实验七_线性和非线性电学元件伏安特性的测量

合集下载

电路元件伏安特性的测量(实验报告答案)

电路元件伏安特性的测量(实验报告答案)

电路元件伏安特性的测量(实验报告答案)实验一电路元件伏安特性的测量一、实验目的1.学习测量电阻元件伏安特性的方法;2.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法;3.掌握直流稳压电源和直流电压表、直流电流表的使用方法。

二、实验原理在任何时刻,线性电阻元件两端的电压与电流的关系,符合欧姆定律。

任何一个二端电阻元件的特性可用该元件上的端电压U与通过该元件的电流I之间的函数关系式I=f(U)来表示,即用I-U平面上的一条曲线来表征,这条曲线称为电阻元件的伏安特性曲线。

根据伏安特性的不同,电阻元件分为两大类:线性电阻和非线性电阻。

线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示。

该直线的斜率只由电阻元件的电阻值R决定,其阻值R为常数,与元件两端的电压U和通过该元件的电流I无关;非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R不是常数,即在不同的电压作用下,电阻值是不同的。

常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性曲线如图1-1(b)、(c)、(d)所示。

在图1-1中,U >0的部分为正向特性,U<0的部分为反向特性。

(a)线性电阻(b)白炽灯丝绘制伏安特性曲线通常采用逐点测试法,电阻元件在不同的端电压U 作用下,测量出相应的电流I ,然后逐点绘制出伏安特性曲线I =f (U ),根据伏安特性曲线便可计算出电阻元件的阻值。

三、实验设备与器件1.直流稳压电源 1 台2.直流电压表 1 块3.直流电流表 1 块4.万用表 1 块5.白炽灯泡 1 只6. 二极管 1 只7.稳压二极管 1 只8.电阻元件 2 只四、实验内容1.测定线性电阻的伏安特性按图1-2接线。

调节直流稳压电源的输出电压U ,从0伏开始缓慢地增加(不得超过10V ),在表1-1中记下相应的电压表和电流表的读数。

2将图1-2中的1kΩ线性电阻R 换成一只12V ,0.1A 的灯泡,重复1的步骤,在表1-2中记下相应的电压表和电流表的读数。

《线性和非线性电阻的伏安特性测量》实验报告,2023

《线性和非线性电阻的伏安特性测量》实验报告,2023

《基础物理实验》实验报告实验:线性和非线性电阻的伏安特性的测量姓名:学号:班级:成绩:合作者:指导教师:日期:2022 年____月____日【注意事项】(在开始实验操作前请仔细阅读以下说明)1.测量时,可调稳压电源的输出电压由0 V缓慢逐渐增加,应时刻注意电压表和电流表的读数,切勿超过规定值。

2.稳压电源输出端切勿碰线短路。

3.测量中,随时注意电流表读数,及时更换电流表量程,勿使仪表超量程。

【预习题】1. 下图分别为纯电阻、白炽灯泡、普通二极管、稳压二极管的伏安特性曲线,请根据伏安特性曲线分析各种电阻有什么特点?答:纯电阻:纯电阻的伏安特性是一条直线,电压与电流成线性关系,电阻数值恒定,为线性电阻。

白炽灯泡:白炽灯泡的伏安特性是关于原点对称的曲线,其斜率由小变大,说明其电阻值由小变到大,白炽灯泡为非线性电阻。

普通二极管:二极管加反向电压时,流过二极管的电流很小,几乎为0,说明电阻非常大,趋于断路;当二极管加正向电压时,刚开始电流变化较小,但电压大于一定值时,电流会随电压的缓慢升高而急剧增大,说明电阻急剧变小,二极管为非线性电阻。

稳压二极管:稳压二极管的正向特性与普通二极管的正向特性相似。

加反向电压时,在某范围内的电压,电流较小;一旦超出一定电压,电流就会突然增加,而稳压二极管上的电压几乎恒定不变。

说明电阻刚开始非常大,随着电压增大,一旦达到一定值时,电阻急剧减小,稳压管为非线性电阻。

2. 电流表内接方式和电流表外接方式分别适用于什么情况?答:电流表内接方式适用于待测电阻值远大于电流表的内阻。

电流表外接方式适用于待测电阻值远小于伏特表的内阻。

【实验目的】1.学习由测量电压、电流求电阻值的方法(伏安法)。

2.通过对二极管伏安特性的测量,了解非线性电学元件的导电特性。

3.学习减少伏安法中系统误差的方法。

【实验仪器】【实验内容与步骤】1.测定线性电阻的伏安特性(1)确定采用外接(内接、外接)法测伏安特性,并按图接线。

电路元件伏安特性的测量

电路元件伏安特性的测量

实验一:电路元件伏安特性的测量一、实验目的1. 掌握线性、非线性电阻元件及电源的概念。

2.学习线性电阻和非线性电阻伏安特性的测试方法。

3.学习直流电压表、直流电流表及直流稳压电源等设备的使用方法。

二、实验仪器电路分析实验箱、数字万用表、直流电流表、直流电压表、二极管、稳压二极管、电阻三、实验原理1、数字万用表的构成及使用方法数字万用表一般由二部分构成,一部分是被测量电路转换为直流电压信号,我们称为转换器,另一部分是直流数字电压表。

直流数字电压表构成了万用表的核心部分,主要由模-数转换器和显示器组成。

可用于测量交直流电压和电流、电阻、电容、二极管正向压降及电路通断,具有数据保持和睡眠功能。

2、整体结构1)交直流电压测量(1)将红表笔插入VQ插孔,黑表笔插入COM插孔。

(2)将功能开关置于V量程档。

将测试表笔并联在被测元件两端2)交直流电流测量(1)将红表笔插入mA或A插孔,黑表笔插入COM插孔。

(2)将功能开关置A量程。

(3)表笔串联接入到待测负载回路里。

3)电阻测量(1)将红表笔插入VQ插孔,黑表笔插入COM插孔。

(2)将功能开关置于Q量程。

(3)将测试表笔并接到待测电阻.上4)二极管和蜂鸣通断测量(1)将红表笔插入VQ插孔,黑色表笔插入”COM”插孔。

(2)将功能开关置于二极管和蜂鸣通断测量档位。

(3)如将红表笔连接到待测-二极管的正极,黑表笔连接到待测二极管的负极,则LCD.上的读数为二极管正向压降的近似值。

将表笔连接到待测线路的两端,若被测线路两端之间的电阻大于700,认为电路断路;被测线路两端之间的电阻≤100,认为电路良.好导通,蜂鸣器连续声响;如被测两端之间的电阻在10~700之间,蜂鸣器可能响,也可能不响。

