ABDCM S SDM==,所以ABC 的面积是ABD △的面积的5倍. 故选:A.3.(2023下·河南洛阳·高一河南省偃师高级中学校考阶段练习)在ABC 中 点M 是AB 的中点 N 点分AC 的比为:1:2,AN NC BN =与CM 相交于E 设,AB a AC b == 则向量AE =( )A.1132a b+B.1223a b+C.2155a b+D.3455a b+【答案】C【分析】由三点共线性质以及平面向量基本定理解方程组即可得解.【详解】由题意,,B E N三点共线所以存在Rλ∈使得()113AE AB AN AB ACλλλλ-=+-=+同理,,C E M三点共线所以存在Rμ∈使得()112AE AC AM AC ABμμμμ-=+-=+由平面向量基本定理可得1213μλλμ-⎧=⎪⎪⎨-⎪=⎪⎩解得21,55λμ==所以2155AE a b=+.故选:C.4.(2023·湖南永州·统考二模)在ABC中若1,2AB AC CA CB+=+=则ABC的面积的最大值为()A.16B.15C.14D.13【答案】D【分析】设,E F分别为,BC AB的中点结合三角形相似推出43ABC ACEFS S=四边形由题意可得1||,||12AE CF==确定四边形ACEF面积的最大值即可得答案.【详解】设,E F分别为,BC AB的中点连接EF则EF AC∥则BEF△∴BCA故14BEF ABCS S=,则34ABC ACEF S S =四边形 故43ABCACEFSS =四边形 又1,2AB AC CA CB +=+= 则21,22AB AC AE CA CB CF +==+== 故1||,||12AE CF ==当AE CF ⊥时 四边形ACEF 面积最大 最大值为1111224⨯⨯=故ABC 的面积的最大值为411343⨯=故选:D 5.(2024下·全国·高一专题练习)在ABC 中 D 为AC 上一点且满足 12AD DC =,若P 为BD 的中点 且满足 AP AB AC λμ=+,则λμ+的值是 . 【答案】23【分析】根据平面向量的线性运算计算即可. 【详解】如图因为12AD DC = 所以13AD AC =则11111112222326AP AB AD AB AC AB AC =+=+⨯=+ 所以12λ=16μ= 23λμ+=.故答案为:23.6.(2024下·全国·高一专题练习)已知矩形ABCD 中 对角线交于点O 若125,3BC e DC e == 则OC = . 【答案】12 5322e e +【分析】利用向量的线性运算可得OC 的表达形式.【详解】因为ABCD 是矩形 所以1111122222OC AC AB BC DC BC ==+=+ 所以125322OC e e =+.故答案为:125322e e +7.(2022·全国·模拟预测)在平行四边形ABCD 中 点G 在AC 上 且满足3AC AG = 若DG mAB nAD =+ 则m n -= .【答案】1【分析】利用向量线性运算求得1233DG AB AD =- 与题干对照即可求解. 【详解】()11123333DG AG AD AC AD AB AD AD AB AD =-=-=+-=- 则13m = 23n =-所以1m n -=. 故答案为:1 三、解答题8.(2024下·全国·高一专题练习)若向量x y 满足23x y a += 32x y b -= a 、b 为已知向量 求向量x y . 【答案】231313=+x a b 321313=-y a b 【分析】根据23x y a += 32x y b -= 列方程组求解. 【详解】解:由方程组2332x y ax y b +=⎧⎪⎨-=⎪⎩解得231313=+x a b 321313=-y a b .题型四、平面向量共线定理及应用一、单选题1.(2024·陕西安康·陕西省安康中学校联考模拟预测)已知平面向量a 与b 不共线 向量(),32m xa b n a x b =+=+- 若//m n 则实数x 的值为( )A .1B .13-C .1或13-D .1-或13【答案】C【分析】根据平面共线定理 由向量平行 求得x 满足满足的方程 求解即可. 【详解】由//m n 且,m n 均不为零向量 则()32,m n a x b λλλλ==+-∈R可得()132x x λλ=⎧⎨=-⎩ 则()3210x x --= 整理得23210x x 解得1x =或13x . 