(完整版)九年级数学中考复习专题一元二次方程练习题及答案

合集下载

中考数学复习 专题11 一元二次方程试题(B卷,含解析)-人教版初中九年级全册数学试题

中考数学复习 专题11 一元二次方程试题(B卷,含解析)-人教版初中九年级全册数学试题

一元二次方程一、选择题1. (某某某某,5,4分)—元二次方程x 2+2x +1=0的根的情况( )A .有一个实数根B .有两个相等的实数根C .有两个不相等的实数根D .没有实数根【答案】B【逐步提示】先根据一元二次方程x 2+2x +1=0确定a 、b 、c 的值,再求判别式b 2-4ac 的值,最后根据判别式值的情况作出判断.【详细解答】解:一元二次方程x 2+2x +1=0中,a =1,b =2,c =1,所以b 2-4ac =22-4×1×1=0,故选择B .【解后反思】一元二次方程ax 2+bx +c =0(a ≠0),当b 2-4ac >0时,一元二次方程有两个不相等的实数根;当b2-4ac =0时,一元二次方程有两个相等的实数根;当b 2-4ac <0时,一元二次方程没有实数根;当b 2-4ac ≥0时,一元二次方程有实数根,以上结论反过来也成立.【关键词】一元二次方程;一元二次方程根的判别式2. ( 某某省,14,2分)a ,b ,c 为常数,且(a -c )2>a 2+c 2,则关于x 的方程ax 2+bx +c =0根的情况是()A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .有一根为0【答案】B【逐步提示】本题考查了一元二次方程根的判别式,先化简不等式得到ac <0,进而判断出b 2-4ac 的符号,由此可知方程根的情况.【详细解答】解:∵(a -c )2>a 2+c 2,即a 2-2ac+c 2>a 2+c 2,∴ac <0,a ≠0.∴关于x 的方程ax 2+bx+c 是一元二次方程,且b 2-4ac >0,故该方程有两个不相等的实数根.【解后反思】1.一元二次方程ax 2+bx +c =0(a ≠0),当b 2-4ac >0时,一元二次方程有两个不相等的实数根;当b 2-4ac =0时,一元二次方程有两个相等的实数根;当b 2-4ac <0时,一元二次方程没有实数根;当b 2-4ac ≥0时,一元二次方程有实数根,以上结论反过来也成立.ax 2+bx +c =0来说,只有当a≠0时,这个方程才是一元二次方程.【关键词】不等式;根的判别式;一元二次方程的定义3. (某某省某某市,10,3分)关于x 的一元二次方程042=++k x x 有两个相等的实根,则k 的值为( )A.k =-4B.k =4C.4-≥kD.4≥k【答案】B【逐步提示】本题考查的是一元二次方程根的判别式,利用一元二次方程的根的情况得到判别式的大小是解题的关键.第一步,根据题目已知条件判断“0=∆”;第二步, 由ac b 42-=∆,列出含有字母k 的方程并求解即可得出答案。

【专题复习】九年级数学上册 一元二次方程解法练习100题(含答案)

【专题复习】九年级数学上册 一元二次方程解法练习100题(含答案)

【专题复习】九年级数学上册一元二次方程解法练习100题1.解方程:2x2﹣8x+3=0(用公式法). 2.解方程:(2x-1)(x+3)=43.解方程:4y2+4y-1=-10-8y.4.解方程:x(x-3)=105.解方程:(x-1)(x-3)=86.解方程:x2-2=-2 x7.解方程:4x(3x-2)=6x-4. 8.解方程:3x(7-x)=18-x(3x-15);9.解方程:5x2-8x+2=0. 10.解方程:x2+12x+27=0.11.解方程:2x2-4x+1=0(用配方法) 12.解方程:4(x-1)2=9(x-5)2 13.解方程:x2﹣6=﹣2(x+1) 14.解方程:x2+4x﹣5=0.15.解方程:2x2+5x﹣1=0.16.解方程:3(x-2)2=x(x-2):17.解方程:2x2-3x-2=0 18.解方程:2x2-7x+1=019.解方程:x2﹣6x﹣4=0(用配方法) 20.解方程:x2-4x-3=021.解方程:x²-5x+2=0 22.解方程:x2﹣4x+8=0;23.解方程:3x2-6x+4=0 24.解方程:(x-2)(x-3)=1225.解方程:(x﹣3)(x+7)=﹣9 26.解方程:3x2+5(2x+1)=0(公式法) 27.解方程:x2﹣12x﹣4=0;28.解方程:(x﹣5)(x﹣6)=x﹣5.29.解方程:x2﹣8x﹣10=0;30.解方程:x(x﹣3)=15﹣5x;31.解方程:5x(x﹣3)=(x+1)(x﹣3) 32.解方程:x2+8x+15=033.解方程:25x2+10x+1=0 34.解方程:x2﹣7=﹣6x.(配方法)35.解方程:x2+4x﹣5=0(配方法) 36.解方程:4(x+3)2﹣(x﹣2)2=0(因式分解法)37.解方程:2x2+8x﹣1=0(公式法) 38.解方程:2x2-4x-1=0.39.解方程:(2x﹣5)2﹣(x+4)2=0.40.解方程:(x+1)(x﹣2)=2x(x﹣2) 41.解方程:4x2﹣6x﹣3=0(运用公式法) 42.解方程:2x2﹣x﹣3=0.43.解方程:(x+3)(x-1)=12 44.解方程:x2+3=3(x+1)45.解方程:x2-2x-24=0. 46.解方程:4x2-7x+2=0.47.解方程:x2-2x=2x+1;48.解方程:2(t-1)2+t=1;49.解方程:(3x-1)2-4(2x+3)2=0. 50.解方程:x2-6x-4=0;51.解方程:x(x﹣3)=4x+6.52.解方程:y2+3y+1=0;53.解方程:3y2+4y-4=0 54.解方程:(x-3)2-2x(x-3)=055.解方程:x2﹣2x=4 56.解方程:3(x﹣1)2=x(x﹣1) 57.解方程:3x2﹣6x+1=0(用配方法) 58.解方程:3(x-5)2=2(5-x) 59.解方程:3x2+5(2x+1)=0 60.解方程:x2+6x=9.61.解方程:x2﹣2x=x﹣2.62.解方程:(2x﹣1)2=(3﹣x)2 63.解方程:2x2-10x=3. 64.解方程:(x﹣1)(x﹣3)=8.65.解方程:3x2+2x-5=0;66.解方程:(1-2x)2=x2-6x+9.67.解方程:5(3x-2)2=4x(2-3x).68.解方程:(2x+1)2+4(2x+1)+3=0.69.解方程:2x2+3=7x; 70.解方程:(2x+1)2+4(2x+1)+3=0.71.解方程:x2﹣2x﹣3=0.72.解方程:x﹣3=4(x﹣3)273.解方程:(x+1)(x-1)=2x;74.解方程:3x2-7x+4=0.75.解方程:(x+2)2﹣10(x+2)=0.76.解方程:x2+3x+2=0;77.解方程:(x-1)2-2(x2-1)=0 78.解方程:x2-4x+2=0;79.解方程:x2﹣5x+1=0;80.解方程:x2﹣2x=4.81.解方程:x2+3x-2=0. 82.解方程:x2-5x+1=0(用配方法)83.解方程:x2+5x﹣6=0(因式分解法) 84.解方程:x2+3x﹣4=0(公式法)85.解方程:x2﹣4x+1=0(配方法) 86.解方程:(x﹣5)2=16 (直接开平方法)87.解方程:(x﹣1)(x+2)=6. 88.解方程:2x2+3x+1=089.解方程:(3x+1)2=9x+3. 90.解方程:5x2﹣3x=x+191.解方程:(x﹣4)2=(5﹣2x)2. 92. 解方程:(2x+1)2+15=8(2x+1)93.解方程:x2+x﹣1=0. 94.解方程:2x2﹣3x﹣1=0.95.解方程:x2-2x-3=0 96.解方程:3x2-7x+4=0.97.解方程:(x+3)(x-1)=12 98.解方程:x2-x-6=099.解方程:2x2﹣4x=1(用配方法) 100.解方程:(x+8)(x+1)=-12参考答案1.答案为:x=,x2=.12.答案为:x=1,x2=-3.5.13.答案为:y=y2=-1.5.14.答案为:x=5,x2=-2.15.答案为:x=5,x2=-1.16.答案为:∴,7.答案为:x=1/2,x2=-2/3.18.答案为:x=39.答案为:10.答案为:x=-3,x2=-9.111.答案为:12.答案为:x=13,x2=-3.4.113.答案为:x=﹣1+,x2=﹣1﹣.114.答案为:x=1,x2=﹣5.115.答案为:x=.16.答案为:x=2,x2=3.117.答案为:x=-0.5,x2=-2.118.答案为:;19.答案为:x=-3+,x2=-3-120.答案为:x=2721.答案为:略;22.答案为:x=x2=2;123.方程无实根;24.答案为:x=-1,x2=6. ;125.答案为:x=﹣6,x2=2;126.答案为:∴x1=,x2=.27.答案为:x=6+2,x2=6﹣2;128.答案为:x=5,x2=7.129.答案为:x=4+,x2=4﹣;130.答案为:x=3,x2=﹣5131.答案为:x=3,x2=0.25.132.答案为:x=-3,x2=-5.133.答案为:x=x2=-0.2.134.答案为:x=1,x2=﹣7.135.答案为:x=﹣5,x2=1;136.答案为:x=﹣4/3,x2=﹣8;137.答案为:x=,x2=.138.答案为:x=+1,x2=1-139.答案为:x=1/3,x2=9.140.答案为:x=2,x2=1.141.答案为:,;42.答案为:x=1.5,x2=﹣1.143.答案为:44.答案略;45.答案为:x=0,x2=3;146.答案为:x=+,x2=-.147.答案为:x=2+,x2=2-.148.答案为:t=1,t2=.149.答案为:x=-,x2=-7.150.答案为:x=3+,x2=3-.151.答案为:x=,x2=.152.答案为:y=,y2=.153.答案为:54.答案为:x=3,x2=-3;155.答案为:∴x=1﹣,x2=1+;156.答案为:x=1,x2=1.5.157.答案为:x=1+,x2=1﹣;158.答案为:x=5,x2=13/3.159.答案为:60.答案为:x=﹣3+3,x2=﹣3﹣3.161.答案为:x=2,x2=1.162.答案为:63.答案为:x 1=,x 2=. 64.答案为:x 1=5,x 2=﹣1. 65.答案为:x 1=1,x 2=-. 66.答案为:x 1=,x 2=-2. 67.答案为:x 1=,x 2=.68.答案为:x 1=-1,x 2=-2.69.答案为:x 1=,x 2=3.70.答案为:x 1=-1,x 2=-2.71.答案为:x 1=3,x 2=﹣1.72.答案为:x 1=3,x 2=3.25;73.答案为:x 1=+,x 2=-74.答案为:x 1=,x 2=1 75.答案为:x 1=﹣2,x 2=8.76.答案为:x 1=-1,x 2=2.77.答案为:x 1=1,x 2=3.78.答案为:x 1=22 ,x 2=2-2. 79.答案为: 80.答案为:x 1=1+,x 2=1﹣.81.∵a=1,b=3,c=-2,∴Δ=32-4×1×(-2)=17,∴x=,∴x 1=,x 2=.82.答案为:,.83.x1=﹣6,x2=1.84.答案为:x=﹣4,x2=1;185.;86.x=1,x2=9;187.x=,x2=.188.x1=﹣0.5,x2=﹣1;89.x1=﹣,x2=.90.x=﹣0.2,x2=1;191.x=3,x2=1.192.x=1,x2=2.193.x=,x2=.194.x=,x2=.195.96.解:(3)x=,x2=1197.98.99.x=1+,x2=1﹣.1100.1=﹣4,x2=﹣5.。

