最新题库2016年江苏省镇江市中考数学试卷及参考答案
2016年中考数学真题试题及答案(word版)
(2)共12种情况,有6种情况两次摸到相同颜色棋子,所以概率为 . 24. 解:(1)设第一批购进水果x千克,则第二批购进水果2.5千克,依
据题意得: ,解得x=200,经检验x=200是原方程的解,∴x+2.5x=700, 答:这两批水果功够进700千克; (2)设售价为每千克a元,则: , 630a≥7500×1.26,∴ ,∴a≥15,答:售价至少为每千克15元. 25. (1)证明:在△GAD和△EAB中,∠GAD=90°+∠EAD, ∠EAB=90°+∠EAD, ∴∠GAD=∠EAB,又∵AG=AE,AB=AD,∴△GAD≌△EAB, ∴EB=GD; (2)EB⊥GD,理由如下:连接BD,由(1)得:∠ADG=∠ABE,则 在△BDH中, ∠DHB=180°-(∠HDB+∠HBD)=180°-90°=90°,∴EB⊥GD; (3)设BD与AC交于点O,∵AB=AD=2在Rt△ABD中,DB= , ∴EB=GD= . 26. 解:(1)由y=0得,ax2-2ax-3a=0,∵a≠0,∴x2-2x-3=0,解得 x1=-1,x2=3, ∴点A的坐标(-1,0),点B的坐标(3,0); (2)由y=ax2-2ax-3a,令x=0,得y=-3a,∴C(0,-3a),又 ∵y=ax2-2ax-3a=a(x-1)2-4a,得D(1,-4a),∴DH=1,CH=-4a(-3a)=-a,∴-a=1,∴a=-1,∴C(0,3),D(1,4), 设直线CD的解析式为y=kx+b,把C、D两点的坐标代入得, ,解得 , ∴直线CD的解析式为y=x+3; (3)存在.由(2)得,E(-3,0),N(-
保密 ★ 启用前
2016年中考真题数学试卷
一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的 四个选项中,只有一个是符合题目要求的,把正确答案的标号填在答题 卡内相应的位置上) 1、计算的结果是( ) A、 B、 C、1 D、22、若∠α的余角是30°,则cosα的值是( ) A、 B、 C、 D、 3、下列运算正确的是( ) A、 B、 C、 D、4、下列图形是轴对称图形,又是中心对称 图形的有( )
江苏省镇江市2016届九年级下学期第二次中考模拟考试数学答案
九年级数学答案 第 1 页 共 4 页2015~2016九年级数学中考模拟测试答案(二)一、填空题:本大题共12小题,每空2分,共24分.1.2; 2.3; 3.1x ≥; 4.1x =− 5.()()11x x x −+; 6.8.5; 7.>; 8.-3; 9.49°; 10.9; 11.1; 12.20167a . 二、选择题:本大题共5小题,每小题3分,共15分. 13.A ;14.D ;15.B ;16.C ;17.D三、解答题:本大题共11小题,共81分.18.解:(1) 31−+121(−-°30cos 2=1)22121+−=+=.(4分) (2)原式=()()()()()()()()222221222222222a a a a a a a a a a a a a a +−−−−===−+−+−+−++.(8分) 19.解:(1)去分母得:2(2)3(2)x x −=+, (2)方程可化为:2230x x +−=,去括号得:2436x x −=+, 即: (1)(3)0x x −+=,移项合并得:10x =−; (4分) 解之得: 121,3x x ==−.(8分)20.证明:(1)∵AC ⊥BC ,DF ⊥EF ,∴∠ACB =∠DFE ,∵AC =DF , BC =EF ,∴△ABC ≌△DEF ; (3分) (2)∵△ABC ≌△DEF ,∴∠ACB =∠DFE ,∴AB ∥DE. (6分) 21.解:(1) 24÷48%=50(天) (2分) (2)50-3-7-10-24=6(天),如图所示:(4分) (3)10÷50×360°=72°(6分)(4)因为371050++×365=146(天), 答:该城市只有146天适宜限于户外活动.(8分) 22.解:随机选择2天进行紧急疏散演练共有以下10种情况:(其中1~5代表周一~周五)(1,2)、(1,3)、(1,4)、(1,5)、(2,3)、(2,4)、(2,5)、(3,4)、(3,5)、(4,5).(1)不包含周三的有六种情况,故有:63105P ==; (3分)(2)2天恰好为连续两天的有四种情况,故有:42105P ==. (6分)(注:也可用树状图或列表法等完成). 23.解:(1)由题意知,点A 在双曲线上,即1ka k==,又点A 在直线上,即2a ka =−,∴12k =−,3k =,∴1a =,3k =; (2分)(2)由(1)可得:⎪⎩⎪⎨⎧=−=x y x y 32解之得: ⎩⎨⎧==1311y x 或⎩⎨⎧−=−=3122y x ,因为B 在第三象限, ∴B 点坐标为()3,1−− (4分)九年级数学答案 第 2 页 共 4 页(3)x 的取值范围是:3x <−或01x <<. (6分) 24.(1) 证明: 连结OD ,∵OB =OD ∴∠B =∠0DB又∵AB =AC ∴∠B =∠C ;∴∠ODB =∠C ;∴OD ∥AC ; ∴∠DEA +∠0DE =180°;又∵DE ⊥AC 交AC 于E ,即∠DEA =90°;∴∠0DE =90°,即DE ⊥OD . (3分) (2)解:如图,⊙O 与AC 相切于F 点,连结OF , 则OF ⊥AC ,在Rt △OAF 中,sinA =35OF OA=,∴OA =OF 35,又AB =OA +OB =8, ∴583OF OF +=, ∴OF =3cm .(6分)25.解:(1)由题意可知,抛物线y =ax 2+bx +c 与x 轴的另一个交点为(﹣1,0),则 93003a b c a b c c ++=⎧⎪−+=⎨⎪=⎩,解得123a b c =−⎧⎪=⎨⎪=⎩.故抛物线的解析式为y =﹣x 2+2x +3.(3分) (2)①当MA =MB 时,M (0,0);②当AB =AM 时,M (0,﹣3); ③当AB =BM 时,M (0,M (0,3﹣.所以点M 的坐标为:(0,0)、(0,﹣3)、(0,、(0,3﹣.(7分)26.解:(1)由题意知,∠A =∠B =45°;又∵∠CFB =∠ACF +∠A =∠ACF +45°, ∠ACE =∠ACF +∠ECF =∠ACF +45°,∴∠CFB =∠ACE ,∴△ACE ∽△BFC ;(3分)(2)EF 2=AF 2+BE 2.理由如下:如图2所示,∵AC =BC ,∠ACB =90°,∴∠A =∠5=45°.将△ACF 顺时针旋转90°至△BCD ,则CF =CD ,∠1=∠4,∠A =∠6=45°;BD =AF ;∵∠2=45°, ∴∠1+∠3=∠3+∠4=45°,∴∠DCE =∠2.在△ECF 和△ECD 中,2CF CD DCE CE CE =⎧⎪∠=∠⎨⎪=⎩,∴△ECF ≌△ECD (SAS ),∴EF =DE .∵∠5==∠6=45°,∴∠DBE =90°,∴DE 2=BD 2+BE 2,即EF 2=AF 2+BE 2.(7分)27.解:(1) 如图,过B 作BH ⊥OC ,由43tan BCO ∠=,设,BH =4x ,则CH =3x ,BC =5x ;又∵AB ⊥BC 知,即∠ABH +∠CBH =90°,又∠BCH +∠CBH =90°;∴∠ABH =∠BCH ,再过A 作AG ⊥BH ,又∵AB =BC ,∴△ABG ≌△BCH ,∴BG =CH =3x ,AG =BH =4x ,则OH =4x ,OA =HG =x ,又OC =210m ,即,7x =210,x =30,5x =150,故古桥OA 的长30m ,新桥BC 的长150 m ; (4分)(2) 因为OM=x m,故AM=(30-x)m,过M作MN⊥BC,分别交BC、BH于N、P,则MN即为保护区半径R,且MP=AB=150,BP=MA=30-x;Rt△BHC∽Rt△BNP,PN CHBP BC=,即33030530PNx×=−×,3185PN x=−,①半径331501816855R MN MP PN x x==+=+−=−;即31685R x=−(030x≤≤);(7分).②由题意可得:140R OM−≥,即3(168)1405x x−−≥,解得352x≤;又140R AM−≥,即3(168)(30)1405x x−−−≥,解得5x≥;故有:3552x≤≤;因为,要使圆面积最大,其半径R最大,而R最大也就是x要取最小值;故当x=5时,圆面积最大,此时半径R的值为165 m.(9分)28.解:(1)∵点A(0,6),B(8,0),∴OA=6,OB=8,∵点Q从O出发,以每秒2个单位的速度沿线段OB运动,到达B点时沿原路返回O,当Q点返回到O点时运动停止.∴2t=16,解得:t=8,∴0≤t≤8; (2分)(2)运动过程中,以点P、0、Q为顶点的三角形与Rt△AOB有4次相似,相应的t值为12 5、1811、365、8211. (6分)附详解如下:①若Rt△POQ∽Rt△AOB时,有PO OQAO OB=,6OA=,8OB=;当04t≤<时,6OP t=−,2OQ t=,即:6268t t−=,解得:125t=;当46t≤≤时,6OP t=−,162OQ t=−,即:616268t t−−=,解得:12t=(舍);九年级数学答案第 3 页共 4 页九年级数学答案 第 4 页 共 4 页当68t <≤时,6OP t =−,162OQ t =−,即:616268t t −−=,解得:365t =; ②若Rt △QOP ∽Rt △AOB 时,有PO OQOB AO=,6OA =,8OB =; 当04t ≤<时,6OP t =−,2OQ t =,即:6286t t −=,解得:1811t =; 当46t ≤≤时,6OP t =−,162OQ t =−,即:616286t t −−=,解得:465t =(舍); 当68t <≤时,6OP t =−,162OQ t =−,即:616286t t −−=,解得:8211t =; (3)根据题意可分三种情况:①点Q 从O 出发,经过4秒到达B 点,即当04t ≤<时,有AP t =,6OP OA AP t =−=−,2OQ t =,故()21162(3)922POQ S OP OQ t t t Δ=⋅=−⋅=−−+,∵10a =−<,开口向下,对称轴为3t =,又04t ≤<,∴由二次函数性质与图象可知,当3t =时,△POQ 的面积有最大值9; ②点Q 从经过4秒到达B 点返回、点P 到达O 点时,即当46t ≤≤时,有AP t =,6OP OA AP t =−=−,162OQ t =−, 故()()2116162(7)122POQ S OP OQ t t t Δ=⋅=−⋅−=−−,∵10a =>,开口向上,对称轴为7t =,又46t ≤≤,∴由二次函数性质与图象可知,当4t =时,△POQ 的面积有最大值8; ③点P 到达O 点继续运动到点Q 从B 点返回到达O 点时,即当68t <≤时,有AP t =,6OP AP OA t =−=−,162OQ t =−, 故()()2116162(7)122POQ S OP OQ t t t Δ=⋅=−⋅−=−−+,∵10a =−<,开口向下,对称轴为7t =,又68t <≤,∴由二次函数性质与图象可知,当7t =时,△POQ 的面积有最大值1; 综上所述,当3t =时,△POQ 的面积最大,最大值是9. (10分)。
