化学键理论概述

合集下载

化学中的化学键理论

化学中的化学键理论

化学中的化学键理论化学键是指原子间的吸引力力,是分子形成的基础。

化学键的形成、性质和断裂是化学反应的重要环节,也是化学研究的核心内容。

化学键理论是化学学科中的重要分支之一,它揭示了化学键的性质和本质,为化学科学的发展和应用提供了理论基础。

1. 传统化学键理论在传统的化学中,原子间的化学键是指开尔文的“亲和力”理论。

它将原子的吸引力定义为原子核和共享了某些电荷的电子间的作用力,是一个纯经验的观点。

它不是一个特别准确的预测性理论,但是仍然在一些情况下被广泛使用。

2. 共价键理论共价键理论是指两个原子通过共享电子共同发展出的化学键。

这一理论揭示了共价键的本质,即原子间电子的共享。

共价键通常用杂化轨道理论来解释。

杂化轨道理论认为,原子的价电子空壳轨道中的电子可能会混合成新的、更稳定的轨道,称为杂化轨道。

杂化轨道提供了一个更准确的方法来描述共价键——如在氨分子中,氮原子价电子空壳轨道和氢原子的原子轨道混合,产生了四个杂化轨道,分别用于和四个氢原子组成共价键。

3. 离子键理论离子键理论是指形成离子键的原理。

它是一种典型的原子或分子排斥的现象。

当两种化学物质中含有带电离子时,离子间会产生电吸引力,因此导致它们结合到一起,而这些带电离子被称为离子。

离子键通常发生在化合物中,如氯化钠(NaCl)和硫酸二钾(K2SO4)。

4. 金属键理论金属键是指金属中的化学键,通常是由金属离子通过共享电子形成金属键。

金属离子在结晶中排列成空间有序的三维结构,形成晶格。

这种排列方式为金属提供了良好的机械性能和导电性能,在大规模制造工业用金属和合金方面有着重要的应用。

总之,化学键理论是化学学科的核心,它揭示了化学键的本质及其反应机理,为探索化学反应规律和推进实用化学技术发展提供了基础。

为了更好地掌握化学反应过程,我们需要深入了解化学键理论,并将其应用于实践中。

化学键理论

化学键理论

化学键理论1. 引言化学键理论是化学的基础理论之一,用于解释物质中原子如何通过共用、离子、金属等键形成化合物。

本文将介绍化学键的概念、类型、强度和特点,以及相关的分子轨道理论和晶体结构中的键。

2. 化学键的概念化学键是由原子之间的相互作用力形成的,用于稳定原子之间的连接,以形成化合物。

它是化学反应和化学转化的基础。

根据原子之间电子的共享或转移方式,化学键可分为共价键、离子键和金属键三种类型。

2.1 共价键共价键是由两个原子共用一对电子而形成的。

在共价键中,原子之间的电子密度共享,以形成一个稳定的化合物。

共价键的强度取决于原子间的电子云重叠程度。

2.2 离子键离子键是由正负电荷之间的相互作用力形成的。

离子键通常存在于由金属和非金属元素组成的化合物中,其中金属原子失去电子形成阳离子,非金属原子获得电子形成阴离子。

离子键的强度取决于产生的离子之间的吸引力。

2.3 金属键金属键是金属原子之间的强电子云相互作用力形成的。

金属键的特点是原子之间的电子云重叠形成一个导电的金属电子海,这种电子海使得金属具有良好的导电性和延展性。

3. 化学键的强度和特点化学键的强度决定了化合物的稳定性和性质。

共价键通常强于离子键和金属键。

化学键的强度可以通过键能来衡量,键能是在形成化学键时放出或吸收的能量。

化学键的特点还包括键长和键角。

键长是指两个原子之间的距离,它通过实验或计算得到。

键角是指连接三个原子的两个化学键之间的夹角,它决定了分子的形状和空间结构。

4. 分子轨道理论分子轨道理论是用于描述共价键形成和分子性质的理论。

根据分子轨道理论,原子中的原子轨道会线性组合形成分子轨道。

分子轨道存在于整个分子中,描述了共价键中电子的分布情况。

常见的分子轨道包括Sigma(σ)轨道和Pi(π)轨道。

Sigma轨道是由轴向重叠形成的,是共价键中电子密度最高的轨道。

Pi轨道则是通过平面上的侧向重叠形成的,通常存在于双键和三键中。

5. 晶体结构中的键除了在分子中形成化学键外,化学键也存在于晶体结构中。

无机化学7.3化学键理论

无机化学7.3化学键理论

n
价轨道数
最大成键数
2
4(2s,2px,2py,2pz)
4
3 9 (3s,3px,3py,3pz,3dz2,3dx2-y2,3dxy,3dxz,3dyz) 6
(2) 方向性
除s 轨道(角度部分为球形)外,p 、 d、f 原子轨 道在空间只有沿着一定的方向与别的原子轨道重叠, 才会产生“最大重叠”;两轨道重叠面积↑,电子在两 核间出现的几率密度↑,共价键强度↑。
键级=
成键分子轨道电子数
反键分子轨道电子数
2
20 2
1
(相当于共价单键)
2键. 级H2=+(1 氢2 0分子0.离5单子电)子键(HV2B[(无1S此)1说] 法)
3.He2 He 2 [( 1S )2 (1*S )2 ]
键级= 2 2 0 (不成键) 2
不能稳定存在
4. He2+
He2
(
1S
7.3 化学键理论
化学键:各种原子结合为分子或晶体时,各个直接 相连的粒子间都有强烈的吸引作用。这种相互的吸引作 用成为化学键。
化学键
离子键 共价键(包含配位键) 金属键
化学键理论
离子键理论: 共价健理论:
金属键理论:
Na+Cl-
, Ca2+O2-
H-H , H-Cl,
NN , H3C-CH3 , H2C=CH2 , HCCH Na, Mg, Al, K, Ca,
O2 , F2 , Ne2 :
E (2p) > E (2p)
第二周期元素分子轨道的形成
Li2 – N2
O2 – Ne2
第二周期同核双原子分子的分子轨道能级
Li2,Be2, B2, C2,N2 分子轨道能级顺序为:

分子结构-化学键理论概述

分子结构-化学键理论概述

共价键的本质——从上面分析可知, 共价键依然是电性的,本质是轨道重 叠和电子共用,但这时是共用电子形 成的负电区域的引力,而不是库仑静 电引力。
11-2-3 现代价键理论(电子配对法) 的要点
1 共价键的形成
鲍林等人将海特勒-伦敦氢分子方法推 广到其他复杂分子系统中,认为共价键的形 成必须符合以下原理:
11-1 离子键理论
11-1-1 离子键的形成
1916年德国化学家柯塞尔(科塞尔) 根据稀有气体具有稳定结构的事实提 出了离子键理论。
离子键的形成机制
稳定倾向——活泼金属原子和活泼非金属原子接近 时,都有达到稳定稀有气体结构的倾向。
电子转移——这时活泼金属原子易失去价电子,成 为带正电荷的正离子 (阳离子);活泼非金属原子易 得到相应电子,成为带负电荷的负离子 (阴离子), 即电子转移。一旦形成正负离子,两者继续靠近时 电子结构变化不大。
d = r++r就可以得到其他离子的半径。
离子半径(pm)
离子半径变化规律
同主族上下同电荷离子半径增加; 同周期中,正离子电荷越高越小, 负离子电荷越高越大。
同元素:正离子<原子<负离子。
对性质的影响——离子半径越小,引力 越大,熔点和沸点越高(限于典型的离 子晶体)。同时影响化学性质,如I-、 Br -、Cl -、 F-的还原性依次降低。
计算——晶格能难以直接测量,可应 用玻恩-哈勃循环间接测量得到(实际
得到的是ΔH,但和ΔU相差不大,因此忽略 了差别 )。
玻恩-哈勃循环(重要) Q Na ( s ) + 1/2 F2 ( g )
S
D/2
Na ( g )
F (g)
I
E
NaF ( s ) U0

第七章 化学键理论概述

第七章  化学键理论概述

3
BF CH BeCl 3 4 2 实例 HgCl2 BCl3 SiCl4 Be(ⅡA) B(ⅢA) C,Si 中心原子 Hg(ⅡB) (ⅣA)
PH3 N,P
(ⅤA)
NH 3
H2O H2S O,S
(ⅥA)
(5)sp3d2杂化

定义:同一原子内,由1个ns轨道与3个np轨道、 2个nd轨道间发生的杂化叫sp3d2杂化。杂化后形成 的6个新轨道叫sp3d2杂化轨道。 特点:每个sp3d2杂化轨道中含有1/6s成分和 3/6的p成分、2/6的d成分。
2.杂化轨道类型与分子的空间构型 ①sp杂化
由1个ns轨道和1个np轨道进行杂化,组成2个等同的sp杂化轨道。
每个sp杂化轨道中含1/2 s成分和1/2 p的成分。 两个sp杂化轨道之间夹角为180°,分子空间构型为直线型。
BeCl2分子形成过程
②sp2杂化
1个ns轨道和2个np轨道经杂化组成3个等同的sp2杂化轨道。
第七章
分子结构
离子键理论 化学键理论 共价键理论 金属键理论
§7 - 1 离子键理论
一、离子键的特点 1. 离子键的本质是库仑静电作用力 + f ∝ q q /r
q+、q-为离子所带电荷, R为离子间距离。
离子键强度是用晶格能来描述的。
2.离子键的特点:
既无方向性,也无饱和性。 离子化合物是由正负离子通过离子键相互交替连 结而成的晶体结构。
Na(s) + 1/2F2(g) S Na(g) I 1/2D F(g) A
ΔH
NaF(s)
U
Na+(g)
+ F-(g)
式中 S为 Na 的升华热 (108.8 kJ· mol - 1) , I 为 Na 的电离势( 495.8 kJ· mol - 1) , D 为 F 的 键 能 (141.8 kJ· mol - 1 ) , A 为 F 的 电 子 亲 合 势 (-328.0 2 kJ· mol-1),ΔH为NaF的生成焓(-573.65 kJ· mol-1),U为NaF的晶格能。