中考数学复习 一元二次方程专练 公式法解一元二次方程专项练习106题-人教版初中九年级全册数学试题

中考数学复习 一元二次方程专练 公式法解一元二次方程专项练习106题-人教版初中九年级全册数学试题

word公式法解一元二次方程1.2x2﹣7x+3=0(公式法)2.2t2﹣t﹣3=0,3.2x2﹣7x+4=0.4.2x2+2x=15.5y+2=3y2.6.x2+3x﹣4=0 7. 2x2﹣4x﹣1=08.2x2﹣x﹣2=0.9.2x2﹣5x+1=0.10.x2﹣1=4x.11.x2+3x﹣3=0 12.3x2﹣4x﹣2=0.13.x2+x﹣4=0.14.2x2﹣6x+3=0.15.2x2﹣3x﹣1=0.16.2x2﹣2x﹣1=0 17.3x2﹣4x﹣1=0.18.2x2﹣x﹣4=0 19.2x2+x﹣2=0 20.3x2+6x﹣4=0 21.x2﹣x﹣3=0.22.3x2+4x﹣4=0,23.(3x﹣1)(x+2)=11x ﹣4.24.2x2﹣5x﹣1=0.25..26.3x2+4x+5=0.28.x2﹣x﹣4=0.29..30.2x2﹣2x﹣1=031.3x2+7x+10=1﹣8x.32.5x2﹣3x+2=0.34.x2+3x+1=0,35.4x2=2x+136.5x2﹣3x=x+1.37.3x2+7x+4=038.2x2﹣3x﹣1=0(用公式法)39.3x2+5x+1=0;40.x2﹣4x+1=041. x2﹣4x+5=042. x2+5x+3=043.2x2﹣3x﹣6=0.44.3x2+4x+1=045.x2﹣4x﹣8=046.2x2﹣x﹣2=047.3x2+2(x﹣1)=0.48.x2﹣4x﹣7=049.y2﹣2y﹣4=050.x2﹣3x=2 51.2x2+x﹣=0.52.x2x+1=053.2x2﹣9x+8=0;55. x2+x﹣1=0;56. 2x2﹣6x+3=0;57.2x(x+4)=158.3x2+5(2x+1)=0.59.2x2﹣4x﹣1=060.3x2﹣6x﹣4=061.x2+2x﹣5=0 62.x2﹣4x﹣3=063.4x2﹣3x﹣1=063. x2+2x﹣2=0;65. x2+3=2x.66.x2﹣4x=﹣367. 3x2﹣2x﹣1=0;68.;69. 2x2﹣7x+5=0;70. 2x2﹣7x﹣18=0.71. (x+1)(x+3)=6x+4;73. x2﹣(2m+1)x+m=0.74. x(x+8)=16,76. 2x2﹣2x+1=0,77. 5x2+2x﹣1=078. 6y2+13y+6=079. 3•x2+6x+9=780. 2x2﹣3x+1=0;81. 2y(y﹣1)+3=(y+1)2.82. x2=3x+1;83. (t+1)(t﹣3)=﹣t(3﹣3t).84.x2﹣2ax﹣b2+a2=0.85. 3x2=2﹣5x;87. (x+1)(x﹣1)=2x.88.(2x﹣1)2﹣7=3(x+1);89.x2﹣6x+11=090 .5x2﹣8x+2=0.91.x2﹣3x+1=0.92.x2=5﹣12x93. x2+x﹣1=094.3x2﹣4x﹣1=095.3x2+2(x﹣1)=0,97.3x2﹣4x﹣1=098.99. .101.2x2+5x﹣1=0.102.2x2﹣x﹣1=0.103..104.3x2+5x﹣1=0.105.5x2﹣8x+2=0,106.3x2+7x+10=1﹣8x,公式法解一元二次方程106题参考答案:1.2x2﹣7x+3=0(公式法)a=2,b=﹣7,c=3,∴b2﹣4ac=(﹣7)2﹣4×2×3=49﹣24=25>0,方程有两个不相等的实数根,即:,x1=3,2.2t2﹣t﹣3=0,∵a=2,b=﹣1,c=﹣3,∴x===,3.2x2﹣7x+4=0.∵a=2,b=﹣7,c=4,b2﹣4ac=49﹣32=17,∴x==,∴,∴x1=,x2=4.2x2+2x=1由原方程,得2x2+2x﹣1=0,∴该方程的二次项系数a=2,一次项系数b=2,常数项c=﹣1;∴x===,5.5y+2=3y2.移项,3y2﹣5y﹣2=0,a=3,b=﹣5,c=﹣2,b2﹣4ac=(﹣5)2﹣4×3×(﹣2)=49>0,∴x=,∴x1=2,x2=﹣;6.x2+3x﹣4=0a=1,b=3,c=﹣4,△=9+4×1×4=25>0,∴x==,∴x1=﹣4,x2=1.7. 2x2﹣4x﹣1=0a=2,b=﹣4,c=﹣1,△=16+4×2=24>0,∴x==1±,∴x1=1+,x2=1﹣8.2x2﹣x﹣2=0.∵a=2,b=﹣1,c=﹣2,∴b2﹣4ac=17>0∴x=.即x1=,x2=9.2x2﹣5x+1=0.∵a=2,b=﹣5,c=1,∴b2﹣4ac=17,∴x=,∴x1=,x2=2原方程化为一般式:x2﹣4x﹣1=0.∵a=1,b=﹣4,c=﹣1,∴△=b2﹣4ac=(﹣4)2﹣4×1×(﹣1)=20,∴x===2±,∴x1=2+,x2=2﹣11.x2+3x﹣3=0a=1,b=3,c=﹣3;∵b2﹣4ac=9+12=21>0∴=∴,12.3x2﹣4x﹣2=0.a=3,b=﹣4,c=﹣2,△=b2﹣4ac=(﹣4)2﹣4×3×(﹣2)=40>0,x==,x1=,x2=13.x2+x﹣4=0.∴x==,∵x1=﹣2,x2=.14.2x2﹣6x+3=0.∵a=2,b=﹣6,c=3∴x=∴x1=,x2=;15.2x2﹣3x﹣1=0.a=2,b=﹣3,c=﹣1,∴△=9+8=17,x1=,x2=16.2x2﹣2x﹣1=0a=2,b=﹣2,c=﹣1,∴b2﹣4ac=12,∴x==,∴x1=,x2=17.3x2﹣4x﹣1=0.∵一元二次方程3x2﹣4x﹣1=0的二次项系数a=3,一次项系数b=﹣4,常数项c=﹣1,∴x===,∴x1=,x2=18.2x2﹣x﹣4=0∵2x2﹣x﹣4=0,∴=,∴x 1=,19.2x2+x﹣2=0∵a=2,b=1,c=﹣2(1分)∵b2﹣4ac=12﹣4×2×(﹣2)=17>0(2分)∴(4分)∴,20.3x 2+6x﹣4=0∵a=3,b=6,c=﹣4,∴b2﹣4ac=62﹣4×3×(﹣4)=84,∴x==,21.x2﹣x﹣3=0.∵a=1,b=﹣1,c=﹣3,∴△=(﹣1)2﹣4×1×(﹣3)=13>0,∴x==,∴x1=,x2=.22.3x2+4x﹣4=0,这里a=3,b=4,c=﹣4,b2﹣4ac=42﹣4×3×(﹣4)=64,x=,x1=,x2=﹣223.(3x ﹣1)(x+2)=11x﹣4.3x 2+6x﹣x﹣2=11x﹣4,整理得3x2﹣6x+2=0,∵△=(﹣6)2﹣4×3×2=12,∴x==∴x1=,x2=24.2x2﹣5x﹣1=0.2x2﹣5x﹣1=0,∵b2﹣4ac=(﹣5)2﹣4×2×(﹣1)=33,∴x=,即x 1=,x2=25..∵a=1,b=,c=﹣20,b2﹣4ac=()2﹣4×1×(﹣20)=100>0,∴x=,x=,解得x1=﹣+5,x2=﹣﹣5.26.3x2+4x+5=0.∵△=42﹣4×3×5=﹣44<0,∴方程没有实数根.27.x2﹣4x﹣2=0.∵a=1,b=﹣4,c=﹣2,∴△=(﹣4)2﹣4×1×(﹣2)=4×6,∴x===2±,∴x1=2+,x2=2﹣.28.x2﹣x﹣4=0.a=1,b=﹣1,c=﹣4.b2﹣4ac=1+16=17>0.∴=∴x1=,x2=29..由原方程,得t2+2t﹣2=0,这里a=1,b=2,c=2.则t===﹣,即t1=t 2=﹣30.2x2﹣2x﹣1=0∵a=2,b=﹣2,c=﹣1,∴b2﹣4ac=(﹣2)2﹣4×2×(﹣1)=12,∴x1=,x2=31.3x2+7x+10=1﹣8x.原方程可化为x2+5x+3=0,解得:32.5x2﹣3x+2=0.∵b2﹣4ac=(﹣3)2﹣4×5×2<0,∴此方程无解33. 5x2﹣3x=x+11(公式法)5x2﹣3x=x+11,整理得:5x2﹣4x﹣11=0,这里a=5,b=﹣4,c=﹣11,∵△=16+220=236,∴x==,则x1=,x2=34.x2+3x+1=0,这里a=1,b=3,c=1,∵△=b 2﹣4ac=9﹣4=5,∴x=,则x1=,x2=35.4x2=2x+1移项得:4x2﹣2x﹣1=0,∵b2﹣4ac=(﹣2)2﹣4×4×(﹣1)=20,∴x==,∴x1=,x2=36.5x2﹣3x=x+1.方程化简为:5x2﹣4x﹣1=0,这里a=5,b=﹣4,c=﹣1,∴x==,∴x1=1,x2=﹣.37.3x2+7x+4=03x2+7x+4=0,∵a=3,b=7,c=4,∴b2﹣4ac=49﹣48=1>0,∴x=,∴x 1=﹣1,x2=﹣.38.2x2﹣3x﹣1=0(用公式法)∵a=2,b=﹣3,c=﹣1,∴△=(﹣3)2﹣4×2×(﹣1)=17,∴x==,所以x1=,x2=39.3x2+5x+1=0;∵原方程的二次项系数a=3,一次项系数b=5,常数项c=1,∴原方程的根是:x==,即x=;40.x2﹣4x+1=0a=1,b=﹣4,c=1,∴x====2±;41. x2﹣4x+5=0a=1,b=﹣4,c=5,∵△=b2﹣4ac=16﹣20=﹣4<0,42. x2+5x+3=0a=1,b=5,c=3,∴x===43.2x2﹣3x﹣6=0.这里a=2,b=﹣3,c=﹣6,∵△=b2﹣4ac=9+48=57,∴x=,则x1=,x2=44.3x2+4x+1=0(用公式法)∵二次项系数a=3,一次项系数b=4,常数项c=1,∴△=b 2﹣4ac=42﹣4×3×1=4>0∴x==∴x1=﹣1 x2=﹣;45.x2﹣4x﹣8=0(公式法)∵方程x2﹣4x﹣8=0的二次项系数a=1、一次项系数b=﹣4、常数项c=﹣8,∴x===2±2,∴x1=2+2,x2=2﹣2;46.2x2﹣x﹣2=0a=2,b=﹣1,c=﹣2,∵b2﹣4ac=(﹣1)2﹣4×2×(﹣2)=1+16=17>0,∴x==,∴x1=,x2=47.3x2+2(x﹣1)=0.2∵a=3,b=2,c=﹣2,△=b2﹣4ac=4+24=28,x==,解得x1=,x2=48.x2﹣4x﹣7=0∵x2﹣4x﹣7=0的二次项系数是a=1、一次项系数是b=﹣4、常数项是c=﹣7,∴x===2±,∴x1=2+,x2=2﹣49.y2﹣2y﹣4=0(公式法)由原方程知,二次项系数a=1,一次项系数b=﹣2,常数项c=﹣4,∴x==,∴,∴x1=1+,x2=1﹣;50.x2﹣3x=2x2﹣3x﹣2=0,∵a=1,b=﹣3,c=﹣2,∴x===,∴x1=,x2=51.2x2+x﹣=0.∵关于x的一元二次方程2x2+x﹣=0的二次项系数a=2,一次项系数b=1,常数项c=﹣,∴原方程的根是:=,即x=52.x2x+1=0这里a=1,b=﹣2,c=1,∵△=8﹣4=4,∴x==±1,则x1=+1,x2=﹣153.2x2﹣9x+8=0;∵a=2,b=﹣9,c=8∴x=,x1=,x2=;54. x2﹣6x+1=0;∵a=1,b=﹣6,c=1∴x=,∴x1=3+2,x2=3﹣2;55. x2+x﹣1=0;∵a=1,b=1,c=﹣1,∴x==;56. 2x2﹣6x+3=0;∵a=2,b=﹣6,c=3,∴x===;57.2x(x+4)=12x2+8x﹣1=0,∵a=2,b=8,c=﹣1,△=b2﹣4ac=64+8=72,∴x===.即x1=,x2=58.3x2+5(2x+1)=0.3x2+5(2x+1)=0,整理得:3x2+10x+5=0,∵a=3,b=10,c=5,∴b2﹣4ac=100﹣60=40>0,∴x==,则原方程的解为x1=,x2=59.2x2﹣4x﹣1=0(公式法)解:这里a=2,b=﹣4,c=﹣1,∵b2﹣4ac=(﹣4)2﹣4×2×(﹣1)=24,∴x==,∴x1=,x2=60.3x2﹣6x﹣4=0(公式法)3x2﹣6x﹣4=0,这里a=3,b=﹣6,c=﹣4,∵b2﹣4ac=36+48=84>0,∴x==,则x1=,x2=61.x2+2x﹣5=0∵a=1,b=2,c=﹣5,b2﹣4ac=24,∴x==﹣1,即x1=,x2=﹣1.62.x2﹣4x﹣3=0由题意得:a=1,b=﹣4,c=﹣3,∴x====2±63.4x2﹣3x﹣1=0a=4,b=﹣3,c=﹣1,△=9+16=25x==∴x1=1,x2=﹣.63. x2+2x﹣2=0;这里a=1,b=2,c=﹣2,∵b2﹣4ac=22﹣4×1×(﹣2)=12>0,∴x==﹣1,∴x1=﹣1+,x2=﹣1﹣;64. y2﹣3y+1=0;这里a=1,b=﹣3,c=1.∵b2﹣4ac=(﹣3)2﹣4×1×1=5>0,∴y=,∴y1=,y 2=;65. x2+3=2x.移项,得x2﹣2x+3=0,这里a=1,b=﹣2,c=3.∵b2﹣4ac=(﹣2)2﹣4×1×3=﹣4<0.∴原方程没有实数根66.x2﹣4x=﹣3移项,得x2﹣4x+3=0.∵a=1,b=﹣4,c=3,∴b2﹣4ac=(﹣4)2﹣4×1×3=4>0,∴x==,∴x1=1,x2=367. 3x2﹣2x﹣1=0;∵a=3,b=﹣2,c=﹣1,∴b2﹣4ac=(﹣2)2﹣4×3×(﹣1)=16,∴x===,∴x1=1,x2=﹣.68.;∵a=2,b=﹣1,c=﹣,∴b2﹣4ac=(﹣1)2﹣4×2×(﹣)=5,∴x==,∴x1=,x2=.69. 2x2﹣7x+5=0;∵a=2,b=﹣7,c=5,∴b 2﹣4ac=(﹣7)2﹣4×2×5=9,∴x==,∴x1=,x2=1.70. 2x2﹣7x﹣18=0.∵a=2,b=﹣7,c=﹣18,∴b2﹣4ac=(﹣7)2﹣4×2×(﹣18)=193,∴x==,∴x1=,x2=71. (x+1)(x+3)=6x+4;去括号,移项方程化为一般式为:x2﹣2x﹣1=0,∵a=1,b=﹣2,=﹣1,∴b2﹣4ac=(﹣2)2﹣4×1×(﹣1)=8∴x===1±,∴x1=1+,x2=1﹣;72. x2+2(+1)x+2=0;∵a=1,b=2(+1),c=2,∴b2﹣4ac=[2(+1)]2﹣4×1×2=16,∴x===﹣(+1)±2,∴x 1=﹣﹣3,x2=﹣+1;73. x2﹣(2m+1)x+m=0.∵a=1,b=﹣(2m+1),c=m,∴b2﹣4ac=[﹣(2m+1)]2﹣4×1×m=4m2+1,∴x=,∴x1=,x2=74. x(x+8)=16,x2+8x﹣16=0,a=1,b=8,c=﹣16,b2﹣4ac=82﹣4×1×(﹣16)=128>0,x=,x1=﹣4+4,x2=﹣4﹣4;75. x2﹣4x=4;x 2﹣4x﹣4=0;a=,b=﹣4,c=﹣4,b 2﹣4ac=(﹣4)2﹣4××(﹣4)=48>0,x==±,x1=+,x2=﹣;76. 2x2﹣2x+1=0,a=2,b=﹣2,c=1,b2﹣4ac=(﹣2)2﹣4×2×1=0,x1=x2=.77. 5x2+2x﹣1=0 ∵a=5,b=2,c=﹣1,∴△=b2﹣4ac=4+4×5×1=24>0∴x1•x2=∴x1=.78. 6y2+13y+6=0∵a=6,b=13,c=6,∴△=b2﹣4ac=169﹣4×6×6=25>0 ∴x=∴x1=﹣,x2=﹣.79. 3•x2+6x+9=7整理,得:x2+6x+2=0∴a=1,b=6,c=2∴△=b2﹣4ac=36﹣4×1×2=28>0 ∴x1•2==﹣3±∴x1=﹣3+,x2=﹣3﹣.80. 2x2﹣3x+1=0;根据原方程,得a=2,b=﹣3,c=1,∵b2﹣4ac=9﹣4×2×1=1>0,∴x=,x==.∴x1=1,x2=;81. 2y(y﹣1)+3=(y+1)2.由原方程,得2y2﹣2y+3=y2+2y+1,即y2﹣4y+2=0,∴a=1,b=﹣4,c=2.b2﹣4ac=(﹣4)2﹣4×1×2=8>0.∴x=x==∴x1=2+,x2=2﹣.82. x2=3x+1;方程化为x2﹣3x﹣1=0,∴a=1,b=﹣3,c=﹣1,b2﹣4ac=(﹣3)2﹣4×1×(﹣1)=13.∴x1=.83. (t+1)(t﹣3)=﹣t(3﹣3t).方程化为2t2﹣t+3=0,a=2,b=﹣1,c=3b2﹣4ac=1﹣4×2×3=﹣23<0,∴原方程无实数根84.x2﹣2ax﹣b2+a2=0.∵a=1,b=﹣2a,c=﹣b2+a2∴b2﹣4ac=4a2+4b2﹣4a 2=4b2∴x==a±|b|.85. 3x2=2﹣5x;a=3,b=5,c=﹣2b2﹣4ac=52﹣4×3×(﹣2)=25+24=49>0.x==.所以x1=﹣2,x 2=.86. y2﹣4y=1;原方程变形为:3y2﹣8y﹣2=0.a=3,b=﹣8,c=﹣2.b2﹣4ac=(﹣8)2﹣4×3×(﹣2)=64+24=88.x==.所以x 1=,x2=.87. (x+1)(x﹣1)=2x.原方程变形x2﹣2x﹣1=0.a=1,b=﹣2,c=﹣1.b2﹣4ac=(﹣2)2﹣4×1×(﹣1)=8+4=12>0.所以x==.故x1=+,x2=﹣.88.(2x﹣1)2﹣7=3(x+1);整理,得4x2﹣7x﹣9=0,因为a=4,b=﹣7,c=﹣9.所以x=89.x2﹣6x+11=0由原方程,知a=,b=﹣6,c=11将其代入求根公式x=,得x=,∴原方程的根是:x1=4,x2=90 .5x2﹣8x+2=0.这里a=5,b=﹣8,c=2,∵b2﹣4ac=64﹣40=24>0,∴x==,则x1=,x2=.91.x2﹣3x+1=0.x2﹣3x+1=0,这里a=1,b=﹣3,c=1,∵b2﹣4ac=(﹣3)2﹣4×1×1=9﹣4=5>0,∴x==,则x1=,x2=92.x2=5﹣12x方程化为一般形式为:x 2+12x﹣5=0,∴a=1,b=12,c=﹣5,∴△=122﹣4×1×(﹣5)=4×41>0,∴x===﹣6±,所以x1=﹣6+,x2=﹣6﹣.93. x2+x﹣1=0解:x2+x﹣1=0,b2﹣4ac=12﹣4×1×(﹣1)=5,∴x=,∴x1=,x2=.94.3x2﹣4x﹣1=0解:3x2﹣4x﹣1=0,这里a=3,b=﹣4,c=﹣1,b2﹣4ac=(﹣4)2﹣4×3×(﹣1)=28,∴x==,∴原方程的解是:x1=,x2=,这里a=2,b=﹣2,c=1,∴b2﹣4ac=﹣4×2×1=4,∴x==,∴x1=,x2=,∴原方程的解是x1=,x2=95.3x 2+2(x﹣1)=0,整理得:3x2+2x ﹣2=0,这里a=3,b=2,c=﹣2,∵△=b2﹣4ac=4+24=28,∴x==,则x1=,x2=96.方程整理得:x2﹣2x+1=0,这里a=1,b=﹣2,c=1,∵△=8﹣4=4,∴x==±1,则x1=+1,x2=﹣1.97.3x2﹣4x﹣1=03x2﹣4x﹣1=0,这里a=3,b=﹣4,c=﹣1,∵b2﹣4ac=(﹣4)2﹣4×3×(﹣1)=16+12=28>0,∴x==,则x1=,x 2=98.2x2﹣x+1=0a=2,b=﹣,c=1△=10﹣8=2x=∴x1=,x2=99. .解:整理得:x2﹣2x﹣1=0,∴b2﹣4ac=﹣4×1×(﹣1)=12,∴x==±,∴x1=+,x2=﹣100.3x2﹣4x﹣1=0.3x2﹣4x﹣1=0,a=3,b=﹣4,c=﹣1,b2﹣4ac=(﹣4)2﹣4×3×(﹣1)=28,∴x==,∴x 1=,x2=101.2x2+5x﹣1=0.∵a=2,b=5,c=﹣1,△=b 2﹣4ac=25+8=33,∴x===.即x 1=,x2=102.2x2﹣x﹣1=0.∵原方程的二次项系数a=2,一次项系数b=﹣1,常数项c=﹣1,∴x===,∴x1=1,x2=﹣.103..∵a=2,b=﹣,c=﹣,∴△=(﹣)2﹣4×2×(﹣)=6>0,x==.104.3x2+5x﹣1=0.∵一元二次方程3x2+5x﹣1=0的二次项系数a=3,一次项系数b=5,常数项c=﹣1,∴x===,∴x 1=,x2=.105.5x2﹣8x+2=0,a=5,b=﹣8,c=2,b2﹣4ac=(﹣8)2﹣4×5×2=24>0,x==,x1=,x2=.106.3x2+7x+10=1﹣8x,整理得:x 2+5x+3=0,解得:x==,即:x1=,x2=;。

人教版数学中考复习《一元二次方程》专题练习题含答案

人教版数学中考复习《一元二次方程》专题练习题含答案

人教版数学 初三中考复习 一元二次方程 专题练习题1.下列方程中,一定是一元二次方程的是( )A .3x 2+2x -1=0B .5x 2-6y -3=0C .ax 2-x +2=0D .3x 2-2x -1=02.若关于x 的方程(a -2)x 2-2ax +a +2=0是一元二次方程,则a 的值是( )A .2B .-2C .0D .不等于2的任意实数3.将一元二次方程3x 2=-2x +5化为一般形式,其一次项系数与常数项的和为____.4.将一元二次方程y(2y -3)=(y +2)(y -2)化为一般形式,并写出它的二次项系数、一次项系数和常数项.2x 2+x =2的解是( )=-1和x =06.已知关于x 的方程x 2+x +2a -1=0的一个根是0,则a =______. 7.若关于x 的一元二次方程ax 2-bx -2018=0有一根为x =-1,则a +b =______.8.今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60 m ,若将短边增长到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加1600 m 2,设扩大后的正方形绿地边长为x m ,下面所列方程正确的是( )A .x(x -60)=1600B .x(x +60)=1600C .60(x +60)=1600D .60(x -60)=16009. 有x 支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是( )A .12x(x -1)=45 B. 12x(x +1)=45 C .x(x -1)=45 D .x(x +1)=4510.如图所示的图形的面积为24,根据图中的条件,可列出方程:_______________________.11.下列方程中是关于x 的一元二次方程的是( )A .x 2+1x 2=0B .ax 2+bx +c =0C .(x -1)(x +2)=1D .x(x -1)=x 2+2x12.若关于x 的一元二次方程(a -1)x 2+x +|a|-1=0的一个根是0,则实数a 的值为( )A .-1B .0C .1D .-1或113.已知m 是关于x 的方程x 2-2x -3=0的一个根,则2m 2-4m =______.14.若方程(m -2)x 2+m x =1是关于x 的一元二次方程,则m 的取值范围是______________________.15.小明用30厘米的铁丝围成一个斜边长等于13厘米的直角三角形,设该直角三角形的一条直角边长为x 厘米,则另一条直角边长为__________厘米,可列出方程:___________________________.16.根据下列问题列出一元二次方程,并将其化成一般形式.(1)某市2015年平均房价为每平方米8000元,2017年平均房价降到每平方米7000元,求这两年平均房价年平均降低率;(2)如图,在一块长为22米,宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一边平行),剩余部分种上草坪,使草坪面积为300平方米,求道路的宽;(3)某种服装平均每天可销售20件,每件盈利30元,若单价每件降价1元,则每天可多销售5件,如果每天要盈利1445元,求每件服装应降价多少元.17.一元二次方程ax 2+bx +c =0的一个根是1,且a ,b 满足等式b =a -1+1-a +2,求这个一元二次方程.18.已知关于x 的方程(k 2-9)x 2+(k +3)x =0.(1)当k 为何值时,此方程是一元一次方程?(2)当k 为何值时,此方程是一元二次方程?并写出这个一元二次方程的二次项系数、一次项系数和常数项.19.若x 2a +b -3x a -b +1=0是关于x 的一元二次方程,求a ,b 的值.下面是两位同学的解法.甲:根据题意,得⎩⎨⎧2a +b =2,a -b =1,解得⎩⎨⎧a =1,b =0.乙:根据题意,得⎩⎨⎧2a +b =2,a -b =1或⎩⎨⎧2a +b =1,a -b =2,解得⎩⎨⎧a =1,b =0或⎩⎨⎧a =1,b =-1.你认为上述两位同学的解法是否正确?为什么?如果都不正确,请给出正确的解法.答案:1. D2. D3. -34. 解:一般形式为y 2-3y +4=0,二次项系数是1,一次项系数是-3,常数项是45. C6. 127. 20188. A9. A10. (x +1)2-1=2411. C12. A13. 614. m≥0且m≠215. (17-x) x 2+(17-x)2=13216. 解:(1)设这两年平均房价年平均降低率为x ,根据题意得8000(1-x)2=7000,化成一般形式为8x 2-16x +1=0(2)设道路的宽为x 米,则(22-x)(17-x)=300,化成一般形式为x 2-39x +74=0(3)设每件应降价x 元,则(20+5x)(30-x)=1445,化成一般形式为x 2-26x +169=017. 解:a =1,b =2,c =-3,此方程为x 2+2x -3=018. (1) 解:由题意得⎩⎨⎧k 2-9=0,k +3≠0,解得k =3,∴k =3时,此方程是一元一次方程 (2) 解:由题意得k 2-9≠0,则k≠±3,∴k≠±3时,此方程是一元二次方程,二次项系数、一次项系数和常数项分别为k 2-9,k +3,019. 解:都不正确,均考虑不全面.正确解法如下:要使x 2a +b -3x a -b +1=0是关于x 的一元二次方程,则⎩⎨⎧2a +b =2,a -b =2或⎩⎨⎧2a +b =2,a -b =1或⎩⎨⎧2a +b =2,a -b =0或⎩⎨⎧2a +b =1,a -b =2或⎩⎨⎧2a +b =0,a -b =2,解得⎩⎪⎨⎪⎧a =43,b =-23或⎩⎨⎧a =1,b =0或⎩⎪⎨⎪⎧a =23,b =23或⎩⎨⎧a =1,b =-1或⎩⎪⎨⎪⎧a =23,b =-43。

(完整版)初三一元二次方程练习题及答案

(完整版)初三一元二次方程练习题及答案

九年级数学(一元二次方程)一、选择题 (共8题,每题有四个选项,其中只有一项符合题意。

每题3分,共24分):1.下列方程中不一定是一元二次方程的是( )A.(a-3)x 2=8 (a ≠3)B.ax 2+bx+c=0232057x +-= 2下列方程中,常数项为零的是( )A.x 2+x=1B.2x 2-x-12=12;C.2(x 2-1)=3(x-1)D.2(x 2+1)=x+23.一元二次方程2x 2-3x+1=0化为(x+a)2=b 的形式,正确的是( ) A. 23162x ⎛⎫-= ⎪⎝⎭; B.2312416x ⎛⎫-= ⎪⎝⎭; C. 231416x ⎛⎫-= ⎪⎝⎭; D.以上都不对 4.关于x 的一元二次方程()22110a x x a -++-=的一个根是0,则a 值为( )A 、1B 、1-C 、1或1-D 、125.已知三角形两边长分别为2和9,第三边的长为二次方程x 2-14x+48=0的一根, 则这个三角形的周长为( )A.11B.17C.17或19D.196.已知一个直角三角形的两条直角边的长恰好是方程22870x x -+=的两个根,则这个直角三角形的斜边长是( )A 、、3 C 、6 D 、97.使分式2561x x x --+ 的值等于零的x 是( ) A.6 B.-1或6 C.-1 D.-68.若关于y 的一元二次方程ky 2-4y-3=3y+4有实根,则k 的取值范围是( ) A.k>-74 B.k ≥-74 且k ≠0 C.k ≥-74 D.k>74且k ≠0 9.已知方程22=+x x ,则下列说中,正确的是( )(A )方程两根和是1 (B )方程两根积是2(C )方程两根和是1- (D )方程两根积比两根和大210.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( )A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x =1000D.200[1+(1+x)+(1+x)2]=1000二、填空题:(每小题4分,共20分)11.用______法解方程3(x-2)2=2x-4比较简便.12.如果2x 2+1与4x 2-2x-5互为相反数,则x 的值为________.13.22____)(_____3-=+-x x x14.若一元二次方程ax 2+bx+c=0(a ≠0)有一个根为-1,则a 、b 、c 的关系是______.15.已知方程3ax 2-bx-1=0和ax 2+2bx-5=0,有共同的根-1, 则a= ______, b=______.16.一元二次方程x 2-3x-1=0与x 2-x+3=0的所有实数根的和等于____.17.已知3-2是方程x 2+mx+7=0的一个根,则m=________,另一根为_______.18.已知两数的积是12,这两数的平方和是25, 以这两数为根的一元二次方程是___________.19.已知x x 12,是方程x x 2210--=的两个根,则1112x x +等于__________.20.关于x 的二次方程20x mx n ++=有两个相等实根,则符合条件的一组,m n 的实数值可以是m = ,n = .三、用适当方法解方程:(每小题5分,共10分)21.22(3)5x x -+= 22.22330x x ++=四、列方程解应用题:(每小题7分,共21分)23.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数.24.如图所示,在宽为20m ,长为32m 的矩形耕地上,修筑同样宽的三条道路,(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的面积为570m 2,道路应为多宽?25.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。

