超高分子量聚乙烯纤维防弹复合材料及制备方法的制作技术

合集下载

超高分子量聚乙烯加工方式

超高分子量聚乙烯加工方式

超高分子量聚乙烯加工方式超高分子量聚乙烯(Ultra-High Molecular Weight Polyethylene, UHMWPE)是一种具有极高分子质量的聚合物材料。

由于其出色的耐磨性、化学稳定性和高强度等特点,UHMWPE在许多领域,如工程材料、生物医学和液晶显示器等方面都扮演着重要角色。

本文将从深度和广度两个方面,结合不同的加工方式,探讨超高分子量聚乙烯的制备过程和应用领域。

一、超高分子量聚乙烯的制备(1)直接压制法:超高分子量聚乙烯最常用的制备方法之一是直接压制法。

该方法将预聚合物颗粒通过熔融挤出和压制的方式制备成片状或棒状材料。

这种方法具有操作简便、成本相对较低的特点,但由于纤维晶核的形成过程较为困难,在晶体结构上存在着一定的缺陷。

(2)注射成型法:注射成型法是另一种常见的超高分子量聚乙烯制备方法。

它通过将预先制备好的UHMWPE颗粒加热熔融后注射到模具中,加压冷却成型。

这种方法可以制备出复杂形状的产品,并且在成型过程中可以通过控制温度和压力等参数来调节材料的性能。

(3)环状浸渍法:环状浸渍法是一种相对较新的超高分子量聚乙烯制备方法。

它通过将聚合前体溶液浸入冷却液中,形成环状晶体。

然后通过复合、分离和后处理等步骤,制备出超高分子量聚乙烯材料。

这种方法制备的UHMWPE材料具有更高的分子量和更好的损伤耐受性,但制备过程相对复杂。

二、超高分子量聚乙烯的应用领域超高分子量聚乙烯由于其独特的性能,在多个领域得到了广泛的应用。

(1)工程材料:超高分子量聚乙烯在工程材料领域具有出色的耐磨性和化学稳定性。

它可以用于制造输送设备的零部件、轴承、导轨等耐磨件,同时还可应用于船舶零部件、冶金设备和采矿行业等领域。

(2)生物医学:由于超高分子量聚乙烯具有较好的生物相容性和生物降解性,它在生物医学领域被广泛应用于人工关节、骨科器械和医用缝线等方面。

其材料的低摩擦系数和高强度也使其成为人工心脏瓣膜和血管支架等重要医疗器械的理想选择。

超高分子量聚乙烯纤维的制备方法及性能研究

超高分子量聚乙烯纤维的制备方法及性能研究

超高分子量聚乙烯纤维的制备方法及性能研究超高分子量聚乙烯纤维是一种具有出色力学性能和化学稳定性的高分子纤维材料。

它在许多领域具有广泛的应用前景,如航空航天、兵器装备、建筑材料等。

本文将介绍超高分子量聚乙烯纤维的制备方法以及对其性能的研究。

一、制备方法超高分子量聚乙烯纤维的制备方法有多种,其中常见的包括溶液纺丝法、熔融纺丝法和湿法纺丝法。

1. 溶液纺丝法溶液纺丝法是一种将聚乙烯溶解于适当溶剂中,通过纺丝成纤维的方法。

该方法可分为湿法和干法两种。

湿法溶液纺丝法主要步骤包括聚乙烯的溶解、纺丝、凝固和拉伸。

首先,将聚乙烯颗粒与溶剂在高温下混合搅拌,使其充分溶解形成粘度适宜的溶液。

然后,将溶液通过纺丝针孔均匀喷出,形成纤维。

接着,纤维进入凝固液中,使溶剂迅速挥发,纤维得以固化。

最后,对纤维进行拉伸,提高其分子链的有序排列度,增强纤维的力学性能。

2. 熔融纺丝法熔融纺丝法是将聚乙烯通过加热使其熔化,并通过纺丝成纤维的方法。

该方法适用于超高分子量聚乙烯的制备。

熔融纺丝法主要步骤包括加热、挤出、拉伸和固化。

首先,将聚乙烯颗粒加热到熔点以上,使其熔化形成熔融聚乙烯。

然后,将熔融聚乙烯通过挤出机加压挤出,形成纤维。

接着,纤维进入拉伸机,进行拉伸,使其分子链有序排列。

最后,对纤维进行固化,使其冷却并固化为超高分子量聚乙烯纤维。

3. 湿法纺丝法湿法纺丝法是一种将聚乙烯溶解在适当溶剂中,通过纺丝成纤维的方法。