同时LCD显示被测线路两端的电阻值。

3)线性电阻元件的伏安特性曲线是- -条通过坐标原点的直线。

如图1.1.1所示;非线性电阻元件,如半导体二极管,其伏安特性如图1.1.2所示,电压、电流关系不服从欧姆定律。

线性与非线性元件伏安特性的测定

线性与非线性元件伏安特性的测定

1线性与非线性元件伏安特性的测定一.实验目的1 •学习直读式仪表和直流稳压电源等仪器的使用方法 2•掌握线性电阻元件、非线性电阻元件的伏安特性的测试技能3•加深对线性电阻元件、非线性电阻元件伏安特性的理解•验证欧姆定律二•实验原理电阻元件是一种对电流呈现阻力的元件, 有阻碍电流流动的性能。

当电流通过电阻元件 时,电阻元件将电能转换成其它形式的能量.并沿着电流流动的方向产生电压降。

电压降的大小等于电流的大小与电阻的乘积。

电压降和电流及电阻的这一关系称为欧姆定律。

U=IR上式的前提条件是电压 U 和电流I 的参考方向相关联.亦即参考方向一致。

如果参考方 向相反•则欧姆定律的形式应为U = -IR电阻上的电压和流过它的电流是同时并存的. 也就是说,任何时刻电阻两端的电压降只由该时刻流过电阻的电流所确定, 与该时刻前的电流的大小无关, 因此,电阻元件又被称为“无记忆”元件。

当电阻元件R 的值不随电压或电流大小的变化而改变时,则电阻 R 两端的电压与流过它的电流成正比例。

我们把符合这种条件的元件称为线性电阻元件。

反之.不符合上述条件的电阻元件被叫做非线性电阻元件。

电阻元件的特性除了用电压和电流的方程式表示外, 还可以用其电流和电压的关系图形来表示,该图形称为此元件的伏安特性曲线。

线性电阻的伏安特性曲线为一条通过坐标原点的直线,该直线的斜率即为电阻值,它是一个常数。

如图1-1所示。

半导体二极管是一种非线性电阻元件。

它的电阻值随着流过它的电流的大小而变化。

半导体二极管的电路符号用 本表示.其伏安特性如图 1-2所示。

由此可见半导体二极管的伏 安特性为非对称曲线。

对比图1-1和图1-2可以发现,线性电阻的伏安特性对称于坐标原点。

这种性质称为双 向性,为所有线性电阻元件所具备。

半导体二极管的伏安特性不但是非线性的.而且对于坐标原点来说是非对称性的,又称非双向性。

这种性质为多数非线性电阻元件所具备。

半导体二极管的电阻随着其端电压的大小和极性的不同而不同, 当外加电压的极性和二极管的极性 相同时,其电阻值很小,反之二极管的电阻很大。

伏安特性实验报告

伏安特性实验报告

伏安特性实验报告篇一:电路元件伏安特性的测量(实验报告答案)实验一电路元件伏安特性的测量一、实验目的1.学习测量电阻元件伏安特性的方法;2.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法; 3.掌握直流稳压电源和直流电压表、直流电流表的使用方法。

二、实验原理在任何时刻,线性电阻元件两端的电压与电流的关系,符合欧姆定律。

任何一个二端电阻元件的特性可用该元件上的端电压U与通过该元件的电流I之间的函数关系式I=f(U)来表示,即用I-U平面上的一条曲线来表征,这条曲线称为电阻元件的伏安特性曲线。

根据伏安特性的不同,电阻元件分为两大类:线性电阻和非线性电阻。

线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示。

该直线的斜率只由电阻元件的电阻值R决定,其阻值R为常数,与元件两端的电压U和通过该元件的电流I无关;非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R不是常数,即在不同的电压作用下,电阻值是不同的。

常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性曲线如图1-1(b)、(c)、(d)所示。

在图1-1中,U >0的部分为正向特性,U<0的部分为反向特性。

(a)线性电阻 (b)白炽灯丝绘制伏安特性曲线通常采用逐点测试法,电阻元件在不同的端电压U作用下,测量出相应的电流I,然后逐点绘制出伏安特性曲线I=f(U),根据伏安特性曲线便可计算出电阻元件的阻值。

三、实验设备与器件1.直流稳压电源 1 台2.直流电压表1 块3.直流电流表1 块4.万用表 1 块5.白炽灯泡 1 只6. 二极管1 只7.稳压二极管1 只 8.电阻元件 2 只四、实验内容1.测定线性电阻的伏安特性按图1-2接线。

调节直流稳压电源的输出电压U,从0伏开始缓慢地增加(不得超过10V),在表1-1中记下相应的电压表和电流表的读数。

2将图1-2中的1kΩ线性电阻R换成一只12V,0.1A的灯泡,重复1的步骤,在表1-2中记下相应的电压表和电流表的读数。

线性与非线性元件伏安特性的测定

线性与非线性元件伏安特性的测定
7 标准型短接桥 若干
8 九孔实验方板 1块200mm×300mm
9 交直流电压电流表 2块 MC1102,MC1108
五.分析与讨论
1.按报告单上所列项日认真填写实验报告。
2.根据实验中所得数据,在坐标纸上绘制两个线性电阻、半导体二极管、小灯泡灯丝的伏安特性曲线。
3.分析实验结果,并得出相应结论。
基尔霍夫回路电压定律;电路中任意时刻.沿任一闭合回路,电压的代数和为零。其数
学表达式为
∑U=0。
此定阐明了任一闭合回路中各电压间的约束关系。这种关系仅与电路的结构有关.而
与构成回路的各元件的性质无关。不论这些元件是线性的或非线性的,含源的或无源的,时
变的或时不变的。
参考方向:
KCL和KVI表达式中的电流和电压都是代数量。它们除具有大小之外,还有其方向,其方向是以它量值的正、负表示的。为研究问题方便,人们通常在电路中假定一个方向为参考.称为参考方向。当电路中的电流(或电压)的实际方向与参考方向相同时取正值,其实际方向与参考方向相反时取负值。
2k
2.5k
开路
I(mA)
U(V)
2 验证戴维南定理
(1) 分别用直接测量法和补偿法测量C、D端口网络的开路电压UOC;
(2) 用补偿法(或直接测量法)所测得的开路电压UOC和步骤1中测得的短路电流(RL=0)ISC,计算C、D端入端等效电阻
(3)按图3一l(b)构成戴维南等效电路,其中电压源用直流稳压电源代替,调节电源输出电压,使之等于UOC,Ri用电阻箱代替,在C、D端接入负载电阻RL,如图3-5所示。按表3一l中相同的电阻值,测取电流和电压,填入表3—2。
用等效电路替代一端口含源网络的等效性,在于保持外电路中的电流和电压不变,即替