专题复习】九年级数学上册 一元二次方程解法练习100题(含答案)

专题复习】九年级数学上册 一元二次方程解法练习100题(含答案)

专题复习】九年级数学上册一元二次方程解法练习100题(含答案)1.解方程:$2x^2-8x+3=0$,使用公式法。

2.解方程:$(2x-1)(x+3)=43$。

3.解方程:$4y^2+4y-1=-10-8y$。

4.解方程:$(x-1)(x-3)=8$。

5.解方程:$5x^2-8x+2=0$。

6.解方程:$x(x-3)=10$。

7.解方程:$x^2-2=-2x$。

8.解方程:$3x(7-x)=18-x(3x-15)$。

9.解方程:$4x(3x-2)=6x-4$。

10.解方程:$x^2+12x+27=0$。

11.解方程:$2x^2-4x+1=0$,使用配方法。

12.解方程:$4(x-1)^2=9(x-5)$。

13.解方程:$x^2-6=-2(x+1)$。

14.解方程:$x^2+4x-5=0$。

15.解方程:$2x^2+5x-1=0$。

16.解方程:$3(x-2)^2=x(x-2)$。

17.解方程:$2x^2-3x-2=0$。

18.解方程:$2x^2-7x+1=0$。

19.解方程:$x^2-6x-4=0$,使用配方法。

20.解方程:$x^2-4x-3=0$。

21.解方程:$x^2-5x+2=0$。

22.解方程:$x^2-4x+8=0$。

23.解方程:$3x^2-6x+4=0$。

24.解方程:$(x-2)(x-3)=12$。

25.解方程:$(x-3)(x+7)=-9$。

26.解方程:$3x^2+5(2x+1)=0$,使用公式法。

27.解方程:$x^2-12x-4=0$。

28.解方程:$(x-5)(x-6)=x-5$。

29.解方程:$x^2-8x-10=0$。

30.解方程:$x(x-3)=15-5x$。

31.解方程:$5x(x-3)=(x+1)(x-3)$。

32.解方程:$x^2+8x+15=0$。

33.解方程:$25x^2+10x+1=0$。

34.解方程:$x^2+6x-7=0$,使用配方法。

35.解方程:$x^2+4x-5=0$,使用配方法。

中考数学专题复习一元二次方程组的综合题附详细答案

中考数学专题复习一元二次方程组的综合题附详细答案

中考数学专题复习一元二次方程组的综合题附详细答案一、一元二次方程1.在等腰三角形△ABC 中,三边分别为a 、b 、c ,其中ɑ=4,若b 、c 是关于x 的方程x 2﹣(2k +1)x +4(k ﹣12)=0的两个实数根,求△ABC 的周长. 【答案】△ABC 的周长为10. 【解析】 【分析】分a 为腰长及底边长两种情况考虑:当a=4为腰长时,将x=4代入原方程可求出k 值,将k 值代入原方程可求出底边长,再利用三角形的周长公式可求出△ABC 的周长;当a=4为底边长时,由根的判别式△=0可求出k 值,将其代入原方程利用根与系数的关系可求出b+c 的值,由b+c=a 可得出此种情况不存在.综上即可得出结论. 【详解】当a =4为腰长时,将x =4代入原方程,得:()214421402k k ⎛⎫-++-= ⎪⎝⎭解得:52k = 当52k =时,原方程为x 2﹣6x +8=0, 解得:x 1=2,x 2=4,∴此时△ABC 的周长为4+4+2=10;当a =4为底长时,△=[﹣(2k +1)]2﹣4×1×4(k ﹣12)=(2k ﹣3)2=0, 解得:k =32, ∴b +c =2k +1=4. ∵b +c =4=a ,∴此时,边长为a ,b ,c 的三条线段不能围成三角形. ∴△ABC 的周长为10. 【点睛】本题考查了根的判别式、根与系数的关系、一元二次方程的解、等腰三角形的性质以及三角形的三边关系,分a 为腰长及底边长两种情况考虑是解题的关键.2.已知关于x 的二次函数22(21)1y x k x k =--++的图象与x 轴有2个交点. (1)求k 的取值范围;(2)若图象与x 轴交点的横坐标为12,x x ,且它们的倒数之和是32-,求k 的值. 【答案】(1)k <-34;(2)k=﹣1【解析】试题分析:(1)根据交点得个数,让y=0判断出两个不相等的实数根,然后根据判别式△= b 2-4ac 的范围可求解出k 的值;(2)利用y=0时的方程,根据一元二次方程的根与系数的关系,可直接列式求解可得到k 的值.试题解析:(1)∵二次函数y=x 2-(2k-1)x+k 2+1的图象与x 轴有两交点,∴当y=0时,x 2-(2k-1)x+k 2+1=0有两个不相等的实数根. ∴△=b 2-4ac=[-(2k-1)]2-4×1×(k 2+1)>0. 解得k <-34; (2)当y=0时,x 2-(2k-1)x+k 2+1=0. 则x 1+x 2=2k-1,x 1•x 2=k 2+1,∵=== 32-, 解得:k=-1或k= 13-(舍去), ∴k=﹣13.由图看出,用水量在m 吨之内,水费按每吨1.7元收取,超过m 吨,需要加收.4.如图,在Rt ABC 中,90B =∠,10AC cm =,6BC cm =,现有两点P 、Q 的分别从点A 和点B 同时出发,沿边AB ,BC 向终点C 移动.已知点P ,Q 的速度分别为2/cm s ,1/cm s ,且当其中一点到达终点时,另一点也随之停止移动,设P ,Q 两点移动时间为xs .问是否存在这样的x ,使得四边形APQC 的面积等于216cm ?若存在,请求出此时x 的值;若不存在,请说明理由.【答案】假设不成立,四边形APQC 面积的面积不能等于216cm ,理由见解析 【解析】 【分析】根据题意,列出BQ 、PB 的表达式,再列出方程,判断根的情况. 【详解】解:∵90B ∠=,10AC =,6BC =, ∴8AB =.∴BQ x =,82PB x =-;假设存在x 的值,使得四边形APQC 的面积等于216cm , 则()1168821622x x ⨯⨯--=, 整理得:2480x x -+=, ∵1632160=-=-<,∴假设不成立,四边形APQC 面积的面积不能等于216cm . 【点睛】本题考查了一元二次方程的应用,熟练掌握方程根的判别方法、理解方程的意义是本题的解题关键.5.解方程:(x +1)(x -1)=x.【答案】x 1,x 2 【解析】试题分析:根据方程的特点,根据平方差公式化为一般式,然后可根据公式法求解即可.试题解析:(x +1)(x -1)=x 2-2x-1=0∵a=1,b=-c=-1 ∴△=b 2-4ac=8+4=12>0∴∴x 1x 2.6.阅读下面的例题,范例:解方程x 2﹣|x|﹣2=0,解:(1)当x≥0时,原方程化为x 2﹣x ﹣2=0,解得:x 1=2,x 2=﹣1(不合题意,舍去). (2)当x <0时,原方程化为x 2+x ﹣2=0,解得:x 1=﹣2,x 2=1(不合题意,舍去).∴原方程的根是x 1=2,x 2=﹣2请参照例题解方程x 2﹣|x ﹣10|﹣10=0.【答案】x 1=4,x 2=﹣5. 【解析】 【分析】分为两种情况:当x≥10时,原方程化为x 2﹣x=0,当x <10时,原方程化为x 2+x ﹣20=0,分别求出方程的解即可. 【详解】当x≥10时,原方程化为x 2﹣x+10﹣10=0,解得x 1=0(不合题意,舍去),x 2=1(不合题意,舍去);当x<10时,原方程化为x2+x﹣20=0,解得x3=4,x4=﹣5,故原方程的根是x1=4,x2=﹣5.【点睛】本题考查了解一元二次方程——因式分解法,解此题的关键是能正确去掉绝对值符号.7.关于x的一元二次方程.(1).求证:方程总有两个实数根;(2).若方程的两个实数根都是正整数,求m的最小值.【答案】(1)证明见解析;(2)-1.【解析】【分析】(1)根据一元二次方程根的个数情况与根的判别式关系可以证出方程总有两个实数根. (2)根据题意利用十字相乘法解方程,求得,再根据题意两个根都是正整数,从而可以确定的取值范围,即求出吗的最小值.【详解】(1)证明:依题意,得.,∴.∴方程总有两个实数根.由.可化为:得,∵方程的两个实数根都是正整数,∴.∴.∴的最小值为.【点睛】本题主要考查了一元二次方程根的判别式与根的个数关系和利用十字相乘法解含参数的方程,熟知根的判别式大于零方程有两个不相等的实数根,判别式等于零有两个相等的实数根或只有一个实数根,判别式小于零无根和十字相乘法的法则是解题关键.8.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?【答案】羊圈的边长AB,BC分别是20米、20米.【解析】试题分析:设AB的长度为x米,则BC的长度为(100﹣4x)米;然后根据矩形的面积公式列出方程.试题解析:设AB的长度为x米,则BC的长度为(100﹣4x)米.根据题意得(100﹣4x)x=400,解得 x1=20,x2=5.则100﹣4x=20或100﹣4x=80.∵80>25,∴x2=5舍去.即AB=20,BC=20考点:一元二次方程的应用.9.工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)求长方体底面面积为12dm2时,裁掉的正方形边长多大?【答案】裁掉的正方形的边长为2dm,底面积为12dm2.【解析】试题分析:设裁掉的正方形的边长为xdm,则制作无盖的长方体容器的长为(10-2x)dm,宽为(6-2x)dm,根据长方体底面面积为12dm2列出方程,解方程即可求得裁掉的正方形边长.试题解析:设裁掉的正方形的边长为xdm,由题意可得(10-2x)(6-2x)=12,即x2-8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的边长为2dm,底面积为12dm2.10.关于x的一元二次方程(k-2)x2-4x+2=0有两个不相等的实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程x2-4x+k=0与x2+mx-1=0有一个相同的根,求此时m的值.【答案】(1)k<4且k≠2.(2)m=0或m=8 3 .【解析】分析:(1)由题意,根据一元二次方程的定义和一元二次方程根的判别式列出关于k 的不等式组,解不等式组即可求得对应的k 的取值范围;(2)由(1)得到符合条件的k 的值,代入原方程,解方程求得x 的值,然后把所得x 的值分别代入方程x 2+mx -1=0即可求得对应的m 的值.详解:(1)∵一元二次方程(k-2)x 2-4x+2=0有两个不相等的实数根, ∴△=16-8(k-2)=32-8k >0且k-2≠0. 解得:k <4且k≠2.(2)由(1)可知,符合条件的:k=3,将k=3代入原方程得:方程x 2-4x+3=0,解此方程得:x 1=1,x 2=3.把x=1时,代入方程x 2+mx-1=0,有1+m-1=0,解得m=0. 把x=3时,代入方程x 2+mx-1=0,有9+3m-1=0,解得m=83-.∴m=0或m=83-.点睛:(1)知道“在一元二次方程20?(0)ax bx c a ++=≠中,当△=240b ac ->时,方程有两个不相等的实数根;当△=240b ac -=时,方程有两个相等的实数根;△=240b ac -<时,方程没有实数根”是正确解答第1小题的关键;(2)解第2小题时,需注意相同的根存在两种情况,解题时不要忽略了其中任何一种情况.11.已知:关于x 的一元二次方程221(1)204x m x m +++-=.(1)若此方程有两个实数根,求没m 的最小整数值; (2)若此方程的两个实数根为1x ,2x ,且满足22211221184x x x m x +=--,求m 的值. 【答案】(1)-4;(2)m=3 【解析】 【分析】(1)利用根的判别式的意义得到△≥0,然后解不等式得到m 的范围,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到12(1)x x m +=-+,212124x x m =-,然后解关于m 的一元二次方程,即可确定m 的值. 【详解】解:(1)∵221(1)204x m x m +++-=有两个实数根,∴221(1)41(2)04m m ∆=+-⨯⨯-≥,∴290m +≥, ∴92m ≥-; ∴m 的最小整数值为:4m =-;(2)由根与系数的关系得:12(1)x x m +=-+,212124x x m =-, 由22212121184x x x x m ++=-得: ()22211121844m m m ⎛⎫⎡⎤-+--=- ⎪⎣⎦⎝⎭∴22150m m +-=, 解得:3m =或5m =-;∵92m ≥-, ∴3m =.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,则12bx x a +=-,12c x x a=.也考查了根的判别式.解题的关键是熟练掌握根与系数的关系和根的判别式.12.解方程:(x 2+x )2+(x 2+x )=6. 【答案】x 1=﹣2,x 2=1 【解析】 【分析】设x 2+x =y ,将原方程变形整理为y 2+y ﹣6=0,求得y 的值,然后再解一元二次方程即可.【详解】解:设x 2+x =y ,则原方程变形为y 2+y ﹣6=0,解得y 1=﹣3,y 2=2.①当y =2时,x 2+x =2,即x 2+x ﹣2=0, 解得x 1=﹣2,x 2=1;②当y =﹣3时,x 2+x =﹣3,即x 2+x+3=0, ∵△=12﹣4×1×3=1﹣12=﹣11<0, ∴此方程无解;∴原方程的解为x 1=﹣2,x 2=1. 【点睛】本题考查了换元法和一元二次方程的解法,设出元化简原方程是解答本题的关键.13.阅读材料:若22228160m mn n n -+-+=,求m 、n 的值.解:22228160m mn n n -+-+=,222(2)(816)0m mn n n n ∴-++-+= 22()(4)0m n n ∴-+-=, 0,40m n n ∴-=-=, 4,4n m ∴==.根据你的观察,探究下面的问题:(1)己知2222210x xy y y ++++=,求x y -的值.(2)已知△ABC 的三边长a 、b 、c 都是正整数,且满足2268250a b a b +--+=,求边c 的最大值.(3) 若己知24,6130a b ab c c -=+-+=,求a b c -+的值. 【答案】(1)2(2)6(3)7 【解析】 【分析】(1)将多项式第三项分项后,结合并利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出x 与y 的值,即可求出x ﹣y 的值;(2)将已知等式25分为9+16,重新结合后,利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出a 与b 的值,根据边长为正整数且三角形三边关系即可求出c 的长;(3)由a ﹣b =4,得到a =b +4,代入已知的等式中重新结合后,利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出b 与c 的值,进而求出a 的值,即可求出a ﹣b +c 的值. 【详解】(1)∵x 2+2xy +2y 2+2y +1=0∴(x 2+2xy +y 2)+(y 2+2y +1)=0 ∴(x +y )2+(y +1)2=0 ∴x +y =0 y +1=0 解得:x =1,y =﹣1 ∴x ﹣y =2;(2)∵a 2+b 2﹣6a ﹣8b +25=0∴(a 2﹣6a +9)+(b 2﹣8b +16)=0 ∴(a ﹣3)2+(b ﹣4)2=0 ∴a ﹣3=0,b ﹣4=0 解得:a =3,b =4∵三角形两边之和>第三边∴c <a +b ,c <3+4,∴c <7.又∵c 是正整数,∴△ABC 的最大边c 的值为4,5,6,∴c 的最大值为6;(3)∵a ﹣b =4,即a =b +4,代入得:(b +4)b +c 2﹣6c +13=0,整理得:(b 2+4b +4)+(c 2﹣6c +9)=(b +2)2+(c ﹣3)2=0,∴b +2=0,且c ﹣3=0,即b =﹣2,c =3,a =2,则a ﹣b+c=2﹣(﹣2)+3=7.故答案为7.【点睛】本题考查了因式分解的应用,以及非负数的性质,熟练掌握完全平方公式是解答本题的关键.14.如图,在△ABC中,∠B=90°,AB=6 cm,BC=8 cm,若点P从点A沿AB边向B点以1 cm/s的速度移动,点Q从B点沿BC边向点C以2 cm/s的速度移动,两点同时出发.(1)问几秒后,△PBQ的面积为8cm²?(2)出发几秒后,线段PQ的长为cm ?(3)△PBQ的面积能否为10 cm2?若能,求出时间;若不能,请说明理由.【答案】(1) 2或4秒 cm;(3)见解析.【解析】【分析】(1)由题意,可设P、Q经过t秒,使△PBQ的面积为8cm2,则PB=6-t,BQ=2t,根据三角形面积的计算公式,S△PBQ=12BP×BQ,列出表达式,解答出即可;(2)设经过x秒后线段PQ的长为cm,依题意得AP=x,BP=6-x,BQ=2x,利用勾股定理列方程求解;(3)将△PBQ的面积表示出来,根据△=b2-4ac来判断.【详解】(1)设P,Q经过t秒时,△PBQ的面积为8 cm2,则PB=6-t,BQ=2t,∵∠B=90°,∴12(6-t)× 2t=8,解得t1=2,t2=4,∴当P,Q经过2或4秒时,△PBQ的面积为8 cm2;(2)设x秒后,PQ= cm,由题意,得(6-x)2+4x2=32,解得x1=25,x2=2,故经过25秒或2秒后,线段PQ的长为 cm;(3)设经过y秒,△PBQ的面积等于10 cm2,S △PBQ =12×(6-y)× 2y =10, 即y 2-6y +10=0,∵Δ=b 2-4ac =36-4× 10=-4< 0, ∴△PBQ 的面积不会等于10 cm 2. 【点睛】本题考查了一元二次方程的应用,熟练的掌握一元二次方程的应用是本题解题的关键.15.阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a 的形式。