该方法适用于超高分子量聚乙烯的制备。

湿法纺丝法主要步骤包括聚乙烯的溶解、纺丝、凝固和固化。

首先,将聚乙烯颗粒与溶剂在高温下混合搅拌,使其充分溶解形成粘度适宜的溶液。

然后,将溶液通过纺丝针孔均匀喷出,形成纤维。

接着,纤维进入凝固液中,使溶剂迅速挥发,纤维得以固化。

最后,对纤维进行固化,使其具有一定的物理性能。

二、性能研究超高分子量聚乙烯纤维的性能研究主要包括力学性能、热性能和化学稳定性等方面。

1. 力学性能超高分子量聚乙烯纤维具有出色的力学性能,如高拉伸强度、高模量和较大的延伸率等。

超高分子量聚乙烯纤维 生产工艺

超高分子量聚乙烯纤维 生产工艺

超高分子量聚乙烯纤维(Ultra-high molecular weight polyethylene fiber,UHMWPE)是一种具有极高分子量和极高强度的聚合物纤维,具有优异的耐磨性、抗冲击性和化学稳定性,被广泛应用于防弹衣、船舶绳索、挡板等领域。

其制备工艺包括高分子合成、纺丝、拉伸、热处理等多个步骤,每个步骤都对最终产品的性能有着重要影响。

本文将对超高分子量聚乙烯纤维的生产工艺进行详细介绍,以期为相关领域的科研工作者和生产从业人员提供参考。

一、高分子合成1. 原料选择超高分子量聚乙烯的合成首先需要选择合适的乙烯单体,通常采用乙烯气相聚合工艺,从乙烯裂解制备乙烯单体,并对其进行高压重聚合反应。

2. 聚合反应聚合反应是决定聚合物分子量的关键步骤,通过调控压力、温度、催化剂种类等条件,可以控制聚合物分子量的分布和平均分子量。

3. 分子量调控超高分子量聚乙烯的聚合反应需要特别注意分子量的调控,通常采用添加少量氧化剂或控制温度降低分子量。

二、纺丝1. 溶液制备将高分子量聚乙烯溶解于特定溶剂中,通常采用烷烃类溶剂如正癸烷或苯、甲苯等。

2. 纺丝设备选择适当的纺丝设备,通常采用旋转式纺丝或者湿法纺丝工艺,辅以高压气体喷射,来制备具有纳米级结晶的纤维。

三、拉伸1. 变形温度将纺丝得到的初纤维加热到高温,使其变软化,然后进行拉伸,使其分子链得到定向排列,提高纤维的拉伸强度。

2. 拉伸倍数通过控制拉伸倍数,可以调控纤维的性能,如强度和模量等。

四、热处理1. 结晶行为超高分子量聚乙烯纤维在热处理过程中会发生结晶,通过控制热处理温度和时间,可以调控纤维的结晶度和晶体尺寸。

2. 力学性能热处理对纤维的力学性能有显著影响,适当的热处理能够提高纤维的抗拉强度和模量。

以上就是超高分子量聚乙烯纤维的生产工艺的简要介绍,生产超高分子量聚乙烯纤维是一个相对复杂的过程,需要科学合理地设计每个环节的工艺参数,以获得优异的产品性能。

超高分子量聚乙烯的合成与加工

超高分子量聚乙烯的合成与加工

超高分子量聚乙烯的合成与加工超高分子量聚乙烯(Ultra-high-molecular-weight polyethylene,简称UHMWPE)是目前一种较为新型的物质,具有较为特殊的材料性能,在很多领域都有广泛的应用。

下文将介绍UHMWPE的合成原理、加工技术及应用情况等内容。

一、UHMWPE的合成原理UHMWPE是一种由乙烯单体经过聚合反应合成的聚合物,具有极高的分子量和相应的分子量分布。

UHMWPE的制备方法一般采用高压聚合法或自由基聚合法,其中高压聚合法是UHMWPE 最主要的合成方法。

高压聚合法是指在高温、高压条件下,将乙烯单体经过长时间的聚合反应,形成UHMWPE颗粒。

该方法的优点在于可以保证聚合物颗粒的相对分子质量较高,达到数百万甚至上千万,从而具有很好的力学性能和耐磨性。

二、UHMWPE的加工技术与普通的聚合物相比,UHMWPE材料具有非常高的分子量和非常高的晶格度,所以通常需要采用特殊的加工技术才能加工成具有实际应用价值的制品。