2016年江苏省镇江市中考数学试卷
2016年江苏省镇江市中考数学试卷一、填空题(本大题共有12小题,每小题2分,共计24分)1.﹣3的相反数是______.2.计算:(﹣2)3=______.3.分解因式:x2﹣9=______.4.若代数式有意义,则实数x 的取值范围是______.5.正五边形每个外角的度数是______.6.如图,直线a∥b,Rt△ABC 的直角顶点C在直线b上,∠1=20°,则∠2=______°.7.关于x的一元二次方程2x2﹣3x+m=0有两个相等的实数根,则实数m=______.8.一只不透明的袋子中装有红球和白球共30个,这些球除了颜色外都相同,校课外学习小组做摸球试验,将球搅匀后任意摸出一个球,记下颜色后放回、搅匀,通过多次重复试验,算得摸到红球的频率是20%,则袋中有______个红球.9.圆锥底面圆的半径为4,母线长为5,它的侧面积等于______(结果保留π)10.a、b、c是实数,点A(a+1、b)、B(a+2,c)在二次函数y=x2﹣2ax+3的图象上,则b、c的大小关系是b______c(用“>”或“<”号填空)11.如图1,⊙O的直径AB=4厘米,点C在⊙O上,设∠ABC 的度数为x(单位:度,0<x<90),优弧的弧长与劣弧的弧长的差设为y(单位:厘米),图2表示y与x的函数关系,则α=______度.12.有一张等腰三角形纸片,AB=AC=5,BC=3,小明将它沿虚线PQ剪开,得到△AQP和四边形BCPQ两张纸片(如图所示),且满足∠BQP=∠B,则下列五个数据,3,,2,中可以作为线段AQ长的有______个.二、选择题(本大题共有5小题,每小题3分,共计15分)13.2100000用科学记数法表示应为()A.0.21×108 B.2.1×106 C.2.1×107D.21×10514.由若干个相同的小正方体搭成的一个几何体如图所示,它的俯视图为()A.B. C. D.15.一组数据6,3,9,4,3,5,12的中位数是()A.3 B.4 C.5 D.6 16.已知点P(m,n)是一次函数y=x﹣1的图象位于第一象限部分上的点,其中实数m、n满足(m+2)2﹣4m+n(n+2m)=8,则点P的坐标为()A.(,﹣)B.(,)C.(2,1)D.(,)17.如图,在平面直角坐标系中,坐标原点O是正方形OABC的一个顶点,已知点B坐标为(1,7),过点P(a,0)(a>0)作PE⊥x轴,与边OA交于点E(异于点O、A),将四边形ABCE沿CE翻折,点A′、B′分别是点A、B的对应点,若点A′恰好落在直线PE上,则a的值等于()A. B. C.2 D.3三、解答题(本大题共有11小题,共计81分)18.(1)计算:tan45°﹣()0+|﹣5|(2)化简:.19.(1)解方程:(2)解不等式:2(x﹣6)+4≤3x﹣5,并将它的解集在数轴上表示出来.20.甲、乙、丙三名同学站成一排拍合影照留念.(1)请按从左向右的顺序列出所有可能站位的结果;(2)求出甲同学站在中间位置的概率.21.现如今,通过微信朋友圈发布自己每天行走的步数,已成为一种时尚,“健身达人”小张为了了解他的微信朋友圈里大家的运动情况,随机抽取了部分好友进行调查,把他们6月9日那天每天行走的步数情况分为五个类别:A(0﹣4000步)(说明:“0﹣4000”表示大于等于0,小于等于4000,下同),B,C,D,E,并将统计结果绘制了如图1的图2两幅不完整的统计图.请你根据图中提供的信息解答下列问题:(1)将图1的条形统计图补充完整;(2)已知小张的微信朋友圈里共500人,请根据本次抽查的结果,估计在他的微信朋友圈里6月9日那天行走不超过8000步的人数.22.如图,AD、BC相交于点O,AD=BC,∠C=∠D=90°.(1)求证:△ACB≌△BDA;(2)若∠ABC=35°,则∠CAO=______°.23.公交总站(A点)与B、C 两个站点的位置如图所示,已知AC=6km,∠B=30°,∠C=15°,求B站点离公交总站的距离即AB的长(结果保留根号).24.校田园科技社团计划购进A、B两种花卉,两次购买每种花卉的数量以及每次的总费用如下表所示:(1)你从表格中获取了什么信息?______(请用自己的语言描述,写出一条即可);(2)A、B两种花卉每株的价格各是多少元?25.如图1,一次函数y=kx﹣3(k≠0)的图象与y轴交于点A,与反比例函数y=(x>0)的图象交于点B(4,b).(1)b=______;k=______;(2)点C是线段AB上的动点(于点A、B不重合),过点C且平行于y轴的直线l交这个反比例函数的图象于点D,求△OCD 面积的最大值;(3)将(2)中面积取得最大值的△OCD沿射线AB方向平移一定的距离,得到△O′C′D′,若点O的对应点O′落在该反比例函数图象上(如图2),则点D′的坐标是______.26.如果三角形三边的长a、b、c满足=b,那么我们就把这样的三角形叫做“匀称三角形”,如:三边长分别为1,1,1或3,5,7,…的三角形都是“匀称三角形”.(1)如图1,已知两条线段的长分别为a、c(a<c).用直尺和圆规作一个最短边、最长边的长分别为a、c的“匀称三角形”(不写作法,保留作图痕迹);(2)如图2,△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作⊙O的切线交AB 延长线于点E,交AC于点F,若,判断△AEF是否为“匀称三角形”?请说明理由.27.如图1,在菱形ABCD中,AB=6,tan∠ABC=2,点E从点D出发,以每秒1个单位长度的速度沿着射线DA的方向匀速运动,设运动时间为t(秒),将线段CE绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CF.(1)求证:BE=DF;(2)当t=______秒时,DF的长度有最小值,最小值等于______;(3)如图2,连接BD、EF、BD 交EC、EF于点P、Q,当t为何值时,△EPQ是直角三角形?(4)如图3,将线段CD绕点C 顺时针旋转一个角α(α=∠BCD),得到对应线段CG.在点E的运动过程中,当它的对应点F位于直线AD上方时,直接写出点F 到直线AD的距离y关于时间t 的函数表达式.28.如图1,二次函数y1=(x﹣2)(x﹣4)的图象与x轴交于A、B两点(点A在点B的左侧),其对称轴l与x轴交于点C,它的顶点为点D.(1)写出点D的坐标______.(2)点P在对称轴l上,位于点C上方,且CP=2CD,以P为顶点的二次函数y2=ax2+bx+c(a≠0)的图象过点A.①试说明二次函数y2=ax2+bx+c (a≠0)的图象过点B;②点R在二次函数y1=(x﹣2)(x﹣4)的图象上,到x轴的距离为d,当点R的坐标为______时,二次函数y2=ax2+bx+c(a≠0)的图象上有且只有三个点到x 轴的距离等于2d;③如图2,已知0<m<2,过点M(0,m)作x轴的平行线,分别交二次函数y1=(x﹣2)(x ﹣4)、y2=ax2+bx+c(a≠0)的图象于点E、F、G、H(点E、G 在对称轴l左侧),过点H作x 轴的垂线,垂足为点N,交二次函数y1=(x﹣2)(x﹣4)的图象于点Q,若△GHN∽△EHQ,求实数m的值.。
2016江苏13市中考数学试题
2016徐州市初中毕业升学考试数学试题1. 本试卷满分140分,考试时间为120分钟.2. 答题前将自己的姓名、准考证号用0.5毫米黑色墨水签字笔写在本试卷和答题卡相应的位置上.3. 答案全部涂、写在答题卡上,写在本试卷上无效,考试结束后,将本试卷和答题卡一并交回.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给的四个选项中只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1. -14的相反数是()A. 4B. -4C. 14 D. -142. 下列运算中,正确的是()A. x3+x3=x6B. x3·x9=x27C. (x2)3=x5D. x÷x2=x-13. 下列事件中的不可能事件是()A. 通常加热到100 ℃时,水沸腾B. 抛掷2枚正方体骰子,都是6点朝上C. 经过有交通信号灯的路口,遇到红灯D. 任意画一个三角形,其内角和是360°4. 下列图形中,不可以作为一个正方体的展开图的是()5. 下列图案中,是轴对称图形但不是中心对称图形的是()6. 某人一周内爬楼的层数统计如下表:周一周二周三周四周五周六周日26362222243121 关于这组数据,下列说法错误的是()A. 中位数是22B. 平均数是26C. 众数是22D. 极差是157. 函数y=2-x中自变量x的取值范围是()A. x≤2B. x≥2C. x<2D. x≠28. 下图是由三个边长分别为6、9、x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是()A. 1或9B. 3或5C. 4或6D. 3或6第8题图二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9. 9的平方根是________.10. 某市2016年中考考生约为61500人,该人数用科学记数法表示为________.11. 若反比例函数的图象过点(3,-2),则其函数表达式为________.12. 若二次函数y=x2+2x+m的图象与x轴没有公共点,则m的取值范围是________.13. 在△ABC中,若D、E分别是AB、AC的中点,则△ADE与△ABC的面积之比等于________.14. 若等腰三角形的顶角为120°,腰长为2 cm,则它的底边长为________ cm.15. 如图,⊙O是△ABC的内切圆,若∠ABC=70°,∠ACB=40°,则∠BOC =________°.第15题图 第17题图 第18题图 16. 用一个半径为10的半圆,围成一个圆锥的侧面,该圆锥的底面圆的半径为________.17. 如图,每个图案都由大小相同的正方形组成.按照此规律,第n 个图案中这样的正方形的总个数可用含n 的代数式表示为________.18. 