中考数学专题复习一元二次方程的综合题附答案解析

中考数学专题复习一元二次方程的综合题附答案解析

一、一元二次方程 真题与模拟题分类汇编(难题易错题) 1.关于x 的方程x 2﹣2(k ﹣1)x +k 2=0有两个实数根x 1、x 2. (1)求k 的取值范围;(2)若x 1+x 2=1﹣x 1x 2,求k 的值.【答案】(1)12k ≤;(2)3k = 【解析】试题分析:(1)方程有两个实数根,可得240b ac ∆=-≥,代入可解出k 的取值范围; (2)由韦达定理可知,()2121221,x x k x x k +=-=,列出等式,可得出k 的值.试题解析:(1)∵Δ=4(k -1)2-4k 2≥0,∴-8k +4≥0,∴k ≤12; (2)∵x 1+x 2=2(k -1),x 1x 2=k 2,∴2(k -1)=1-k 2, ∴k 1=1,k 2=-3. ∵k ≤12,∴k =-3.2.解方程:(x+1)(x ﹣3)=﹣1. 【答案】x 1=1+3,x 2=1﹣3 【解析】试题分析:根据方程的特点,先化为一般式,然后利用配方法求解即可. 试题解析:整理得:x 2﹣2x=2,配方得:x 2﹣2x+1=3,即(x ﹣1)2=3, 解得:x 1=1+3,x 2=1﹣3.3.已知x 1、x 2是关于x 的﹣元二次方程(a ﹣6)x 2+2ax+a=0的两个实数根. (1)求a 的取值范围;(2)若(x 1+1)(x 2+1)是负整数,求实数a 的整数值. 【答案】(1)a≥0且a≠6;(2)a 的值为7、8、9或12. 【解析】 【分析】(1)根据一元二次方程的定义及一元二次方程的解与判别式之间的关系解答即可;(2)根据根与系数的关系可得x 1+x 2=﹣26a a + ,x 1x 2=6aa + ,由(x 1+1)(x 2+1)=x 1x 2+x 1+x 2+1=﹣66a - 是是负整数,即可得66a -是正整数.根据a 是整数,即可求得a 的值2. 【详解】(1)∵原方程有两实数根,∴,∴a≥0且a≠6.(2)∵x 1、x 2是关于x 的一元二次方程(a ﹣6)x 2+2ax+a=0的两个实数根, ∴x 1+x 2=﹣,x 1x 2=,∴(x 1+1)(x 2+1)=x 1x 2+x 1+x 2+1=﹣+1=﹣.∵(x 1+1)(x 2+1)是负整数, ∴﹣是负整数,即是正整数.∵a 是整数,∴a ﹣6的值为1、2、3或6, ∴a 的值为7、8、9或12. 【点睛】本题考查了根的判别式和根与系数的关系,能根据根的判别式和根与系数的关系得出关于a 的不等式是解此题的关键.4.发现思考:已知等腰三角形ABC 的两边分别是方程x 2﹣7x+10=0的两个根,求等腰三角形ABC 三条边的长各是多少?下边是涵涵同学的作业,老师说他的做法有错误,请你找出错误之处并说明错误原因. 涵涵的作业解:x 2﹣7x+10=0 a=1 b=﹣7 c=10 ∵b 2﹣4ac=9>0∴x=2b b 4ac 2a--=732±∴x 1=5,x 2=2所以,当腰为5,底为2时,等腰三角形的三条边为5,5,2. 当腰为2,底为5时,等腰三角形的三条边为2,2,5. 探究应用:请解答以下问题:已知等腰三角形ABC 的两边是关于x 的方程x 2﹣mx+m 2﹣14=0的两个实数根. (1)当m=2时,求△ABC 的周长; (2)当△ABC 为等边三角形时,求m 的值.【答案】错误之处及错误原因见解析;(1)当m=2时,△ABC 的周长为72;(2)当△ABC 为等边三角形时,m 的值为1. 【解析】【分析】根据三角形三边关系可以得到等腰三角形的三条边不能为2、2、5. (1)先解方程,再确定边,从而求周长;(2)是等边三角形,则两根相等,即△=(﹣m)2﹣4(m2﹣14)=m2﹣2m+1,可求得m.【详解】解:错误之处:当2为腰,5为底时,等腰三角形的三条边为2、2、5.错误原因:此时不能构成三角形.(1)当m=2时,方程为x2﹣2x+34=0,∴x1=12,x2=32.当12为腰时,12+12<32,∴12、12、32不能构成三角形;当32为腰时,等腰三角形的三边为32、32、12,此时周长为32+32+12=72.答:当m=2时,△ABC的周长为72.(2)若△ABC为等边三角形,则方程有两个相等的实数根,∴△=(﹣m)2﹣4(m2﹣14)=m2﹣2m+1=0,∴m1=m2=1.答:当△ABC为等边三角形时,m的值为1.【点睛】本题考核知识点:二元一次方程的运用.解题关键点:熟练掌握二元一次方程的解法和等腰三角形性质.5.按上述方案,一家酒店四、五两月用水量及缴费情况如下表所示,那么,这家酒店四、五两月的水费分别是按哪种方案计算的?并求出的值.月份用水量(吨)水费(元)四月3559.5五月80151【答案】6.由图看出,用水量在m 吨之内,水费按每吨1.7元收取,超过m 吨,需要加收.7.(问题)如图①,在a×b×c (长×宽×高,其中a ,b ,c 为正整数)个小立方块组成的长方体中,长方体的个数是多少? (探究)探究一:(1)如图②,在2×1×1个小立方块组成的长方体中,棱AB 上共有1+2=232⨯=3条线段,棱AC ,AD 上分别只有1条线段,则图中长方体的个数为3×1×1=3. (2)如图③,在3×1×1个小立方块组成的长方体中,棱AB 上共有1+2+3=342⨯=6条线段,棱AC ,AD 上分别只有1条线段,则图中长方体的个数为6×1×1=6. (3)依此类推,如图④,在a×1×1个小立方块组成的长方体中,棱AB 上共有1+2+…+a=()a a 12+线段,棱AC ,AD 上分别只有1条线段,则图中长方体的个数为______. 探究二:(4)如图⑤,在a×2×1个小立方块组成的长方体中,棱AB 上有()a a 12+条线段,棱AC上有1+2=232⨯=3条线段,棱AD 上只有1条线段,则图中长方体的个数为()a a 12+×3×1=()3a a 12+.(5)如图⑥,在a×3×1个小立方块组成的长方体中,棱AB 上有()a a 12+条线段,棱AC上有1+2+3=342⨯=6条线段,棱AD 上只有1条线段,则图中长方体的个数为______. (6)依此类推,如图⑦,在a×b×1个小立方块组成的长方体中,长方体的个数为______.探究三:(7)如图⑧,在以a×b×2个小立方块组成的长方体中,棱AB 上有()a a 12+条线段,棱AC 上有()b b 12+条线段,棱AD 上有1+2=232⨯=3条线段,则图中长方体的个数为()3a a 12+×()b b 12+×3=()()3ab a 1b 14++.(8)如图⑨,在a×b×3个小立方块组成的长方体中,棱AB 上有()a a 12+条线段,棱AC上有()b b 12+条线段,棱AD 上有1+2+3=342⨯=6条线段,则图中长方体的个数为______.(结论)如图①,在a×b×c 个小立方块组成的长方体中,长方体的个数为______. (应用)在2×3×4个小立方块组成的长方体中,长方体的个数为______. (拓展)如果在若干个小立方块组成的正方体中共有1000个长方体,那么组成这个正方体的小立方块的个数是多少?请通过计算说明你的结论.【答案】探究一:(3)()a a12+;探究二:(5)3a(a+1);(6)()()ab a1b14++;探究三:(8)()()3ab a1b12++;【结论】:①()()()abc a1b1c18+++;【应用】:180;【拓展】:组成这个正方体的小立方块的个数是64,见解析.【解析】【分析】(3)根据规律,求出棱AB,AC,AD上的线段条数,即可得出结论;(5)根据规律,求出棱AB,AC,AD上的线段条数,即可得出结论;(6)根据规律,求出棱AB,AC,AD上的线段条数,即可得出结论;(8)根据规律,求出棱AB,AC,AD上的线段条数,即可得出结论;(结论)根据规律,求出棱AB,AC,AD上的线段条数,即可得出结论;(应用)a=2,b=3,c=4代入(结论)中得出的结果,即可得出结论;(拓展)根据(结论)中得出的结果,建立方程求解,即可得出结论.【详解】解:探究一、(3)棱AB上共有()a a12+线段,棱AC,AD上分别只有1条线段,则图中长方体的个数为()a a12+×1×1=()a a12+,故答案为() a a12+;探究二:(5)棱AB上有()a a12+条线段,棱AC上有6条线段,棱AD上只有1条线段,则图中长方体的个数为()a a12+×6×1=3a(a+1),故答案为3a(a+1);(6)棱AB上有()a a12+条线段,棱AC上有()b b12+条线段,棱AD上只有1条线段,则图中长方体的个数为()a a12+×()b b12+×1=()()ab a1b14++,故答案为()() ab a1b14++;探究三:(8)棱AB上有()a a12+条线段,棱AC上有()b b12+条线段,棱AD上有6条线段,则图中长方体的个数为()a a12+×()b b12+×6=()()3ab a1b12++,故答案为()()3ab a 1b 12++;(结论)棱AB 上有()a a 12+ 条线段,棱AC 上有()b b 12+条线段,棱AD 上有()c c 12+条线段,则图中长方体的个数为()a a 12+×()b b 12+×()c c 12+=()()()abc a 1b 1c 18+++,故答案为()()()abc a 1b 1c 18+++;(应用)由(结论)知,()()()abc a 1b 1c 18+++,∴在2×3×4个小立方块组成的长方体中,长方体的个数为()()()2342131418⨯⨯⨯+⨯+⨯+=180,故答案为为180;拓展:设正方体的每条棱上都有x 个小立方体,即a=b=c=x ,由题意得33(1)8x x +=1000, ∴[x (x+1)]3=203, ∴x (x+1)=20,∴x 1=4,x 2=-5(不合题意,舍去) ∴4×4×4=64所以组成这个正方体的小立方块的个数是64. 【点睛】解此题的关键在于根据已知得出规律,题目较好,但有一定的难度,是一道比较容易出错的题目.8.阅读下面的例题, 范例:解方程x 2﹣|x|﹣2=0,解:(1)当x≥0时,原方程化为x 2﹣x ﹣2=0,解得:x 1=2,x 2=﹣1(不合题意,舍去). (2)当x <0时,原方程化为x 2+x ﹣2=0,解得:x 1=﹣2,x 2=1(不合题意,舍去). ∴原方程的根是x 1=2,x 2=﹣2请参照例题解方程x 2﹣|x ﹣10|﹣10=0. 【答案】x 1=4,x 2=﹣5. 【解析】 【分析】分为两种情况:当x≥10时,原方程化为x 2﹣x=0,当x <10时,原方程化为x 2+x ﹣20=0,分别求出方程的解即可.【详解】当x≥10时,原方程化为x 2﹣x+10﹣10=0,解得x 1=0(不合题意,舍去),x 2=1(不合题意,舍去);当x <10时,原方程化为x 2+x ﹣20=0,解得x 3=4,x 4=﹣5, 故原方程的根是x 1=4,x 2=﹣5. 【点睛】本题考查了解一元二次方程——因式分解法,解此题的关键是能正确去掉绝对值符号.9.已知关于x 的一元二次方程x 2﹣mx ﹣2=0…①(1)若x =﹣1是方程①的一个根,求m 的值和方程①的另一根; (2)对于任意实数m ,判断方程①的根的情况,并说明理由.【答案】(1)方程的另一根为x=2;(2)方程总有两个不等的实数根,理由见解析. 【解析】试题分析:(1)直接把x=-1代入方程即可求得m 的值,然后解方程即可求得方程的另一个根;(2)利用一元二次方程根的情况可以转化为判别式△与0的关系进行判断. (1)把x=-1代入得1+m-2=0,解得m=1 ∴2--2=0.∴∴另一根是2; (2)∵,∴方程①有两个不相等的实数根.考点:本题考查的是根的判别式,一元二次方程的解的定义,解一元二次方程点评:解答本题的关键是熟练掌握一元二次方程根的情况与判别式△的关系:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根10.已知关于x 的方程(a ﹣1)x 2+2x +a ﹣1=0. (1)若该方程有一根为2,求a 的值及方程的另一根;(2)当a 为何值时,方程的根仅有唯一的值?求出此时a 的值及方程的根. 【答案】(1)a=15,方程的另一根为12;(2)答案见解析. 【解析】 【分析】(1)把x=2代入方程,求出a 的值,再把a 代入原方程,进一步解方程即可;(2)分两种情况探讨:①当a=1时,为一元一次方程;②当a≠1时,利用b 2-4ac =0求出a 的值,再代入解方程即可. 【详解】(1)将x =2代入方程2(a 1)x 2x a 10-++-=,得4(a 1)4a 10-++-=,解得:a =15.将a=15代入原方程得24x2054x5-+-=,解得:x1=12,x2=2.∴a=15,方程的另一根为12;(2)①当a=1时,方程为2x=0,解得:x=0.②当a≠1时,由b2-4ac=0得4-4(a-1)2=0,解得:a=2或0.当a=2时,原方程为:x2+2x+1=0,解得:x1=x2=-1;当a=0时,原方程为:-x2+2x-1=0,解得:x1=x2=1.综上所述,当a=1,0,2时,方程仅有一个根,分别为0,1,-1.考点:1.一元二次方程根的判别式;2.解一元二次方程;3.分类思想的应用.。

中考数学专题练习 一元二次方程(含解析)

中考数学专题练习 一元二次方程(含解析)

一元二次方程一、选择题1.方程x2﹣2x﹣5=0,x3=x,y2﹣3x=2,x2=0,其中一元二次方程的个数是()A.1个B.2个C.3个D.4个2. x2﹣6x=1,左边配成一个完全平方式得()A.(x﹣3)2=10 B.(x﹣3)2=9 C.(x﹣6)2=8 D.(x﹣6)2=103.方程(x﹣1)(x+3)=5的根为()A.x1=﹣1,x2=﹣3 B.x1=1,x2=﹣3 C.x1=﹣2,x2=4 D.x1=2,x2=﹣44.若关于x的方程3x2﹣2x+m=0的一个根是﹣1,则m的值为()A.﹣5 B.﹣1 C.1 D.55.用公式法解﹣x2+3x=1时,先求出a、b、c的值,则a、b、c依次为()A.﹣1,3,﹣1 B.1,﹣3,﹣1 C.﹣1,﹣3,﹣1 D.1,﹣3,16.方程x2=0与3x2=3x的解为()A.都是x=0B.有一个相同,且这个相同的解为x=0C.都不相同D.以上答案都不对7.已知x2﹣8xy+15y2=0,那么x是y的()倍.A.3 B.5 C.3或5 D.2或48.已知x=1是方程x2﹣ax+1=0的根,化简﹣得()A.1 B.0 C.﹣1 D.29.方程x(x+1)=x+1的根为()A.﹣1 B.1C.﹣1或1 D.以上答案都不对10.某产品的成本两年降低了75%,平均每年递降()A.50% B.25%C.37.5% D.以上答案都不对二、填空题11.方程3x2﹣5x=0的二次项系数是.12.5x2+5=26x化成一元二次方程的一般形式为.13.一元二次方程ax2+bx+c=0,若有一个根为﹣1,则a﹣b+c= ;如果a+b+c=0,则有一根为.14.一元二次方程ax2+bx+c=0(a≠0)有一根为零的条件是.15.关于x的方程2x﹣3=0是一元二次方程,则m= .三、解答题16.用适当的方法解方程:(1)2x2﹣4x+1=0;(2)x2﹣5x﹣6=0;(3)(x﹣2)(x﹣3)=12;(4)9(x﹣3)2﹣4(x﹣2)2=0.17.用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式.18.已知下列n(n为正整数)个关于x的一元二次方程:x2﹣1=0,x2+x﹣2=0,x2+2x﹣3=0,…x2+(n﹣1)x﹣n=0.(1)请解上述一元二次方程;(2)请你指出这n个方程的根具有什么共同特点,写出一条即可.19.如图,有33米长的竹篱笆,要围成一边(墙长15米)面积为130平方米的长方形鸡场,求鸡场的长和宽各为多少?一元二次方程参考答案与试题解析一、选择题1.方程x2﹣2x﹣5=0,x3=x,y2﹣3x=2,x2=0,其中一元二次方程的个数是()A.1个B.2个C.3个D.4个【考点】一元二次方程的定义.【分析】直接根据一元二次方程的定义可得到在所给的方程中x2﹣2x﹣5=0,x2=0是一元二次方程.【解答】解:方程x2﹣2x﹣5=0,x3=x,y2﹣3x=2,x2=0,其中一元二次方程是x2﹣2x﹣5=0,x2=0.故选B.【点评】本题考查了一元二次方程的定义:只含有一个未知数,并且未知数的最高次数为2的整式方程叫一元二次方程.2.x2﹣6x=1,左边配成一个完全平方式得()A.(x﹣3)2=10 B.(x﹣3)2=9 C.(x﹣6)2=8 D.(x﹣6)2=10【考点】解一元二次方程﹣配方法.【专题】计算题.【分析】给方程左右两边都加上9,左边化为完全平方式,右边合并为一个常数,即可得到正确的选项.【解答】解:x2﹣6x=1,方程左右两边都加上9得:x2﹣6x+9=10,即(x﹣3)2=10.故选A【点评】此题考查了解一元二次方程﹣配方法,利用此方法解方程时,首先将方程的二次项系数化为1,同时将常数项移到方程右边,然后方程左右两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并为一个非负常数,开方转化为两个一元一次方程来求解.3.方程(x﹣1)(x+3)=5的根为()A.x1=﹣1,x2=﹣3 B.x1=1,x2=﹣3 C.x1=﹣2,x2=4 D.x1=2,x2=﹣4【考点】解一元二次方程﹣因式分解法.【分析】首先把方程转化为一般形式,再利用因式分解法即可求解.【解答】解:(x﹣1)(x+3)=5,x2+3x﹣x﹣3﹣5=0,x2+2x﹣8=0,(x﹣2)(x+4)=0,解得x1=2,x2=﹣4.故选D.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.4.若关于x的方程3x2﹣2x+m=0的一个根是﹣1,则m的值为()A.﹣5 B.﹣1 C.1 D.5【考点】一元二次方程的解.【专题】方程思想.【分析】根据一元二次方程解的定义,将x=1代入原方程,然后解关于m的一元一次方程即可.【解答】解:∵关于x的方程3x2﹣2x+m=0的一个根是﹣1,∴当x=﹣1时,由原方程,得3+2+m=0,解得m=﹣5;故选A.【点评】本题考查的是一元二次方程的根即方程的解的定义.本题逆用一元二次方程解的定义易得出m的值.5.用公式法解﹣x2+3x=1时,先求出a、b、c的值,则a、b、c依次为()A.﹣1,3,﹣1 B.1,﹣3,﹣1 C.﹣1,﹣3,﹣1 D.1,﹣3,1【考点】解一元二次方程﹣公式法.【分析】先移项,化成一般形式,再得出答案即可.【解答】解:∵﹣x2+3x=1,∴﹣x2+3x﹣1=0,∴x2﹣3x+1=0,∴a=﹣1,b=3,c=﹣1(或a=1,b=﹣3,c=1),【点评】本题考查了解一元二次方程和一元二次方程的一般形式的应用,解此题的关键是能把方程化成一般形式.6.方程x2=0与3x2=3x的解为()A.都是x=0B.有一个相同,且这个相同的解为x=0C.都不相同D.以上答案都不对【考点】解一元二次方程﹣因式分解法.【专题】计算题.【分析】解x2=0得x1=x2=0;变形3x2=3x得x2﹣x=0,左边分解得到x(x﹣1)=0,则x1=0,x2=1.【解答】解:∵x2=0∴x1=x2=0;∵x2﹣x=0,∴x(x﹣1)=0,∴x1=0,x2=1.故选B.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程右边变形为0,然后把方程左边进行因式分解,这样把一元二次方程转化为两个一元一次方程,再解一次方程可得到一元二次方程的解.7.已知x2﹣8xy+15y2=0,那么x是y的()倍.A.3 B.5 C.3或5 D.2或4【考点】解一元二次方程﹣因式分解法.【专题】计算题.【分析】先把等式左边分解因式得到(x﹣3y)(x﹣5y)=0,则x﹣3y=0或x﹣5y=0,即可得到x=3y 或x=5y.【解答】解:∵(x﹣3y)(x﹣5y)=0,∴x﹣3y=0或x﹣5y=0,∴x=3y或x=5y.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程右边变形为0,然后把方程左边进行因式分解,这样把一元二次方程转化为两个一元一次方程,再解一次方程可得到一元二次方程的解.8.已知x=1是方程x2﹣ax+1=0的根,化简﹣得()A.1 B.0 C.﹣1 D.2【考点】一元二次方程的解;二次根式的性质与化简.【分析】先将x=1代入方程x2﹣ax+1=0,可得关于a的方程,解方程求出a的值,再根据二次根式的性质化简即可.【解答】解:∵x=1是方程x2﹣ax+1=0的根,∴12﹣a×1+1=0,∴a=2,∴﹣=﹣=a﹣1﹣(3﹣a)=2a﹣4=2×2﹣4=0.故选B.【点评】本题主要考查了方程的解的定义,二次根式的性质与化简,解题关键是将已知的根代入方程,正确求出a的值.9.方程x(x+1)=x+1的根为()A.﹣1 B.1C.﹣1或1 D.以上答案都不对【考点】解一元二次方程﹣因式分解法.【分析】首先提取公因式,可得(x+1)(x﹣1)=0,继而可求得答案.【解答】解:∵x(x+1)=x+1,∴x(x+1)﹣(x+1)=0,∴(x+1)(x﹣1)=0,解得:x1=﹣1,x2=1.故选C.【点评】此题考查了因式分解法解一元二次方程.此题难度不大,注意因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.10.某产品的成本两年降低了75%,平均每年递降()A.50% B.25%C.37.5% D.以上答案都不对【考点】一元二次方程的应用.【专题】增长率问题.【分析】设平均每年降低x,根据经过两年使成本降低75%,可列方程求解.【解答】解:设平均每年降低x,(1﹣x)2=1﹣75%解得x=0.5=50%或x=1.5(舍去).故平均每年降低50%.故选A.【点评】本题考查理解题意的能力,关键设出降低的百分率,然后根据现在的成本,可列方程求解.二、填空题11.方程3x2﹣5x=0的二次项系数是 3 .【考点】一元二次方程的一般形式.【分析】先找出方程的二次项,再找出项的系数即可.【解答】解:方程3x2﹣5x=0的二次项系数是3,故答案为:3.【点评】本题考查了一元二次方程的一般形式的应用,主要考查学生的理解能力.12.5x2+5=26x化成一元二次方程的一般形式为5x2﹣26x+5=0 .【考点】一元二次方程的一般形式.【专题】计算题.【分析】将方程右边的式子移项,并按照x的降幂排列,即可得到一元二次方程的一般形式.【解答】解:5x2+5=26x,移项得:5x2﹣26x+5=0.故答案为:5x2﹣26x+5=0【点评】此题考查了一元二次方程的一般形式,一元二次方程的一般形式为ax2+bx+c=0(a,b,c 为常数,且a≠0).13.一元二次方程ax2+bx+c=0,若有一个根为﹣1,则a﹣b+c= 0 ;如果a+b+c=0,则有一根为 1 .【考点】一元二次方程的解.【分析】由一元二次方程解的意义把方程的根x=﹣1代入方程,得到a﹣b+c=0;由a+b+c=0,可知a×12+b×1+c=0,故方程ax2+bx+c=0有一根为1.【解答】解:把x=﹣1代入一元二次方程ax2+bx+c=0得:a﹣b+c=0;如果a+b+c=0,那么a×12+b×1+c=0,所以方程ax2+bx+c=0有一根为1.故答案是:0;1.【点评】本题考查的是一元二次方程的解的定义,属于基础题型,比较简单.14.一元二次方程ax2+bx+c=0(a≠0)有一根为零的条件是c=0 .【考点】一元二次方程的解.【专题】计算题.【分析】根据一元二次方程的定义和根与系数的关系解答.【解答】解:∵一元二次方程ax2+bx+c=0(a≠0)的二次项系数是a,常数项是c,∴x1•x2=,又∵该方程有一根为零,∴x1•x2==0;∵a≠0,∴c=0.故答案为:0.【点评】本题主要考查了一元二次方程的解,在解答此题时,利用了根与系数的关系.15.关于x的方程2x﹣3=0是一元二次方程,则m= ±.【考点】一元二次方程的定义.【分析】根据一元二次方程的概念,可得出m2﹣1=2,解得m即可.【解答】解:∵关于x的方程2x﹣3=0是一元二次方程,∴m2﹣1=2,解得m=±.故答案为:.【点评】本题考查了一元二次方程的概念,二次项系数不为0,未知数的最高次数为2.三、解答题16.用适当的方法解方程:(1)2x2﹣4x+1=0;(2)x2﹣5x﹣6=0;(3)(x﹣2)(x﹣3)=12;(4)9(x﹣3)2﹣4(x﹣2)2=0.【考点】解一元二次方程﹣因式分解法;解一元二次方程﹣配方法.【分析】(1)找出a,b,c的值,计算出根的判别式的值大于0,代入求根公式即可求出解;(2)利用因式分解法求解即可;(3)先将方程整理为一般形式,再利用因式分解法求解;(4)利用因式分解法求解即可.【解答】解:(1)2x2﹣4x+1=0,这里a=2,b=﹣4,c=1,∵△=16﹣4×2×1=8,∴x==,∴x1=,x2=;(2)x2﹣5x﹣6=0,(x﹣6)(x+1)=0,∴x﹣6=0或x+1=0,解得x1=6,x2=﹣1;(3)(x﹣2)(x﹣3)=12,整理,得x2﹣5x﹣6=0,(x﹣6)(x+1)=0,∴x﹣6=0或x+1=0,解得x1=6,x2=﹣1;(4)9(x﹣3)2﹣4(x﹣2)2=0,[3(x﹣3)+2(x﹣2)][3(x﹣3)﹣2(x﹣2)]=0,(5x﹣13)(x﹣5)=0,解得x1=,x2=5.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.17.用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式.【考点】解一元二次方程﹣公式法;配方法的应用.【专题】计算题.【分析】由a不为0,在方程左右两边同时除以a,并将常数项移到方程右边,方程左右两边都加上一次项系数一半的平方,左边化为完全平方式,右边通分并利用同分母分式的减法法则计算,当b2﹣4ac≥0时,开方即可推导出求根公式.【解答】解:ax2+bx+c=0(a≠0),方程左右两边同时除以a得:x2+x+=0,移项得:x2+x=﹣,配方得:x2+x+=﹣=,即(x+)2=,当b2﹣4ac≥0时,x+=±=±,∴x=.【点评】此题考查了一元二次方程的求根公式,以及配方法的应用,学生在开方时注意b2﹣4ac≥0这个条件的运用.18.已知下列n(n为正整数)个关于x的一元二次方程:x2﹣1=0,x2+x﹣2=0,x2+2x﹣3=0,…x2+(n﹣1)x﹣n=0.(1)请解上述一元二次方程;(2)请你指出这n个方程的根具有什么共同特点,写出一条即可.【考点】解一元二次方程﹣因式分解法;一元二次方程的解.【专题】规律型.【分析】(1)分别利用因式分解法解各方程;(2)根据方程根的特征易得这n个方程都有一个根为1,另外一根等于常数项.【解答】解:(1)x2﹣1=0,解得x1=1,x2=﹣1,x2+x﹣2=0,解得x1=1,x2=﹣2,x2+2x﹣3=0,解得x1=1,x2=﹣3,…x2+(n﹣1)x﹣n=0,解得x1=1,x2=﹣n;(2)这n个方程都有一个根为1,另外一根等于常数项.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).19.如图,有33米长的竹篱笆,要围成一边(墙长15米)面积为130平方米的长方形鸡场,求鸡场的长和宽各为多少?【考点】一元二次方程的应用.【专题】几何图形问题.【分析】首先设鸡场的长为x米,则宽为米,根据题意可得等量关系:鸡场的长×宽=130平方米,列出方程,解出x的值.【解答】解:设鸡场的长为x米,则宽为米,由题意得:x×=130,解得:x1=25,x2=13,∵墙长15米,25>15,∴25不合题意舍去,∴x=13,则: =10(米).答:鸡场的长为13米,则宽为10米.【点评】此题主要考查了一元二次方程的应用,关键是弄懂题意,找出题目中的等量关系,此题根据鸡场的面积列出方程即可.。