下面将介绍UHMWPE的常用加工技术。

1、挤出法UHMWPE的挤出加工技术已经比较成熟,通常采用高温高压的条件下,通过挤压装置将UHMWPE原料挤出成型。

挤出法具有高效、精度高、加工周期短等优点,可以制备出不同形状的零部件或管道等制品。

2、压模法压模法是指将热塑性材料加热到软化点,压缩成固态颗粒状,然后通过高压成型将颗粒压制成所需形状。

与挤出法相比,压模法在大件生产和挤出难度较大的情况下具有优势,可以生产出不同形状的大型零部件和管道。

3、注塑法注塑法是一种将热塑性材料加热到熔化状态,然后注入模具中,使其在模具中冷却,形成所需产品形状的加工技术。

相对于挤出法和压模法来说,注塑法不依赖于材料的形状和尺寸,适用于小型零部件和复杂形状的制品。

三、UHMWPE的应用情况由于UHMWPE的优异性能,它在很多领域都有着广泛的应用。

下面将介绍UHMWPE在医疗、航空航天、体育器材和化学工业等方面的应用情况。

超高分子量聚乙烯纤(UHMWPE)开发生产方案(一)

超高分子量聚乙烯纤(UHMWPE)开发生产方案(一)

超高分子量聚乙烯纤(UHMWPE)开发生产方案一、实施背景随着科技的飞速发展,材料科学领域也在不断探索和突破。

作为一种高性能材料,超高分子量聚乙烯纤(UHMWPE)在国防、航空航天、医疗、体育器材等领域具有广泛的应用前景。

然而,当前我国UHMWPE的生产能力和质量水平相对较低,大量依赖进口。

因此,开展UHMWPE开发生产的研究,对于提升我国材料领域的技术水平和自给能力,具有重要的战略意义。

二、工作原理UHMWPE是一种线性结构的聚合物,其分子量高达几百万甚至上千万。

由于其分子量的极高,UHMWPE具有优异的力学性能、化学稳定性和耐磨性。

在生产过程中,首先通过乙烯的聚合反应生成预聚物,再经过链延伸和分子量调整,最后经过纺丝、拉伸和热处理等工序,得到UHMWPE纤维。

三、实施计划步骤1.开展市场调研和需求分析,明确UHMWPE纤维的应用领域和市场定位。

2.进行技术预研,掌握UHMWPE合成和纺丝的关键技术。

3.与相关企业合作,共同开展UHMWPE的生产工艺研究和设备设计。

4.建设生产线,进行中试生产,优化生产工艺参数。

5.根据市场反馈,进行产品性能改进和规模化生产。

四、适用范围UHMWPE纤维具有优异的性能,适用于以下领域:1.国防军工:用于制造防弹衣、降落伞等高性能纺织品。

2.航空航天:用于制造飞机结构件、卫星支架等。

3.医疗领域:用于制造医用缝合线、人工关节等医疗器械。

4.体育器材:用于制造高档滑雪板、高尔夫球杆等体育用品。

五、创新要点1.研究开发高效合成UHMWPE的催化剂和聚合工艺,提高生产效率和产品质量。

2.优化纺丝和热处理工艺,提高纤维的力学性能和稳定性。

3.研究开发新型的UHMWPE加工设备,实现自动化和连续化生产。

4.将互联网+技术应用于生产过程中,实现生产过程的智能化控制和优化。

六、预期效果通过本项目的实施,预期能够达到以下效果:1.提高我国UHMWPE的生产能力和产品质量,满足国内市场需求。

简述超高分子量聚乙烯纤维的制造工艺

简述超高分子量聚乙烯纤维的制造工艺

简述超高分子量聚乙烯纤维的制造工艺超高分子量聚乙烯是一种重要的高性能纤维材料,具有高强度、高模量、高韧性、低密度等优点,广泛应用于航空航天、军事、体育用品等领域。