第七章化学键理论概述

第七章化学键理论概述

化学键理论概述7-1 离子键理论1916 年德国科学家科塞尔(Kossel )提出离子键理论。

7-1-1 离子键的形成电子转移形成离子,相应的电子构型变为稀有气体原子的电子层构型,形成稳定的离子。

正、负离子在静电引力的作用下结合在一起,形成离子化合物。

正、负离子之间的静电引力就是离子键。

r q q V 04ε -+∙-=吸引离子间距与势能V 的变化曲线7―1―2 离子键的性质离子键的本质是静电作用力。

离子的电荷越大,离子间的距离越小,离子间的静电引力越强。

静电引力的实质,决定了一个离子与任何方向的电性不同的离子相吸引而成键,所以离子键无方向性;而且只要是正负离子之间,则彼此吸引,即离子键无饱和性。

但是每个离子周围排列的相反电荷离子的数目是一定的,这个数目是与正负离子半径的大小和所带电荷多少等有关。

离子键形成的重要条件就是元素之间的电负性差值较大。

一般来说,元素的电负性差越大,形成的离子键越强。

化合物中不存在百分之百的离子键一般用离子性百分数来表示键的离子性的相对大小。

一般认为,∆χ> 1.7,发生电子转移,主要形成离子键。

∆χ< 1.7,不发生电子转移,主要形成共价键。

7―1―3 离子键的强度键能 1 mol 气态分子,离解成气态原子时,所吸收的能量,为离子键的键能,用E i表示。

键能E i越大,表示离子键越强。

晶格能在标准状态下,将1mol 离子型晶体分解成 1 mol 气态正、负离子时需要的能量,用U表示。

晶格能U越大,表示晶体分解成离子时吸收的能量越多,说明离子键越强。

离子键的强度通常用晶格能的大小来衡量。

所以,离子化合物中离子键力是晶体中吸引力和排斥力综合平衡的结果。

离子型化合物在通常状态下是以阴、阳离子聚集在一起形成的巨分子的形式存在。

所以离子化合物的化学结合力不是简单的两个阴、阳离子之间的结合,而是整块晶体之内的整个结合力。

因此,用晶格能描述离子键的强度经常比离子键的键能来得更好。

化学键理论概述

化学键理论概述

F
sp杂化轨道
激 发
杂 化
SP3d2杂化(以SF6的分子结构为例)
激发
杂化
重叠 SF6的分子形成过程
sp3d2杂化轨道是由一个s轨道、三个p轨道和两个d轨道组合而成,其特点是6 个sp3d杂化轨道指向正八面体的六个顶点,相邻的夹角为90º 。
F
SF6分子的空间结构
F
F S F
F
sp3d2杂化轨道示意图
NH
3
H2 O
杂化轨道总结
(1)轨道杂化是指同一个原子中相关轨道的混合由此产生的 杂化轨道也是原子轨道。
(2)参与杂化的轨道中电子所处的能级略有不同,而杂化后 的电子则处于相同能级。杂化后能级相当于杂化前有关 电子能级的中间值。 (3) 杂化只能发生在能级接近的轨道之间,如能层数相同的 s、p、d轨道之间,或(n-1)d与ns、np之间,能量也是相 近的。亚层符号按能层、能级升高的顺序排列,例如 d2sp3和sp3d2代表不同杂化轨道。
⑷ 周期表中相邻族左上与右下斜对角线上的正离 子半径近似相等; 如:r(Mg 2+ )=65pm ≈ r(Li + )= 60pm ⑸ 负离子半径一般较大,约130-250pm 正离子半径一般较小,约10-170pm.
四、离子晶体
1、离子晶体的特征和性质 类型:活泼金属的氧化物和盐类 特征: 晶格结点上的质点—正、负离子; 质点间作用力—离子键; 配位数 — 6、8、4等;
Na(s)+1/2Cl 2 (g) 298K,标准态 NaCl(s) △f Hm°
S↓ ↓ 1/2D
Na(g)
I↓
+
Cl(g)
↓E
-
-U ° △ f Hm =S+I+1/2D+( - E)-U U=109+496+121- 34பைடு நூலகம்+411 =788( KJ · mol

配合物中的化学键理论

配合物中的化学键理论
7
3-
3-
3、 外轨型配合物和内轨型配合物 外轨型配合物: ①、外轨型配合物:
A、定义:指形成配合物时,中心离子全部采用 定义:指形成配合物时, 外层空轨道( nd)进行杂化, 外层空轨道(ns, np, nd)进行杂化,并与配体结 合而形成的配合物。 合而形成的配合物。
B、特点: 特点:
a 、 中心离子仅采用外层空轨道 ( ns, np, nd) 中心离子仅采用外层空轨道( nd) 进行杂化成键。 进行杂化成键。 b、杂化类型为:sp3和sp3d2杂化。 杂化类型为: 杂化。 c、配合物有较多的未成对电子。 配合物有较多的未成对电子。
4d
d2sp3
返回6 返回6
26
16
④、成键过程: 成键过程:
17
[Ag(NH3)2]+的形成过程 Ag+的价电子构型为 解:Ag+的价电子构型为 4d10 5s0
5p 5s 4d
↑↓ ↑↓ ↑↓ ↑↓ ↑↓
SP杂化 杂化 5p
4d
↑↓ ↑↓ ↑↓ ↑↓ ↑↓
sp
:NH3 :NH3
↑↓ ↑↓ ↑↓
5p
2NH3
↑↓ ↑↓
4d
↑↓ ↑↓
3
2、 配离子的空间构型 ①、配位数为2的配离子 配位数为2 中心离子sp杂化 空间构型为直线型。 杂化, 中心离子sp杂化,空间构型为直线型。 [Ag(CN)2]-等。 如 例: 配位数为4 ②、配位数为4的配离子 有两种成键方式 A、以sp3杂化轨道成键 : 中心离子sp 杂化, 中心离子sp3杂化,配离子的空间构型为 四面体。 正 四面体。 如: [Zn(NH3)4]2+、[HgI4]2-等。 例:
见例5 例:(见例5、例7、)