中考数学专题练习 一元二次方程(含解析)

中考数学专题练习 一元二次方程(含解析)

一元二次方程一、填空题1.一元二次方程(1+3x)(x﹣3)=2x2+1化为一般形式为:,二次项系数为:,一次项系数为:,常数项为:.2.关于x的方程(m﹣1)x2+(m+1)x+3m+2=0,当m 时为一元一次方程;当m 时为一元二次方程.3.若(a+b)(a+b+2)=8,则a+b= .4.x2+3x+ =(x+ )2;x2﹣+2=(x )2.5.直角三角形的两直角边是3:4,而斜边的长是20cm,那么这个三角形的面积是cm2.6.若方程x2+px+q=0的两个根是﹣2和3,则p= ,q= .7.若代数式4x2﹣2x﹣5与2x2+1的值互为相反数,则x的值是.8.代数式2x2+3x+7的值为12,则代数式4x2+6x﹣10= .9.当t 时,关于x的方程x2﹣3x+t=0可用公式法求解.10.若实数a,b满足a2+ab﹣b2=0,则= .二、选择题11.下列方程中,是关于x的一元二次方程的是()A.ax2+bx+c=0 B.x2+2x=x2﹣1 C.3(x+1)2=2(x+1)D. +﹣2=012.若2x+1与2x﹣1互为倒数,则实数x为()A.± B.±1 C.±D.±13.若m是关于x的方程x2+nx﹣m=0的解,且m≠0,则m+n的值是()A.1 B.﹣0.5 C.0.5 D.﹣114.关于x的方程x2+mx+n=0的两根中只有一个等于0,则下列条件中正确的是()A.m=0,n=0 B.m=0,n≠0 C.m≠0,n=0 D.m≠0,n≠015.关于x的一元二次方程x2﹣k=0有实数根,则()A.k<0 B.k>0 C.k≥0 D.k≤016.若方程ax2+bx+c=0(a≠0),a、b、c满足a+b+c=0和a﹣b+c=0,则方程的根是()A.1,0 B.﹣1,0 C.1,﹣1 D.无法确定三、解答题17.(1)(x+4)2=5(x+4);(2)(x+1)2=4x;(3)(x+3)2=(1﹣2x)2;(4)2x2﹣10x=3.18.已知等腰三角形底边长为8,腰长是方程x2﹣9x+20=0的一个根,求这个等腰三角形的腰长.19.已知一元二次方程(m﹣1)x2+7mx+m2+3m﹣4=0有一个根为零,求m的值.20.已知方程x2﹣2ax+a=4(1)求证:方程必有相异实根(2)a取何值时,方程有两个正根?(3)a取何值时,两根相异,并且负根的绝对值较大?(4)a取何值时,方程有一根为零?一元二次方程参考答案与试题解析一、填空题1.一元二次方程(1+3x)(x﹣3)=2x2+1化为一般形式为:x2﹣8x﹣4=0 ,二次项系数为: 1 ,一次项系数为:﹣8 ,常数项为:﹣4 .【考点】一元二次方程的一般形式.【分析】去括号、移项变形为一元二次方程的一般形式ax2+bx+c=0,a叫二次项系数,b叫一次项系数,c叫常数项.【解答】解:去括号得,x﹣3+3x2﹣9x=2x2+1,移项得,x2﹣8x﹣4=0,所以一般形式为x2﹣8x﹣4=0;二次项系数为1;一次项系数为﹣8;常数项为﹣4.故答案为x2﹣8x﹣4=0,1,﹣8,﹣4.【点评】考查了一元二次方程的一般形式:ax2+bx+c=0(a≠0,a,b,c为常数),a叫二次项系数,b叫一次项系数,c叫常数项.2.关于x的方程(m﹣1)x2+(m+1)x+3m+2=0,当m =1 时为一元一次方程;当m ≠1 时为一元二次方程.【考点】一元二次方程的定义;一元一次方程的定义.【专题】方程思想.【分析】根据一元二次方程和一元一次方程的定义,含有一个未知数,并且未知数的最高次数是2的整式方程是一元二次方程;含有一个未知数,并且未知数的最高次数是1的整式方程是一元一次方程.可以确定m的取值.【解答】解:要使方程是一元一次方程,则m﹣1=0,∴m=1.要使方程是一元二次方程,则m﹣1≠0,∴m≠1.故答案分别是:m=1;m≠1.【点评】本题考查的是一元一次方程和一元二次方程的定义,根据定义确定m的取值.3.若(a+b)(a+b+2)=8,则a+b= 2或﹣4 .【考点】换元法解一元二次方程.【专题】换元法.【分析】把原方程中的(a+b)代换成y,即可得到关于y的方程y2+2y﹣8=0,求得y的值即为a+b 的值.【解答】解:把原方程中的a+b换成y,所以原方程变化为:y2+2y﹣8=0,解得y=2或﹣4,∴a+b=2或﹣4.【点评】本题主要考查换元法在解一元二次方程中的应用.换元法是借助引进辅助元素,将问题进行转化的一种解题方法.这种方法在解题过程中,把某个式子看作一个整体,用一个字母去代表它,实行等量替换.这样做,常能使问题化繁为简,化难为易,形象直观.4.x2+3x+ =(x+ )2;x2﹣2x +2=(x ﹣)2.【考点】完全平方式.【专题】计算题.【分析】(1)根据首项是x的平方及中间项3x,利用中间项等于x与乘积的2倍即可解答.(2)根据首项与尾项分别是x与的平方,那么中间项等于x与乘积的2倍即可解答.【解答】解:(1)∵首项是x的平方及中间项3x,∴3x=2×x×,x2+3x+=,∴应填,.(2)首项与尾项分别是x与的平方,∴2×x×即为中间项.∴x2﹣2x+2=,故应填:2,﹣.故答案为:,,2,﹣.【点评】本题考查了完全平方公式,属于基础题,关键要熟记完全平方公式.5.直角三角形的两直角边是3:4,而斜边的长是20cm,那么这个三角形的面积是96 cm2.【考点】一元二次方程的应用;勾股定理的应用.【专题】几何图形问题.【分析】根据直角三角形的两直角边是3:4,设出两直角边的长分别是3x、4x,再根据勾股定理列方程求解即可.【解答】解:设两直角边分别是3x、4x,根据勾股定理得:(3x)2+(4x)2=400,解得:x=4,(负值舍去)则:3x=12cm,4x=16cm.故这个三角形的面积是×12×16=96cm2.【点评】此题主要根据勾股定理来确定等量关系,也考查了三角形的面积公式.6.若方程x2+px+q=0的两个根是﹣2和3,则p= ﹣1 ,q= ﹣6 .【考点】根与系数的关系.【分析】根据根与系数的关系,分别求出p、q的值.【解答】解:由题意知,x1+x2=﹣p,即﹣2+3=﹣p,∴p=﹣1;又x1x2=q,即﹣2×3=q,∴q=﹣6.【点评】已知了一元二次方程的两根求系数,可利用一元二次方程根与系数的关系:x1+x2=,x1x2=解答.7.若代数式4x2﹣2x﹣5与2x2+1的值互为相反数,则x的值是1或﹣.【考点】解一元二次方程﹣因式分解法.【分析】根据题意先列出方程,然后利用因式分解法解方程求得x的值.【解答】解:∵代数式4x2﹣2x﹣5与2x2+1的值互为相反数,∴4x2﹣2x﹣5+2x2+1=0,即(x﹣1)(3x+2)=0,解得x=1或﹣.【点评】本题是基础题,考查了一元二次方程的解法.8.代数式2x2+3x+7的值为12,则代数式4x2+6x﹣10= 0 .【考点】代数式求值.【专题】整体思想.【分析】先对已知进行变形,把所求代数式化成已知的形式,再利用整体代入法求解.【解答】解:∵2x2+3x+7=12∴2x2+3x=12﹣7∴4x2+6x﹣10=2(2x2+3x)﹣10=2×(12﹣7)﹣10=0.【点评】此题考查的是代数式的转化,通过观察可知已知与所求的式子的关系,然后将变形的式子代入即可求出答案.9.当t ≤时,关于x的方程x2﹣3x+t=0可用公式法求解.【考点】根的判别式.【专题】计算题.【分析】关于x的方程x2﹣3x+t=0可用公式法求解,则△=b2﹣4ac≥0,即△=32﹣4×1×t=9﹣4t≥0,解不等式即可.【解答】解:∵关于x的方程x2﹣3x+t=0可用公式法求解,∴△=b2﹣4ac≥0,即△=32﹣4×1×t=9﹣4t≥0,∴t≤.故答案为≤.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.10.若实数a,b满足a2+ab﹣b2=0,则= .【考点】解一元二次方程﹣公式法;一元二次方程的解.【专题】计算题.【分析】把b看成常数,解关于a的一元二次方程,然后求出的值.【解答】解:a2+ab﹣b2=0△=b2+4b2=5b2.a== b∴=.故答案是:【点评】本题考查的是用一元二次方程的求根公式解方程,把b看成是常数,用求根公式解关于a 的一元二次方程,然后求出的值.二、选择题11.下列方程中,是关于x的一元二次方程的是()A.ax2+bx+c=0 B.x2+2x=x2﹣1 C.3(x+1)2=2(x+1)D. +﹣2=0【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义求解.一元二次方程必须满足三个条件:(1)方程是整式方程;(2)未知数的最高次数是2;(3)只含有一个未知数.由这三个条件得到相应的关系式,再求解即可.【解答】解:A、a=0时,不是一元二次方程,错误;B、原式可化为2x+1=0,是一元一次方程,错误;C、原式可化为3x2+4x+1=0,符合一元二次方程的定义,正确;D、是分式方程,错误.故选C.【点评】判断一个方程是否是一元二次方程,首先判断是否是整式方程,若是整式方程,再进行化简,化简以后只含有一个未知数,并且未知数的最高次数是2,这样的方程就是一元二次方程.12.若2x+1与2x﹣1互为倒数,则实数x为()A.± B.±1 C.±D.±【考点】解一元二次方程﹣直接开平方法.【分析】两个数互为倒数,即两数的积是1,据此即可得到一个关于x的方程,从而求解.【解答】解:根据2x+1与2x﹣1互为倒数,列方程得(2x+1)(2x﹣1)=1;整理得4x2﹣1=1,移项得4x2=2,系数化为1得x2=;开方得x=±.故选C.【点评】用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.本题开方后要注意分母有理化.13.若m是关于x的方程x2+nx﹣m=0的解,且m≠0,则m+n的值是()A.1 B.﹣0.5 C.0.5 D.﹣1【考点】一元二次方程的解.【专题】计算题.【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值;将m代入原方程即可求得m+n的值.【解答】解:把x=m代入方程x2+nx﹣m=0得m2+mn﹣m=0,又∵m≠0,方程两边同除以m,可得m+n=1;故本题选A.【点评】此题中应特别注意:方程两边同除以字母系数时,应强调字母系数不得为零.14.关于x的方程x2+mx+n=0的两根中只有一个等于0,则下列条件中正确的是()A.m=0,n=0 B.m=0,n≠0 C.m≠0,n=0 D.m≠0,n≠0【考点】解一元二次方程﹣因式分解法;一元二次方程的解.【分析】代入方程的解求出n的值,再用因式分解法确定m的取值范围.【解答】解:方程有一个根是0,即把x=0代入方程,方程成立.得到n=0;则方程变成x2+mx=0,即x(x+m)=0则方程的根是0或﹣m,因为两根中只有一根等于0,则得到﹣m≠0即m≠0方程x2+mx+n=0的两根中只有一个等于0,正确的条件是m≠0,n=0.故选C.【点评】本题主要考查了方程的解的定义,以及因式分解法解一元二次方程.15.关于x的一元二次方程x2﹣k=0有实数根,则()A.k<0 B.k>0 C.k≥0 D.k≤0【考点】解一元二次方程﹣直接开平方法.【分析】根据直接开平方法的步骤得出x2=k,再根据非负数的性质得出k≥0即可.【解答】解:∵x2﹣k=0,∴x2=k,∴一元二次方程x2﹣k=0有实数根,则k≥0,故选:C.【点评】此题考查了直接开平方法解一元二次方程,用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.16.若方程ax2+bx+c=0(a≠0),a、b、c满足a+b+c=0和a﹣b+c=0,则方程的根是()A.1,0 B.﹣1,0 C.1,﹣1 D.无法确定【考点】一元二次方程的解.【分析】本题根据一元二次方程的根的定义、一元二次方程的定义求解,代入方程的左右两边,看左右两边是否相等.【解答】解:在这个式子中,如果把x=1代入方程,左边就变成a+b+c,又由已知a+b+c=0可知:当x=1时,方程的左右两边相等,即方程必有一根是1,同理可以判断方程必有一根是﹣1.则方程的根是1,﹣1.故选C.【点评】本题就是考查了方程的解的定义,判断一个数是否是方程的解的方法,就是代入方程的左右两边,看左右两边是否相等.三、解答题17.(1)(x+4)2=5(x+4);(2)(x+1)2=4x;(3)(x+3)2=(1﹣2x)2;(4)2x2﹣10x=3.【考点】解一元二次方程﹣因式分解法.【专题】计算题.【分析】(1)运用提取公因式法分解因式求解;(2)运用公式法分解因式求解;(3)运用平分差公式分解因式求解;(4)运用公式法求解.【解答】解:(1)(x+4)2=5(x+4),(x+4)2﹣5(x+4)=0,(x+4)(x+4﹣5)=0,∴x1=﹣4,x2=1.(2)(x+1)2=4x,x2+2x+1﹣4x=0,(x﹣1)2=0,∴x1=x2=1.(3)(x+3)2﹣(1﹣2x)2=0,(x+3+1﹣2x)(x+3﹣1+2x)=0,(4﹣x)(3x+2)=0,∴x1=4,x2=﹣.(4) 2x2﹣10x=3,2x2﹣10x﹣3=0,x=,x1=,x2=.【点评】此题考查了选择适当的方法解一元二次方程的能力,属基础题.18.已知等腰三角形底边长为8,腰长是方程x2﹣9x+20=0的一个根,求这个等腰三角形的腰长.【考点】等腰三角形的性质;一元二次方程的解;三角形三边关系.【分析】首先求出方程的根,再根据三角形三边关系得到x=4时,4,4,8的三条线段不能组成三角形,确定等腰三角形腰长为5.【解答】解:x2﹣9x+20=0,解得x1=4,x2=5,∵等腰三角形底边长为8,∴x=4时,4,4,8的三条线段不能组成三角形,∴等腰三角形腰长为5.【点评】本题从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的边长,不能盲目地作出判断,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.19.已知一元二次方程(m﹣1)x2+7mx+m2+3m﹣4=0有一个根为零,求m的值.【考点】一元二次方程的解;解一元二次方程﹣因式分解法.【分析】由于一元二次方程(m﹣1)x2+7mx+m2+3m﹣4=0有一个根为零,那么把x=0代入方程即可得到关于m的方程,解这个方程即可求出m的值.【解答】解:∵一元二次方程(m﹣1)x2+7mx+m2+3m﹣4=0有一个根为零,∴把x=0代入方程中得m2+3m﹣4=0,∴m1=﹣4,m2=1.由于在一元二次方程中m﹣1≠0,故m≠1,∴m=﹣4【点评】此题主要考查了方程解的定义和解一元二次方程,此类题型的特点是,利用方程解的定义找到所求字母的方程,再解此方程即可解决问题.20.已知方程x2﹣2ax+a=4(1)求证:方程必有相异实根(2)a取何值时,方程有两个正根?(3)a取何值时,两根相异,并且负根的绝对值较大?(4)a取何值时,方程有一根为零?【考点】根与系数的关系;根的判别式.【专题】计算题.【分析】(1)根据△>0恒成立即可证明.(2)由方程有两个正根,根据根与系数的关系即可求出a的取值.(3)由方程有两根相异,并且负根的绝对值较大,根据根与系数关系解答.(4)令x=0代入方程求解即可.【解答】解:(1)方程x2﹣2ax+a=4,可化为:x2﹣2ax+a﹣4=0,∴△=4a2﹣4(a﹣4)=4+15>0恒成立,故方程必有相异实根.(2)若方程有两个正根x1,x2,则x1+x2=2a>0,x1x2=a﹣4>0,解得:a>4.(3)若方程有两根相异,并且负根的绝对值较大,则可得:x1+x2=2a<0,x1x2=a﹣4<0,解得:a <0.(4)若方程有一根为零,把x=0代入方程x2﹣2ax+a=4,得:a=4.【点评】本题考查了根与系数的关系及根的判别式,难度适中,关键是熟记x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q.。