线性与非线性元件的伏安特性测量

线性与非线性元件的伏安特性测量

线性与非线性元件的伏安特性测量一、实验目的⒈掌握线性元件和非线性元件的伏安特性及测量方法。

2. 掌握万用表、直流电流表、直流稳压稳流电源的使用方法。

二、实验预习要求1.正确理解线性和非线性元件的概念。

2.认真阅读直流稳压稳流电源、万用表、直流数字电流表的使用说明。

三、原理与说明一个二端元件的伏安特性是指该元件的端电压U与流经它的电流I之间的函数关系。

通过实验的方法可测量该元件的伏安特性,并可用U-I直角坐标平面内的一条曲线(伏安特性曲线)来表示。

电阻元件可分为线性电阻和非线性电阻两大类。

⒈线性电阻是指电阻值不随其两端的电压或流经它的电流的改变而变化的电阻,线性电阻的阻值是一个常数。

线性电阻的伏安特性满足欧姆定律。

它的伏安特性曲线是一条通过u-i平面原点的直线,直线的斜率与电阻元件阻值的大小有关,1tgRθ=,如图3-1(a)所示。

该特性与元件电压、电流的大小和方向无关,故线性电阻也称为双向性元件。

⒉非线性电阻的阻值R不是一个常量,所以其端电压与电流之间的关系不满足欧姆定律,其伏安特性是曲线不是直线。

非线性电阻的种类很多,如半导体二极管、光敏电阻、压敏电阻等都是非线性电阻,如图4-1(b)所示为钨丝灯泡的伏安特性曲线。

图3-1 伏安特性曲线四、实验内容与步骤1.测定线性元件电阻器的伏安特性1.打开稳压稳流电源,将电压源调制为独立输出模式,选择一路通道并将输出电压调为0V,关闭通道开关,待连接导线。

2.在电阻器实验板上选取阻值为1KΩ的电阻R L,按图3-2所示电路连接导线,调节稳压稳流电源的输出电压,从0V开始缓慢地增加,一直加到10V,使电路输入电压SU按表4-1中的给定值进行变化,观察直流数字电流表,读取电路中的电流值I,用数字万用表的直流电压档测量电阻R两端的电压RU。

图3-2 线性元件伏安特性测量电路表3-1 线性电阻伏安特性的测量2. 测定非线性元件(发光二极管)的伏安特性R换成一支发光二极管,用示波器观测伏安特性曲线。

电工学实验——电路元件伏安特性的测绘

电工学实验——电路元件伏安特性的测绘

直流电流 源的伏安 特性测量
IS 24mA
U
I
I
RL
IS 24mA
Ri
1k
U
RL
理想直流电流源的实验数据 理想直流电流源的实验数据
RL( ) U(V) ( ) I(mA) ( )
300
200
100
50
22
实际直流电流源的实验数据
RL( ) U(V) ( ) I(mA) ( )
300
200
100
50
22
1、测量线性电阻元件的伏安特性 2、测量线性电阻元件的伏安特性 3、测量稳压管的伏安特性 4、测量二极管的伏安特性 5、测量直流电压和电流源的伏安特性 (选做) 选做)
实验设备
数字式万用表
指针式万用表
万用表使用时 要注意测量的 是交流还是直 流信号, 流信号,注意 选择量程, 选择量程,特 别要注意不要 用电流档去测 量电压, 量电压,会烧 坏万用表。 坏万用表。
实验目的实验内容1测量线性电阻元件的伏安特性2测量线性电阻元件的伏安特性3测量稳压管的伏安特性4测量二极管的伏安特性5测量直流电压和电流源的伏安特性选做实验设备数字式万用表指针式万用表直流稳压电源直流恒流源和电阻箱万用表使用时要注意测量的是交流还是直流信号注意选择量程特别要注意不要用电流档去测量电压会烧坏万用表
实验一 电路元件伏安特性的测绘
实验目的
1. 学会识别常用电路元件的方法。 学会识别常用电路元件的方法。 2. 掌握线性电阻、非线性电阻元件伏安特性的测绘。 掌握线性电阻、非线性电阻元件伏安特性的测绘。 3. 掌握实验台上直流电工仪表和设备的使用方法。 掌握实验台上直流电工仪表和设备的使用方法。
实验内容

元件伏安特性的测定实验报告

元件伏安特性的测定实验报告

元件伏安特性的测定实验报告一、实验目的。

本实验旨在通过对电路中元件的伏安特性进行测定,掌握元件的电压-电流关系,并进一步了解元件的特性及其在电路中的应用。

二、实验仪器与设备。

1. 直流稳压电源。

2. 万用表。

3. 电阻箱。

4. 耐压表。

5. 电路连接线。

6. 待测元件。

三、实验原理。

在电路中,元件的伏安特性是指元件的电压与电流之间的关系。

对于电阻元件,其伏安特性为线性关系,即电阻元件的电流与电压成正比。

而对于二极管等非线性元件,其伏安特性则呈现出非线性关系。

四、实验步骤。

1. 将待测元件与电路连接线连接到电路中,注意连接的正确性和稳固性。

2. 调节直流稳压电源,使其输出电压逐渐增加,同时通过万用表记录电路中元件的电压和电流数值。

3. 根据记录的电压-电流数值,绘制出元件的伏安特性曲线。

4. 对非线性元件,如二极管等,进行反向电压测量,记录其反向击穿电压。

五、实验数据与分析。

通过实验测得的数据,我们可以得到元件的伏安特性曲线。

对于电阻元件,其伏安特性曲线为一条直线,而对于二极管等非线性元件,则呈现出非线性特性的曲线。

通过分析伏安特性曲线,我们可以了解元件的工作状态及其在电路中的作用。

六、实验结论。

通过本次实验,我们成功测定了元件的伏安特性,并绘制出了相应的伏安特性曲线。

通过对曲线的分析,我们可以更加深入地了解元件的特性及其在电路中的应用。

同时,我们也掌握了测定伏安特性的实验方法和步骤。

七、实验总结。

本次实验通过测定元件的伏安特性,使我们对元件的工作特性有了更深入的了解。

同时,实验过程中我们也掌握了一定的实验技能和操作方法。

在今后的学习和工作中,我们将能更加熟练地运用这些知识和技能,为电路设计和调试提供更加可靠的支持。

八、参考文献。

[1] 《电路原理与技术》。

[2] 《电子技术基础》。

以上为本次实验的实验报告,希望能对大家的学习和工作有所帮助。

测量非线性元件的伏安特性实验报告

测量非线性元件的伏安特性实验报告

测量非线性元件的伏安特性实验报告测量非线性元件的伏安特性实验报告通信一班赵雯琳 1140031【目的要求】1、了解常用电学实验仪器的规格和使用,重点学习使用数字万用电表2、学习电学实验操作规程,练习连接电路,重点掌握分压电路;3、学习测量非线性元件的伏安特性,掌握测量方法、基本电路,了解误差估计方法;4、了解二极管的单向导电性以及稳压二极管;【仪器用具】直流稳压电源、万用电表、变阻器、数字万用表(2只)、电阻箱、开关、导线等,稳压二极管和发光二极管。