其制造工艺主要包括原料准备、聚合反应、纺丝和拉伸等步骤。

超高分子量聚乙烯的制造过程首先需要准备适宜的原料。

聚乙烯是从乙烯单体聚合而成的,而超高分子量聚乙烯则需要采用特殊的聚合方法。

通常采用的是Ziegler-Natta催化剂聚合法,即在催化剂的作用下,乙烯单体发生聚合反应形成聚乙烯链。

聚合反应是制造超高分子量聚乙烯的关键步骤。

聚合反应通常在高温高压的条件下进行,以保证反应的进行和聚合度的增加。

催化剂的选择和添加量对聚合反应的效果有着重要影响。

通常使用的催化剂包括钛、铝、氯等元素的化合物。

在聚合反应中,催化剂起到了引发聚合反应的作用,加速了乙烯单体的聚合过程。

聚合反应完成后,就需要对聚合物进行纺丝。

纺丝是将聚合物熔融后通过纺丝孔板形成纤维的过程。

纺丝孔板的形状和孔径大小对纤维的形成和性能有着重要影响。

一般来说,纺丝孔板的孔径要小于聚合物的分子尺寸,以保证纤维的均匀性和拉伸性。

纺丝时需要控制好温度和纺丝速度,以确保纤维的质量。

纺丝完成后,就需要对纤维进行拉伸处理。

拉伸是为了进一步提高纤维的强度和模量。

拉伸时需要控制好温度和速度,以避免纤维断裂。

拉伸后的纤维经过冷却和卷绕等工艺,最终形成超高分子量聚乙烯纤维。

总结起来,超高分子量聚乙烯纤维的制造工艺包括原料准备、聚合反应、纺丝和拉伸等步骤。

这些步骤的参数和条件对纤维的质量和性能有着重要影响。

通过合理的工艺参数和条件控制,可以制造出高性能的超高分子量聚乙烯纤维,满足不同领域的需求。

超高分子量聚乙烯加工技术详解

超高分子量聚乙烯加工技术详解

超高分子量聚乙烯加工技术超高分子量聚乙烯安阳超高工业技术有限责任公司20160629摘要:超高分子量聚乙烯英文简称UHMW-PE,它是一种来源丰富、价格适中、性能优异的一类热塑性工程塑料,由于具有耐冲击性、耐腐蚀、耐磨损、自润滑性、无毒性及极优良的耐低温性等优点,被应用在许多领域。

“性能卓越,加工困难”是UHMW-PE的一大特点,其原因就在于UHMW-PE的分子链极长,致使分子链互相缠结,很难呈规则排列,在引起聚集态变化的同时(如:结晶度偏低-65%~85%,密度偏低-0.93~0.94g/m3),大分子链间的无规缠结又使UHMW-PE 对热运动反应迟缓,当加热到熔点以上时,熔体呈现橡胶状高粘弹体状,熔体粘度高达108Pa.s,熔体流动速率几乎为零,造成UHMW-PE临界剪切速率很低,易产生熔体破裂等缺陷。

因此,很难用常规的聚合物加工方法来成型UHMW-PE 制品,在一段时间内限制了UHMW-PE的推广使用,故研究UHMW-PE的成型加工显得尤为重要。

常用的成型方法有模压成型法(1965年前后)、挤出成型法(1970年前后)和注塑成型法(1975年前后)3种。

本论文首先简要介绍一下UHMW-PE的性能及成型方法,然后分别对它的单螺杆挤出成型工艺和双螺杆挤出成型工艺做详细介绍。

关键词:性能;加工性能;成型方法;单螺杆挤出成型法;双螺杆挤出成型法1 UHMW-PE概述1.1 UHMW-PE的发展简史超高分子量聚乙烯通常是指相对分子质量在150万以上的线型聚乙烯,其英文全称为Ultra High Molecular Weight Polyethylene,简称UHMW-PE。

UHMW-PE 在分子结构上与普通聚乙烯相同,其主链上的链节都是(-CH2-CH2-),但普通聚乙烯的分子量较低,约在5-30万之间,即使是高分子量高密度聚乙烯(HMWHPE),其重均分子量也仅为20-50万,而UHMW-PE的分子量高达巧于600万,德国甚至有分子量高达1000万以上的产品。