中考数学专题复习一元二次方程组的综合题含答案解析

中考数学专题复习一元二次方程组的综合题含答案解析

中考数学专题复习一元二次方程组的综合题含答案解析一、一元二次方程1.随着经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,汽车消费成为新亮点.抽样调查显示,截止2008年底全市汽车拥有量为14.4万辆.已知2006年底全市汽车拥有量为10万辆.(1)求2006年底至2008年底我市汽车拥有量的年平均增长率;(2)为保护城市环境,要求我市到2010年底汽车拥有量不超过15.464万辆,据估计从2008年底起,此后每年报废的汽车数量是上年底汽车拥有量的10%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同)【答案】详见解析【解析】试题分析:(1)主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率)解决问题;(2)参照增长率问题的一般规律,表示出2010年的汽车拥有量,然后根据关键语列出不等式来判断正确的解.试题解析:(1)设年平均增长率为x ,根据题意得:10(1+x )2=14.4,解得x=﹣2.2(不合题意舍去)x=0.2,答:年平均增长率为20%;(2)设每年新增汽车数量最多不超过y 万辆,根据题意得:2009年底汽车数量为14.4×90%+y ,2010年底汽车数量为(14.4×90%+y )×90%+y ,∴(14.4×90%+y )×90%+y≤15.464,∴y≤2.答:每年新增汽车数量最多不超过2万辆.考点:一元二次方程—增长率的问题2.关于x 的方程x 2﹣2(k ﹣1)x +k 2=0有两个实数根x 1、x 2.(1)求k 的取值范围;(2)若x 1+x 2=1﹣x 1x 2,求k 的值.【答案】(1)12k ≤;(2)3k = 【解析】试题分析:(1)方程有两个实数根,可得240b ac ∆=-≥,代入可解出k 的取值范围; (2)由韦达定理可知,()2121221,x x k x x k +=-=,列出等式,可得出k 的值. 试题解析:(1)∵Δ=4(k -1)2-4k 2≥0,∴-8k +4≥0,∴k ≤12; (2)∵x 1+x 2=2(k -1),x 1x 2=k 2,∴2(k -1)=1-k 2,∴k1=1,k2=-3.∵k≤12,∴k=-3.3.如图,在△ABC中,AB=6cm,BC=7cm,∠ABC=30°,点P从A点出发,以1cm/s的速度向B点移动,点Q从B点出发,以2cm/s的速度向C点移动.如果P、Q两点同时出发,经过几秒后△PBQ的面积等于4cm2?【答案】经过2秒后△PBQ的面积等于4cm2.【解析】【分析】作出辅助线,过点Q作QE⊥PB于E,即可得出S△PQB=12×PB×QE,有P、Q点的移动速度,设时间为t秒时,可以得出PB、QE关于t的表达式,代入面积公式,即可得出答案.【详解】解:如图,过点Q作QE⊥PB于E,则∠QEB=90°.∵∠ABC=30°,∴2QE=QB.∴S△PQB=12•PB•QE.设经过t秒后△PBQ的面积等于4cm2,则PB=6﹣t,QB=2t,QE=t.根据题意,12•(6﹣t)•t=4.t2﹣6t+8=0.t2=2,t2=4.当t=4时,2t=8,8>7,不合题意舍去,取t=2.答:经过2秒后△PBQ的面积等于4cm2.【点睛】本题考查了一元二次方程的运用,注意对所求的值进行检验,对于不合适的值舍去.4.机械加工需用油进行润滑以减小摩擦,某企业加工一台设备润滑用油量为90kg,用油的重复利用率为60%,按此计算,加工一台设备的实际耗油量为36kg,为了倡导低碳,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际油耗量进行攻关.(1)甲车间通过技术革新后,加工一台设备润滑油用油量下降到70kg,用油的重复利用率仍然为60%,问甲车间技术革新后,加工一台设备的实际油耗量是多少千克?(2)乙车间通过技术革新后,不仅降低了润滑油用油量,同时也提高了用油的重复利用率,并且发现在技术革新前的基础上,润滑用油量每减少1kg,用油的重复利用率将增加1.6%,例如润滑用油量为89kg时,用油的重复利用率为61.6%.①润滑用油量为80kg,用油量的重复利用率为多少?②已知乙车间技术革新后实际耗油量下降到12kg,问加工一台设备的润滑用油量是多少千克?用油的重复利用率是多少?【答案】(1)28(2)①76%②75,84%【解析】试题分析:(1)直接利用加工一台设备润滑油用油量下降到70kg,用油的重复利用率仍然为60%,进而得出答案;(2)①利用润滑用油量每减少1kg,用油的重复利用率将增加1.6%,进而求出答案;②首先表示出用油的重复利用率,进而利用乙车间技术革新后实际耗油量下降到12kg,得出等式求出答案.试题解析:(1)根据题意可得:70×(1﹣60%)=28(kg);(2)①60%+1.6%(90﹣80)=76%;②设润滑用油量是x千克,则x{1﹣[60%+1.6%(90﹣x)]}=12,整理得:x2﹣65x﹣750=0,(x﹣75)(x+10)=0,解得:x1=75,x2=﹣10(舍去),60%+1.6%(90﹣x)=84%,答:设备的润滑用油量是75千克,用油的重复利用率是84%.考点:一元二次方程的应用5.解方程:233230 2121x xx x⎛⎫⎛⎫--=⎪ ⎪--⎝⎭⎝⎭.【答案】x=15或x=1【解析】【分析】设321xyx=-,则原方程变形为y2-2y-3=0, 解这个一元二次方程求y,再求x.【详解】解:设321xyx=-,则原方程变形为y2-2y-3=0.解这个方程,得y 1=-1,y 2=3, ∴3121x x =--或3321x x =-. 解得x=15或x=1. 经检验:x=15或x=1都是原方程的解. ∴原方程的解是x=15或x=1. 【点睛】考查了还原法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根.6.有一个人患了流感,经过两轮传染后共有36人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?【答案】(1)5;(2)180【解析】【分析】(1)设平均一人传染了x 人,根据有一人患了流感,经过两轮传染后共有36人患了流感,列方程求解即可;(2)根据每轮传染中平均一个人传染的人数和经过两轮传染后的人数,列出算式求解即可.【详解】(1)设每轮传染中平均一个人传染了x 个人,根据题意得:x+1+(x+1)x =36,解得:x =5或x =﹣7(舍去).答:每轮传染中平均一个人传染了5个人;(2)根据题意得:5×36=180(个),答:第三轮将又有180人被传染.【点睛】本题考查一元二次方程的应用,解题的关键是能根据题意找到等量关系并列方程.7.小王经营的网店专门销售某种品牌的一种保温杯,成本为30元/只,每天销售量y(只)与销售单价x (元)之间的关系式为y =﹣10x+700(40≤x≤55),求当销售单价为多少元时,每天获得的利润最大?最大利润是多少元?【答案】当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元【解析】【分析】表示出一件的利润为(x ﹣30),根据总利润=单件利润乘以销售数量,整理成顶点式即可解题.【详解】设每天获得的利润为w 元,根据题意得:w =(x ﹣30)y =(x ﹣30)(﹣10x+700)=﹣10x 2+1000x ﹣21000=﹣10(x ﹣50)2+4000.∵a =﹣10<0,∴当x =50时,w 取最大值,最大值为4000.答:当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元.【点睛】本题考查了一元二次函数的实际应用,中等难度,熟悉函数的性质是解题关键.8.用适当的方法解下列一元二次方程:(1)2x 2+4x -1=0;(2)(y +2)2-(3y -1)2=0.【答案】(1)x 1=-1+2x 2=-1-22)y 1=-14,y 2=32. 【解析】试题分析:(1)根据方程的特点,利用公式法解一元二次方程即可;(2)根据因式分解法,利用平方差公式因式分解,然后再根据乘积为0的方程的解法求解即可.试题解析:(1)∵a=2,b=4,c=-1∴△=b 2-4ac=16+8=24>0∴1=-∴x 1=-1,x 2=-1 (2)(y +2)2-(3y -1)2=0[(y+2)+(3y-1)][ (y+2)-(3y-1)]=0即4y+1=0或-2y+3=0解得y 1=-14,y 2=32. 9.关于x 的一元二次方程()22210x k x k +-+=有两个不等实根1x ,2x .(1)求实数k 的取值范围;(2)若方程两实根1x ,2x 满足121210x x x x ++-=,求k 的值.【答案】(1) k <14;(2) k=0. 【解析】【分析】(1)根据一元二次方程的根的判别式得出△>0,求出不等式的解集即可;(2)根据根与系数的关系得出x 1+x 2=-(2k-1)=1-2k ,x 1•x 2=k 2,代入x 1+x 2+x 1x 2-1=0,即可求出k 值.【详解】解:(1)∵关于x 的一元二次方程x 2+(2k-1)x+k 2=0有两个不等实根x 1,x 2, ∴△=(2k-1)2-4×1×k 2=-4k+1>0,解得:k <14, 即实数k 的取值范围是k <14; (2)由根与系数的关系得:x 1+x 2=-(2k-1)=1-2k ,x 1•x 2=k 2,∵x 1+x 2+x 1x 2-1=0,∴1-2k+k 2-1=0,∴k 2-2k=0∴k=0或2,∵由(1)知当k=2方程没有实数根,∴k=2不合题意,舍去,∴k=0.【点睛】本题考查了解一元二次方程根的判别式和根与系数的关系等知识点,能熟记根的判别式和根与系数的关系的内容是解此题的关键,注意用根与系数的关系解题时要考虑根的判别式,以防错解.10.已知:如图,在Rt ABC ∆中,90C ∠=︒,8AC =cm ,6BC =cm.直线PE 从B 点出发,以2 cm/s 的速度向点A 方向运动,并始终与BC 平行,与线段AC 交于点E .同时,点F 从C 点出发,以1cm/s 的速度沿CB 向点B 运动,设运动时间为t (s) (05t <<) .(1)当t 为何值时,四边形PFCE 是矩形?(2)当ABC ∆面积是PEF ∆的面积的5倍时,求出t 的值;【答案】(1)3011t =;(2)55t ±= 【解析】【分析】(1)首先根据勾股定理计算AB 的长,再根据相似比例表示PE 的长度,再结合矩形的性质即可求得t 的值.(2)根据面积相等列出方程,求解即可.【详解】解:(1)在Rt ABC ∆中,90,8,6C AC BC ︒∠===Q ,10AB ∴===102//,,1068PA PE AE t PE AE PE BC AB BC AC -∴==∴==Q 34(102),(102)55PE t AE t ∴=-=-,当PE CF =时,四边形PECF 是矩形, 3(102)5t t ∴-= 解得3011t = (2)由题意22424116825552t t =+=⨯⨯⨯整理得2t 550t -+=,解得t =52t ∴=,ABC ∆面积是PEF ∆的面积的5倍。

中考数学专题练习直接开平方法解一元二次方程(含解析)

中考数学专题练习直接开平方法解一元二次方程(含解析)

2019中考数学专题练习-直接开平方法解一元二次方程(含解析)一、单选题1.若分式的值为0,则x的值是()A.1或-1B.1C. -1D.0【答案】B【考点】分式的值为零的条件,解一元二次方程-直接开平方法【解析】【分析】根据分子为0,同时分母不等于0时,分式值是零,即可得到结果.由题意得,解得,则x=1,故选B.【点评】解答本题的关键是熟练掌握分式值是零的条件:分子为0,同时分母不等于0.2.若25x2=16,则x的值为()A. B. C. D.【答案】A【考点】直接开平方法解一元二次方程【解析】【解答】解:25x2=16,x2= ,x=± ,故答案为:A【分析】观察次方程缺一次项,可以用直接开平方法求解或利用因式分解法求解。

3.方程的根是()A. B. C. D.【答案】A【考点】解一元二次方程-直接开平方法【解析】【解答】用开平方法可得【分析】将原方程变形为=4,用直接开平方法解得x=2,即= 2 ,= − 2.4.一元二次方程x2=2的解是()A.x=2或x=﹣2B.x=2C.x=4或x=﹣4D.x=或x=﹣【答案】D【考点】解一元二次方程-直接开平方法【解析】【解答】解:∵x2=2,∵x=±.故选:D.【分析】直接开平方解方程得出答案.5.方程x2=9的解是()A.x1=x2=3B.x1=x2=9C.x1=3,x2=﹣3D.x1=9,x2=﹣9【答案】C【考点】解一元二次方程-直接开平方法【解析】【解答】解:x2=9,两边开平方,得x1=3,x2=﹣3.故选C.【分析】利用直接开平方法求解即可.6.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是()A.x-6=-4B.x-6=4C.x+6=4D.x+6=-4【答案】D【考点】解一元二次方程-直接开平方法【解析】【分析】方程两边直接开平方可达到降次的目的,进而可直接得到答案.【解答】(x+6)2=16,两边直接开平方得:x+6=±4,则:x+6=4,x+6=-4,故选:D.7.方程x2=9的解是()A.x=9B.x=±9C.x=3D.x=±3【答案】D【考点】直接开平方法解一元二次方程【解析】【解答】解:∵x2=9,∵x=±3,故选:D.【分析】直接开平方法即可得.8.若是反比例函数,则b的值为()A.1B.-1C.D.任意实数【答案】A【考点】直接开平方法解一元二次方程,反比例函数的定义【解析】【解答】,解得.故答案为:A.【分析】根据反比例函数的定义知,自变量次数为-1,b2-2=-1,得b=1,,又因为比例系数k≠0,得b+1≠0,得b≠-1,综合分析可得b=1。

(完整版)九年级数学中考复习专题一元二次方程练习题及答案

(完整版)九年级数学中考复习专题一元二次方程练习题及答案

中考数学复习专题一元二次方程一、选择题:1、若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0的常数项为0,则m的值等于()A.﹣2 B.2 C.﹣2或2 D.02、方程x2+6x﹣5=0的左边配成完全平方后所得方程为()A.(x+3)2=14 B.(x﹣3)2=14 C.(x+3)2=4 D.(x﹣3)2=43、关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0,常数项为0,则m值等于()A.1 B.2 C.1或2 D.04、某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=1965、若关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,则k的取值范围()A.k<1且k≠0 B.k≠0 C.k<1 D.k>16、关于x的一元二次方程x2+2x﹣m=0有两个实数根,则m的取值范围是( )A.m≥﹣1 B.m>﹣1 C.m≤﹣1且m≠0 D.m≥﹣1且m≠07、已知m,n是关于x的一元二次方程x2﹣3x+a=0的两个解,若(m﹣1)(n﹣1)=﹣6,则a的值为() A.﹣10 B.4 C.﹣4 D.108、若m、n是一元二次方程x2﹣5x﹣2=0的两个实数根,则m+n﹣mn的值是()A.﹣7 B.7 C.3 D.﹣39、有一人患了流感,经过两轮穿然后共有49人患了流感,设每轮传染中平均一个人传染了x人,则x值为() A.5 B.6 C.7 D.810、毕业之际,某校九年级数学兴趣小组的同学相约到同一家礼品店购买纪念品,每两个同学都相互赠送一件礼品,礼品店共售出礼品30件,则该兴趣小组的人数为()A.5人 B.6人 C.7人 D.8人11、某市2013年生产总值(GDP)比2012年增长了12%,由于受到国际金融危机的影响,预计今年比2013年增长7%.若这两年GDP年平均增长率为x%,则x%满足的关系是()A.12%+7%=x%B.(1+12%)(1+7%)=2(1+x%)C.12%+7%=2•x%D.(1+12%)(1+7%)=(1+x%)212、设x1、x2是方程x2+3x﹣3=0的两个实数根,则的值为()二、填空题:13、方程2x2﹣1=的二次项系数是,一次项系数是,常数项是.14、若关于x的方程(a+3)x|a|-1-3x+2=0是一元二次方程,则a的值为________________.15、把方程(2x+1)(x—2)=5-3x整理成一般形式后,得,其中二次项系数是,一次项系数是,常数项是。