化学键角理论

化学键角理论

化学键角理论化学键角理论是描述分子中原子之间相对排列方式的理论,它对于理解分子的空间结构和化学性质具有重要意义。

本文将从化学键的概念、化学键角的测定方法以及化学键角对分子性质的影响等方面进行探讨。

一、化学键的概念化学键是指原子之间通过共用、转移或吸引方式而形成的连接力。

其强度决定了分子的性质和化学反应的进行程度。

常见的化学键类型包括共价键、离子键和金属键。

1. 共价键共价键是通过原子之间的电子共享而形成的化学键。

在共价键中,原子间电子的数量决定了键的强度和性质。

共价键角的大小取决于原子轨道的杂化形式。

2. 离子键离子键是由正负离子之间的静电吸引力形成的化学键。

在离子键中,正离子和负离子之间的吸引力越强,键角越小。

3. 金属键金属键是金属原子之间的电子云共享而形成的化学键。

金属键角常常不固定,取决于金属之间的原子尺寸和价电子的数量。

二、化学键角的测定方法化学键角的测定可以通过实验和理论计算两种方式进行。

1. 实验测定实验测定化学键角的方法包括X射线衍射、中子衍射以及核磁共振等技术。

这些实验方法可以通过晶体学数据或者分子结构的观测得到化学键角的具体数值。

2. 理论计算理论计算是通过量子化学方法对分子结构进行模拟和计算,从而获得化学键角的数值。

常用的理论计算方法包括分子轨道理论、密度泛函理论等。

三、化学键角对分子性质的影响化学键角对分子的空间构型和化学性质有着重要的影响。

1. 分子构型化学键角决定了分子的几何构型,从而影响了分子的物理和化学性质。

例如,分子的形状、大小和稳定性均与化学键角密切相关。

2. 化学性质化学键角决定了分子的化学活性和反应性。

较小的键角通常对化学反应更有利,因为此时键中的电子容易受到外界的干扰。

而较大的键角则使得键中的电子较为稳定,难以与其他原子发生反应。

四、总结化学键角理论是描述分子中原子排列方式的重要理论。

通过准确测定和分析化学键角,我们能够更好地理解分子的结构和性质,并为设计和合成新的化学物质提供指导。

化学物理学中的化学键理论

化学物理学中的化学键理论

化学物理学中的化学键理论化学键是化学反应的核心概念,是学习化学的重要基础。

化学键的构成和性质一直是科学家们研究的焦点问题,在化学物理学中,学者们提出了一系列的化学键理论,为揭示化学反应机制提供了有力的引导。

定量化学键理论定量化学键理论主要是以分子轨道理论为基础的。

分子轨道理论将分子中的电子看作一种波动,分子的各个成分之间都处于一定状态的波动运动中,它们的合成波动决定了分子性质。

根据这种理论,化学键的强度和密度可以用分子轨道理论的计算公式来描述。

这种理论主要适用于含有大量原子的复杂分子,同时还可以解释杂化轨道的作用和非共价键的特性。

这种理论在化学研究中具有很重要的地位。

离域化学键理论离域化学键理论是离子键、共价键和金属键这三种常见的化学键类型的统一理论,认为这些键皆为“离域键化学键”,都可以用一种方式来解释。

离域化学键理论认为化学键中的电子并不局限于某个原子的轨道或物质中的某个局部空间范围,而是能够越过化学键的瓶颈,以一种更广泛的方式离开其原始轨道而进入整个系统中形成化学键。

这种理论特别适用于解释大量电子参与的化学反应和分子中非常强的电子共振相互作用。

化学键能理论化学键能指的是在化学键中需要投入的能量,它与键长及形成的原子种类及价态有关。

化学键能理论认为,化学键的能量并不是单独存在的,它源于原子核电荷的弱化和电子布居状态的改变,这种状态改变可以将电子云中的电子搬移到新的原子中。

因此,化学键能理论给出了一种理论方式,可以根据原子与分子间的相互作用以及原子与分子的内部构造,计算出化学键的强度,从而更好地预测和控制多种化学反应。

价键理论价键理论是一种早期的描述化学键的方法,它认为化学键是由于金属原子通过与晶体中其他原子相互作用而形成的。

这种理论在描述一些固态体系中的金属键和金属离子化合物时是非常有用的,它使得科学家们能够更好地理解单质和化合物之间的基本相互作用,为工业界的生产和分析提供了重要的依据。

结语不同的化学键理论在不同情况下都具有不同的优势和适用范围。

化学反应中的化学键理论

化学反应中的化学键理论

化学反应中的化学键理论化学反应是化学学科中的一个重要领域,其实现是各种化学键的重组和形成。

化学键理论是解释化学反应的基石,它涉及原子、分子之间的相互作用,是探究化学性质和化学变化的关键。

本文将从分子结构、化学键的本质、化学键的分类、键能和化学键强度等方面阐述化学键理论的基本知识和应用。

一、分子结构分子结构是形成化学键的前提条件。

在分子结构中,原子通过共价键、离子键、金属键等相互作用形成分子。

共价键中原子共同占据一定的电子数,通过原子间共用电子形成键,共用电子对在空间中呈现不同的构型,形成不同的共价键类型;离子键中正负离子通过电子相互作用形成离子键;金属键中金属原子通过空穴在金属离子间自由移动形成金属键。