【实验原理】伏安法测量元件的伏安特性是通过给元件一个直流电,测出元件两端的电压及电流,以电压为横坐标,电流为纵坐标画出关系曲线,借此研究元件的性质。

1、电流表内接法及电流表外接法电路图要求电流表内阻远小于测量元件的阻值。

此时电压表所测的电压为二极管和电流表的电压之和,U=U1+Ua。

设电流表的内阻为Ra,回流电流为I,则电压表测出的电压值:U=IR+IRa=I(R+Ra),即电阻的测量值Rx是:Rx=R+Ra,可见在测量值变化较大的时候适当增加测量点。

2、稳压二极管:是一种特殊的硅二极管,在反向击穿电压区,一个很宽的电流区间内,伏安曲线陡直。

在正向电流较大时,趋近为一条直线。

【实验内容及步骤】1、学习用万用表判别二极管的正负级:打来万用表的开关,将档位调到二极管档位,接好开关。

先接入二极管的两端,观察万用表的示数,记下示数。

改变接入万用表的两端,再观察示数,比较数据大小,若显示0.7V左右的电压值,表明红表笔对应的端为二极管的正极,另外一端为负极;若反向连接,则显示为断路状态;若两个方向测试显示相同,则该二极管已损坏。

2、用内接法和外接法测量测试板上的同一个待测电阻的阻值。

(数据见下)3、测量稳压二极管的正向特性,使用电流表外接法,所取电压为0-3V。

电路中串联保护电阻R2=150Ω,测量时不必取等间隔取点。

电流测量范围为0.05~20mA。

按电路图连接电路,滑动滑动变阻器,记录不同情况下的电压值和电流值。

伏安特性曲线的测量实验报告

伏安特性曲线的测量实验报告

伏安特性曲线的测量实验报告篇一:电路元件伏安特性的测量实验一电路元件伏安特性的测量一、实验目的1.学习测量电阻元件伏安特性的方法;2.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法;3.掌握直流稳压电源和直流电压表、直流电流表的使用方法。

二、实验原理在任何时刻,线性电阻元件两端的电压与电流的关系,符合欧姆定律。

任何一个二端电阻元件的特性可用该元件上的端电压U与通过该元件的电流I之间的函数关系式I=f来表示,即用I-U 平面上的一条曲线来表征,这条曲线称为电阻元件的伏安特性曲线。

根据伏安特性的不同,电阻元件分为两大类:线性电阻和非线性电阻。

线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示。

该直线的斜率只由电阻元件的电阻值R决定,其阻值R为常数,与元件两端的电压U和通过该元件的电流I无关;非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R不是常数,即在不同的电压作用下,电阻值是不同的。

常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性曲线如图1-1(b)、(c)、(d)所示。

在图1-1中,U >0的部分为正向特性,U<0的部分为反向特性。

线性电阻白炽灯丝绘制伏安特性曲线通常采用逐点测试法,电阻元件在不同的端电压U作用下,测量出相应的电流I,然后逐点绘制出伏安特性曲线I=f,根据伏安特性曲线便可计算出电阻元件的阻值。

三、实验设备与器件1.直流稳压电源1 台2.直流电压表1 块3.直流电流表1 块4.万用表 1 块5.白炽灯泡 1 只6. 二极管1 只7.稳压二极管1 只8.电阻元件 2 只四、实验内容1.测定线性电阻的伏安特性按图1-2接线。

调节直流稳压电源的输出电压U,从0伏开始缓慢地增加(不得超过10V),在表1-1中记下相应的电压表和电流表的读数。

2将图1-2中的1kΩ线性电阻R换成一只12V,的灯泡,重复1的步骤,在表1-2中记下相应的电压表和电流表的读数。

实验七 线性和非线性电学元件伏安特性的测量

实验七 线性和非线性电学元件伏安特性的测量

实验七线性和非线性电学元件伏安特性的测量本实验主要通过测量不同电学元件的伏安特性,了解电流-电压关系及其特点,并对线性与非线性元件进行区分。

同时,通过实验掌握伏安表和示波器的使用方法。

一、实验器材1. 直流电源2. 电阻箱3. 伏安表4. 示波器5. 切换开关6. 电路板7. 线性电阻、电流表等二、实验原理1. 线性电阻的伏安特性线性电阻是最基本的电阻元件,其伏安特性的特点是与电流成正比,即Ohm定律: U = IR其中,U为电压,I为电流,R为电阻值。

在实验中,通过调整电源输出电压,改变电路中的电流值,并通过伏安表测量电阻两端的电压,然后求解电阻的电压-电流关系,并绘制成伏安特性曲线。

除了线性电阻外,还有一些电学元件,如二极管、三极管、电容、电感等,它们的伏安特性不是线性的,即非线性元件。

其中最常见的是二极管。

其伏安特性的特点是在正向偏置情况下,电压很小时电流几乎不流动;但当电压超过一定值时,电流急剧增加。

而在反向偏置情况下,电流很小,电压增加时,电流也几乎不发生变化,称为反向饱和区。

三、实验步骤1. 准备实验器材并接线。

将直流电源连接到电路板上的正负极,将电阻箱、伏安表、电阻与电路板连接,并用切换开关选择要测量的电路。

选取二极管作为样品,通过调整直流电源输出电压来改变二极管的正向偏置电压,记录电流与电压数据。

描绘二极管的伏安特性曲线。

4. 数据处理与分析以伏安特性曲线为依据,对线性电阻和非线性元件进行分类,并分析非线性元件的工作原理。

四、实验注意事项1. 操作时注意电路的连接情况,避免拧错导致损坏实验器材。

2. 正确选择伏安表的测量范围,以避免仪器烧毁。

3. 电阻、二极管等元件的选取应合适,避免输出电压超过测量范围。

4. 实验完毕后,应及时关闭电源及伏安表电源,避免电路出现短路等危险。

非线性元件伏安特性的测量_实验报告

非线性元件伏安特性的测量_实验报告

非线性元件伏安特性的测量_实验报告【目的要求】1、学习测量非线性元件的伏安特性,了解进行伏安法测量时两种电表的连接方法和接入误差;2、学习用数字万用电表测量二极管,学习测量二极管的伏安特性;3、了解二极管的单向导电性和稳压二极管的稳压特性;4、了解白炽灯的伏安特性。

【实验原理】1、测量元件的伏安特性给一个电学元件通电,用电压表测出元件两端的电压,用电流表测出通过元件的电流,作出电压—电流的关系曲线,称作该元件的伏安特性曲线,这种研究元件特性的方法叫做伏安法。