故选:C .2.(2024上·辽宁·高一校联考期末)已知a 与b 为非零向量,2,OA a b OB a b OC a b λμ=+=-=+ 若,,A B C 三点共线 则2λμ+=( )A .0B .1C .2D .3【答案】D【分析】根据三点共线可得向量共线 由此结合向量的相等列式求解 即得答案. 【详解】由题意知 ,,A B C 三点共线 故2,(2)(1)AB a b BC a b λμ=-=-++, 且,AB BC 共线故不妨设,(0)A k B k BC =≠ 则1(2)2(1)k k λμ=-⎧⎨-=+⎩ 所以122μλ+-=- 解得23λμ+=故选:D3.(2024下·全国·高一专题练习)已知21,e e 为两个不共线的向量 若向量12122,23a e e b e e =+=-+ 则下列向量中与向量2a b +共线的是( ) A .1252e e -+ B .12410e e +C .12104e e +D .122e e +【答案】B【分析】根据向量线性运算表示12225a b e e +=+ 然后利用共线向量基本定理求解即可. 【详解】因为向量122a e e =+ 1223b e e =-+ 所以12225a b e e +=+.又()1212410225e e e e +=+ 所以12410e e +与2a b +共线. 故选:B . 二、填空题4.(2024·全国·高三专题练习)在ABC 中 O 是边BC 的中点 AP t AO = 过点P 的直线l 交直线,AB AC 分别于,M N 两点 且,AM mAB AN nAC == 则11m n+= . 【答案】2t【分析】由三点共线的性质列式求值. 【详解】由题意:().222t t tAP t AO AB AC AB AC ==+=+ 由,,M P N 三点共线知 ()()11AP AM AN mAB nAC λλλλ=+-=+-. ()212t m t n λλ⎧=⎪⎪⎨⎪-=⎪⎩⇒ 212t m t n λλ⎧=⎪⎪⎨⎪-=⎪⎩消去λ 得112m n t+=. 故答案为:2t5.(2022上·河南·高二校联考期末)已知ABC 中 点D 在线段AB (不含端点)上 且满足()R CD xCA yCB x y =+∈, 则12x y+的最小值为 .【答案】322+/223+【分析】根据向量共线可得1x y += 即可利用基本不等式的乘“1”法求解. 【详解】∴(),R CD xCA yCB x y =+∈ 由于D 在线段AB (不含端点)上 故,,A D B 三点共线 所以1x y +=且00,x y >>则()121223322y xx y x y x y x y ⎛⎫+=++=++≥+ ⎪⎝⎭ 当且仅当2y x xy=时 即21,22x y =-=-时取等号 故12x y+有最小值322+. 故答案为:322+.6.(2024下·全国·高一专题练习)如图所示 在ABC 中 14AN NC =P 是BN 上的一点 若611AP AB mAC =+ 则实数m 的值为 .【答案】111【分析】借助共线定理的推论即可得. 【详解】因为14AN NC = 所以5AC AN = 所以6651111AP AB mAC AB mAN =+=+ 因为P B N 三点共线 所以65111m += 解得111m =.故答案为:111. 7.(2023·吉林长春·东北师大附中校考模拟预测)在ABC 中 M N 分别是边AB AC 上的点 且23AN AC =13AM AB = 点O 是线段MN 上异于端点的一点 且满足340(0)OA OB OC λλ++=≠ 则λ= .【答案】8【分析】用OA 、AN 表示出OC 、OB 从而得到6977AO AN AM λλ=+++ 再根据M O N 三点共线 得到69177λλ+=++ 解得即可. 【详解】解:因为23AN AC =13AM AB =所以()23AN OC OA =- ()13AM OB OA =- 即32OC AN OA =+ 3OB AM OA =+因为340OA OB OC λ++= 所以()333402OA AM OA AN OA λ⎛⎫++++= ⎪⎝⎭即()769AO AN AM λ+=+ 即6977AO AN AM λλ=+++ 因为M O N 三点共线 故69177λλ+=++ 解得8λ=. 