超高强度聚乙烯复合材料成型工艺

超高强度聚乙烯复合材料成型工艺

超高强度聚乙烯复合材料成型工艺超高强度聚乙烯(UHMWPE)复合材料是一种具有优异力学性能的现代材料。

它在声波、热辐射、电磁波等领域具有广泛的应用前景。

由于其高强度、低密度和耐磨的特性,UHMWPE复合材料的应用范围越来越广泛。

UHMWPE复合材料的制备是一个复杂的过程。

该复合材料通常由两种不同的成分组成:UHMWPE基础材料和一种或多种增强剂。

常见的增强剂包括碳纤维、玻璃纤维、硅谷填充剂等。

在制备UHMWPE复合材料之前,需要对基础材料进行加工,例如熔融挤出。

这是因为UHMWPE分子量非常大,无法通过常规的成型技术进行成型。

因此,只有通过特殊的加工技术才能制备高质量的UHMWPE复合材料。

UHMWPE复合材料的制备过程通常包括以下步骤:1. 基础材料的熔融挤出首先,需要将UHMWPE基础材料加热至熔融状态,通过挤出成型机进行挤出。

熔融挤出是将塑料材料转化为常规形态的常见方法之一。

2. 添加增强剂在UHMWPE基础材料中添加一种或多种增强剂。

增强剂的加入可以大大提高UHMWPE复合材料的力学性能。

3. 混合和分散将增强剂均匀分散在UHMWPE基础材料中,通过混合来均匀分散。

这可以确保增强剂均匀分布在整个材料中,从而实现最佳的性能。

4. 成型将混合物通过成型技术成型,如热压成型、注塑成型和挤出成型等。

在成型过程中,需要控制复合材料的温度和压力,以确保最终制品具有理想的结构和力学性能。

5. 调整性能通过改变成型参数和增强剂的类型和含量,可以调整UHMWPE复合材料的力学性能。

例如,通过增加玻璃纤维含量来增加复合材料的刚度和强度。

总之,UHMWPE复合材料的制备过程是一个复杂的过程,需要对基础材料进行加工和添加一种或多种增强剂。

通过调整制备参数和增强剂含量,可以调整复合材料的力学性能,以实现最佳的应用效果。

超高分子量聚乙烯复合材料的制备与性能研究

超高分子量聚乙烯复合材料的制备与性能研究

超高分子量聚乙烯复合材料的制备与性能研究超高分子量聚乙烯是一种新型的工程塑料材料,它具有较高的分子量和强度,优异的耐化学腐蚀性能,以及出色的耐磨性和抗氧化性能,使其在汽车、电器、医疗器械等领域得到广泛应用。

然而,由于其高分子量和熔融粘度较高,加工难度较大,且不易与其他材料进行复合。

因此,如何提高超高分子量聚乙烯的加工性能和材料性能,成为了制备超高分子量聚乙烯复合材料的研究热点之一。

一、超高分子量聚乙烯复合材料的制备方法以下是目前常用的超高分子量聚乙烯复合材料的制备方法:1.高分子共混法将超高分子量聚乙烯与其他聚合物进行混合,在一定温度下混合均匀,并将其成型。

通过聚合物相容化剂的作用,可以使不相容的高分子形成共混体系,从而制备出高性能的聚合物材料。

2.增容剂改性法使用增容剂改性法可以降低超高分子量聚乙烯的熔融粘度,提高其加工性能。

一般采用双酚A、聚苯乙烯、聚乙烯醇等增容剂进行改性,通过与超高分子量聚乙烯进行混合,形成增容剂改性聚乙烯复合材料。

3.填料增强法通过在超高分子量聚乙烯中添加一定量的填料,如玻璃纤维、炭黑等填料,可以显著提高超高分子量聚乙烯的强度、刚度和耐磨性能,形成填料增强聚乙烯复合材料。

4.表面改性法超高分子量聚乙烯的表面可以通过表面改性,降低其表面能,使得其与其他材料更容易结合。

常用的表面处理方法包括等离子体处理、化学改性等方法。

二、超高分子量聚乙烯复合材料的性能研究超高分子量聚乙烯复合材料的性能研究主要包括其力学性能、耐热性能、耐化学腐蚀性能等方面。

1.力学性能填料增强聚乙烯复合材料和增容剂改性聚乙烯复合材料相比,具有较高的强度和刚度。

而高分子共混聚乙烯复合材料的力学性能则取决于共混体系的相容性和物理交联程度。

2.耐热性能超高分子量聚乙烯的耐热性能较差,但是经过增容剂改性或填料增强处理后,可以显著提高其热稳定性。

3.耐化学腐蚀性能超高分子量聚乙烯具有出色的耐化学腐蚀性能,其耐酸碱性、耐氧化性能等方面均较优秀。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本技术涉及高抗力防弹符合材料技术领域,公开的一种超高分子量聚乙烯纤维防弹复合材料及制备方法,该防弹复合材料由改性聚苯乙烯树脂与超高分子量聚乙烯UHMWPE纤维复合而成,所述改性聚苯乙烯树脂是由高柔韧性、弹性、填料相容性的乙烯醋酸乙烯共聚物EVA对聚苯乙烯树脂进行改性而制成;所述聚苯乙烯树脂的单体苯乙烯自由基聚合而成得到的聚合物是无色、透明的,具有高刚性,并能改善改性树脂对纤维的浸润性。