2、测量元件特性时的注意事项(1)要了解元件的有关参数、性能及特点,实验中应保证元件安全使用,正常工作。

加在元件上的电压以及通过的电流都应小于其额定数值;(2)选择变阻器电路时应考虑到调节方便,能满足测量范围的要求。

实验中经常采用分压电路,如细调程度不够,可以采用两个变阻器组成二级分压(或制流)细调电路;(3)确定测量范围时,既要保证元件的安全,又要覆盖其正常工作范围,以反映元件特性。

应根据测量范围选定电源电压;(4)合理地选取测量点,可以减小测量值的相对误差。

测量非线性元件时,选择变化较大的物理量作为自变量较为方便,可以等间隔取测量点;在测量值变化时,可适当增加测量点;(5)在正式测量之前,应先对被测元件进行粗测,以大致了解被测元件特性、物理规律及变化范围,然后再逐点测量。

【实验内容】1、用数字万用电表测量二极管;2、用伏安法测量稳压二极管的伏安特性;3、测量二极管的伏安特性曲线;4、数据处理。

【仪器用具】序号仪器名称型号/规格单价(元)备注1伏安特性实验仪DH61022500含直流稳压电源、2个4位半数字电压表、二极管、稳压二极管、白炽灯泡、电阻、导线等。

线性与非线性元件的伏安特性

线性与非线性元件的伏安特性

线性与非线性元件的伏安特性一、实验目的1、掌握线性与非线性元件伏安特性的测试方法。

2、加深对线性与非线性元件的理解。

3、掌握常用电工仪表和设备的使用方法。

二、实验原理电路元件的特性一般可用该元件上的端电压U 与通过该元件的电流I之间的函数关系I =f(U)来表示,即用I-U平面上的一条曲线来表征,这条曲线称为该元件的伏安特性曲线。

电阻元件是电路中最常见的元件,有线性电阻和非线性电阻之分。

实际电路中很少是仅由电源和线性电阻构成的“电平移动”电路,而非线性器件却常常有着广泛的使用,例如非线性元件二极管具有单向导电性,可以把交流信号变换成直流量,在电路中起着整流作用。

万用表的欧姆档只能在某一特定的U和I下测出对应的电阻值,因而不能测出非线性电阻的伏安特性。

一般是用含源电路“在线”状态下测量元件的端电压和对应的电流值,进而由公式R=U/I求测电阻值。

1.线性电阻元件的电阻值,在其额定电流以内电流作用下,其阻值基本上保持不变(温度影响可忽略)且符合欧姆定律:U=IR 其伏安特性为一过原点的直线。

如图2-1-1(a)。

2.非线性电阻的阻值在其额定电流以内电流作用下,会随着通过的电流变化而变化。

钨丝灯泡在工作时灯丝处于高温状态,其灯丝电阻随着温度(即电流)的改变而改变,并且具有一定的惯性,因此其伏安特性为一条曲线,如图2-1-1(b)。

可以看出,电流越大温度越高,对应的电阻也越大。

3.一般半导体二极管的伏安特性如图2-1-1(c),正向压降很小(锗管约为0.2-0.3V,硅管约为0.5-0.7V),正向电流随正向压降的升高而急速上升,反向压降则从0一直增加到十几---几十伏时,反向电流增加很小。

所以,二极管具有单向导电性。

4.稳压二极管是一种特殊的半导体二极管,其正向特性与普通二极管类似,但其反向特性较特殊,如图2-1-1(d)所示。

给稳压二极管加反向电压时,其反向电流几乎为零,但当电压增加到某一数值时,电流将突然增加,以后它的端电压将维持恒定,不再随外加反向电压的升高而增大,这便是稳压二极管的反向稳压特性。

伏安特性

伏安特性

六、实验报告要求
1.根据实验测量数据,用坐标纸分别绘制出各 个电阻元件的伏安特性曲线,并说明所测各元件 的特性。 2.根据线性电阻的伏安特性曲线,计算线性电 阻的电阻值,并与实际电阻值进行比较。 3.根据白炽灯的伏安特性曲线,计算白炽灯在 额定电压(6.3V)时的电阻值,当电压降低20% 时,阻值为多少?
四、数据表格
表5-4
U (V) I (mA) 表5-5 U (V) I (mA) 表5-6 U (V) I (mA) 0 -1 -1.5 稳压管反向特性测量数据 -2 -2.5 -2.8 -3 -3.2 -3.5 -3.55 0 0.2 0.4 稳压管正向特性测量数据 0.45 0.5 0.55 0.60 0.65 0.70 0.75 0 -5
二极管反向特性测量数据
-10 -15 -20 -25 -30
五、实验注意事项
1.恒压源接入电路之前应将可调输出旋钮置零位 (即输出电压为0),调节时应缓慢增加电压,应时 刻注意电压表和电流表的读数,不能超过要求的电 压和电流值。 2.注意恒压源使用时输出端不能短路。 3.电压表和电流表的极性不要接错,使用时注意 不要超量程。 4.测二极管和稳压管的伏安特性时,必须接限流 电阻,否则容易损坏设备
电阻元件伏安 特性测量
P 59
一、实验目的
学习线性电阻、非线性电阻元件伏
安特性的测定方法; 加深对线性电阻、非线性电阻元件 伏安特性的理解; 掌握稳压电源、直流数字电压表、 电流表的使用方法。

二、实验原理




二端电阻元件的伏安特性是指该元件上的端电压u与通过该 元件的电流i之间的函数关系,用u=f (i)来表示,在 坐标平面上 表示电阻元件的电压电流关系曲线称为伏安特性曲线。根据伏安 特性的不同,电阻元件分两大类:线性电阻和非线性电阻。 线性电阻元件的端电压u与电流i符合欧姆定律,即u = R i, 其中R称为元件的电阻,是一个常数,其伏安特性曲线是一条通 过坐标原点的直线,如图所示。该直线的斜率只与元件的电阻R 有关,与元件两端的电压u和通过该元件的电流i无关。线性电阻 元件具有双向性。 非线性电阻元件的端电压u与电流i的关系是非线性关系,其 阻值R不是 一个常数,随着电流或电压的变化而变化,其伏安特 性曲线是一条通过坐标原点的曲线。 非线性电阻种类繁多,常见的如白炽灯丝、普通二极管、稳 压二极管、恒流管和隧道二极管等。