中考数学一元二次方程与分式方程专题练习含解析

中考数学一元二次方程与分式方程专题练习含解析

一元二次方程与分式方程一、选择题1.下列命题:①若a+b+c=0,则b2﹣4ac≥0;②若b>a+c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;③若b=2a+3c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;④若b2﹣4ac>0,则二次函数y=ax2+bx+c的图象与坐标轴的公共点的个数是2或3.其中正确的是()A.只有①②③B.只有①③④C.只有①④D.只有②③④2.四边形ABCD中,AB∥CD,且AB、CD长是关于x的方程x2﹣3mx+2m2+m﹣2=0的两个实数根,则四边形ABCD是()A.矩形B.平行四边形C.梯形D.平行四边形或梯形3.正比例函数y=(a+1)x的图象经过第二、四象限,若a同时满足方程x2+(1﹣2a)x+a2=0,则此方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定二、填空题4.已知方程(m2﹣4)x2+(2﹣m)x+1=0是关于x的一元二次方程,则m的取值范围是.5.已知关于x的二次方程(1﹣2k)x2﹣2x﹣1=0有实数根,则k的取值范围是.6.菱形ABCD的一条对角线长为6,边AB的长是方程x2﹣7x+12=0的一个根,则菱形ABCD的周长为.7.若关于x的方程有增根,则m的值是.8.方程的解是;若关于x的方程﹣1=0无实根,则a的值为.三、解答题9.阅读下列材料:关于x的方程:的解是x1=c,;(即)的解是x1=c;的解是x1=c,;的解是x1=c,;…(1)请观察上述方程与解的特征,比较关于x的方程与它们的关系,猜想它的解是什么?并利用“方程的解”的概念进行验证.(2)由上述的观察、比较、猜想、验证,可以得出结论:如果方程的左边是未知数与其倒数的倍数的和,方程的右边的形式与左边完全相同,只是把其中的未知数换成了某个常数,那么这样的方程可以直接得解,请用这个结论解关于x的方程:.10.已知:关于x的一元二次方程mx2﹣(3m+2)x+2m+2=0(m≠0)(1)若m=1,求出此时方程的实数根;(2)求证:方程总有实数根;(3)设m>0,方程的两个实数根分别为x1,x2(其中x1<x2)、若y是关于m的函数,且y=x2﹣2x1,求函数的解析式,并画出其图象.(画草图即可,不必列表)11.若等腰三角形一腰上的高等于腰长的一半,则此三角形的底角等于.12.如图,直线l的解析式为y=﹣x+4,它与x轴、y轴分别相交于A、B两点,平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴、y轴分别相交于M、N两点,运动时间为t秒(0<t≤4)(1)求A、B两点的坐标;(2)用含t的代数式表示△MON的面积S1;(3)以MN为对角线作矩形OMPN,记△MPN和△OAB重合部分的面积为S2;①当2<t≤4时,试探究S2与之间的函数关系;②在直线m的运动过程中,当t为何值时,S2为△OAB的面积的?13.A、B两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往B城,乙车驶往A城,甲车在行驶过程中速度始终不变.甲车距B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的关系如图.(1)求y关于x的表达式;(2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,两车相距的路程为s(千米).请直接写出s关于x的表达式;(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为a(千米/时)并保持匀速行驶,结果比甲车晚40分钟到达终点,求乙车变化后的速度a.在下图中画出乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象.14.某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植﹣亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z 与x之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x 之间的函数关系式;(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.15.要对一块长60米、宽40米的矩形荒地ABCD进行绿化和硬化.(1)设计方案如图①所示,矩形P、Q为两块绿地,其余为硬化路面,P、Q两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形ABCD面积的,求P、Q两块绿地周围的硬化路面的宽.(2)某同学有如下设想:设计绿化区域为相外切的两等圆,圆心分别为O1和O2,且O1到AB、BC、AD的距离与O2到CD、BC、AD的距离都相等,其余为硬化地面,如图②所示,这个设想是否成立?若成立,求出圆的半径;若不成立,说明理由.16.如图,四边形ABCD为矩形,AB=4,AD=3,动点M、N分别从D、B同时出发,以1个单位/秒的速度运动,点M沿DA向终点A运动,点N沿BC向终点C运动.过点N 作NP⊥BC,交AC于点P,连接MP.已知动点运动了x秒.(1)请直接写出PN的长;(用含x的代数式表示)(2)若0秒≤x≤1秒,试求△MPA的面积S与时间x秒的函数关系式,利用函数图象,求S的最大值.(3)若0秒≤x≤3秒,△MPA能否为一个等腰三角形?若能,试求出所有x的对应值;若不能,试说明理由.一元二次方程与分式方程参考答案与试题解析一、选择题1.下列命题:①若a+b+c=0,则b2﹣4ac≥0;②若b>a+c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;③若b=2a+3c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;④若b2﹣4ac>0,则二次函数y=ax2+bx+c的图象与坐标轴的公共点的个数是2或3.其中正确的是()A.只有①②③B.只有①③④C.只有①④D.只有②③④【考点】抛物线与x轴的交点.【专题】压轴题.【分析】①②③小题利用移项与变形b2﹣4ac与0的大小关系解决;处理第④小题时不要疏忽二次函数y=ax2+bx+c与y轴的交点情况.【解答】解:①b2﹣4ac=(﹣a﹣c)2﹣4ac=(a﹣c)2≥0,正确;②若b>a+c,则△的大小无法判断,故不能得出方程有两个不等实根,错误;③b2﹣4ac=4a2+9c2+12ac﹣4ac=4(a+c)2+5c2,因为a≠0,故(a+c)2与c2不会同时为0,所以b2﹣4ac>0,正确;④二次函数y=ax2+bx+c与y轴必有一个交点,而这个交点有可能跟图象与x轴的交点重合,故正确.故选B.【点评】考查二次函数y=ax2+bx+c的图象与x轴交点的个数.2.四边形ABCD中,AB∥CD,且AB、CD长是关于x的方程x2﹣3mx+2m2+m﹣2=0的两个实数根,则四边形ABCD是()A.矩形B.平行四边形C.梯形D.平行四边形或梯形【考点】根的判别式;梯形.【分析】AB、CD长是关于x的方程x2﹣3mx+2m2+m﹣2=0的两个实数根,即判别式△=b2﹣4ac≥0,可得到AB与CD的关系,再判定四边形的形状.【解答】解:∵a=1,b=﹣3m,c=2m2+m﹣2∴△=b2﹣4ac=(﹣3m)2﹣4×1×(2m2+m﹣2)=(m﹣2)2+4>0∴方程有两个不相等的实数根.∴AB≠CD,∵AB∥CD,∴四边形ABCD是梯形.故选C.【点评】本题利用了一元二次方程的根的判别式与根的关系,梯形的判定求解.3.正比例函数y=(a+1)x的图象经过第二、四象限,若a同时满足方程x2+(1﹣2a)x+a2=0,则此方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定【考点】根的判别式;正比例函数的性质.【分析】正比例函数的图象经过第二、四象限,则(a+1)<0,求出a的范围,结合一元二次方程的△,来判断根的情况.【解答】解:由题意知,(a+1)<0,解得a<﹣1,∴﹣4a>4.因为方程x2+(1﹣2a)x+a2=0的△=(1﹣2a)2﹣4a2=1﹣4a>5>0,所以方程有两个不相等的实数根.故选A.【点评】(1)正比例函数y=kx,当k<0,图象过二、四象限;k>0时,图象过一、三象限.(2)一元二次方程的△>0时,有两个不相等的实数根.(3)本题要会把a<﹣1转化为1﹣4a>5.二、填空题4.已知方程(m2﹣4)x2+(2﹣m)x+1=0是关于x的一元二次方程,则m的取值范围是m≠±2.【考点】一元二次方程的定义.【分析】根据一元二次方程成立的条件列出关于m的不等式,求出m的取值范围即可.【解答】解:∵方程(m2﹣4)x2+(2﹣m)x+1=0是关于x的一元二次方程,∴m2﹣4≠0,∴m≠±2.【点评】此题比较简单,考查的是一元二次方程的定义,即只含有一个未知数,且未知数的最高次数为2的整式方程.5.已知关于x的二次方程(1﹣2k)x2﹣2x﹣1=0有实数根,则k的取值范围是0≤k≤1且k≠.【考点】根的判别式.【专题】压轴题.【分析】二次方程有实数根即根的判别式△≥0,找出a,b,c的值代入列出k的不等式,求其取值范围.【解答】解:因为关于x的二次方程(1﹣2k)x2﹣2x﹣1=0有实数根,所以△=b2﹣4ac=(﹣2)2﹣4(1﹣2k)×(﹣1)=4﹣4k≥0,解之得,k≤1.又因为k≥0,1﹣2k≠0,即k≠,所以k的取值范围是0≤k≤1且k≠.【点评】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零和被开方数大于零这两个隐含条件.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.菱形ABCD的一条对角线长为6,边AB的长是方程x2﹣7x+12=0的一个根,则菱形ABCD的周长为16.【考点】一元二次方程的应用;三角形三边关系;菱形的性质.【专题】几何图形问题;压轴题.【分析】边AB的长是方程x2﹣7x+12=0的一个根,解方程求得x的值,根据菱形ABCD 的一条对角线长为6,根据三角形的三边关系可得出菱形的边长,即可求得菱形ABCD 的周长.【解答】解:∵解方程x2﹣7x+12=0得:x=3或4∵对角线长为6,3+3=6,不能构成三角形;∴菱形的边长为4.∴菱形ABCD的周长为4×4=16.【点评】由于菱形的对角线和两边组成了一个三角形,根据三角形两边的关系来判断出菱形的边长是多少,然后根据题目中的要求进行解答即可.7.若关于x的方程有增根,则m的值是2.【考点】分式方程的增根.【专题】计算题.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣1=0,得到x=1,然后代入化为整式方程的方程算出未知字母的值.【解答】解:方程两边都乘(x﹣1),得m﹣1﹣x=0,∵方程有增根,∴最简公分母x﹣1=0,即增根是x=1,把x=1代入整式方程,得m=2.故答案为:2.【点评】增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.8.方程的解是x=0;若关于x的方程﹣1=0无实根,则a的值为±1.【考点】分式方程的解.【专题】计算题.【分析】本题考查解分式方程能力,观察可得方程最简公分母为2(x﹣2),去分母,化为整式方程求解.分式方程﹣1=0无解的情况有两种:(1)原方程存在增根;(2)原方程约去分母后,整式方程无解.【解答】解:方程两边同乘2(x﹣2),得2x﹣2=x﹣2,解得x=0.经检验x=0是原方程的根,故方程的解是x=0;(1)x=1为原方程的增根,此时有ax+1﹣(x﹣1)=0,即a+1﹣(1﹣1)=0解得a=﹣1.(2)方程两边都乘(x﹣1),得ax+1﹣(x﹣1)=0,化简得:(a﹣1)x=﹣2.当a=1时,整式方程无解.综上所述,当a=±1时,原方程无解.【点评】将分式方程化为整式方程的关键是确定最简公分母,要根据分式的分母确定最简公分母.分母是多项式能进行分解的要先进行分解,再去确定最简公分母.分式方程无解,既要考虑分式方程有增根的情形,又要考虑整式方程无解的情形.三、解答题9.阅读下列材料:关于x的方程:的解是x1=c,;(即)的解是x1=c;的解是x1=c,;的解是x1=c,;…(1)请观察上述方程与解的特征,比较关于x的方程与它们的关系,猜想它的解是什么?并利用“方程的解”的概念进行验证.(2)由上述的观察、比较、猜想、验证,可以得出结论:如果方程的左边是未知数与其倒数的倍数的和,方程的右边的形式与左边完全相同,只是把其中的未知数换成了某个常数,那么这样的方程可以直接得解,请用这个结论解关于x的方程:.【考点】解分式方程.【专题】阅读型.【分析】此题为阅读分析题,解此题要注意认真审题,找到规律:x+=c+的解为x1=c,x2=,据规律解题即可.【解答】解:(1)猜想的解是x1=c,x2=.验证:当x=c时,方程左边=c+,方程右边=c+,∴方程成立;当x=时,方程左边=+c,方程右边=c+,∴方程成立;∴的解是x1=c,x2=;(2)由得,∴x﹣1=a﹣1,,∴x1=a,x2=.【点评】解此题的关键是理解题意,认真审题,寻找规律:x+=c+的解为x1=c,x2=.10.已知:关于x的一元二次方程mx2﹣(3m+2)x+2m+2=0(m≠0)(1)若m=1,求出此时方程的实数根;(2)求证:方程总有实数根;(3)设m>0,方程的两个实数根分别为x1,x2(其中x1<x2)、若y是关于m的函数,且y=x2﹣2x1,求函数的解析式,并画出其图象.(画草图即可,不必列表)【考点】根与系数的关系;解一元二次方程﹣公式法;解一元二次方程﹣因式分解法;根的判别式;待定系数法求反比例函数解析式.【专题】计算题;证明题.【分析】(1)把m的值,代入方程,解方程即可;(2)运用根的判别式判断,列出判别式的表达式,再变形成为非负数,得出△≥0即可;(3)可根据求根公式求出x1、x2,代入y=x2﹣2x1中,得出关于m的函数关系式,根据m>0,画出函数图象.【解答】解:(1)若m=1,方程化为x2﹣5x+4=0即(x﹣1)(x﹣4)=0,得x﹣1=0或x﹣4=0,∴x1=1或x2=4;证明:(2)∵mx2﹣(3m+2)x+2m+2=0是关于x的一元二次方程,∴△=[﹣(3m+2)]2﹣4m(2m+2)=m2+4m+4=(m+2)2∵m≠0,∴(m+2)2≥0,即△≥0∴方程有实数根;解:(3)由求根公式,得.∴或x=1∵=2+∵m>0,∴=2+>2∵x1<x2,∴x1=1,∴即为所求.此函数为反比例函数,其图象如图所示:即为所求.此函数为反比例函数,其图象如图所示:【点评】本题重点考查了反比例函数的性质(点评不合题意)及一元二次方程根的判别式和根与系数的关系(此题并没有设计,需要重新检查此题),是一个综合性的题目,也是一个难度中等的题目.11.若等腰三角形一腰上的高等于腰长的一半,则此三角形的底角等于75°或15°.【考点】等腰三角形的性质;三角形内角和定理.【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时,由已知可求得三角形的顶角为30°,则底角是75°;当高在三角形外部时,三角形顶角的外角是30°,则底角是15°;所以此三角形的底角等于75°或15°【点评】本题考查了等腰三角形的性质及三角形内角和定理;熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出75°一种情况,把三角形简单的化成锐角三角形.12.如图,直线l的解析式为y=﹣x+4,它与x轴、y轴分别相交于A、B两点,平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴、y轴分别相交于M、N两点,运动时间为t秒(0<t≤4)(1)求A、B两点的坐标;(2)用含t的代数式表示△MON的面积S1;(3)以MN为对角线作矩形OMPN,记△MPN和△OAB重合部分的面积为S2;①当2<t≤4时,试探究S2与之间的函数关系;②在直线m的运动过程中,当t为何值时,S2为△OAB的面积的?【考点】一次函数综合题.【专题】压轴题.【分析】(1)在解析式y=﹣x+4中,分别令y=0,x=0就可以求出与x,y轴的交点坐标;(2)根据MN∥AB,得到△OMB∽△OAB,根据相似三角形的对应边的比相等,就可以求出,用OM表示出来;(3)根据t的不同值,所对应的阴影部分的图形形状不同,因而应分2<t≤4和当0<t≤2两种个情况进行讨论.【解答】解:(1)当x=0时,y=4;当y=0时,x=4.∴A(4,0),B(0,4);(2)∵MN∥AB,,∴OM=ON=t,∴S1=OM•ON=t2;(3)①当2<t≤4时,易知点P在△OAB的外面,则点P的坐标为(t,t).理由:当t=2时,OM=2,ON=2,OP=MN==2,直角三角形AOB中,设AB边上的高为h,易得AB=4,则×4h=4×4×,解得h=2,故t=2时,点P在l上,2<t≤4时,点P在△OAB的外面.F点的坐标满足,即F(t,4﹣t),同理E(4﹣t,t),则PF=PE=|t﹣(4﹣t)|=2t﹣4,所以S2=S△MPN﹣S△PEF=S△OMN﹣S△PEF,=t2﹣PE•PF=t2﹣(2t﹣4)(2t﹣4)=﹣t2+8t﹣8;②当0<t≤2时,S2=t2,t2=,解得t1=﹣<0,t2=>2,两个都不合题意,舍去;当2<t≤4时,S2=﹣t2+8t﹣8=,解得t3=3,t4=,综上得,当t=或t=3时,S2为△OAB的面积的.【点评】本题主要考查了函数图象与坐标轴的交点的求法,以及利用三角形的相似的性质.是一个难度较大的综合题.13.A、B两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往B城,乙车驶往A城,甲车在行驶过程中速度始终不变.甲车距B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的关系如图.(1)求y关于x的表达式;(2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,两车相距的路程为s(千米).请直接写出s关于x的表达式;(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为a(千米/时)并保持匀速行驶,结果比甲车晚40分钟到达终点,求乙车变化后的速度a.在下图中画出乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象.【考点】一次函数的应用.【专题】压轴题.【分析】(1)由图知y是x的一次函数,设y=kx+b.把图象经过的坐标代入求出k与b 的值.(2)根据路程与速度的关系列出方程可解.(3)如图:当s=0时,x=2,即甲乙两车经过2小时相遇.再由1得出y=﹣90x+300.设y=0时,求出x的值可知乙车到达终点所用的时间.【解答】解:(1)方法一:由图知y是x的一次函数,设y=kx+b.∵图象经过点(0,300),(2,120),∴解得,∴y=﹣90x+300.即y关于x的表达式为y=﹣90x+300.方法二:由图知,当x=0时,y=300;x=2时,y=120.所以,这条高速公路长为300千米.甲车2小时的行程为300﹣120=180(千米).∴甲车的行驶速度为180÷2=90(千米/时).∴y关于x的表达式为y=300﹣90x(y=﹣90x+300).(2)由(1)得:甲车的速度为90千米/时,甲乙相距300千米.∴甲乙相遇用时为:300÷(90+60)=2,当0≤x≤2时,函数解析式为s=﹣150x+300,2<x≤时,S=150x﹣300<x≤5时,S=60x;(3)在s=﹣150x+300中.当s=0时,x=2.即甲乙两车经过2小时相遇.因为乙车比甲车晚40分钟到达,40分钟=小时,所以在y=﹣90x+300中,当y=0,x=.所以,相遇后乙车到达终点所用的时间为﹣2=2(小时).乙车与甲车相遇后的速度a=(300﹣2×60)÷2=90(千米/时).∴a=90(千米/时).乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象如图所示.【点评】本题以行程问题为背景,考查由一次函数图象求解析式.分析相遇问题,求相遇时间及速度,依据速度和时间画函数图象,重点考查学生的观察、理解及分析解决问题的能力.14.某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植﹣亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z 与x之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x 之间的函数关系式;(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.【考点】二次函数的应用;一次函数的应用.【专题】压轴题.【分析】(1)根据题意可知直接计算这种蔬菜的收益额为3000×800=2400000(元);(2)设种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式分别为:y=kx+800,z=k1x+3000,并根据图象上点的坐标利用待定系数法求函数的解析式即可;(3)表示出蔬菜的总收益w(元)与x之间的关系式,w=﹣24x2+21600x+2400000,利用二次函数最值问题求最大值.【解答】解:(1)政府没出台补贴政策前,这种蔬菜的收益额为3000×800=2400000(元)(2)设种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式分别为:y=kx+800,z=k1x+3000,分别把点(50,1200),(100,2700)代入得,50k+800=1200,100k1+3000=2700,解得:k=8,k1=﹣3,种植亩数与政府补贴的函数关系为:y=8x+800每亩蔬菜的收益与政府补贴的函数关系为z=﹣3x+3000(x>0)(3)由题意:w=yz=(8x+800)(﹣3x+3000)=﹣24x2+21600x+2400000=﹣24(x﹣450)2+7260000,∴当x=450,即政府每亩补贴450元时,总收益额最大,为7260000元.【点评】主要考查利用一次函数和二次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解.利用二次函数的顶点坐标求最值是常用的方法之一.15.(2009•潍坊)要对一块长60米、宽40米的矩形荒地ABCD进行绿化和硬化.(1)设计方案如图①所示,矩形P、Q为两块绿地,其余为硬化路面,P、Q两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形ABCD面积的,求P、Q两块绿地周围的硬化路面的宽.(2)某同学有如下设想:设计绿化区域为相外切的两等圆,圆心分别为O1和O2,且O1到AB、BC、AD的距离与O2到CD、BC、AD的距离都相等,其余为硬化地面,如图②所示,这个设想是否成立?若成立,求出圆的半径;若不成立,说明理由.【考点】一元二次方程的应用;二元一次方程组的应用;相切两圆的性质.【专题】几何图形问题.【分析】(1)把P、Q合并成矩形得长为(60﹣3×硬化路面的宽),宽为(40﹣2×硬化路面的宽),由等量关系S P+S Q=S矩形ABCD÷4求得并检验.(2)两等量关系2×O1到AD的距离=40;2×圆的半径+2×圆心到边的距离=60,列方程组求出并检验.【解答】解:(1)设P、Q两块绿地周围的硬化路面的宽都为x米,根据题意,得:(60﹣3x)×(40﹣2x)=60×40×,解得,x1=10,x2=30,经检验,x2=30不符合题意,舍去.所以,两块绿地周围的硬化路面宽都为10米.(2)设想成立.设圆的半径为r米,O1到AB的距离为y米,根据题意,得:,解得:y=20,r=10,符合实际.所以,设想成立,则圆的半径是10米.【点评】分析图形特点,根据题意找出等量关系列出方程或方程组,解决问题并检验.16.如图,四边形ABCD为矩形,AB=4,AD=3,动点M、N分别从D、B同时出发,以1个单位/秒的速度运动,点M沿DA向终点A运动,点N沿BC向终点C运动.过点N 作NP⊥BC,交AC于点P,连接MP.已知动点运动了x秒.(1)请直接写出PN的长;(用含x的代数式表示)(2)若0秒≤x≤1秒,试求△MPA的面积S与时间x秒的函数关系式,利用函数图象,求S的最大值.(3)若0秒≤x≤3秒,△MPA能否为一个等腰三角形?若能,试求出所有x的对应值;若不能,试说明理由.【考点】二次函数综合题.【专题】压轴题;动点型.【分析】(1)可在直角三角形CPN中,根据CN的长和∠CPN的正切值求出.(2)三角形MPA中,底边AM的长为3﹣x,关键是求出MA边上的高,可延长NP交AD于Q,那么PQ就是三角形AMP的高,可现在直角三角形CNP中求出PN的长,进而根据AB的长,表示出PQ的长,根据三角形的面积公式即可得出S与x的函数关系式.根据函数的性质可得出S的最大值.(3)本题要分三种情况:①MP=PA,那么AQ=BN=AM,可用x分别表示出BN和AM的长,然后根据上述等量关系可求得x的值.②MA=MP,在直角三角形MQP中,MQ=MA﹣BN,PQ=AB﹣PN根据勾股定理即可求出x的值.③MA=PA,不难得出AP=BN,然后用x表示出AM的长,即可求出x的值.【解答】解:(1);(2)延长NP交AD于点Q,则PQ⊥AD,由(1)得:PN=,则PQ=QN﹣PN=4﹣=x依题意,可得:AM=3﹣x,S=AM•PQ=(3﹣x)•=2x﹣x2=﹣(x﹣)2+∵0≤x≤1即函数图象在对称轴的左侧,函数值S随着x的增大而增大.∴当x=1时,S有最大值,S最大值=(3)△MPA能成为等腰三角形,共有三种情况,以下分类说明:①若PM=PA,∵PQ⊥MA,∴四边形ABNQ是矩形,∴QA=NB=x,∴MQ=QA=x,又∵DM+MQ+QA=AD∴3x=3,即x=1②若MP=MA,则MQ=3﹣2x,PQ=,MP=MA=3﹣x在Rt△PMQ中,由勾股定理得:MP2=MQ2+PQ2∴(3﹣x)2=(3﹣2x)2+(x)2,解得:x=(x=0不合题意,舍去)③若AP=AM,由题意可得:AP=x,AM=3﹣x∴x=3﹣x,解得:x=综上所述,当x=1,或x=,或x=时,△MPA是等腰三角形.【点评】本题是点的运动性问题,考查了图形面积的求法、等腰三角形的判定等知识.(3)题要按等腰三角形腰和底的不同分类讨论.。

2020年九年级中考数学复习 :一元二次方程 专题练习 包含答案

2020年九年级中考数学复习 :一元二次方程 专题练习 包含答案

一元二次方程1. 下列方程中一定是一元二次方程的是( )2-1=0 B. 5x2-6y-3=0 C. ax2-x+2=0 D. 3x2-3x-1=0A. 3x2+x2. 方程x2-2(x+3)(x-4)=10化成一般形式为( )A.x2-2x-14=0 B.x2+2x+14=0 C.x2+2x-14=0 D.x2-2x+14=0 3.下列方程采用配方法求解较简便的是( )A.3x2+x-1=0 B.4x2-4x-5=0 C.x2-7x=0 D.(x-3)2=4x24.如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m,另一边减少了3m,剩余一块面积为20 m2的矩形空地,则原正方形空地的边长是( )A.7m B.8m C.9m D.10m5.下面是李刚同学在一次测验中解答的题目,其中答对的是( )A.若x2=4,则x=2B.方程x(2x-1)=2x-1的解为x=1C.若方程-0.5x2+x+k=0一根等于1,则k=-0.5D .若分式x 2-3x +2x -1的值为零,则x =1或26.若α,β为方程2x 2-5x -1=0的两个实数根,则2α2+3αβ+5β的值为( )A .-13B .12C .14D .157.关于x 的一元二次方程(m -2)x 2+(2m +1)x +m -2=0有两个不相等的正实数根,则m 的取值范围是( )A .m >34B .m >34且m≠2C .-12<m <2 D.34<m <210. 等腰三角形的边长分别是a,b,2,且a,b 是关于x 的一元二次方程x 2-6x +n -1=0的两根,则n 的值为( ) A. 9 B. 10 C. 9或10 D. 8或1011. 已知实数x 1,x 2满足x 1+x 2=7,x 1x 2=12,则以x 1,x 2为根的一元二次方程是 .12.已知b ,c 为实数,且满足(b -c -1)2=-b +1,则一元二次方程x 2+bx +c =0的根为 .13.已知实数m ,n 满足3m 2+6m -5=0,3n 2+6n -5=0,且m≠n,则m 2+n 2 = .14.关于x 的一元二次方程(m -3)xm 2-5m +8+(m -2)x +5=0的解15.三角形的两边长分别是3和4,第三边长是方程x2-13x+40=0的根,则该三角形的周长为____.16.如图,在矩形ABCD中,AB=6cm,BC=8cm.现有两个动点P,Q分别从点A和点B同时出发,其中点P以1cm/s的速度沿AB向终点B移动,点Q以2cm/s的速度沿BC向终点C移动,其中一点到达终点,另一点也随之停止运动.连接PQ,若经过x s后P,Q两点之间的距离为42,那么x的值为 .17. 若关于x的方程(x+1)2=k﹣1没有实数根,则k的取值范围是 .18. 已知关于x的一元二次方程x2+mx+4=0有两个正整数根,则m可能取的值为 .19. 古算趣题:“笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭.有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足.借问竿长多少数,谁人算出我佩服.”若设竿长为x尺,则可列方程为.20. 若关于x的方程x2﹣mx+m=0有两个相等实数根,则代数式2m2﹣8m+1的21. 用适当的方法解下列方程:(1)4x2+8x+1=0;(2)(3t+2)2=6t+4.22. 已知x=n是关于x的一元二次方程mx2﹣4x﹣5=0的一个根,若mn2﹣4n+m=6,求m的值.23. 若关于x的一元二次方程ax2=b(ab>0)的两个根分别是m+1与2m-4,求ba的值.24. 已知m是方程x2+x﹣1=0的一个根,求代数式(m+1)2+(m+1)(m﹣1)的值.25. 一元二次方程x 2-2x -54=0的某个根,也是一元二次方程x 2-(k +2)x +94=0的根,求k 的值.26. 已知关于x 的一元二次方程mx 2﹣(m+2)x+2=0有两个不相等的实数根 x 1,x 2.(1) 求m 的取值范围; (2) 若x 2<0,且>﹣1,求整数m 的值.27. 已知关于x 的方程k 2x 2-2(k +1)x +1=0有两个实数根. (1)求k 的取值范围;(2)当k =1时,设所给方程的两个根分别为x 1和x 2,求x 2x 1+x 1x 2的值.28. 已知关于x 的一元二次方程x 2+2x +m =0. (1)当m =3时,判断方程的根的情况; (2)当m =-3时,求方程的根.28. 解:(1)∵当m =3时,Δ=b 2-4ac =22-4× 3=-8< 0, ∴原方程无实数根.(2)当m =-3时,原方程变为x 2+2x -3=0, 解得x 1=1,x 2=-3.29. 随着人们节能意识的增强,节能产品的销售量逐年增加.某地区高效节能 灯的年销售量2019年为10万只,预计2021年将达到14.4万只.求该地区 2019年到2021年高效节能灯年销售量的平均增长率.30. 随着国家“惠民政策”的陆续出台,为了切实让老百姓得到实惠,国家卫计委严打药品销售环节中的不正当行为,某种药品原价200 元/瓶,经过连续两次降价后,现在仅卖98 元/瓶.现假定两次降价的百分率相同,求该种药品平均每次降价的百分率. 答案:1---10 DABAC BDACB 11. x 2-7x +12=0. 12. x 1=-1,x 2=2 13. 22314. x =± 5. 15. 12 16. 2或2517. k <1 18. ﹣4,﹣519. (x ﹣2)2+(x ﹣4)2=x 220. 121. (1) 解:原方程可化为x 2+2x +14=0,配方,得(x +1)2=34,开平方,得x +1=± 32,∴x 1=-1+32,x 2=-1-32.(2) 解:去括号,得9t 2+12t +4=6t +4,整理,得9t 2+6t =0, ∴3t(3t+2)=0,∴t 1=-23,t 2=0.22. 解:把x =n 代入方程得:mn 2﹣4n ﹣5=0,即mn 2﹣4n =5, 代入已知等式得:5+m =6,解得:m =1.23. 解:方程ax 2=b 可变形为x 2=ba(ab > 0),∴x=±b a, ∴方程的两个根互为相反数,∴m+1+2m -4=0,解得m =1, ∴一元二次方程ax 2=b(ab > 0)的两个根分别是2与-2, ∴b a =2,∴ba=4. 24. 解:把x =m 代入方程得:m 2+m ﹣1=0,即m 2+m =1, 则原式=m 2+2m+1+m 2﹣1=2(m 2+m )=2.25. 解:由x 2-2x -54=0得(x -1)2=94.解得x 1=52,x 2=-12.当x =52时,⎝ ⎛⎭⎪⎫522-52(k +2)+94=0,∴k=75.当x =-12时,⎝ ⎛⎭⎪⎫-12+12(k +2)+94=0,∴k=-7.又由Δ=[-(k +2)]2-4× 94≥0,得k≥1或k≤-5,∴k 的取值符合. ∴k 的值为75或-7.26. 解:(1)由已知得:m ≠0且△=(m+2)2﹣8m =(m ﹣2)2>0, 则m 的范围为m ≠0且m ≠2; (2)方程解得:x =,即x =1或x =,∵x 2<0,∴x 2=<0,即m <0, ∵>﹣1,∴>﹣1,即m >﹣2,∵m ≠0且m ≠2,∴﹣2<m <0, ∵m 为整数,∴m =﹣1.27. 解:(1)∵Δ=4(k +1)2-4k 2=4(2k +1)≥0,∴k≥-12且k≠0,故k 的取值范围是k≥-12且k≠0.(2)当k =1时方程为x 2-4x +1=0,∵x 1+x 2=4,x 1x 2=1.∴x 2x 1+x 1x 2=x 22+x 21x 1x 2=(x 1+x 2)2-2x 1x 2x 1x 2=16-2=14. 28. 解:(1)∵当m =3时,Δ=b 2-4ac =22-4× 3=-8< 0, ∴原方程无实数根.(2)当m =-3时,原方程变为x 2+2x -3=0, 解得x 1=1,x 2=-3.29. 解:设该地区2019年到2021年高效节能灯年销售量的平均增长率为x , 依据题意,列出方程10(1+x )2=14.4, 化简整理,得:(1+x )2=1.44, 解这个方程,得1+x =±1.2, ∴x 1=0.2,x 2=﹣2.2,∵该地区2019年到2021年高效节能灯年销售量的平均增长率不能为负数.∴x=﹣2.2舍去.∴x=0.2=20%.答:该地区2019年到2021年高效节能灯年销售量的平均增长率为20%.30. 解:设该种药品平均每次降价的百分率是x,由题意得200(1-x)2=98.解得x1=1.7(不合题意,舍去),x2=0.3=30%.答:该种药品平均每次降价的百分率是30%.。