故答案为:8 8.(2022下·陕西西安·高一统考期中)设,a b 是不共线的两个向量. (1)若2OA a b =- 3OB a b =+ 3OC a b =- 求证:A B C 三点共线; (2)若8a kb +与2ka b +共线 求实数k 的值. 【答案】(1)证明见解析; (2)±4.【分析】(1)要证明三点共线 即证明三点组成的两个向量共线即可. (2)由共线性质求出参数即可.【详解】(1)由2OA a b =- 3OB a b =+ 3OC a b =- 得3(2)2AB OB OA a b a b a b =-=+--=+ 3(3)242BC OC OB a b a b a b AB =-=--+=--=-因此//AB BC 且有公共点B 所以A B C 三点共线.(2)由于8a kb +与2ka b +共线 则存在实数λ 使得8(2)a kb ka b λ+=+ 即(8)(2)0k a k b λλ-+-= 而,a b 是不共线因此8020k k λλ-=⎧⎨-=⎩解得2,4k λ==或2,4k λ=-=- 所以实数k 的值是4±.9.(2024上·辽宁·高一校联考期末)如图 在ABC 中 D 是BC 上一点 G 是AD 上一点 且2AG BD DG CD== 过点G 作直线分别交,AB AC 于点,E F .(1)用向量AB 与AC 表示AD ; (2)若54AB AE = 求ACAF 和EG EF的值.【答案】(1)1233AD AB AC =+ (2)138AC AF = 1318EG EF =.【分析】(1)利用向量的线性运算求解;(2)设AC AF μ= 利用向量的线性运算和平面向量基本定理求解. 【详解】(1)2221233333AD AB BD AB BC AB BA AC AB AC =+=+=++=+.(2)因为54AB AE = 所以54AB AE =.设AC AF μ= 22122454333399189AG AD AB AC AB AC AE AF μ⎛⎫==+=+=+ ⎪⎝⎭ 因为,,G E F 三点共线 所以541189μ+= 解得138μ= 所以138AC AF =.因为48513EF EA AF AB AC =+=-+424264134859945918513EG EA AG AB AB AC AB AC AB AC ⎛⎫=+=-++=-+=-+ ⎪⎝⎭所以1318EG EF =即1318EG EF =. 10.(2024下·全国·高一专题练习)如图 在平行四边形ABCD 中 ,,AB a AD b M ==为AB 中点 N 为BD 上靠近点B 的三等分点 求证:,,M N C 三点共线.【答案】证明见解析【分析】根据三点共线要求证明//CM CN即可.【详解】∴,AB a AD b==∴BD AD AB b a=-=-.∴N是BD上靠近点B的三等分点∴11()33BN BD b a==-.∴在平行四边形中BC AD b==∴112()333CN BN BC b a b a b =-=--=--.①∴M为AB的中点∴111,()222MB a CM MC MB BC a b a b⎛⎫=∴=-=-+=-+=--⎪⎝⎭.②由①②可得32CM CN=.由向量共线定理知//CM CN.又∴CM与CN有公共点C ∴,,M N C三点共线.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量 1 1.数量和向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向、大小,不能比较大小。
2.向量的表示方法:①用有向线段表示;②用字母a,b等表示;③用有向线段的起点与终点字母表示:AB;向量AB 的大小——长度称为向量的模,记作|AB|。
3.有向线段:具有方向的线段叫做有向线段,三要素:起点、方向、长度。
向量与有向线段的区别:⑴向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,这两个向量就是相同的向量;⑵有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向,也是不同的有向线段。
4.零向量、单位向量概念:①长度为0的向量叫零向量,记作0。
②长度为1个单位长度的向量,叫做单位向量。
说明:零向量、单位向量的定义都只是限制了大小。