如图,正方形ABCD 的边长为2,点E 、F 分别在边AD 、CD 上,若∠EBF =45°,则△EDF 的周长等于________.三、解答题(本大题共有10小题,共86分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19. (本题10分)计算: (1)(-1)2016+π0-(13)-1+38;20. (本题10分) (1)解方程:x -3x -2+1=32-x;(2)解不等式组:⎩⎨⎧2x >1-x4x +2<x +4.21. (本题7分)某校随机抽取部分学生,就“学习习惯”进行调查,将“对自己做错的题目进行整理、分析、改正”(选项为:很少、有时、常常、总是)的调查数据进行了整理,绘制成部分统计图如下:第21题图请根据图中信息,解答下列问题:(1)该调查的样本容量为________,a=________%,b=________%,“常常”对应扇形的圆心角为________°;(2)请你补全条形统计图;(3)若该校共有3200名学生,请你估计其中“总是”对错题进行整理、分析、改正的学生有多少名?22. (本题7分)某乳品公司最新推出一款果味酸奶,共有红枣、木瓜两种口味,若送奶员连续三天,每天从中任选一瓶某种口味的酸奶赠送给某住户品尝,则该住户收到的三瓶酸奶中,至少有两瓶为红枣口味的概率是多少?(请用“画树状图”的方法给出分析过程,并求出结果)23. (本题8分)如图,在△ABC中,∠ABC=90°,∠BAC=60°,△ACD是等边三角形,E是AC的中点.连接BE并延长,交DC于点F.求证:(1)△ABE≌△CFE;(2)四边形ABFD是平行四边形.第23题图24. (本题8分)小丽购买学习用品的收据如下表,因污损导致部分数据无法识别.根据下表,解决下列问题:(1)小丽买了自动铅笔、记号笔各几支?(2)若小丽再次购买软皮笔记本和自动铅笔两种文具,共花费15元,则有哪几种不同的购买方案?商品名单价(元)数量(个)金额(元)签字笔32 6自动铅笔 1.5记号笔4软皮笔记本29圆规 3.51合计82825. (本题8分)如图,为了测出旗杆AB的高度,在旗杆前的平地上选择一点C,测得旗杆顶部A的仰角为45°,在C、B之间选择一点D(C、D、B三点共线),测得旗杆顶部A的仰角为75°,且CD=8 m.(1)求点D到CA的距离;(2)求旗杆AB的高.(注:结果保留根号)第25题图26. (本题8分)某宾馆拥有客房100间,经营中发现:每天入住的客房数y(间)与房价x(元)(180≤x≤300)满足一次函数关系,部分对应值如下表:x(元)180260280300y(间)100605040(1)求y与x之间的函数表达式;(2)已知每间入住的客房,宾馆每日需支出各种费用100元;每间空置的客房,宾馆每日需支出各种费用60元.当房价为多少元时,宾馆当日利润最大?求出最大利润.(宾馆当日利润=当日房费收入-当日支出)27. (本题9分)如图,将边长为6的正方形纸片ABCD对折,使AB与DC重合,折痕为EF.展平后,再将点B折到边CD上,使边AB经过点E,折痕为GH.点B的对应点为M,点A的对应点为N.(1)若CM=x,则CH=________(用含x的代数式表示);(2)求折痕GH的长.第27题图28. (本题11分)如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过点A(-1,0)、B(0,-3)、C(2,0),其对称轴与x轴交于点D.(1)求二次函数的表达式及其顶点坐标;(2)若P为y轴上的一个动点,连接PD,则12PB+PD的最小值为________;(3)M(s,t)为抛物线对称轴上的一个动点.①若平面内存在点N,使得以A、B、M、N为顶点的四边形为菱形,则这样的点N共有________个;②连接MA、MB,若∠AMB不小于60°,求t的取值范围.江苏省淮安市2016年初中毕业暨中等学校招生文化统一考试数学·试题欢迎参加中考,祝贺你能成功!请先阅读以下几点注意事项:1. 试卷分为第Ⅰ卷和第Ⅱ卷两部分,共6页,全卷满分150分,考试时间120分钟.2. 第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需要改动,选用橡皮擦干净后,再选涂共它答案,答案写在本试卷上无效.3. 答第Ⅱ卷时,用0.5毫米黑色墨水签字笔,将答案写在答题卡上指定的位置,答案写在试卷上或答题卡上规定的区域以外无效.4. 作图要用2B铅笔,加黑加粗,描写清楚.5. 考试结束,将本试卷和答题卡一并交回.第Ⅰ卷选择题(共24分)一、选择题(本大题共有8小题,每小题3分,共24分,在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题..卡相应位置上......)1. 下列四个数中最大的数是()A. -2B. -1C. 0D. 12. 下列图形是中心对称图形的是()3. 月球的直径约为3476000米,将3476000用科学记数法表示应为()A. 0.3476×107B. 34.76×105C. 3.476×107D. 3.476×1064. 在“市长杯”足球比赛中,六支参赛球队进球数如下(单位:个):3,5,6,2,5,1,这组数据的众数是()A. 5B. 6C. 4D. 25. 下列运算正确的是()A. a2·a3=a6B. (ab)2=a2b2C. (a3)2=a9D. a8÷a2=a46. 估计7+1的值()A. 在1和2之间B. 在2和3之间C. 在3和4之间D. 在4和5之间7. 已知a-b=2,则代数式2a-2b-3的值是()A. 1B. 2C. 3D. 78. 如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交边AC、AB于点M、N,再分别以点M、N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D.若CD=4,AB=15,则△ABD 的面积是()第8题图A. 15B. 30C. 45D. 60第Ⅱ卷非选择题(共126分)二、填空题(本大题共有10小题,每小题3分,共30分,不用写出解答过程,请把答案直接写在答题卡相应位置上........)9. 若分式1x-5在实数范围内有意义,则x的取值范围是________.10. 分解因式:m2-4=________.11. 点A(3,-2)关于x轴对称的点的坐标是________.12. 计算:3a-(2a-b)=________.13. 一个不透明的袋子中装有3个黄球和4个蓝球,这些球除颜色外完全相同,从袋子中随机摸出一个球,摸出的球是黄球的概率是________.14. 若关于x的一元二次方程x2+6x+k=0有两个相等的实数根,则k=________.15. 若点A(-2,3),B(m,-6)都在反比例函数y=kx(k≠0)的图象上,则m的值是________.16. 已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是________.17. 若一个圆锥的底面圆的半径为2,母线长为6,则该圆锥侧面展开图的圆心角是________°.18. 如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P 处,则点P到边AB距离的最小值是________.第18题图三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答..........,解答时应写出必要的文字说明、证明过程或演算步骤)19. (本小题满分10分)(1)计算:(3+1)0+|-2|-3-1;(2)解不等式组:⎩⎨⎧2x +1<x +54x >3x +2.20. (本小题满分8分)王师傅检修一条长600米的自来水管道,计划用若干小时完成,在实际检修过程中,每小时检修的管道长度是原计划的1.2倍,结果提前2小时完成任务.王师傅原计划每小时检修管道多少米?21. (本小题满分8分)已知:如图,在菱形ABCD 中,点E 、F 分别为边CD 、AD 的中点,连接AE 、CF ,求证:△ADE ≌△CDF .第21题图22. (本小题满分8分)如图,转盘A 的三个扇形面积相等,分别标有数字1,2,3,转盘B 的四个扇形面积相等,分别标有数字1,2,3,4,转动A 、B 转盘各一次,当转盘停止转动时,将指针所落扇形中的两个数字相乘(当指针落在两个扇形的交线上时,重新转动转盘).(1)用树状图或列表等方法列出所有可能出现的结果;(2)求两个数字的积为奇数的概率.第22题图23. (本小题满分8分)为了丰富同学们的课余生活,某学校将举行“亲近大自然”户外活动,既随机抽取了部分学生进行主题为“你最想去的景点是________”的问卷调查,要求学生只能从“A(植物园),B(花卉园),C(湿地公园),D(森林公园)”四个景点中选择一项,根据调查结果,绘制了如下两幅不完整的统计图.第23题图请解答下列问题:(1)本次调查的样本容量是________;(2)补全条形统计图;(3)若该学校共有3600名学生,试估计该校最想去湿地公园的学生人数.24. (本小题满分8分)小华测量位于池塘两端的A、B两点的距离,他沿着与直线AB平行的池塘EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°,若直线AB与EF之间的距离为60米,求A、B两点的距离.第24题图25. (本小题满分10分)如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.(1)判断直线MN与⊙O的位置关系,并说明理由;(2)若OA=1,∠BCM=60°,求图中阴影部分的面积.第25题图26. (本小题满分10分)甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.“五一”假期,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买60元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘的草莓超过一定数量后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元).图中折线OAB表示y2与x之间的函数关系.(1)甲、乙两采摘园优惠前的草莓销售价格是每千克________元;(2)求y1、y2与x的函数表达式;(3)在图中画出y1与x的函数图象,并写出选择甲采摘园所需总费用较少时,草莓采摘量x的范围.第26题图27. (本小题满分12分) 如图,在平面直角坐标系中,二次函数y=-14x2+bx+c的图象与坐标轴交于A、B、C三点,其中点A的坐标为(0,8),点B的坐标为(-4,0).