电工学实验报告

电工学实验报告
3.把电容器与 R-L 电路并联可改善负载的功率因数,如果把电容器与 R-L 电路串联起来能否改 善负载功率因数?为什么?实际中能否采用?为什么?
19
实验 7 三相交流电路
一.画出本次实验电路图
实验 7-1 负载的星形连接
二.实验数据记录 注:U12、U23、U31 是线电压;U1、U2、U3 是负载两端的电压。
计算值
I A X L X C
500
三、分析与思考
1.在 RLC 串联电路中,为何U U R U L U C ?
2.容抗和感抗与哪些物理量有关?
16
实验 4-5 RLC 串联谐振的研究 一、画出本次实验电路图
二、根据实验记录数据完成下表:
表 4-4 RLC 串联谐振电路实验数据
R(KΩ) 0.30 1
3.通过对实验数据的计算,判别三个电阻上的功率是否也符合叠加原理?为什么?
6一、 画出实验电路图 Nhomakorabea实验 2-3 非线性电路叠加定理验证
二、自拟表格记录数据
四、试问在该实验中叠加原理的迭加性还成立吗?为什么?
7
8
实验 3 电源等效变换及戴维宁定理
实验 3-1 验证电压源与电流源等效变换的条件 一、画出本次实验的电路图
比较:
2.测定有源二端口网络的外特性和戴维南等效电源的外特性,填写完成表 3-1: 表 3-1 有源二端口网络及戴维宁等效电路外特性实验数据
负载电阻 RL ()
0
51 100 150 200 330
有源 二端 网络 戴维南 等效 电源
U(V) I(mA) U(V) I(mA)
开路
三、分析与思考 1.根据表 3-1 各电压和电流的值,分别绘出有源二端口网络和戴维南等效电源的外特性曲 线,可得出什么结论?

实验七线性和非线性电学元件伏安特性的测量

实验七线性和非线性电学元件伏安特性的测量

实验七线性电阻和非线性电阻的伏安特性曲线电阻是电学中常用的物理量。

利用欧姆定律求导体电阻的方法称为伏安法,它是测量电阻的基本方法之一。

为了研究材料的导电性,通常作出其伏安特性曲线,了解它的电压与电流的关系。

伏安特性曲线是直线的元件称为线性元件,伏安特性曲线不是直线的元件称为非线性元件。

这两种元件的电阻都可用伏安法测量。

但由于测量时电表被引入测量线路,电表内阻必然会影响测量结果,因而应考虑对测量结果进行必要的修正,以减少系统误差。

【实验目的】1.通过对线性电阻伏安特性的测量,学习正确选择和使用伏安法测电阻的两种线路。

2.通过对二极管伏安特性的测量,了解非线性电学元件的导电特性。

3.习按电路图正确地接线,掌握限流电路和分压电路的主要特点。

4.学会用作图法处理实验数据。

【实验仪器】欧姆定律实验盒直流稳压电源滑线变阻器(2个)单刀开关数字电流表数字电压表保护电阻【实验原理】当一个元件两端加上电压,元件内有电流通过时,电压与电流之比称为该元件的电阻。

若一个元件两端的电压与通过它的电流成比例,则伏安特性曲线为一条直线,这类元件称为线性元件。

若元件两端的电压与通过它的电流不成比例,则伏安特性曲线不再是直线,而是一条曲线,这类元件称为非线性元件。

一般金属导体的电阻是线性电阻,它与外加电压的大小和方向无关,其伏安特性是一条直线(见图1),从图上看出,直线通过一、三象限。

它表明,当调换电阻两端电压的极性时,电流也换向,而电阻始终为一定值,等于直线斜率的倒数R =V/I。

常用的半导体二极管是非线性电阻,其电阻值不仅与外加电压的大小有关,而且还与方向有关。

为了了解半导体二极管的导电特性,下面对它的结构和电学性能作一简单介绍。

图1 线性电阻的伏安特性图2 半导体二极管的p-n结和表示符号半导体二极管又叫晶体二极管。

半导体的导电性能介于导体和绝缘体之间。

如果在纯净的半导体中适当地掺入极微量的杂质,则半导体的导电能力就会有上百万倍的增加。

线性与非线性元件伏安特性的测定实验报告

线性与非线性元件伏安特性的测定实验报告

线性与非线性元件伏安特性的测定实验报告线性与非线性元件伏安特性的测定实验报告引言:伏安特性是电子元器件的重要参数之一,它描述了电流与电压之间的关系。

在实际应用中,线性和非线性元件的伏安特性测定对于电路设计和性能评估非常重要。

本实验旨在通过测定不同元件的伏安特性曲线,探究线性和非线性元件的特性及其应用。

实验目的:1. 通过测定线性元件的伏安特性曲线,研究其电阻特性;2. 通过测定非线性元件的伏安特性曲线,研究其电流与电压的非线性关系;3. 探讨线性和非线性元件在电路中的应用。

实验器材:1. 直流电源;2. 电压表和电流表;3. 不同电阻值的电阻器;4. 二极管和晶体管。

实验步骤:1. 线性元件的伏安特性测定:a. 将电阻器连接到直流电源的正负极,并在电路中串联一个电流表,测量电流表的读数;b. 在电路中并联一个电压表,测量电压表的读数;c. 通过改变直流电源的电压,记录不同电压下的电流和电压值;d. 绘制电流与电压之间的伏安特性曲线。

2. 非线性元件的伏安特性测定:a. 将二极管连接到直流电源的正负极,并在电路中串联一个电流表,测量电流表的读数;b. 在电路中并联一个电压表,测量电压表的读数;c. 通过改变直流电源的电压,记录不同电压下的电流和电压值;d. 绘制电流与电压之间的伏安特性曲线。

3. 晶体管的伏安特性测定:a. 将晶体管连接到直流电源的正负极,并在电路中串联一个电流表,测量电流表的读数;b. 在电路中并联一个电压表,测量电压表的读数;c. 通过改变直流电源的电压,记录不同电压下的电流和电压值;d. 绘制电流与电压之间的伏安特性曲线。

实验结果与分析:通过实验测定得到的伏安特性曲线可以清晰地反映出线性和非线性元件的特性。

在线性元件的伏安特性曲线中,电流与电压成正比,呈线性关系。

而在非线性元件的伏安特性曲线中,电流与电压之间存在非线性关系,通常表现为一个阈值电压,当电压小于该值时,电流几乎为零;当电压大于该值时,电流迅速增加。

实验报告非线性元件伏安特性测量

实验报告非线性元件伏安特性测量

非线性元件伏安特性测量一.实验目的1、学习测量非线性元件的伏安特性,针对所给各种非线性元件的特点,选择一定的实验方?法,选用配套的实验仪器,测绘出它们的伏安特性曲线。