5.相等向量的定义:长度相等且方向相同的向量叫相等向量。
说明:⑴向量a与b相等,记作a=b;⑵零向量与零向量相等;⑶任意两个相等的非零向量,都可用同一条有向线段表示,并且与有向线段的起点无关。
6.平行向量的定义:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行。
说明:⑴综合①②才是平行向量的完整定义;⑵向量a、b、c平行,记作a//b//c。
二、向量的运算法则三角形法则四边形法则1.向量的加法某人从A到B,再从B到C,则两次的位移和:AB BC AC;⑴向量的加法:求两个向量和的运算,叫做向量的加法。
⑵三角形法则:a b AB BC AC⑶四边形法则:a b OA OB OA AC OC精品文档练习:化简(1)(AB BC)CD(2)(AB MB)BO OM(3)OA OC BO CO7.向量的减法⑴相反向量:与a长度相等,方向相反的向量,叫做a的相反向量,记作a。
①(a)a;②任一向量与其相反向量的和是零向量,即:a(a)(a)a0;③如果a,b是互为相反的向量,则:a b,b a,a b0。
⑵向量的减法:向量a加上b的相反向量,叫做a和b的差。
即a b a(b)向量减法法则:两向量起点相同,则差向量就是连结两向量终点,指向被减向量终点的向量。
注意:①起点相同;②指向被减向量的终点。
练习:(1)AB AC(2)OD OA(3)OA OD AD(4)AB AD DC例1.平行四边形ABCD中,AD a,AB b,用a、b表示向量AC,DB。
例2.已知一点O到平行四边形ABCD的三个顶点A、B、C的向量分别为a、b、c,试用向量a、b、c表示OD。
8.向量的数乘运算实数与向量a的积是一个向量,记作a,它的长度和方向规定如下:⑴|a||||a|;精品文档⑵当>0时,a的方向与a的方向相同;当<0时,a的方向与a的方向相反;特别的,当=0或a=0时,a=0。
注意:实数与向量a,可以做积,但不可以做加减法,即+a,-a是无意义的。
实数与向量的积的运算律:设a、b为任意向量,,为任意实数,则有:①(a)()a;②()a a a③(a b)a b例1.计算(1).(3)4a;(2).3(a b)2(a b)a;(3).2(a3b c)(3a2b c)例2.计算(1).3(a b)2(a2b);(2).2(2a6b3c)3(3a4b2c)结论:向量b与非零向量a共线,当且仅当有唯一一个实数,是的b=a。
例3.向量a e1e,b2e2e是否共线?212例 4.平行四边形ABCD的两条对角线相交于点M,且AB a,AD b,你能用a,b表示MA,MB,MC,MD吗?精品文档二、向量运算法则的应用向量的加法、减法、数乘运算统称为响亮的线性运算,对任意实数、 1、 ,恒有 2(1b) a。
ab2129.有关向量共线问题a 3b a b1 例 1.已知向量 a 、b 满足(3 2 ) a b 525,求证:向量 a 和b 共线。
例 2.已知 AD 3 AB, DE 3BC ,试判断 AC 与AE 是否共线?定理的应用:(1).有关向量共线问题; (2).证明三点共线: AB BC (BC 0)A 、B 、C 三点共线;(3).证明两直线平行问题。
例 3.已知任意 两个非 零向量 a 、b ,试作 OA a b, OB a 2b, OC a 3b ,你能判断 A 、B 、C 三点间的位置关系吗?为什么?例 4 .在四边形 ABCD 中, AB a 2b, BC 4a b, C D 5a 3b ,求证:四边形 ABCD 为梯形。
精品文档精品文档高中数学必修 4 同步练习二. 填空题( 每题 5 分)(2.1-2.2 平面向量的概念及线性运算)11. 把平面上一切单位向量归结到共同的始点, 那么这些向量的终点所构成的图形是______ 姓名______班级______学号______一. 选择题( 每题 5 分)2.设 b 是a 的相反向量, 则下列说法错误的是( )A.a 与b 的长度必相等B.a bC.a bD. a b与一定不相等是的相反向量12. ABCD 的两条对角线相交于点M , 且AB a,AD b , 则MA ______,MB ______, MC ______, MD ______.2. 已知一点O到平行四边形ABCD的三个顶点A、B、C 13.