(1)求该二次函数的表达式及点C的坐标;(2)点D的坐标为(0,4),点F为该二次函数在第一象限内图象上的动点,连接CD、CF,以CD、CF为邻边作平行四边形CDEF,设平行四边形CDEF 的面积为S.①求S的最大值;②在点F的运动过程中,当点E落在该二次函数图象上时,请直接写出此时S的值.第27题图28. (本小题满分14分) 问题背景:如图①,在四边形ADBC 中,∠ACB =∠ADB =90°,AD =BD ,探究线段AC 、BC 、CD 之间的数量关系.小吴同学探究此问题的思路是:将△BCD 绕点D 逆时针旋转90°到△AED 处,点B 、C 分别落在A 、E 处(如图②),易证点C 、A 、E 在同一条直线上,并且△CED 是等腰直角三角形,所以CE =2CD ,从而得出结论:AC +BC =2CD .第28题图简单应用:(1)在图①中,若AC =2,BC =22,则CD =________.(2)如图③,AB 是⊙O 的直径,点C 、D 在⊙O 上,AD ︵=BD ︵,若AB =13,BC =12,求CD 的长.拓展延伸:(3)如图④,∠ACB =∠ADB =90°,AD =BD ,若AC =m ,BC =n (m <n ),求CD 的长(用含m 、n 的代数式表示).第28题图④(4)如图⑤,∠ACB =90°,AC =BC ,点P 为AB 的中点.若点E 满足AE =13AC ,CE =CA ,点Q 为AE 的中点,则线段PQ 与AC 的数量关系是________.第28题图⑤盐城市二〇一六年初中毕业与升学考试数学·试题注意事项:1. 本次考试时间为120分钟,卷面总分为150分,考试形式为闭卷.2. 本试卷共6页,在检查是否有漏印,重印或错印后再开始答题.3. 所有试题必须作答在答题卡上规定的区域内,注意题号必须对应,否则不给分.4. 答题前,务必将姓名、考证号用0.5毫米黑色签字笔填写在试卷及答题卡上.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的.请将正确选项的字母代号填涂在答题卡相应位置上)1. -5的相反数是()A. -5B. 5C. -15 D.152. 计算(-x2y)2的结果是()A. x4y2B. -x4y2C. x2y2D. -x2y23. 我国2016年第一季度GDP总值经初步核算大约为159 000亿元,数据159 000用科学记数法表示为()A. 1.59×104B. 1.59×105C. 1.59×106D.15.9×1044. 下列实数中,是无理数的为()A. -4B. 0.101001C. 13 D. 25. 下列调查中,最适宜采用普查方式的是()A. 对我国初中学生视力状况的调查B. 对量子科学通信卫星上某种零部件的调查C. 对一批节能灯管使用寿命的调查D. 对“最强大脑”节目收视率的调查6. 如图,已知a、b、c、d四条直线,a∥b,c∥d,∠1=110°,则∠2等于()A. 50°B. 70°C. 90°D. 110°第6题图第7题图7. 如图,点F在平行四边形ABCD的边AB上,射线CF交DA的延长线于点E,在不添加辅助线的情况下,与△AEF相似的三角形有()A. 0个B. 1个C. 2个D. 3个8. 若a、b、c为△ABC的三边长,且满足|a-4|+b-2=0,则c的值可以为()A. 5B. 6C. 7D. 8二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9. 分解因式:a2-ab=________.10. 当x=________时,分式x-13x+2的值为0.11. 如图,转盘中6个小扇形的面积都相等,任意转动转盘1次,当转盘停止转动时,指针指向红色区域的概率为________.12. 如图,正六边形ABCDEF内接于半径为4的圆,则B、E两点间的距离为________.第11题图第12题图13. 如图是由6个棱长均为1的正方体组成的几何体,它的主视图的面积为________.14. 若圆锥的底面半径为2,母线长为4,则圆锥的侧面积为________.15. 方程x-2x=1的正根..为________.16. 李师傅加工1个甲种零件和1个乙种零件的时间分别是固定的,现知道李师傅加工3个甲种零件和5个乙种零件共需55分钟;加工4个甲种零件和9个乙种零件共需85分钟,则李师傅加工2个甲种零件和4个乙种零件共需________分钟.17. 已知△ABC中,tan B=23,BC=6,过点A作BC边上的高,垂足为点D,且满足BD∶CD=2∶1,则△ABC面积的所有可能值为________.18. 如图,已知菱形ABCD的边长为2,∠A=60°,点E,F分别在边AB、AD上,若将△AEF沿直线EF折叠,使得点A恰好落在CD边的中点G处,则EF=________.第13题图第18题图三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)19. (本题满分8分)计算:(1)|-2|-(13)-1;(2)(3-7)(3+7)+2(2-2).20. (本题满分8分)先化简,再求(xx-2+2x-4x2-4x+4)×1x+2的值,其中x=3.21. (本题满分8分)甲、乙两位同学参加数学综合素质测试,各项成绩如下(单位:分)(1)分别计算甲、乙成绩的中位数;(2)如果数与代数、空间与图形、统计与概率、综合与实践的成绩按3∶3∶2∶2计算,那么甲、乙的数学综合素质成绩分别为多少分?22. (本题满分8分)一个不透明的袋子中装有大小、质地完全相同的4只小球,小球上分别标有1、2、3、4四个数字.(1)从袋中随机摸出一只小球,求小球上所标数字为奇数的概率;(2)从袋中随机摸出一只小球,再从剩下的小球中随机摸出一只小球,求两次摸出的小球上所标数字之和为5的概率.23. (本题满分10分)如图,已知△ABC中,∠ABC=90°.(1)尺规作图:按下列要求完成作图(保留作图痕迹,请标明字母).①作线段AC的垂直平分线l,交AC于点O;②连接BO并延长,在BO的延长线上截取OD,使得OD=OB;③连接DA、DC.(2)判断四边形ABCD的形状,并说明理由.第23题图24. (本题满分10分)我市某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15~20 ℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y=kx的一部分.请根据图中信息解答下列问题:(1)求k的值;(2)恒温系统在一天内保持大棚里温度在15 ℃及15 ℃以上的时间有多少小时?第24题图25. (本题满分10分)如果两个一次函数y=k1x+b1和y=k2x+b2满足k1=k2、b1≠b2,那么称这两个一次函数为“平行一次函数”.如图,已知函数y=-2x+4的图象与x轴、y轴分别交于A、B两点,一次函数y=kx+b与y=-2x+4是“平行一次函数”.(1)若函数y=kx+b的图象过点(3,1),求b的值;(2)若函数y=kx+b的图象与两坐标轴围成的三角形和△AOB构成位似图形,位似中心为原点,位似比为1∶2,求函数y=kx+b的表达式.第25题图26. (本题满分10分)如图,在四边形ABCD 中,AD ∥BC ,AD =2,AB =2 2.以点A 为圆心,AD 为半径的圆与BC 相切于点E ,交AB 于点F .(1)求∠ABE 的大小及DEF ︵的长度;(2)在BE 的延长线上取一点G ,使得DE ︵上的一个动点P 到点G 的最短距离为22-2,求BG 的长.第26题图27. (本题满分12分)某地拟召开一场安全级别较高的会议,预估将有4000至7000名人员参加会议,为了确保会议的安全,会议组委会决定对每位入场人员进行安全检查,现了解到安检设备有门式安检仪和手持安检仪两种:门式安检仪每台3000元,需安检员2名,每分钟可通过10人;手持安检仪每只500元,需安检员1名,每分钟可通过2人,该会议中心共有6个不同的入口,每个入口都有5条通道可供使用,每条通道只可安放一台门式安检仪或一只手持安检仪,每位安检员的劳务费用均为200元.(安检总费用包括安检设备费用和安检员的劳务费用.)现知道会议当日人员从上午9∶00开始入场,到上午9∶30结束入场,6个入口都采用相同的安检方案.所有人员须提前到达并根据会议通知从相应入口进入.(1)如果每个入口处,只有2个通道安放门式安检仪,而其余3个通道均为手持安检仪,在这个安检方案下,请问:在规定时间内可通过多少名人员?安检所需要的总费用为多少元?(2)请你设计一个安检方案,确保安检工作的正常进行,同时使得安检所需要的总费用尽可能少.28. (本题满分12分)如图①,已知一次函数y=x+3的图象与x轴、y轴分别交于A、B两点,抛物线y=-x2+bx+c过A、B两点,且与x轴交于另一点C.(1)求b、c的值;(2)如图①,点D为AC的中点,点E在线段BD上,且BE=2ED,连接CE 并延长交抛物线于点M,求点M的坐标;(3)将直线AB绕点A按逆时针方向旋转15°后交y轴于点G,连接CG,如图②.P为△ACG内一点,连接P A、PC、PG,分别以AP、AG为边在它们的左侧作等边△APR、等边△AGQ,连接QR.①求证:PG=RQ;②求P A+PC+PG的最小值,并求出当P A+PC+PG取得最小值时点P的坐标.第28题图江苏省宿迁市2016年初中毕业暨升学考试数学答题注意事项1. 本试卷共6页,满分120分,考试时间120分钟.2. 答案全部写在答题卡上,写在本试卷上无效.3. 答选择题必须用2B铅笔将答题卡对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再涂选其他答案.答非选择题必须用0.5毫米黑色墨水签字笔,在答题卡上对应题号的答题区域书写答案,注意不要答错位置,也不要超界.4. 作图必须用2B铅笔作答,并请加黑加粗,描写清楚.一、选择题(本题共8小题,每小题3分,共24分.在每小题给出的四个选项中,有且仅有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1. -2的绝对值是()A. -2B. -12 C.12 D. 22. 下列四个几何体中,左视图为圆的几何体是()3. 地球与月球的平均距离为384000 km,将384000这个数用科学记数法表示为()A. 3.84×103B. 3.84×104C. 3.84×105D. 3.84×1064. 下列计算正确的是()A. a2+a3=a5B. a2·a3=a6C. (a2)3=a5D. a5÷a2=a35. 如图,已知直线a、b被直线c所截,若a∥b,∠1=120°,则∠2的度数为()A. 50°B. 60°C. 120°D. 130°第5题图第7题图6. 一组数据5,4,2,5,6的中位数是()A. 5B. 4C. 2D. 67. 