分子结构的不同也反映出键的不同,而化学键理论解释的正是这些不同的键。

二、化学键的本质化学键的本质是指在键的形成过程中发生的电子共享或电子转移产生的电静力相互作用。

化学键的形成是原子、分子相互作用的结果,在这个相互作用中,原子核吸引电子云,使电子云在原子间发生共享或电子转移,并形成共价键或离子键。

这些键的强度和稳定性与相互作用中电子云的分布成正比,因此原子之间的键长、键键距和键角等都对化学键的特性产生重要影响。

三、化学键的分类根据原子之间的电子分担方式不同,化学键可分为共价键、离子键、氢键、范德华键、金属键等几类。

共价键是指原子共用一对或多对电子形成化学键,该键的稳定性主要由原子间电子云的重叠程度决定。

离子键是电子转移形成的键,由于具有相互吸引的离子间的强电场,因此离子键稳定度较高,特别是在离子半径差异大,电荷差异大的情况下。

氢键是特殊的共价键,在分子中质子与孤对电子之间发生弱的电荷相互作用而形成。

范德华键是分子间的非共价键,由于大分子中的电荷极性引起孤对电子间的相互作用而形成。

金属键是由金属原子之间的电子云共享而形成的键,是金属性质的基础。

四、键能和化学键强度化学键的强度反映了键的稳定性和键能的大小。

无机课-04 化学键理论概述 2-考研试题文档资料系列

无机课-04 化学键理论概述 2-考研试题文档资料系列
1
电子对构型
分子构型
4
3
1
举例
SO2
NH3
4
2
2
H2O
电子对斥力大小:成对-成对 <成对-孤对 <孤对- 孤对
电子对数 配体数
m
n
5
4
孤电子 对数
m-n 1
电子对构型
5
3
2
分子构型
变形四面体
举例
SF4
ClF3
5
2
3
I3-
6
5
1
6
4
2
四方锥
BrF5 XeF4
价层电子对互斥理论的局限性:
以中心原子为中心构筑分子结构 1)经验规定,不能说明键的形成原理和相对稳定性,
减去所带的电荷。
N2 : 2*5 = 10
H2O 1*2 + 6 = 8
N2O: 5*2 + 6 = 16 NO3- 5+6*3+1=24
2. 计算分子或离子中所有原子形成惰性电子结构所需的电子总数n2。
N2 :2*8 =16
H2O: 2*2+8 =12
N2O:3*8 =24
NO3- : 8*4 = 32
画Lewis式的基本步骤: 方法1
1. 计算价电子数总数和成键电子对数 2. 画骨架结构,多重键确定,标出孤对电子 3. 形式电荷的计算 4. 检查,共振结构
画Lewis式的基本步骤: 方法2
1. 画出骨架,每个原子单键相连。 2. 计算价电子总数; 3. 计算孤电子个数: 总价电子数 - 成键电子数 4. 用孤电子使周边原子达到八电子结构,从电负性最大开始。 5. 如果还剩余孤电子则放在中心原子上。 6. 如果中心原子总电子数少于8,则从周边原子中移动一对