2、学习从实验曲线获取有关信息的方法。

二.实验原理1.检波和整流二极管检波二极管和整流二极管都工作在1、4 象限.第1 象限区又称为正向工作区.当所加的电压较低时,流通的电流很小,继续增加电压时,电流急剧上升.这个转折点对应的电压称为二极管的开启电压,它与所用的半导体材料的禁带宽度有关.在常温下,一般为0.2~0.7V.第4 象限区又称为反向工作区,其特点是加一个相当高的电压时,电流会突然增大,导致损坏,这种现象称为击穿.检波二极管和整流二极管工作范围不能超过击穿区.检波二极管的PN 结是针形接触,其特点是工作电流小,工作频率范围的宽,但反向耐压低.整流二极管的PN 结是面形接触,其特点是工作电流大,工作频率低,反向耐压可达上千压.它们的共同特点是要求反向工作时流过的电流越小越好.2.稳压二极管稳压二极管工作在第4 象限.而且工作在击穿区.其特点是反向工作电压加到一定值时,电流突然增大,在此基础上再加大电压时,电流的变化非常剧烈,这时稳压二极管承受的功率急剧增大,若不加限流措施,PN 结极易烧毁.3.发光二极管发光二极管由半导体发光材料制成,工作在第1 象限.要发的光的波长与材料的禁带宽度E 对应.根据量子力学原理E = eV = hυ可知,对于可见光,开启电压V约在2~3V.当加在发光二极管两端的电压小于开启电压时,发光二极管不会发光,也没有电流流过.电压一旦超过开启电压,电流急剧上升,二极管处于导通状态并发光,此时电流与电压呈线性关系,直线与电压坐标的交点可以认为是开启电压.三.实验步骤1.普通二极管正向伏安特性:测量电路见图1,二极管两端电压V ≤3 V.电压表内接。

2.稳压二极管.测量稳压二极管的反向伏安特性曲线.测量电路见图2, 稳压二极管的最大反向电流小于30 mA,工作电压约为5 V左右.电压表外接。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验七线性电阻和非线性电阻的伏安特性曲线电阻是电学中常用的物理量。

利用欧姆定律求导体电阻的方法称为伏安法,它是测量电阻的基本方法之一。

为了研究材料的导电性,通常作出其伏安特性曲线,了解它的电压与电流的关系。

伏安特性曲线是直线的元件称为线性元件,伏安特性曲线不是直线的元件称为非线性元件。

这两种元件的电阻都可用伏安法测量。

但由于测量时电表被引入测量线路,电表内阻必然会影响测量结果,因而应考虑对测量结果进行必要的修正,以减少系统误差。

【实验目的】1.通过对线性电阻伏安特性的测量,学习正确选择和使用伏安法测电阻的两种线路。

2.通过对二极管伏安特性的测量,了解非线性电学元件的导电特性。

3.习按电路图正确地接线,掌握限流电路和分压电路的主要特点。

4.学会用作图法处理实验数据。

【实验仪器】欧姆定律实验盒直流稳压电源滑线变阻器(2个)单刀开关数字电流表数字电压表保护电阻【实验原理】当一个元件两端加上电压,元件内有电流通过时,电压与电流之比称为该元件的电阻。

若一个元件两端的电压与通过它的电流成比例,则伏安特性曲线为一条直线,这类元件称为线性元件。

若元件两端的电压与通过它的电流不成比例,则伏安特性曲线不再是直线,而是一条曲线,这类元件称为非线性元件。

一般金属导体的电阻是线性电阻,它与外加电压的大小和方向无关,其伏安特性是一条直线(见图1),从图上看出,直线通过一、三象限。

它表明,当调换电阻两端电压的极性时,电流也换向,而电阻始终为一定值,等于直线斜率的倒数R =V/I。

常用的半导体二极管是非线性电阻,其电阻值不仅与外加电压的大小有关,而且还与方向有关。

为了了解半导体二极管的导电特性,下面对它的结构和电学性能作一简单介绍。

图1 线性电阻的伏安特性图2 半导体二极管的p-n结和表示符号半导体二极管又叫晶体二极管。

半导体的导电性能介于导体和绝缘体之间。

如果在纯净的半导体中适当地掺入极微量的杂质,则半导体的导电能力就会有上百万倍的增加。

加到半导体中的杂质可分成两种类型:一种杂质加到半导体中去后,在半导体中会产生许多带负电的电子,这种半导体叫电子型半导体(也叫N型半导体);另一种杂质加到半导体中会产生许多缺少电子的空穴(空位),这种半导体叫空穴型半导体(也叫P 型半导体)。

半导体二极管是由两种具有不同导电性能的N 型半导体和P 型半导体结合形成的p-n 结所构成的。

它有正、负两个电极,正极由p 型半导体引出,负极由n 型半导体引出,如图2(a )所示。

p-n 结具有单向导电的特性,常用图2(b )所示的符号表示。

关于p-n 结的形成和导电性能可作如下解释。

如图3(a )所示,由于p 区中空穴的浓度比n 区大,空穴便由p 区向n 区扩散;同样,由于n 区的电子浓度比p n 区向p 区扩散。

随着扩散的进行,p ;n 表示)。

结果在p 型与n 型半导体交界的两侧附近,形成了带正、负电的薄层区,称为p-n 结。

这个带电薄层内的正、负电荷产生了一个电场,其方向恰好与载流子(电子、空穴)扩散运动的方向相反,使载流子的扩散受到内电场的阻力作用,所以这个带电薄层又称为阻挡层。

当扩散作用与内电场作用相等时,p 区的空穴和n 区的电子不再减少,阻挡层也不再增加,达到动态平衡,这时二极管中没有电流。

内电场方向 内电场方向 内电场方向 扩散运动方向 外电场方向 外电场方向正向电流(较大) 反向电流(很小) (a) (b) (c)图3 p-n 结的形成和单向导电特性如图3(b )所示,当p-n 结加上正向电压(p 区接正,n 区接负)时,外电场与内电场方向相反,因而削弱了内电场,使阻挡层变薄。