如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为()A. 2B. 3C. 2D. 18. 若二次函数y=ax2-2ax+c的图象经过点(-1,0),则方程ax2-2ax+c =0的解为()A. x1=-3,x2=-1B. x1=1,x2=3C. x1=-1,x2=3D. x1=-3,x2=1二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9. 因式分解:2a2-8=________.10. 计算:x2x-1-xx-1=________.11. 若两个相似三角形的面积比为1∶4,则这两个相似三角形的周长比是________.12. 若一元二次方程x2-2x+k=0有两个不相等的实数根,则k的取值范围是________.13. 某种油菜籽在相同条件下发芽试验的结果如下表:每批粒数n 100300400600100020003000 发芽的频数m 9628438057194819022848 发芽的频率mn0.9600.9470.9500.9520.9480.9510.949那么这种油菜籽发芽的概率是________(结果精确到0.01).14. 如图,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C 为圆心,CB为半径的圆交AB于点D,则BD的长为________.第14题图第15题图第16题图15. 如图,在平面直角坐标系中,一条直线与反比例函数y=8x(x>0)的图象交于两点A、B,与x轴交于点C,且点B是AC的中点,分别过两点A、B作x轴的平行线,与反比例函数y=2x(x>0)的图象交于两点D、E,连接DE,则四边形ABED的面积为________.16. 如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为________.三、解答题(本大题共10题,共72分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17. (本题满分6分)计算:2sin30°+3-1+(2-1)0- 4.18.(本题满分6分)解不等式组:⎩⎨⎧2x >x +13x <2(x +1).19. (本题满分6分)某校对七、八、九年级的学生进行体育水平测试,成绩评定为优秀、良好、合格、不合格四个等级.为了解这次测试情况,学校从三个年级随机抽取200名学生的体育成绩进行统计分析.相关数据的统计图、表如下:各年级学生成绩统计表优秀 良好 合格 不合格 七年级 a 20 24 8 八年级 29 13 13 5 九年级24b147各年级学生人数统计图,第19题图根据以上信息解决下列问题:(1)在统计表中,a 的值为________,b 的值为________; (2)在扇形统计图中,八年级所对应的扇形圆心角为________度;(3)若该校三个年级共有2000名学生参加考试,试估计该校学生体育成绩不合格的人数.20. (本题满分6分)在一只不透明的袋子中装有2个白球和2个黑球,这些球除颜色外都相同.(1)若先从袋子中拿走m个白球,这时从袋子中随机摸出一个球是黑球的事件为“必然事件”,则m的值为__________;(2)若将袋子中的球搅匀后随机摸出1个球(不放回),再从袋中余下的3个球中随机摸出1个球,求两次摸到的球颜色相同的概率.21. (本题满分6分)如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,EF∥AC.求证:BE=CF.第21题图22. (本题满分6分)如图,大海中某灯塔P周围10海里范围内有暗礁,一艘海轮在点A处观察灯塔P在北偏东60°方向,该海轮向正东方向航行8海里到达点B处,这时观察灯塔P恰好在北偏东45°方向.如果海轮继续向正东方向航行,会有触礁的危险吗?试说明理由.(参考数据:3≈1.73)第22题图23. (本题满分8分)如图①,在△ABC中,点D在边BC上,∠ABC∶∠ACB∶∠ADB=1∶2∶3,⊙O是△ABD的外接圆.(1)求证:AC是⊙O的切线;(2)当BD是⊙O的直径时(如图②),求∠CAD的度数.图①图②第23题图24. (本题满分8分)某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.(1)求y关于x的函数表达式;(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m的取值范围.25. (本题满分10分)已知△ABC是等腰直角三角形,AC=BC=2,D是边AB上一动点(A、B两点除外),将△CAD绕点C按逆时针方向旋转角α得到△CEF,其中点E是点A的对应点,点F是点D的对应点.(1)如图①,当α=90°时,G是边AB上一点,且BG=AD,连接GF.求证:GF∥AC;(2)如图②,当90°≤α≤180°时,AE与DF相交于点M.①当点M与点C、D不重合时,连接CM,求∠CMD的度数;②设D为边AB的中点,当α从90°变化到180°时,求点M运动的路径长.图①图②第25题图26. (本题满分10分)如图,在平面直角坐标系xOy中,将二次函数y=x2-1的图象M沿x轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N.(1)求N的函数表达式;(2)设点P(m,n)是以点C(1,4)为圆心、1为半径的圆上一动点,二次函数的图象M与x轴相交于两点A、B,求P A2+PB2的最大值;(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M与N所围成封闭图形内(包括边界)整点的个数.第26题图。
2016年镇江市中考数学网上阅卷模拟训练及答案
镇江市区2016年中考网上阅卷答题卡模拟训练数学试卷本试卷共6页,共28题;全卷满分120分,考试时间120分钟.注 意 事 项1. 答卷前,考生务必用0.5毫米黑色水笔将自己的姓名、考试号填写在试卷、答题卷上相应位置. 2.考生必须在试题答题卷上各题指定区域内作答,在本试卷上和其他位置作答一律无效. 3.如用铅笔作图,必须用黑色水笔把线条描清楚.一、填空题(本大题共有12小题,每小题2分,共计24分.) 1. 5-的相反数是 ▲ . 2.计算:2)21(= ▲ .3.如图, a ∥b ,直线c 与直线a ,b 相交,已知︒=∠1101,则=∠2 ▲ ︒.4.当a = ▲ 时,式子a 的值为2.5.如果从九年级(1)、(2)、(3)班中随机抽取一个班与九年级(4)班进行一场拔河比赛,那么恰好抽到九年级(1)班的概率是 ▲ .6.一组数据:3,5, 2,5,3,7,5,则这组数据的中位数是 ▲ .7.如图,半径为3cm 的扇形纸片的周长为10cm ,,将它围成一个圆锥的侧面,则圆锥的底面圆的半径等于 ▲ cm .(结果保留π)8.如图,P 是菱形ABCD 对角线BD 上的一点,PE ⊥BC 于点E ,PE =4cm ,则点P 到直线 AB 的距离等于 ▲ cm .9.如图,△ABC 内接于⊙O ,∠BAC =30°,3=BC ,则⊙O 的半径等于 ▲ .10.在直角坐标系中有两点A (6,3)、B (6,0).以原点O 为位似中心,把线段AB 按相似的1:3缩小后得到线段CD ,点C 在第一象限(如图),则点C 的坐标为 ▲ .11.设甲、乙两车在同一直线公路上相向匀速行驶,相遇后两车停下来,把乙车的货物卸到甲车用了100秒,然后两车分别按原路原速返回,设x 秒后两车之间的距离为y 米,y 关于x 的函数关系如图所示,则a = ▲ 米.12.如图,一次函数与反比例函数的图像交于A (1,12)和B (6,2)两点。
2016年江苏省各市中考数学试卷汇总(13套)
文件清单:2016年中考真题精品解析数学(江苏宿迁卷)精编word版(原卷版)2016年江苏省苏州市中考数学试卷(解析版)江苏省南京市2016年中考数学试题(解析版)江苏省南通市2016年中考数学试题(word版,含解析)江苏省常州市2016年中考数学试题(图片版,含答案)江苏省徐州市2016年中考数学试题(word版,含解析)江苏省扬州市2016年中考数学试题(word版,含答案)江苏省无锡市2016年中考数学试题(word版,含解析)江苏省泰州市2016年中考数学试题(word版,含解析)江苏省连云港市2016年中考数学试卷(word版含解析)江苏省镇江市2016年中考数学试题(扫描版,含答案)淮安中考数学2016(含答案)2016年中考真题精品解析数学(江苏宿迁卷)精编word版一、选择题(共8小题)1.﹣2的绝对值是()A.﹣2B.C.D.22.下列四个几何体中,左视图为圆的几何体是()A.B.C.D.3.地球与月球的平均距离为384000km,将384000这个数用科学记数法表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×1064.下列计算正确的是()A.B.C.D.5.如图,已知直线a、b被直线c所截.若a∥b,∠1=120°,则∠2的度数为()A.50°B.60°C.120°D.130°6.一组数据5,4,2,5,6的中位数是()A.5B.4C.2D.67.如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为()A.2B.C.D.18.若二次函数的图象经过点(﹣1,0),则方程的解为()A.,B.,C.,D.,二、填空题(共8小题)9.因式分解:= .10.计算:= .11.若两个相似三角形的面积比为1:4,则这两个相似三角形的周长比是.12.若一元二次方程有两个不相等的实数根,则k的取值范围是.13.某种油菜籽在相同条件下发芽试验的结果如表:每批粒数n 100 300 400 600 1000 2000 3000发芽的频数m 96 284 380 571 948 1902 28480.960 0.947 0.950 0.952 0.948 0.951 0.949发芽的频率那么这种油菜籽发芽的概率是(结果精确到0.01).14.如图,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C为圆心,CB为半径的圆交AB 于点D,则BD的长为.15.如图,在平面直角坐标系中,一条直线与反比例函数(x>0)的图象交于两点A、B,与x轴交于点C,且点B是AC的中点,分别过两点A、B作x轴的平行线,与反比例函数(x>0)的图象交于两点D、E,连接DE,则四边形ABED的面积为.16.如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为.三、解答题(共10小题)17.计算:.18.解不等式组:.19.