化学键理论

化学键理论

化学键理论简介化学键是指将两个或多个原子结合在一起的力,是构成分子和化合物的基本单位。

化学键理论旨在解释化学键形成的原因以及化学键的类型和性质。

本文将介绍几个常见的化学键理论。

1. 价键理论价键理论也称为路易斯理论,是由美国化学家吉尔伯特·路易斯于1916年提出的。

根据这个理论,化学键形成是由于原子之间的电子共享或电子转移。

在化学键中,原子通过共享或转移电子以实现稳定状态。

共价键的形成是通过电子共享形成的,而离子键的形成是通过电子转移形成的。

2. 电子云理论电子云理论也称为量子力学理论,是由奥地利物理学家艾尔温·薛定谔等人在20世纪初提出的。

根据这个理论,电子不能被简单地看作是粒子,而是存在于原子周围的一种云状结构,称为电子云。

在化学键中,电子云之间的重叠是化学键的形成基础。

共价键形成是由于两个原子的电子云的重叠,而离子键形成是由于正负电荷之间的吸引力。

3. 分子轨道理论分子轨道理论是由德国化学家恩斯特·赫尔曼·福克和罗伯特·桥·休伊特于20世纪初提出的。

根据这个理论,分子中的电子不再局限于原子轨道,而是存在于整个分子的分子轨道中。

分子轨道可以是成键轨道(高能级)或反键轨道(低能级)。

共价键的形成是通过成键轨道的重叠,而离子键的形成是通过成键轨道和反键轨道之间的重叠。

4. 杂化轨道理论杂化轨道理论是由美国化学家林纳斯·鲍林在20世纪初提出的。

根据这个理论,原子轨道在形成化学键时会重新组合成一组新的杂化轨道。

杂化轨道具有介于原子轨道之间的性质,可以更好地解释一些分子的形状和键角。

杂化轨道的形成是为了最大限度地重叠,以实现更强的化学键。

5. 价电子对斥力理论价电子对斥力理论也称为VSEPR理论,是由英国化学家罗纳德·吉尔斯彭尼克在1940年代提出的。

根据这个理论,化学键的形成是为了最小化价电子对之间的斥力。

分子的几何形状取决于周围的原子和非键电子对的排列方式。

化学键理论的发展与应用

化学键理论的发展与应用

化学键理论的发展与应用化学键理论是现代化学的基石之一,它是描述分子中原子相互作用的一种理论。

化学键理论主要包括化学键的形成及特性、化学键的结构、化学键的分类等。

这些理论不仅在化学领域得到广泛应用,同时也是生物学、地球化学、材料科学等学科的理论基础。

一、化学键理论的发展历程早在18世纪初期。

英国化学家弗朗西斯科·雷达发表的《化学元素的各种组合形式》一书中,提出的元素间存在着一种"亲和力",即化学亲和力的概念。

这为化学键理论的发展打下了基础。

19世纪初期,瑞典化学家贝尔塔·冯·鲁道夫·克劳修斯提出了“单价”的概念,并提出了元素之间的原子是以一定的比例结合在一起的,并将此比例称为化学价。

他还提出了“正价离子”和“负价离子”的概念,前者是指失去了一个或多个电子的离子,后者是指得到了一个或多个电子的离子。

这些概念为化学键理论的形成奠定了基础。

20世纪初期,美国化学家吉尔伯特·劳厄尔提出了“共价键”与“离子键”的概念。

共价键是指原子间共享电子而形成的键。

离子键是指原子通过电子的让与和接受形成的键。

该理论成为化学键理论的重要基础。

在20世纪50年代至60年代中期,晶体学和X-射线衍射技术的快速发展,加快了化学键理论的研究进程。

英国化学家劳埃德·布瑞格斯和肖恩·康纳利提出了“价键理论”,并发明了“畸变指数”来描述分子中的空间构型。

他们的理论主张,分子中原子的配位数以及常见的分子形成方式可以通过电子排布的方式合理解释,并且可用于研究分子的激发态和振动态等方面的问题。

二、化学键理论的应用1. 化学反应的解释化学键理论不仅可以解释化学反应中物质之间的相互作用,还能够描述反应所产生的化学物质之间的化学键类型和键能,因此是研究化学反应机制和物质转化过程的基础。

2. 分子结构的分析与计算化学键理论可以用于分析分子的立体结构和几何形状,并计算分子的能量状态和振动特性,以及分子中的键的长度和角度等。

化学键理论概述

化学键理论概述
pm + 181 pm = 279 pm。钠离子具有 Ne 的电子构型,氯
离子具有 Ar 的电子构型,二者的平均波恩指数为 n = ( 7
+ 9 ) 2 = 8,NaCl 的 Madelung 常数为1.748,将这些数 据代入式(7-4)可以计算出 NaCl 的晶格能为 760
kJ· mol-1,与通过波恩-哈伯循环得到的计算值非常接近。
4 -1
离子键理论
4 -1 -1 离子键的形成
由活泼金属元素和活泼非金属元素组成的化合物如
NaCl,KCl,NaOH,CaO 等,在通常情况下,大多数是
结晶状的固体,具有较高的熔点和沸点,熔融状态时能够 为了说明这类化合物的原子之间相互作用的本质,1916 年,德国化学家 W. Kossel 根据大多数化合物具有稀有气 体稳定结构的事实,提出了离子键的概念。
晶格能不能用实验的方法直接测得,但是可以通过热
化学计算从有关的实验数据间接计算得出。第 3 章 3-2
节中的盖斯定律指出:一个化学反应可以分几步进行,反 应的热效应等于各分步反应热效应的总和。
根据这个定律,德国化学家 Born 和 Haber 建立了著 名的波恩-哈伯循环,用计算的方法来解决热化学问题。
还存在外层电子之间以及原子核之间的相互排斥作用。这 种排斥作用当 r 较大时可以忽略。
但当正负离子充分接近,r 极小时,这种排斥作用的 势能迅速增加。量子力学研究表明,这种排斥作用的势能
V排斥 是用指数形式表示的
V排斥=Ae
与距离 r 的关系为 V = V吸引 + V排斥

r
(7-2)
式中 A 和ρ为常数。因此,正、负离子之间的总势能
型有关,CsCl、NaCl、ZnS (立方)晶格,A 依次为 1.763、

第七章 化学键理论概述

第七章  化学键理论概述
分子中两个相邻的原子核之间的平均距 离,称为键长(或核间距)
Bond Type
C-C
C=C
C≡C
C-N
C=N
Bond Lengths
ห้องสมุดไป่ตู้C≡N
Triple bond < Double Bond < Single Bond
Bond Length (pm)
154 133 120 143 138 116
键的极性
SO2
NO3
SO3
上述分子虽然含有单键和双键,但实验测得的键长 相等,且介于单、双键之间。
共振体的概念
为解释NO2, NO3, SO2, SO3等分子或离子中的 单键和双键的键长相等而且键长数值一般介于单、 双键键长之间的实验事实,19311933年Pauling提 出了共振体(resonance form) 的概念,即这些分子 或离子的真实结构实际上是两种或两种以上结构 式的共振体。
r0
n
NA--- 阿佛伽德罗常数
A --- 马德隆常数(与晶体中原子空间排列有关)
CsCl型晶体 A = 1.76267;NaCl型晶体 A = 1.74756
ZnS型晶体 A = 1.63806
n:波恩指数;0:真空介电常数 e:1个电子所带的电量;r:正负离子间距离
Z+, Z:电荷数
(b)由热化学数据进行计算
的半径,分别为133 pm 和132 pm。以此为基础,推算出一系列 的离子半径。rMg2+=dMgO-rO2-= 210-132 = 78 pm
1927 年,Pauling 把最外层电子到核的距离,定义为离子半径。并
利用有效核电荷等数据,求出一套离子半径数值,被称为