这样,载流子就能顺利地通过p-n 结,形成比较大的电流。

所以,p-n 结在正向导电时电阻很小。

如图3(c )所示,当p-n 结加上反向电压(p 区接负,n 区接正)时,外加电场与内电场p-n结,形成很小的反向电流。

所以p-n 半导体二极管的正、反向特性曲线如图四 所示。

从图上看出,电流和电压不是线性关系, 各点的电阻都不相同。

凡具有这种性质的电阻,就称为非线性电阻。

二极管的伏安特性是非线性的,如图4所示。

第一象限的曲线为正向伏安特性曲线,第三象限 (伏)的曲线为反向特性曲线。

由曲线可看出,二极管 的电阻值(曲线上每一点的斜率)随U 、I 的变 化在很大的范围内变化(称为动态电阻)。

当二极 管加正向电压时,在OA 段正向电流随电压的变化 图4 半导体二极管的伏安特性 缓慢,电阻值较大。

在AB 段二极管的电阻值随U 的增加很快变小,电流迅速上升,二极管呈导通状态。

若二极管加反向电压,在OC 段,反向电流很小,并几乎不随反向电压的增加而变化。

二极管呈截止状态,电阻值很大。

当电压继续增加,电流剧增,二极管被击穿,电阻值趋于零。

因此,若要用伏安法较精确的测量二极管的伏安特性曲线,必须正确地选择测量线路。

【伏安法测电阻的线路分析】欧姆定律是直流电路的基本定律。

在电阻R 中通以电流I ,其两端的电压为U ,则有IUR =用电压表测得U ,用电流表测得I ,即可求出R 。

这种方法称为“伏安法”。

用伏安法测电阻,通常采用图七所示的两种线路。

图5(a )为电流表的内接法,图5(b )为电流表的外接法。

(a) 内接法 (b) 外接法图5 测电阻的线路但是,由于电表有内阻,无论采用内接法还是外接法,均会给测量带来系统误差。

在图七(a )中,设电流表的内阻为R A ,则 A R IR U U +=U 为电压表的指示值。

若将电压表的指示值作为待测电阻R 两端的电位差,给测量带来的系统误差为A RA R R R RU IR U U U ==-=∆ 故有RR U U AR R =∆ 只有当电流表内阻R A << 待测电阻R 时,能使0→∆RU U,用内接法测量电阻不会带来明显的系统误差。

同样,在图七(b) 中,设电压表的内阻为R V ,则V R I I I +=I 为电流表指示值。

若将电流表的指示值I 作为流经电阻R 的电流,给测量带来的系统误差为VRV R R R R I I I I I ==-=∆ 故有VR R R RI I =∆ 只有当电压表内阻远大于待测电阻R 时,能使0→∆RRI I ,用外接法测量电阻不会带来明显的系统误差。

综合上两种情况,可得当R >V A R R 时,用内接法系统误差小。

当R <V A R R 时,用外接法系统误差小。

当R=V A R R 时,两种接法可任意选用。

因此,通常只在对电阻值的测量精确度要求不高时,才使用伏安法,并且还要根据电表的内阻R A 、R V 和待测电阻值的大小来合理选择测量线路。

测定元件的伏安特性曲线与测量元件的电阻一样,也存在着用电流表内接还是外接的问题,我们也应根据待测元件电阻的大小,适当地选择电表和接法,减小系统误差,使测出的伏安特性曲线尽可能符合实际。

【分压电路和限流电路】要测定元件的伏安特性曲线,就要改变加在元件上的电压。

利用滑线电阻来改变加在元件上的电压,方法有两种: 1.限流电路如图6所示,滑线电阻与待测元件串联,改变滑线电阻的阻值,就可以改变待测元件与滑线电阻的分压比,从而达到调节待测元件电压的目的。

限流电路的特点:简单、省电、但可调节范围小。

图6限流电路E图7分压电路2.分压电路如图7所示,当滑线电阻上有电流流过时,沿滑线电阻上各点的电位逐渐变化,当滑动点P 从A 往B 移动时,PA 两点的电压逐渐升高,从而使待测元件上得到连续变化的电压。

分压电路的特点:调节范围大,电压变化的线性好,但较费电。

3.粗调与细调实验中会发现只用一个滑线电阻有时很难调节到位。

为此,可增加一个阻值较小的滑线电阻作为细调,如图8所示。

E(a)双分压电路ER X(b)分压+限流电路图8粗调与细调【实验内容】(一)测绘金属电阻的伏安特性曲线1.按图9接好线路,根据待测电阻选择开关K2接向“1”还是“2”。

注意将分压器R1的滑动端调至电压为零的位置,将R2阻值调到最大;电流表和电压表的量限要选择得适当。

2.经教师检查线路后,接通电源,将电源E调到10V,滑线电阻器的滑动头,从零开始逐步增大电压(例如取0.00V, 0.50V, 1.00V,1.50V,…,5.00V),读出相应的电流值。

3.将电压调为零,改变加在电阻上的电压方向(可将电源电压E正负调换),取电压为0.00V,-0.50V,-1.00V,-1.50V,·····-5.00V,读出相应的电流值。

4.将测得的正、反向电压和相应的电流值填入预先自拟的表格。

以电压为横坐标,电流为纵坐标,绘出金属膜电阻的伏安特性曲线(注意:线两侧的数据点应均匀分布)。

5.利用直线的斜率计算电阻阻值。

X图9测电阻伏安特性电路图(二)测绘晶体二极管的伏安特性曲线测量之前,先记录所用晶体管的型号和主要参数(即最大正向电流和最大反向电压),再判别晶体管的正、负极。

1.为了测得晶体二极管的正向特性曲线,可按照图10所示的电路连线。

图中R为保护晶体二极管的保护电阻,电压表的量限取2伏左右。

经教师检查线路后,接通电源,缓慢地增加电压,例如,取0.00V,0.10V,0.20V,…(在电流变化大的地方,电压间隔应取小一些),读出相应的电流值。

最后断开电源。

图10测晶体二极管正向伏安特性的电路图图11测晶体二极管反向伏安特性的电路图2.为了测得反向特性曲线,可按图11连接电路。

将电流表换到200 A档,电压表换到20V或200V的量限,接上电源,逐步改变电压,例如,取0.00V,1.00V,2.00V,…,读出相应的电流值。

确认数据无错误和遗漏后,断开电源,拆除线路。

3.以电压为横轴,电流为纵轴,利用测得的正、反向电压和电流的数据,绘出晶体二极管的伏安特性曲线。

【数据记录及处理】利用直线的斜率计算电阻阻值3.测绘二极管的反向伏安特性曲线把表2、表3中的数据作在一张图上,即为二极管的伏安特性曲线。

【注意事项】1.测半导体二极管的正向伏安特性时,毫安表读数不得超过二极管允许通过的最大正向电流值。

2.测半导体二极管反向伏安特性时,加在半导体管上的电压不得超过管子允许的最大反向电压。

此实验选用的半导体二极管IN4007的最大反向电压比较高,所以半导体二极管所加反向电压比较低时反向电流读数接近零。

实验时,如果违反上述任一条规定,都将会损坏半导体二极管。

3.做50Ω伏安特性实验时,电阻两端的电压不要超过8V,晶体管两端的电压最大为20V 左右,以免烧坏电阻和晶体管。

4.电源不能短路。

5.数字电流表为四挡测量量程,各量程的内阻不同,在做实验时选好量程,尽量不要换量程,各挡的内阻详见其使用说明书。

【思考题】1.在图八中,开关打向“1”或“2”有何不同?为什么要采用这样的接法?2.如何作出伏欧特性曲线(V-R曲线)?金属膜电阻和半导体二极管的伏欧特性曲线各具有什么特点?3.测二极管正向特性,反向特性曲线时,为什么一个用外接,一个用内接?以下是本小组的实验数据:数据记录与处理正向特性曲线反向特性曲线。

相关文档
最新文档