某校对七、八、九年级的学生进行体育水平测试,成绩评定为优秀、良好、合格、不合格四个等第.为了解这次测试情况,学校从三个年级随机抽取200名学生的体育成绩进行统计分析.相关数据的统计图、表如下:各年级学生成绩统计表优秀良好合格不合格七年级 a 20 24 8八年级29 13 13 5九年级24 b 14 7根据以上信息解决下列问题:(1)在统计表中,a的值为,b的值为;(2)在扇形统计图中,八年级所对应的扇形圆心角为度;(3)若该校三个年级共有2000名学生参加考试,试估计该校学生体育成绩不合格的人数.20.在一只不透明的袋子中装有2个白球和2个黑球,这些球除颜色外都相同.(1)若先从袋子中拿走m个白球,这时从袋子中随机摸出一个球是黑球的事件为“必然事件”,则m的值为;(2)若将袋子中的球搅匀后随机摸出1个球(不放回),再从袋中余下的3个球中随机摸出1个球,求两次摸到的球颜色相同的概率.21.如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,EF∥AC.求证:B E=CF.22.如图,大海中某灯塔P周围10海里范围内有暗礁,一艘海轮在点A处观察灯塔P在北偏东60°方向,该海轮向正东方向航行8海里到达点B处,这时观察灯塔P恰好在北偏东45°方向.如果海轮继续向正东方向航行,会有触礁的危险吗?试说明理由.(参考数据:≈1.73)23.如图1,在△ABC中,点D在边BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD的外接圆.(1)求证:A C是⊙O的切线;(2)当BD是⊙O的直径时(如图2),求∠CAD的度数.24.某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.(1)求y关于x的函数表达式;(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m的取值范围.25.已知△ABC是等腰直角三角形,AC=BC=2,D是边AB上一动点(A、B两点除外),将△CAD绕点C 按逆时针方向旋转角α得到△CEF,其中点E是点A的对应点,点F是点D的对应点.(1)如图1,当α=90°时,G是边AB上一点,且BG=AD,连接GF.求证:GF∥AC;(2)如图2,当90°≤α≤180°时,AE与DF相交于点M.①当点M与点C、D不重合时,连接CM,求∠CMD的度数;②设D为边AB的中点,当α从90°变化到180°时,求点M运动的路径长.26.如图,在平面直角坐标系xOy中,将二次函数的图象M沿x轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N.(1)求N的函数表达式;(2)设点P(m,n)是以点C(1,4)为圆心、1为半径的圆上一动点,二次函数的图象M与x轴相交于两点A、B,求的最大值;(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M与N所围成封闭图形内(包括边界)整点的个数.一、选择题(共8小题)1.﹣2的绝对值是()A.﹣2B.C.D.2【答案】D.【解析】试题分析:∵﹣2<0,∴|﹣2|=﹣(﹣2)=2.故选D.考点:绝对值.2.下列四个几何体中,左视图为圆的几何体是()A.B.C.D.【答案】A.考点:简单几何体的三视图.3.地球与月球的平均距离为384000km,将384000这个数用科学记数法表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×106【答案】C.【解析】试题分析:384000=3.84×105.故选C.考点:科学记数法—表示较大的数.4.下列计算正确的是()A.B.C.D.【答案】D.考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.5.如图,已知直线a、b被直线c所截.若a∥b,∠1=120°,则∠2的度数为()A.50°B.60°C.120°D.130°【答案】B.【解析】试题分析:如图,∠3=180°﹣∠1=180°﹣120°=60°,∵a∥b,∴∠2=∠3=60°.故选B.考点:平行线的性质.6.一组数据5,4,2,5,6的中位数是()A.5B.4C.2D.6【答案】A.【解析】试题分析:将题目中数据按照从小到大排列是:2,4,5,5,6,故这组数据的中位数是5,故选A.考点:中位数;统计与概率.7.如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为()A.2B.C.D.1【答案】B.考点:翻折变换(折叠问题).8.若二次函数的图象经过点(﹣1,0),则方程的解为()A.,B.,C.,D.,【答案】C.【解析】试题分析:∵二次函数的图象经过点(﹣1,0),∴方程一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数的图象与x轴的另一个交点为:(3,0),∴方程的解为:,.故选C.学科网考点:抛物线与x轴的交点.二、填空题(共8小题)9.因式分解:= .【答案】2(a+2)(a﹣2).【解析】试题分析:= =2(a+2)(a﹣2).故答案为:2(a+2)(a﹣2).考点:提公因式法与公式法的综合运用.10.计算:= .【答案】x.【解析】试题分析:===x.故答案为:x.考点:分式的加减法.11.若两个相似三角形的面积比为1:4,则这两个相似三角形的周长比是.【答案】1:2.考点:相似三角形的性质.12.若一元二次方程有两个不相等的实数根,则k的取值范围是.【答案】:k<1.【解析】试题分析:∵一元二次方程有两个不相等的实数根,∴△==4﹣4k>0,解得:k<1,则k的取值范围是:k<1.故答案为:k<1.考点:根的判别式.13.某种油菜籽在相同条件下发芽试验的结果如表:每批粒数n 100 300 400 600 1000 2000 3000发芽的频数m 96 284 380 571 948 1902 28480.960 0.947 0.950 0.952 0.948 0.951 0.949发芽的频率那么这种油菜籽发芽的概率是(结果精确到0.01).【答案】0.95.【解析】试题分析:观察表格得到这种油菜籽发芽的频率稳定在0.95附近,则这种油菜籽发芽的概率是0.95,故答案为:0.95.考点:利用频率估计概率.14.如图,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C为圆心,CB为半径的圆交AB于点D,则BD的长为.【答案】.考点:垂径定理.15.如图,在平面直角坐标系中,一条直线与反比例函数(x>0)的图象交于两点A、B,与x轴交于点C,且点B是AC的中点,分别过两点A、B作x轴的平行线,与反比例函数(x>0)的图象交于两点D、E,连接DE,则四边形ABED的面积为.【答案】.考点:反比例函数系数k的几何意义.16.如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为.【答案】4.【解析】试题分析:如图,当AB=AD时,满足△PBC是等腰三角形的点P有且只有3个,△P1BC,△P2BC是等腰直角三角形,△P3BC是等腰直角三角形(P3B=P3C),则AB=AD=4,故答案为:4.考点:矩形的性质;等腰三角形的性质;勾股定理;分类讨论.三、解答题(共10小题)17.计算:.【答案】.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.18.解不等式组:.【答案】1<x<2.【解析】试题分析:根据解不等式组的方法可以求得不等式组的解集,从而可以解答本题.试题解析:,由①得,x>1,由②得,x<2,由①②可得,原不等式组的解集是:1<x <2.考点:解一元一次不等式组;方程与不等式.19.某校对七、八、九年级的学生进行体育水平测试,成绩评定为优秀、良好、合格、不合格四个等第.为了解这次测试情况,学校从三个年级随机抽取200名学生的体育成绩进行统计分析.相关数据的统计图、表如下:各年级学生成绩统计表优秀良好合格不合格七年级 a 20 24 8八年级29 13 13 5九年级24 b 14 7根据以上信息解决下列问题:(1)在统计表中,a的值为,b的值为;(2)在扇形统计图中,八年级所对应的扇形圆心角为度;(3)若该校三个年级共有2000名学生参加考试,试估计该校学生体育成绩不合格的人数.【答案】(1)28,15;(2)108;(3)200.【解析】试题分析:(1)根据学校从三个年级随机抽取200名学生的体育成绩进行统计分析和扇形统计图可以求得七年级抽取的学生数,从而可以求得a的值,也可以求得九年级抽取的学生数,进而得到b的值;(2)根据扇形统计图可以求得八年级所对应的扇形圆心角的度数;绩不合格的有200人.考点:扇形统计图;用样本估计总体;统计与概率.20.在一只不透明的袋子中装有2个白球和2个黑球,这些球除颜色外都相同.(1)若先从袋子中拿走m个白球,这时从袋子中随机摸出一个球是黑球的事件为“必然事件”,则m的值为;(2)若将袋子中的球搅匀后随机摸出1个球(不放回),再从袋中余下的3个球中随机摸出1个球,求两次摸到的球颜色相同的概率.【答案】(1)2;(2).【解析】试题分析:(1)由必然事件的定义可知:透明的袋子中装的都是黑球,从袋子中随机摸出一个球是黑球的案为:2;(2)设红球分别为H1、H2,黑球分别为B1、B2,列表得:第二球H1H2B1B2第一球H1(H1,H2)(H1,B1)(H1,B2)H2(H2,H1)(H2,B1)(H2,B2)B1(B1,H1)(B1,H2)(B1,B2)B2(B2,H1)(B2,H2)(B2,B1)总共有12种结果,每种结果的可能性相同,两次都摸到球颜色相同结果有4种,所以两次摸到的球颜色相同的概率==.考点:列表法与树状图法;随机事件.21.如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,EF∥AC.求证:B E=CF.【答案】证明见解析.【解析】试题分析:先利用平行四边形性质证明DE=CF,再证明EB=ED,即可解决问题.试题解析:∵ED∥BC,EF∥AC,∴四边形EFCD是平行四边形,∴DE=CF,∵BD平分∠ABC,∴∠EBD=∠DBC,∵DE∥BC,∴∠EDB=∠DBC,∴∠EBD=∠EDB,∴EB=ED,∴EB=CF.考点:平行四边形的判定与性质.22.如图,大海中某灯塔P周围10海里范围内有暗礁,一艘海轮在点A处观察灯塔P在北偏东60°方向,该海轮向正东方向航行8海里到达点B处,这时观察灯塔P恰好在北偏东45°方向.如果海轮继续向正东方向航行,会有触礁的危险吗?试说明理由.(参考数据:≈1.73)【答案】没有触礁的危险.