本技术的防弹复合材料具备密度低和比强度、比模量高、减震性、耐疲劳性和环境适应性好等优点,满足防弹需求。

本技术制备方法具有步骤简单、可操作性强,并且能够批量生产。

技术要求1.一种超高分子量聚乙烯纤维防弹复合材料,其特征在于:由改性聚苯乙烯树脂与超高分子量聚乙烯UHMWPE纤维复合而成,所述改性聚苯乙烯树脂是由高柔韧性、弹性、填料相容性的乙烯-醋酸乙烯共聚物EVA对聚苯乙烯树脂进行改性而制成;所述聚苯乙烯树脂的单体苯乙烯自由基,通过聚合而得到的聚合物是无色、透明的,具有高刚性,并能改善改性树脂对纤维的浸润性。

2.根据权利要求1所述的一种超高分子量聚乙烯纤维防弹复合材料,其特征在于:所述的改性聚苯乙烯树脂由乙烯醋酸乙烯共聚物EVA、的苯乙烯ST、偶氮二异丁腈AIBN、三烯丙基异氰脲酸酯TAIC和无水硫酸钠按照质量分数45%、32%、12%、6%、5%的比例混合改性而成。

3.根据权利要求1所述的一种超高分子量聚乙烯纤维防弹复合材料,其特征在于:所述的UHMWPE纤维为防护材料,其分子链上为无不饱和基团的纤维,对酸、碱和有机溶剂有很强的抗腐蚀性,并且耐光、热、老化性能优良,比强度和模量都很高,且能量吸收性和耐磨损性好。

4.一种超高分子量聚乙烯纤维防弹复合材料的制备方法,其特征在于:由改性聚苯乙烯树脂与超高分子量聚乙烯UHMWPE纤维复合而成,其具体步骤如下:(1)准备工作,根据需要准备适当尺寸平板玻璃,并用壁纸刀对超高分子量聚乙烯UHMWPE纤维进行割裁,之后放置在50℃烘箱中十分钟以减少纤维中的水分;添加设定比例的交联剂的改性聚苯乙烯弹性体预聚体待用,树脂体系是将树脂基体和交联剂按照95:5的比例进行配制;树脂需现配,以防树脂基体粘度增大不易于成型加工;最后准备含氟脱模布、导流网、真空袋、带孔脱模薄膜;(2)树脂体系即改性聚苯乙烯树脂的制备,由高柔韧性、弹性、填料相容性的乙烯-醋酸乙烯共聚物EVA颗粒对聚苯乙烯树脂进行改性而制成;采用的聚苯乙烯树脂的单体苯乙烯自由基是聚合而成得到的聚合物,无色、透明,具有高刚性,并能改善改性树脂对纤维的浸润性;具体的方法是乙烯-醋酸乙烯共聚物EVA颗粒与聚苯乙烯树脂混合,通过机械搅拌制成混合溶液,再加入偶氮二异丁腈AIBN、三烯丙基异氰脲酸酯TAIC和无水硫酸钠,其中乙烯醋酸乙烯共聚物EVA、的苯乙烯ST、偶氮二异丁腈AIBN、三烯丙基异氰脲酸酯TAIC和无水硫酸钠,按照质量分数45%、32%、12%、6%、5%的比例混合改性而成;(3)制备,超高分子量聚乙烯UHMWPE纤维在改性聚苯乙烯弹性体中充分浸渍后,放置在平板模具上,用真空袋整体密封;平板模具采用玻璃板,首先玻璃板用丙酮清洗干净,待其表面风干,在玻璃板周边适合的位置贴黑色密封胶,之后顺序铺层,由下至上依次是底层的导流网、带孔脱模薄膜、含氟脱模布、UHMWPE纤维、含氟脱模布、带孔脱模薄膜、顶层的导流网;根据试样大小安放真空管,最后用真空袋把整个体系密封好;真空泵抽真空达到0.08MPa±0.01;铺层顺序决定着柔性复合材料的表面光洁度和制品质量;其中在第二步骤中铺层的同时,用刮板把超高分子量聚乙烯UHMWPE纤维用树脂浸润完全后,真空泵抽真空,真空度达到-0.08MPa±0.01;按照梯度固化的方式固化完全后脱模,得到制品;其中改性聚苯乙烯弹性体的质量分数为40份,超高分子量聚乙烯纤维织物的质量分数为60份;将制品继续按上述比例铺层后放入烘箱,将烘箱温度采用梯度升温的方式,固化温度为100℃/4h+120℃/4h,使得改性聚苯乙烯弹性体充分固化,冷却后得到柔性复合材料。