2024年中考九年级数学复习练习题:一元二次方程含参考答案

2024年中考九年级数学复习练习题:一元二次方程含参考答案

2024年中考九年级数学复习练习题:一元二次方程一、选择题1.一元二次方程3x 2=12的二次项,一次项和常数项分别为()A.3x 2,无一次项,−12B.3x 2,无一次项,12C.3x 2,0,−12D.3x 2,0,122.用配方法解方程x 2+4x −1=0,下列配方结果正确的是().A.(x +2)2=5B.(x +2)2=1C.(x −2)2=1D.(x −2)2=53.关于x 的一元二次方程x 2−8x +m =0有两个不相等的实数根,则m 的值可能是()A.15B.16C.17D.184.已知直角三角形的两条直角边长恰好是方程x 2−5x +6=0的两个根,则此直角三角形斜边长是()A.13B.5C.5D.135.已知菱形ABCD 的对角线AC,BD 的长度是方程x 2﹣13x+36=0的两个实数根,则此菱形的面积为()A.18B.24C.30D.366.某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x 株,则可以列出的方程是()A.(3+x)(4-0.5x)=15B.(x+3)(4+0.5x)=15C.(x+4)(3-0.5x)=15D.(x+1)(4-0.5x)=157.若α、β是方程x 2+2x −2005=0的两个实数根,则α2+3α+β的值为()A.2005B.2003C.-2005D.40108.为增强同学们的体质,丰富校园文化体育生活,某校八年级举行了篮球比赛,比赛以循环赛的形式进行,即每个班级之间都要比赛一场,共比赛了45场.该校八年级共有()个班.A.9B.10C.5D.8二、填空题9.一元二次方程x 2=x 的根是.10.若关于x 的一元二次方程x 2+2x +m −1=0有实数根,则m 的取值范围是.11.一个三角形的两边长分别为2和3,第三边的长是方程x 2-10x+21=0的根,则该三角形的第三边的长为.12.已知x 1、x 2是方程x 2﹣2x﹣1=0的两根,则x 12+x 22=.13.要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请个队参赛.14.解方程:(1)x 2﹣6x=0;(2)2x 2+5x﹣1=0;(3)2x(x﹣3)=x﹣3.15.已知关于x 的一元二次方程(x −1)(x −2k)+k(k −1)=0.(1)求证:该一元二次方程总有两个不相等的实数根;(2)若该方程的两个根x 1,x 2是一个矩形的一边长和对角线的长,且矩形的另一边长为3,试求k 的值.16.已知关于x 的一元二次方程x 2+(2m﹣1)x+m 2﹣2=0有实数根.(1)求实数m 的取值范围;(2)当m=1时,方程的根为x 1,x 2,求代数式(x 12+2x 1)(x 22+4x 2+2)的值.17.某农场今年第一季度的产值为50万元,第二季度由于改进了生产方法,产值提高了20%;但在今年第三、第四季度时该农场因管理不善.导致其第四季度的产值与第二季度的产值相比下降了11.4万元.(1)求该农场在第二季度的产值;(2)求该农场在第三、第四季度产值的平均下降的百分率.18.某经销商经销的学生用品,他以每件280元的价格购进某种型号的学习机,以每件360元的售价销售时,每月可售出60个,为了扩大销售,该经销商采取降价的方式促销,在销售中发现,如果每个学习机降价10元,那么每月就可以多售出50个.(1)降价前销售这种学习机每月的利润是多少元?(2)经销商销售这种学习机每月的利润要达到7200元,且尽可能让利于顾客,求每个学习机应降价多少元?(3)在(2)销售过程中,销量好,经销商又开始涨价,涨价后每月销售这种学习机的利润能达到10580元吗?若能,请求出涨多少元;若不能,请说明理由.1.C 2.A 3.A 4.D 5.A 6.A 7.B 8.B9.x 1=1,x 2=010.m ≤211.312.613.814.解:(1)x 2﹣6x=0,x(x﹣6)=0,∴x=0或x﹣6=0,解得:x 1=0,x 2=6;(2)2x 2+5x﹣1=0,∵a=2,b=5,c=﹣1,∴Δ=52﹣4×2×(﹣1)=33>0,∴x =∴x 1=2=(3)2x(x﹣3)=x﹣3,2x(x﹣3)﹣(x﹣3)=0,(x﹣3)(2x﹣1)=0,∴x﹣3=0或2x﹣1=0,∴x 1=3,x 2=12.15.(1)证明:(x −1)(x −2k)+k(k −1)=0,整理得:x 2−(2k +1)x +k 2+k =0∵a =1,b =−(2k +1),c =k 2+k ,∴Δ=b 2−4ac =(2k +1)2−4×1×(k 2+k)=1>0,∴该一元二次方程总有两个不相等的实数根;(2)解:x (2k +1)x +k 2+k =0,x ==2k+1±12,∴x 1=k ,x 2=k +1,①当x =k 为对角线时,k 2=(k +1)2+32,解得:k =−5(不符合题意,舍去),②当x =k +1为对角线时,(k +1)2=k 2+32,解得:k =4;综合可得,k 的值为4.16.解:(1)∵关于x 的一元二次方程x 2+(2m﹣1)x+m 2﹣2=0有实数根,∴Δ≥0,即(2m﹣1)2﹣4(m 2﹣2)≥0,整理得:﹣4m+9≥0,解得:m ≤94.故实数m 的取值范围是m ≤94;(2)当m=1时,方程为x 2+x﹣1=0,∵该方程的两个实数根分别为x 1,x 2,∴x 1+x 2=﹣1,x 1x 2=﹣1,x 12+x 1=1,x 22+x 2=1,∴(x 12+2x 1)(x 22+4x 2+2)=(x 1+1)(3x 2+3)=3[x 1x 2+(x 1+x 2)+1]=3×(﹣1﹣1+1)=3×(﹣1)=﹣3.17.(1)解:第二季度的产值为:50(120%)60⨯+=(万元);(2)解:设该农场在第三、第四季度产值的平均下降的百分率为x ,根据题意得:该农场第四季度的产值为6011.448.6-=(万元),列方程,得:260(1)48.6x -=,即2(1)0.81x -=,解得:120.1 1.9x x ==,(不符题意,舍去).答:该农场在第三、第四季度产值的平均下降百分率为10%.18.(1)解:由题意得:60×(360−280)=4800(元),∴降价前商场每月销售学习机的利润是4800元;(2)解:设每个学习机应降价x 元,由题意得:(360−x −280)(50⋅x10+60)=7200,解得:x =8或x =60,由题意尽可能让利于顾客,x =8舍去,即x =60,∴每个学习机应降价60元;(3)解:设应涨y 元每月销售这种学习机的利润能达到10580元,根据题意得:(360−60+y −280)[5(60−y)+60]=10580,方程整理得:y 2−52y +676=0,解得:y 1=y 2=26,∴应涨26元每月销售这种学习机的利润能达到10580元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学复习专题一元二次方程一、选择题:1、若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0的常数项为0,则m的值等于( )A.﹣2 B.2 C.﹣2或2 D.02、方程x2+6x﹣5=0的左边配成完全平方后所得方程为( )A.(x+3)2=14 B.(x﹣3)2=14 C.(x+3)2=4 D.(x﹣3)2=43、关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0,常数项为0,则m值等于( )A.1 B.2 C.1或2 D.04、某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是( )A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=1965、若关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,则k的取值范围( )A.k<1且k≠0 B.k≠0 C.k<1 D.k>16、关于x的一元二次方程x2+2x﹣m=0有两个实数根,则m的取值范围是( )A.m≥﹣1 B.m>﹣1 C.m≤﹣1且m≠0 D.m≥﹣1且m≠07、已知m,n是关于x的一元二次方程x2﹣3x+a=0的两个解,若(m﹣1)(n﹣1)=﹣6,则a的值为( )A.﹣10 B.4 C.﹣4 D.108、若m、n是一元二次方程x2﹣5x﹣2=0的两个实数根,则m+n﹣mn的值是( )A.﹣7 B.7 C.3 D.﹣39、有一人患了流感,经过两轮穿然后共有49人患了流感,设每轮传染中平均一个人传染了x人,则x值为( )A.5 B.6 C.7 D.810、毕业之际,某校九年级数学兴趣小组的同学相约到同一家礼品店购买纪念品,每两个同学都相互赠送一件礼品,礼品店共售出礼品30件,则该兴趣小组的人数为( )A.5人 B.6人 C.7人 D.8人11、某市2013年生产总值(GDP)比2012年增长了12%,由于受到国际金融危机的影响,预计今年比2013年增长7%.若这两年GDP年平均增长率为x%,则x%满足的关系是( )A.12%+7%=x%B.(1+12%)(1+7%)=2(1+x%)C.12%+7%=2•x%D.(1+12%)(1+7%)=(1+x%)212、设x1、x2是方程x2+3x﹣3=0的两个实数根,则的值为( )A.5 B.﹣5 C.1 D.﹣1二、填空题:13、方程2x2﹣1=的二次项系数是 ,一次项系数是 ,常数项是 .14、若关于x的方程(a+3)x|a|-1-3x+2=0是一元二次方程,则a的值为________________.15、把方程(2x+1)(x—2)=5-3x整理成一般形式后,得,其中二次项系数是,一次项系数是,常数项是。

16、某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为 .17、若关于x的一元二次方程kx2+4x+3=0有实数根,则k的取值范围是 .18、若一元二次方程x2-2x-m=0无实数根,则一次函数y=(m+1)x+m-1的图象不经过第__ __象限.19、已知整数k<5,若△ABC的边长均满足关于x的方程x2﹣3x+8=0,则△ABC的周长是______.20、某水果店销售一种进口水果,其进价为每千克40元,若按每千克60元出售,平均每天可售出100千克。

后经市场调查发现,单价每降低2元,则平均每天的销售可增加20千克。

水果店想要尽可能让利于顾客,赢得市场,又想要平均每天获利2090元,则该店应降价元出售这种进口水果。

21、如图,某小区规划在一个长30m、宽20m的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78m2,那么通道的宽应设计成多少m?设通道的宽为xm,由题意列得方程 .22、一个两位数,个位数字比十位数字大3,个位数字的平方刚好等于这个两位数,则这个两位数是________.23、关于的方程两实根之和为m ,且满足,关于y 的不等于组有实数解,则k的取值范围是______________________.24、设、是方程的两实数根,则= .三、解方程:25.(x﹣2)2=2x﹣4. 26.x2+4x﹣5=0; 27.(2x+1)2+3(2x+1)+2=0.28、在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6000元购买的门票张数,现在只花费了4800元.(1)求每张门票的原定票价;(2)根据实际情况,活动组织单位决定对于个人购票也采取优惠政策,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.29、某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均每年增长的百分率为.(1)用含的代数式表示第3年的可变成本为__________万元;(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率.30、学校要把校园内一块长20米,宽12米的长方形空地进行绿化,计划中间种花,四周留出宽度相同的地种草坪,且花坛面积为180平方米,求草坪的宽度.31、经销店为厂家代销一种新型环保水泥,当每吨售价为260元时,月销售量为45吨,每售出1吨这种水泥共需支付厂家费用和其他费用共100元.该经销店为扩大销售量、提高经营利润,计划采取降价的方式进行促销,经市场调查发现,当每吨售价每下降10元时,月销售量就会增加7.5吨.(1)填空:当每吨售价是240元时,此时的月销售量是____________吨.(2)该经销店计划月利润为9000元而且尽可能地扩大销售量,则售价应定为每吨多少元?32、在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.(1)若花园的面积为192m2,求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求x取何值时,花园面积S最大,并求出花园面积S的最大值.33、某商场服装部销售一种名牌衬衫,平均每天可售出30件,每件盈利40元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价3元时,平均每天可多卖出6件.(1)设每件降价x元,则现在每天可销售衬衫件,每件的利润是元.(用x的代数式表示)(2)若商场要求该服装部每天盈利1600元,问这个要求能否实现?若能实现,每件要降价多少元?若不能实现,请说说你的理由.34、某校园商店经销甲、乙两种文具.现有如下信息:信息1:甲、乙两种文具的进货单价之和是3元;信息2:甲文具零售单价比进货单价多1元,乙文具零售单价比进货单价的2倍少1元.信息3:某同学按零售单价购买甲文具3件和乙文具2件,共付了12元.请根据以上信息,解答下列问题:(1)甲、乙两种文具的零售单价分别为元和元.(直接写出答案)(2)该校园商店平均每天卖出甲文具50件和乙文具120件.经调查发现,甲种文具零售单价每降0.1元,甲种文具每天可多销售10件.为了降价促销,使学生得到实惠,商店决定把甲种文具的零售单价下降m(m>0)元.在不考虑其他因素的条件下,当m定为多少时,可以使商店每天销售甲、乙两种文具获取的利润保持不变?35、如图,在直角三角形ABC中,直角边AC=3cm,BC=4cm.设P、Q分别为AB、BC上的动点,在点P自点A沿AB方向向点B作匀速移动的同时,点Q自点B沿BC方向向点C作匀速移动,它们移动的速度均为每秒1cm,当Q点到达C点时,P点就停止移动.设P、Q移动的时间t秒.(1)写出△PBQ的面积S(cm2)与时间t(s)之间的函数表达式,并写出t的取值范围.(2)当为何值时,△PBQ为等腰三角形?的值;若不能,说明理由.(3)△PBQ能否与直角三角形ABC 相似?若能,求r参考答案1、A .2、A .3、B .4、C .5、A .6、A .7、C.8、B .9、B .10、B.11、D. 12、B.13、答案为:二次项系数是2,一次项系数是﹣,常数项是﹣1.14、答案为:315、答案为: 16、答案为:20% 17、答案为:k≤且k≠0.18、答案为:一 19、答案为:6或12或10.20、答案为:9 21、答案为:(30﹣2x)(20﹣x)=6×78 22、答案为:25或36 23、答案为:-1/2≤K<1 24、答案为:2015; 25、方程整理得:(x﹣2)2﹣2(x﹣2)=0,分解因式得:(x﹣2)(x﹣2﹣2)=0,即(x﹣2)(x﹣4)=0,可得x﹣2=0或x﹣4=0,解得:x 1=2,x 2=4.26、x 2+4x﹣5=0,(x+5)(x﹣1)=0,x 1=﹣5,x 2=1;27、设2x+1=t ,则t 2+3t+2=0,(t+1)2+(t+2)=0.t=﹣1或t=﹣2,故2x+1=﹣1或2x+1=﹣2,∴x 1=﹣1,x 2=﹣1.5.28、【解答】解:(1)设每张门票的原定票价为x 元,则现在每张门票的票价为(x﹣80)元,根据题意得=,解得x=400.经检验,x=400是原方程的根.答:每张门票的原定票价为400元;(2)设平均每次降价的百分率为y ,根据题意得400(1﹣y)2=324,解得:y 1=0.1,y 2=1.9(不合题意,舍去).答:平均每次降价10%.29、解:(1).(2)根据题意,得.解得x 1=0.1,x 2=-2.1(不合题意,舍去). 故可变成本平均每年增长的百分率是10%.30、【解答】解:设草坪的宽度为x 米,则(20﹣2x)(12﹣2x)=180,解得x 1=1 x 2=15(舍去).故草坪的宽度为1米.31、(1)60(2)解:设每吨售价下降10x(0<x <16)元,由题意,可列方程(160-10x) (45+7.5x) =9000.化简得x 2-10x +24=0.解得x 1=4,x 2=6.所以当售价定为每吨200元或220元时,该经销店的月利润为9000元.当售价定为每吨200元时,销量更大,所以售价应定为每吨200元.32、(1)∵AB=xm,则BC=(28﹣x)m ,∴x(28﹣x)=192,解得:x1=12,x2=16,答:x 的值为12m 或16m ;(2)由题意可得出:,解得:.又S=x (28﹣x)=﹣x2+28x=﹣(x﹣14)2+196,∴当x≤14时,S 随x 的增大而增大.∴x=13时,S 取到最大值为:S=﹣(13﹣14)2+196=195答:x 为13m 时,花园面积S 最大,最大面积为195m2.33、【解答】解:(1)设每件应降价x 元,则每天可以销售衬衫(30+2x )件,盈利(40﹣x)•(30+2x )元;(2)由题意可列方程为(40﹣x)•(30+2x )=1200,解得x 1=0,x 2=25,当x=0时,能卖出30件;当x=25时,能卖出80件.根据题意,x=25时能卖出80件,符合题意,不降价也能盈利1200元,符合题意.因为要减少库存,所以应降价25元.答:每件衬衫应降价25元;34、【解答】解:(1)假设甲、种商品的进货单价为x,y元,乙种商品的进货单价为y元,根据题意可得:,解得:.答:甲、乙零售单价分别为2元和3元.故答案为2,3;(2)该校园商店平均每天卖出甲文具50件和乙文具120件时,获取的利润为:50×1+120(3﹣2)=170(元).根据题意得出:(1﹣m)(50+10×)+1×120=170,即2m2﹣m=0,解得m=0.5或m=0(舍去).答:当m定为0.5元时,可以使商店每天销售甲、乙两种文具获取的利润保持不变.35、作PM⊥BC于M AC=3cm,BC=4cm,∠C=90°∴AB=5∵PA=BQ=t∴PM=sinB·PB=3/5(5-t)BM=cosB·PB=4/5(5-t)∴QM=BM-BQ=4-9/5·t∴PQ=√QM²+PM²=√(4-9/5·t)²+(3-3/5·t)²∵△PBQ为等腰三角形∴①当BQ=PB时5-t=t,∴t=2.5②当PQ=BQ时t=√(4-9/5·t)²+(3-3/5·t)²∴13t²-90t+125=0∴t=25/13,(t=5不符合题意,舍去)③当PB=PQ时5-t=√(4-9/5·t)²+(3-3/5·t)²t=40/13,(t=0不符合题意,舍去)总之,t=2.5或t=25/13,或t=40/13时,△PBQ为等腰三角形.。

相关文档
最新文档