【解析】试题分析:作PC⊥AB于C,如图,∠P AC=30°,∠PBC=45°,AB=8,设PC=x,先判断△PBC为等腰直角三角形得到BC=PC=x,再在Rt△P AC中利用正切的定义列方程,求出x的值,即得到AC的值,然后比较AC与10的大小即可判断海轮继续向正东方向航行,是否有触礁的危险.试题解析:没有触礁的危险.理由如下:考点:解直角三角形的应用-方向角问题;应用题.23.如图1,在△ABC中,点D在边BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD的外接圆.(1)求证:A C是⊙O的切线;(2)当BD是⊙O的直径时(如图2),求∠CAD的度数.【答案】(1)证明见解析;(2)22.5°.【解析】试题分析:(1)连接AO,延长AO交⊙O于点E,则AE为⊙O的直径,连接DE,由已知条件得出∠ABC=∠CAD,由圆周角定理得出∠ADE=90°,证出∠AED=∠ABC=∠CAD,求出EA⊥AC,即可得出结论;(2)由圆周角定理得出∠BAD=90°,由角的关系和已知条件得出∠ABC=22.5°,由(1)知:∠ABC=∠CAD,∴4∠ABC=90°,∴∠ABC=22.5°,由(1)知:∠ABC=∠CAD,∴∠CAD=22.5°.考点:切线的判定;圆周角定理;三角形的外接圆与外心.24.某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.(1)求y关于x的函数表达式;(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m的取值范围.【答案】(1)y=;(2)30<m≤75.【解析】试题分析:(1)根据收费标准,分0<x≤30,30<x≤m,m<x≤100分别求出y与x的关系即可.考点:二次函数的应用;分段函数;最值问题;二次函数的最值.25.已知△ABC是等腰直角三角形,AC=BC=2,D是边AB上一动点(A、B两点除外),将△CAD绕点C 按逆时针方向旋转角α得到△CEF,其中点E是点A的对应点,点F是点D的对应点.(1)如图1,当α=90°时,G是边AB上一点,且BG=AD,连接GF.求证:GF∥AC;(2)如图2,当90°≤α≤180°时,AE与DF相交于点M.①当点M与点C、D不重合时,连接CM,求∠CMD的度数;②设D为边AB的中点,当α从90°变化到180°时,求点M运动的路径长.【答案】(1)证明见解析;(2)①135°;②.【解析】试题分析:(1)欲证明GF∥AC,只要证明∠A=∠FGB即可解决问题.(2)①先证明A、D、M、C四点共圆,得到∠CMF=∠CAD=45°,即可解决问题.∵2∠CAE+∠ACE=180°,2∠CDF+∠DCF=180°,∴∠CAE=∠CDF,∴A、D、M、C四点共圆,∴∠CMF=∠CAD=45°,∴∠CMD=180°﹣∠CMF=135°.②如图3中,O是AC中点,连接OD、CM.学科网∵AD=DB,CA=CB,∴CD⊥AB,∴∠ADC=90°,由①可知A、D、M、C四点共圆,∴当α从90°变化到180°时,点M在以AC为直径的⊙O上,运动路径是弧CD,∵OA=OC,CD=DA,∴DO⊥AC,∴∠DOC=90°,∴的长==,∴当α从90°变化到180°时,点M运动的路径长为.考点:几何变换综合题.26.如图,在平面直角坐标系xOy中,将二次函数的图象M沿x轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N.(1)求N的函数表达式;(2)设点P(m,n)是以点C(1,4)为圆心、1为半径的圆上一动点,二次函数的图象M与x轴相交于两点A、B,求的最大值;(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M与N所围成封闭图形内(包括边界)整点的个数.【答案】(1);(2);(3)25.【解析】试题分析:(1)根据二次函数N的图象是由二次函数M翻折、平移得到所以a=﹣1,求出二次函数N的顶点坐标即可解决问题.(2)由=可知OP最大时,最大,求出OP的最大值即可解决问题.(3)画出函数图象即可解决问题.最大,∴OP的最大值=OC+PO=,∴最大值==.学科网(3)M与N所围成封闭图形如图所示:由图象可知,M与N所围成封闭图形内(包括边界)整点的个数为25个.考点:二次函数综合题;最值问题;压轴题;几何变换综合题.2016年江苏省苏州市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.的倒数是()A.B.C.D.2.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3B.7×10﹣3C.7×10﹣4D.7×10﹣53.下列运算结果正确的是()A.a+2b=3ab B.3a2﹣2a2=1C.a2•a4=a8D.(﹣a2b)3÷(a3b)2=﹣b4.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A.0.1 B.0.2 C.0.3 D.0.45.如图,直线a∥b,直线l与a、b分别相交于A、B两点,过点A作直线l的垂线交直线b于点C,若∠1=58°,则∠2的度数为()A.58° B.42° C.32° D.28°6.已知点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,则y1、y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定7.根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从2016年1月1日起对居民生活用水按新的“阶梯水价”标准收费,某中学研究学习小组的同学们在社会实践活动中调查了30户家庭某月的用水量,如表所示:用水量(吨)15 20 25 30 35户数 3 6 7 9 5则这30户家庭该用用水量的众数和中位数分别是()A.25,27 B.25,25 C.30,27 D.30,258.如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A.2m B.2m C.(2﹣2)m D.(2﹣2)m9.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1) B.(3,) C.(3,) D.(3,2)10.如图,在四边形ABCD中,∠ABC=90°,AB=BC=2,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()A.2 B.C.D.3二、填空题(共8小题,每小题3分,满分24分)11.分解因式:x2﹣1= .12.当x= 时,分式的值为0.13.要从甲、乙两名运动员中选出一名参加“2016里约奥运会”100m比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(s2),乙的方差为0.008(s2),则这10次测试成绩比较稳定的是运动员.(填“甲”或“乙”)14.某学校计划购买一批课外读物,为了了解学生对课外读物的需求情况,学校进行了一次“我最喜爱的课外读物”的调查,设置了“文学”、“科普”、“艺术”和“其他”四个类别,规定每人必须并且只能选择其中一类,现从全体学生的调查表中随机抽取了部分学生的调查表进行统计,并把统计结果绘制了如图所示的两幅不完整的统计图,则在扇形统计图中,艺术类读物所在扇形的圆心角是度.15.不等式组的最大整数解是.16.如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D ,CD=3,则图中阴影部分的面积为.17.如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BD E沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为.18.如图,在平面直角坐标系中,已知点A、B的坐标分别为(8,0)、(0,2),C是AB的中点,过点C作y轴的垂线,垂足为D,动点P从点D出发,沿DC向点C匀速运动,过点P作x轴的垂线,垂足为E,连接BP、EC.当BP所在直线与EC所在直线第一次垂直时,点P的坐标为.三、解答题(共10小题,满分76分)19.计算:()2+|﹣3|﹣(π+)0.20.解不等式2x﹣1>,并把它的解集在数轴上表示出来.21.先化简,再求值:÷(1﹣),其中x=.22.某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为8元/辆,现在停车场共有50辆中、小型汽车,这些车共缴纳停车费480元,中、小型汽车各有多少辆?23.在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为;(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.24.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.25.如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=(x>0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC =∠ABC,求反比例函数和一次函数的表达式.26.如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得C D=BD,连接AC交⊙O于点F,连接AE、DE、DF.(1)证明:∠E=∠C;(2)若∠E=55°,求∠BDF的度数;(3)设DE交AB于点G,若DF=4,cosB=,E是的中点,求EG•ED的值.27.如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3m/s,以O为圆心,0.8cm为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单位:s)(0<t<).(1)如图1,连接DQ平分∠BDC时,t的值为;(2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值;(3)请你继续进行探究,并解答下列问题:①证明:在运动过程中,点O始终在QM所在直线的左侧;②如图3,在运动过程中,当QM与⊙O相切时,求t的值;并判断此时PM与⊙O是否也相切?说明理由.28.如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.