第七章 化学键理论概述

第七章 化学键理论概述
G. N. Lewis 在1916年假定化学键所涉 及的每一对电子处于两个相邻原子之间为 每一对电子处于两个相邻原子之间为 其共享,用A—B表示。双键和叁键相应于 其共享 双键和叁键相应于 两对或三对共享电子。分子的稳定性 分子的稳定性是因 两对或三对共享电子 分子的稳定性 为共享电子对服从“八隅律”。
7.1.3 离子的特征 ◆离子的电荷 ——相应原子的得失电子数
电荷高,离子键强
◆离子的电子层构型
简单负离子的电子层构型一般具有稳定的 8 电子结构; 正离子的电子层构型大致有5 种: 2 电子构型:最外层为2 个电子;如
Li + , Be2+ (1s2 )
8 电子构型:最外层为8 个电子;如
Na+ , Mg 2+等 ns2np6 ) (
3)同一元素形成多种不同电荷离子时
r+随 荷↑而↓ 如 3+ < Fe2+ , Co3+ < Co2+ 电 Fe r−随 荷↑而↑ 电
4)负离子半径 > 原子半径;正离子半径 < 原子半径 5)周期表中相邻族左上方与右下方对角线上的正离子半 径相似
Li + Na+
Mg2+ Ca2+
7.1.4 离子晶体
(1)共价键的本质 )
原子轨道重叠,核间电子概率密度大吸引原子核而成健,本质 上是电性的。
(2)成键原理 )
●电子配对原理: 两原子接近时,自旋相反的未成对电子可以配对形成共 价键(形成条件) ●能量最低原理: 自旋相反的未成对电子配对成键后放出能量,使体系量降 低。放出能量越多,键越稳定。 ●原子轨道最大重叠原理: 原子轨道尽可能按最大程度重叠,轨道重叠越多,电子在 核间的几率密度越大,健越牢,分子越稳定。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

波恩-哈伯循环 Na ( s ) + 1/2Cl2 ( g )
Δ f HӨm NaCl ( s )
ΔH1=ΔHvap ΔH2 =1/2 E Na ( g ) ΔH3=I1 Cl ( g ) ΔH4 =-Eea,1 ΔH5= - U
Na+( g ) + Cl-( g )
ΔfHӨm = ΔH1 + ΔH2 + ΔH3 +ΔH4 + ΔH5 = ΔHvap + 1/2E+ I1- Eea,1-U
V吸引 = -
q+ · q4 πε0 r
正、负离子之间的总势能与距离 r 关系的势能曲线。
Vp
NaCl 的势能曲线
0
Vp r0
r0
r
近距离相互排斥,远距离相互吸引, 在某一平衡距离时,吸引排斥处于动态平衡,体系势能最小,最稳定。 平衡距离 r0 —— 化学键
配位数 Na+ 6 Cl- 6 无方向性: 电荷球形对称分布 无饱和性: 空间条件允许的情况下,尽可能多的吸引相反的离子。 每个离子周围排列的异号离子的数目是一定的,实际数目与离子半 径及所带的电荷有关。
正离子和负离子之间通过静电引力结合在一起,形 成离子化合物。这种正、负离子间的静电吸引力就叫做 离子键。 当不同的原子通过离子键结合形成分子时,必然伴随 着体系能量的变化,而且新体系的能量大大低于旧体系。 根据库仑定律,两个距离为r,带有相反电荷 q+ 和 q- 的正、 负离子之间的势能 V吸引为:
缺电子体系
奇数电子体系 多电子体系
Be原子半径小,不能有大的形式电荷。
+1 -2 +1
F = Be = • F • •

• •
最占优势
• •
• •
• •

F Be F • •
• •
• •
0
0
• •
0
0 F • •
• •
• •
• •
BF3
6-4-2=0
结构合理性的判定标准: 1. 形式电荷绝对值最小。 2. 相同原子相邻时,电荷为零。 3. 负电荷在电负性较大的原子上。
-1
0
6-6-1 = -1 +1 -1 5-4 = 1
形式电荷判定结构合理性:
CO2
0
+1
-1
0
0
0

SCN-

画Lewis式的基本步骤: 1. 计算价电子数总数和成键电子对数 2. 画骨架结构,多重键确定,标出孤对电子
画路易斯结构的步骤: 6. 除了成键电子外,剩余的电子属于孤对电子。 画出所有原子的孤对电子,电负性大的原子优 先满足,最后放在中心原子上,使每个原子都 满足稀有气体结构。孤电子数目加上成键电子 数目之和为N1。
画路易斯结构的步骤: 7. 若标出孤电子后,粒子仍有原子不满足八电子构型 ,则可用形式电荷或配位键(→)来满足八隅体规则 。形式电荷表示电子由一个原子迁移到另一个原 子上,配键表示成键的电子对由一个原子提供。
画路易斯结构的步骤: 4. 画出分子或离子的骨架结构,用单键将原子连 接起来。当原子个数大于2时,如果有碳把C放 在中心作为中心原子,无C则把电负性小的原 子作为中心原子。氢和电负性大的原子位于中 心原子的外围。
画路易斯结构的步骤: 5. 计算除骨架键之外剩下的共享电子数目,把它们归属 到适当的位置形成双键或三键。只有少数主族原子间 可形成多重键。如C、N、P、O、S之间的双键;C 、N、P之间的三键。共用电子对数称为键级。 N2 : 3 - 1 = 2 N2O: 4 - 2= 2 H2O: 2 - 2 = 1 NO3-: 4 - 3 = 1
Lewis理论虽然能较好地解决分 子原子的成键情况,但不能解释 千变万化的分子结构。因此需要 引入新的理论解释分子的空间结 构。
用以判断分子构型的理论
ABn型分子 A~ 中心原子 PCl5 基本设想: 中心原子A带有价层电子对之间相互排斥,这种排斥使得 分子中的键的伸展方向分布在一个使分子能量最低的构型。 A价层电子对数(m)
化学键理论概述
The Basic of Chemical Bond —— 离子键 共价键 分子间力