技术说明书一种超高分子量聚乙烯纤维防弹复合材料及制备方法技术领域本技术涉及高抗力防弹符合材料技术领域,具体涉及一种超高分子量聚乙烯纤维防弹复合材料及制备方法。

背景技术近年来,由于世界各地区冲突和战争不断,恐怖事件蔓延不止,军事装备工业得到迅猛发展,因此防弹材料的开发和研究越来越受到重视,投入应用的品种也越来越多,如防弹背心、头盔,以及坦克、飞机、舰船等的防护部件。

超高分子量聚乙烯纤维(UHMWPE),又被称为超高强-高模聚乙烯纤维(UHS-HMPE)或伸长链聚乙烯纤维(ECPE),是20世纪70年代由荷兰的Pennings首先成功地采用“凝胶纺丝-热拉伸”的方法得到,并由DSM公司进行工业化生产,其主要过程是将超高分子量聚乙烯树脂热溶解于溶剂中,在速冷的条件下形成凝胶后,高温下挤出呈纤维,在经过脱溶剂化处理和拉伸取向,得到高结晶度的超高强-高模聚乙烯纤维。

在纺丝过程中,通过数十倍的高度拉伸时大分子链沿轴向充分舒展,形成了平行排列的伸直链结构,显著减少了内部缺陷,使UHMWPE纤维具有远高于常规PE材料的高结晶度和高取向度。

通常其结晶度在85%以上,而取向度则高于95%。

UHMWPE纤维不仅强度和模量比Kevlar高,而且密度比Kevlar还要低,只有0.97g/cm3,Kevlar为1.47 g/cm3,因而其应变波速比Kevlar要高出许多,纤维弹道防护性能超过了以Kevlar为代表的芳族聚酰胺纤维,断裂伸长率大于高强碳纤维,成为防弹领域里一种极具吸引力的高技术纤维。

但是,聚乙烯纤维是一种非极性材料,经过凝胶热拉伸后,分子链完全伸展,纤维内部高度取向和高度结晶,表面会在拉伸应力下产生一层弱界面层(约10-100nm),UHMWPE纤维表面为惰性表面,不易被树脂润湿,即不能形成力学咬合作用,这些都对复合材料中UHMWPE纤维与树脂的粘附性有着负面的影响。

为了充分利用UHMWPE纤维的潜能,需要技术一种新的制备方法以便能制造一种UHMWPE纤维防弹复合材料。

技术内容为解决上述技术问题,本技术的目的在于提供一种超高分子量聚乙烯纤维防弹复合材料及制备方法纤维防弹复合材料及制备方法,这种防弹复合材料具备密度低和比强度、比模量高、减震性、耐疲劳性和环境适应性好等优点,制备方法具有步骤简单、可操作性强、可批量生产。

为实现上述技术目的,本技术采用如下技术方案:一种超高分子量聚乙烯纤维防弹复合材料,由改性聚苯乙烯树脂与超高分子量聚乙烯UHMWPE纤维复合而成,所述改性聚苯乙烯树脂是由高柔韧性、弹性、填料相容性的乙烯-醋酸乙烯共聚物EVA对聚苯乙烯树脂进行改性而制成;所述聚苯乙烯树脂的单体苯乙烯自由基聚合而成得到的聚合物,是无色、透明的,具有高刚性,并能改善改性树脂对纤维的浸润性。

一种超高分子量聚乙烯纤维防弹复合材料,所述的改性聚苯乙烯树脂由乙烯醋酸乙烯共聚物EVA、的苯乙烯ST、偶氮二异丁腈AIBN、三烯丙基异氰脲酸酯TAIC和无水硫酸钠按照质量分数45%、32%、12%、6%、5%的比例混合改性而成。