已知向量a和b不共线,实数x , y 满足的向量分别为 a 、b 、c , 则向量OD 等于( )(2x y)a 4b 5a ( x 2 y)b , 则x y ______ A.a b c B . a b c C . a b- c D . a- b- c3. ( 如图) 在平行四边形ABCD 中, 下列正确的是( ).4. 14. 化简: ①AB BC CD ______;A.AB CD B . AB AD BD②AB AD DC ______;C.AD AB AC D . AD BC 0③(AB CD) (AC BD) ______A D CB15. 化简下列各式:( 1) AB DF CD BC FA ______;( 2) ( AB MB) (BO BC) OM ______.16. 在ABCD 中, AB a,AD b , 则AC ______, DB ______.4. OA OC BO CO 等于( )A.ABB. BAC.ACD.CA 17. 在四边形ABCD中有AC AB AD , 则它的形状一定是______5. 化简O P QP PS SP的结果等于( )A、Q P B 、OQ C 、SP D 、S Q6. ( 如图) 在正六边形ABCDEF中, 点O为其中心, 则下列判断错误的是( ) 18. 已知四边形ABCD 中, AB 1 DC2则四边形ABCD 的形状是______., 且AD BCA AB OC B AB ∥DEC AD BE D AD FC19. 化简: ( AC DP BA) (CP BD) ______.7. 下列等式中, 正确的个数是( )20. 在△ABC中, 设BC a , CA b , 则AB =______ ①a b b a ②a- b b- a③0 a a④⑤( a) a a ( a ) 0A.5B. 4C.3D. 28. 在△ABC中, AB a, AC b , 如果|a||b | ,那么△ABC一定是( ).A.等腰三角形B.等边三角形C.直角三角形D.钝角三角形( 2) 求DA9. 在ABC中, BC a , CA b , 则A B 等于()A.a bB. ( a b)C.a bD.b a10. 已知a 、b 是不共线的向量, AB a b,AC a b( 、R ), 当且仅当( ) 时,A、B 、C 三点共线.A 1B 1C 1D 1精品文档10.如图, 在梯形ABCD中, 对角线AC 和B D 交于点11. O, E 、F 分别是AC 和BD 的中点, 分别写出24. 在ABC所在平面上有一点P ,( 1) 图中与EF 、CO 共线的向量;使得PA PB PC AB , 试判断P 点的位置. ( 2) 与E A相等的向量.12.在直角坐标系中, 画出下列向量:( 1) a 2, a的方向与x 轴正方向的夹角为60 , 与y 3.如图所示, 在平行四边形ABCD 中, 点M 是AB 边轴正方向的夹角为30 ;( 2) a 4 , a的方向与x 轴正方向的夹角为30 , 与y 轴正方向的夹角为120 ;1中点, 点N 在BD 上且BN BD3三点共线., 求证: M 、N 、C( 3) , 135 a 4 2 a x的方向与轴正方向的夹角为,与y 轴正方向的夹角为135 . DCNA BM精品文档参考答案一.选择题( 每题 5 分)13.C14.B15.C16.B17.B18. D19.C20.A21.B22. D二. 填空题( 每题 5 分)23.圆24. 1 1 1( a b ), ( a b ), ( a b )2 2 2 ,12( b a )25. 126.①AD ; ②CB; ③ 027. ( 1) 0 ( 2) AC28.a b , a- b29.平行四边形30.等腰梯形31.032. a b三. 解答题( 每题10 分)33.【解答】( 1) 如图,4.【解答】PA PB PC ABPA PA AB PC AB , 故2PA PC ( 2) ∵AB CD , A、P 、C 三点共线,故四边形ABCD 为平行四边形, 且P 是线段AC 的三分点中靠近 A 的那一个∴BC DA 15( m)5.【解答】提示: 可以证明MC3MND13. 【解答】与E F 共线的向量有AB 、C D ;14. C与CO 共线的向量有CE , CA , OE , OA , EA;与E A相等的向量是CENA BM 23. 【解答】精品文档。