• 离子键理论 • 共价键理论

1. 经典价键理论(路易斯理论) 2. 价层电子对互斥理论 3. 现代价键理论(电子配对法) 4. 原子轨道杂化理论 5. 分子轨道理论(不讲)
• 金属键理论 (能带理论) • 分子间作用力
d区元素的原子 形成的正离子
离子键的强度可以用键能来表示。以 NaCl 为例说明离子键的 键能:1 mol 气态 NaCl 分子,解离成气体原子时,所吸收的能量称 为离子键的键能,用 E 表示。 NaCl ( g ) = Na ( g ) + Cl ( g ) 键能 Ei 越大,表示离子键越强。 离子键的强度通常用晶格能的大小来衡量。离子化合物中 离子键的键能是晶体中吸引力和排斥力综合平衡的结果。 ΔH = Ei
离子型化合物在通常状态下是以 阴、阳离子聚集在一起形成的巨分子 的形式存在,所以离子化合物的化学 结合力不是简单的两个阴、阳离子之 间的结合,而是整块晶体之内的整个 结合力。因此用晶格能描述离子键的 强度经常比离子键的键能来得更好。
Na+(g) +Cl-(g) = NaCl(s)
ΔH = -U
晶格能是表示离子晶体内部稳定程度的重 要指标,是影响离子化合物的一系列性质如熔 点、沸点、硬度和溶解度的主要因素。
AN “ ¨ 0 = AN “ ¨ 0 +B4 ¥ ¨ 0 2 - 0 ¨ } ·
B~配体 HF
n ~ 配体个数
H 2O
成键电子对数:n
孤对电子对数: m -n
A原子价层电子对的计算:
具体计算规定如下: 1)中心原子A的价层电子数等于配体B按照都来形成共价单键所 提供的电子数与A原有的价层电子数(s+p)之和。 如 CCl 4 4+1×4 = 8 2) 氧族元素的原子做中心原子时,价电子数为 6 。做配体时, 提供电子数为 0 。 如 H2O 6+1×2 = 8 CO2 4+ 1×0 = 4 3) 处理离子时,要加减与离子价数相当的电子。 如 PO43- 5 + 0×4 + 3 = 8 , NH4+ 5 + 1×4 -1 = 8 4)总数除以2,得电子对的对数。总数为奇数时,商进位 。 如 总数为9,则对数m为5 。
NO3- 5+6*3+1=24
2. 计算分子或离子中所有原子形成惰性电子结构所需的电子总
画路易斯结构的步骤: 3. 用N2-N1得到分子或离子所有共享电子的数目, 进而得到共享电子的对数(N2-N1)/2。 N2 : (16 -10) / 2 = 3
H2O : (12-8) /2 = 2 N2O: (24 -16)/2 = 4 NO3- :(32-24)/2 = 4
• •
• •
• •
0
• •
↔ F B F • •
• •
• •
• •
缺电子分子Lewis式: 通常以形式电荷最小 为准,而不去计较中 心原子是否满足8电 子
Cl Cl Al Cl Lewis acid
+
H N H H Lewis base Cl
Cl H _ + Al N H Cl H salt
• •
• •
• •
• •
N =N= O • •
• •
• •
• •
N ≡ N O • •
• •
从形式电荷的观点考虑,那一个 共振结构对实际结构的贡献最大?
八隅体规则是早期化学键根据主族元素化合物的实践 经验中总结归纳而来的,因而不可避免存在局限性。 ü 作为一个经验规则,它没有阐明共价键的本质 ü 不能解释分子的几何结构,如甲烷的四面体结构 ü 不能解释某些分子的性质。如O2的顺磁性以及NO2键长。 ü 八隅体规则的例外很多,不适用于过渡元素的结构分析。 由于上述的局限性,常被用初步的分子结构分析手段, 然后在这个基础上使用更加高级的方法。
NH4+ CO
N1 = 4+6 =10
N2 =2*8 =16
(N2-N1) / 2=3

CO2 形式电荷:
并不代表原子实际所带电荷,仅是电荷分布的一种表示形式。 在画Lewis结构时,有时可同时画出若干种合理的Lewis结构。 这时,形式电荷是判定那一个结构更合理的方法之一。 计算方法: 形式电荷 = 价电子数 – 孤对电子数 – 成键电子数/2
0 0
+1 -1 • •
F =B F • •
• •
• •
0
F B F • •
• •
0 F • •
• •
• •
• •
• •
• •
F
• •
最占优势
F B= F • •
• •
F • •
• •
• •
• •
• •
• •
1916年美国化学家路易斯提出了共价键 学说,标志着经典的共价键理论建立。
要点:
1. 原子之间通过共享电子,而使每个原子具有
稳定的惰性气体八电子结构。 2. 通过共用电子对形成的化学键称为共价键,共用一对电子则 形成一个共价键。 3. 通过共价键结合的分子称为共价分子。
价电子:原子核外能与其它原子相互作用形成化学键的电子。
• •
• •
• •
H • F •
• •
H O H • •
• •
• •
相关文档
最新文档