一种超高分子量聚乙烯纤维防弹复合材料,所述的UHMWPE纤维为防护材料,其分子链上为无不饱和基团的纤维,对酸、碱和有机溶剂有很强的抗腐蚀性,并且耐光、热、老化性能优良,比强度和模量都很高,且能量吸收性和耐磨损性好。

一种超高分子量聚乙烯纤维防弹复合材料的制备方法,由改性聚苯乙烯树脂与超高分子量聚乙烯UHMWPE纤维复合而成,其具体步骤如下:(1)准备工作,根据需要准备适当尺寸平板玻璃,并用壁纸刀对超高分子量聚乙烯UHMWPE纤维进行割裁,之后放置在50℃烘箱中十分钟以减少纤维中的水分;添加设定比例的交联剂的改性聚苯乙烯弹性体预聚体待用,树脂体系是将树脂基体和交联剂按照95:5的比例进行配制;树脂需现配,以防树脂基体粘度增大不易于成型加工;最后准备含氟脱模布、导流网、真空袋、带孔脱模薄膜;(2)树脂体系即改性聚苯乙烯树脂的制备,由高柔韧性、弹性、填料相容性的乙烯-醋酸乙烯共聚物EVA颗粒对聚苯乙烯树脂进行改性而制成;采用的聚苯乙烯树脂的单体苯乙烯自由基是聚合而成得到的聚合物,无色、透明,具有高刚性,并能改善改性树脂对纤维的浸润性;具体的方法是乙烯-醋酸乙烯共聚物EVA颗粒与聚苯乙烯树脂混合,通过机械搅拌制成混合溶液,再加入偶氮二异丁腈AIBN、三烯丙基异氰脲酸酯TAIC和无水硫酸钠,其中乙烯醋酸乙烯共聚物EVA、的苯乙烯ST、偶氮二异丁腈AIBN、三烯丙基异氰脲酸酯TAIC和无水硫酸钠,按照质量分数45%、32%、12%、6%、5%的比例混合改性而成;(3)制备,超高分子量聚乙烯UHMWPE纤维在改性聚苯乙烯弹性体中充分浸渍后,放置在平板模具上,用真空袋整体密封;平板模具采用玻璃板,首先玻璃板用丙酮清洗干净,待其表面风干,在玻璃板周边适合的位置贴黑色密封胶,之后顺序铺层,由下至上依次是底层的导流网、带孔脱模薄膜、含氟脱模布、UHMWPE纤维、含氟脱模布、带孔脱模薄膜、顶层的导流网;根据试样大小安放真空管,最后用真空袋把整个体系密封好;真空泵抽真空达到0.08MPa±0.01;铺层顺序决定着柔性复合材料的表面光洁度和制品质量;其中在第二步骤中铺层的同时,用刮板把超高分子量聚乙烯UHMWPE纤维用树脂浸润完全后,真空泵抽真空,真空度达到-0.08MPa±0.01;按照梯度固化的方式固化完全后脱模,得到制品;其中改性聚苯乙烯弹性体的质量分数为40份,超高分子量聚乙烯纤维织物的质量分数为60份;将制品继续按上述比例铺层后放入烘箱,将烘箱温度采用梯度升温的方式,固化温度为100℃/4h+120℃/4h,使得改性聚苯乙烯弹性体充分固化,冷却后得到柔性复合材料。

与现有技术相比,本技术取得的技术优越性是:本技术提供了一种超高分子量聚乙烯纤维防弹复合材料及制备方法,技术的防弹复合材料具备密度低和比强度、比模量高、减震性、耐疲劳性和环境适应性好等优点,满足防弹需求。

本技术制备方法具有步骤简单、可操作性强、可批量生产。

附图说明图1为超高分子量聚乙烯纤维防弹复合材料的制备工艺流程图。

具体实施方式下面结合附图和实施案例对本技术作进一步的描述,当然下述实施案例不应理解为对本技术的限制。

一种超高分子量聚乙烯纤维防弹复合材料,由改性聚苯乙烯树脂与超高分子量聚乙烯UHMWPE纤维复合而成,所述改性聚苯乙烯树脂是由高柔韧性、弹性、填料相容性的乙烯-醋酸乙烯共聚物EVA对聚苯乙烯树脂进行改性而制成;所述聚苯乙烯树脂的单体苯乙烯自由基聚合而成得到的聚合物,是无色、透明的,具有高刚性,并能改善改性树脂对纤维的浸润性。

相关文档
最新文档