①写出点M′的坐标;②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).2016年江苏省苏州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.的倒数是()A.B.C.D.【考点】倒数.【分析】直接根据倒数的定义进行解答即可.【解答】解:∵×=1,∴的倒数是.故选A.2.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3B.7×10﹣3C.7×10﹣4D.7×10﹣5【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0007=7×10﹣4,故选:C.3.下列运算结果正确的是()A.a+2b=3ab B.3a2﹣2a2=1C.a2•a4=a8D.(﹣a2b)3÷(a3b)2=﹣b【考点】整式的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】分别利用同底数幂的乘法运算法则以及合并同类项法则、积的乘方运算法则分别计算得出答案.【解答】解:A、a+2b,无法计算,故此选项错误;B、3a2﹣2a2=a2,故此选项错误;C、a2•a4=a6,故此选项错误;D、(﹣a2b)3÷(a3b)2=﹣b,故此选项正确;故选:D.4.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A.0.1 B.0.2 C.0.3 D.0.4【考点】频数与频率.【分析】根据第1~4组的频数,求出第5组的频数,即可确定出其频率.【解答】解:根据题意得:40﹣(12+10+6+8)=40﹣36=4,则第5组的频率为4÷40=0.1,故选A.5.如图,直线a∥b,直线l与a、b分别相交于A、B两点,过点A作直线l的垂线交直线b于点C,若∠1=58°,则∠2的度数为()A.58° B.42° C.32° D.28°【考点】平行线的性质.【分析】根据平行线的性质得出∠ACB=∠2,根据三角形内角和定理求出即可.【解答】解:∵直线a∥b,∴∠ACB=∠2,∵AC⊥BA,∴∠BAC=90°,∴∠2=ACB=180°﹣∠1﹣∠BAC=180°﹣90°﹣58°=32°,故选C.6.已知点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,则y1、y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定【考点】反比例函数图象上点的坐标特征.【分析】直接利用反比例函数的增减性分析得出答案.【解答】解:∵点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,∴每个象限内,y随x的增大而增大,∴y1<y2,故选:B.7.根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从2016年1月1日起对居民生活用水按新的“阶梯水价”标准收费,某中学研究学习小组的同学们在社会实践活动中调查了30户家庭某月的用水量,如表所示:用水量(吨)15 20 25 30 35户数 3 6 7 9 5则这30户家庭该用用水量的众数和中位数分别是()A.25,27 B.25,25 C.30,27 D.30,25【考点】众数;中位数.【分析】根据众数、中位数的定义即可解决问题.【解答】解:因为30出现了9次,所以30是这组数据的众数,将这30个数据从小到大排列,第15、16个数据的平均数就是中位数,所以中位数是25,故选D.8.如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A.2m B.2m C.(2﹣2)m D.(2﹣2)m【考点】解直角三角形的应用-坡度坡角问题.【分析】先在Rt△ABD中利用正弦的定义计算出AD,然后在Rt△ACD中利用正弦的定义计算AC 即可.【解答】解:在Rt△ABD中,∵sin∠ABD=,∴AD=4sin60°=2(m),在Rt△ACD中,∵sin∠ACD=,∴AC==2(m).故选B.9.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1) B.(3,) C.(3,) D.(3,2)【考点】矩形的性质;坐标与图形性质;轴对称-最短路线问题.【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y=,∴点E坐标(3,)故选:B.10.如图,在四边形ABCD中,∠ABC=90°,AB=BC=2,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()A.2 B.C.D.3【考点】三角形的面积.【分析】连接AC,过B作EF的垂线,利用勾股定理可得AC,易得△ABC的面积,可得BG和△A DC的面积,三角形ABC与三角形ACD同底,利用面积比可得它们高的比,而GH又是△ACD以A C为底的高的一半,可得GH,易得BH,由中位线的性质可得EF的长,利用三角形的面积公式可得结果.【解答】解:连接AC,过B作EF的垂线交AC于点G,交EF于点H,∵∠ABC=90°,AB=BC=2,∴AC===4,∵△ABC为等腰三角形,BH⊥AC,∴△ABG,△BCG为等腰直角三角形,∴AG=BG=2。
2016年江苏省镇江市中考数学试卷(含详细答案及解析)
第1页(共36页)2016年江苏省镇江市中考数学试卷一、填空题(本大题共有12小题,每小题2分,共计24分)1.(2分)﹣3的相反数是.2.(2分)计算:(﹣2)3=.3.(2分)分解因式:x 2﹣9=.4.(2分)若代数式有意义,则实数x 的取值范围是.5.(2分)正五边形每个外角的度数是.6.(2分)如图,直线a ∥b ,Rt △ABC 的直角顶点C 在直线b 上,∠1=20°,则∠2=°.7.(2分)关于x 的一元二次方程2x 2﹣3x +m=0有两个相等的实数根,则实数m=.8.(2分)一只不透明的袋子中装有红球和白球共30个,这些球除了颜色外都相同,校课外学习小组做摸球试验,校课外学习小组做摸球试验,将球搅匀后任意摸出一个球,将球搅匀后任意摸出一个球,将球搅匀后任意摸出一个球,记下颜色后放记下颜色后放回、搅匀,通过多次重复试验,算得摸到红球的频率是20%,则袋中有个红球.9.(2分)圆锥底面圆的半径为4,母线长为5,它的侧面积等于(结果保留π)10.(2分)a 、b 、c 是实数,点A (a +1、b )、B (a +2,c )在二次函数y=x 2﹣2ax +3的图象上,则b 、c 的大小关系是bc (用“>”或“<”号填空)11.(2分)如图1,⊙O 的直径AB=4厘米,点C 在⊙O 上,设∠ABC 的度数为x (单位:度,0<x <90),优弧的弧长与劣弧的弧长的差设为y (单位:厘米),图2表示y 与x 的函数关系,则α=度.12.(2分)有一张等腰三角形纸片,AB=AC=5,BC=3,小明将它沿虚线PQ剪开,得到△AQP和四边形BCPQ两张纸片(如图所示),且满足∠BQP=∠B,则下列五长的有 个.个数据,3,,2,中可以作为线段AQ长的有二、选择题(本大题共有5小题,每小题3分,共计15分)13.(3分)2100000用科学记数法表示应为(用科学记数法表示应为( )A.0.21×108B.2.1×106C.2.1×107D.21×10514.(3分)由若干个相同的小正方体搭成的一个几何体如图所示,它的俯视图为( )为(A.B.C.D.15.(3分)一组数据6,3,9,4,3,5,12的中位数是(的中位数是( )A.3 B.4 C.5 D.616.(3分)已知点P(m,n)是一次函数y=x﹣1的图象位于第一象限部分上的点,其中实数m 、n 满足(m +2)2﹣4m +n (n +2m )=8,则点P 的坐标为的坐标为(( ) A .(,﹣) B .(,) C .(2,1) D .(,)17.(3分)如图,在平面直角坐标系中,坐标原点O 是正方形OABC 的一个顶点,已知点B 坐标为(1,7),过点P (a ,0)(a >0)作PE ⊥x 轴,与边OA 交于点E (异于点O 、A ),将四边形ABCE 沿CE 翻折,点Aʹ、Bʹ分别是点A 、B 的对应点,若点Aʹ恰好落在直线PE 上,则a 的值等于(的值等于( )A .B .C .2 D .3三、解答题(本大题共有11小题,共计81分) 18.(8分)(1)计算:tan45°﹣()0+|+|﹣﹣5| (2)化简:.19.(10分)(1)解方程:(2)解不等式:2(x ﹣6)+4≤3x ﹣5,并将它的解集在数轴上表示出来.20.(6分)甲、乙、丙三名同学站成一排拍合影照留念. (1)请按从左向右的顺序列出所有可能站位的结果; (2)求出甲同学站在中间位置的概率.21.(6分)现如今,通过微信朋友圈发布自己每天行走的步数,已成为一种时尚,“健身达人”小张为了了解他的微信朋友圈里大家的运动情况,随机抽取了部分好友进行调查,把他们6月9日那天每天行走的步数情况分为五个类别:A (0﹣4000步)(说明:“0﹣4000”表示大于等于0,小于等于4000,下同),B (4001﹣8000步),C(8001﹣12000步),D(12001﹣16000步),E(16001步及以上),并将统计结果绘制了如图1的图2两幅不完整的统计图.请你根据图中提供的信息解答下列问题:(1)将图1的条形统计图补充完整;(2)已知小张的微信朋友圈里共500人,请根据本次抽查的结果,估计在他的微信朋友圈里6月9日那天行走不超过8000步的人数.22.(6分)如图,AD、BC相交于点O,AD=BC,∠C=∠D=90°.(1)求证:△ACB≌△BDA;(2)若∠ABC=35°,则∠CAO=°.23.(6分)公交总站(A点)与B、C两个站点的位置如图所示,已知AC=6km,∠B=30°,∠C=15°,求B站点离公交总站的距离即AB的长(结果保留根号).24.(6分)校田园科技社团计划购进A、B两种花卉,两次购买每种花卉的数量以及每次的总费用如下表所示:花卉数量(单位:株)总费用(单位:A B元)第一次购买1025225第二次购买2015275你从表格中获取了什么信息? (请用自己的语言描述,写出一条即可);(1)你从表格中获取了什么信息?(2)A、B两种花卉每株的价格各是多少元?25.(7分)如图1,一次函数y=kx﹣3(k≠0)的图象与y轴交于点A,与反比例函数y=(x>0)的图象交于点B(4,b).(1)b=;k=;(2)点C是线段AB上的动点(与点A、B不重合),过点C且平行于y轴的直线l交这个反比例函数的图象于点D,求△OCD面积的最大值;(3)将(2)中面积取得最大值的△OCD沿射线AB方向平移一定的距离,得到△OʹCʹDʹ,若点O的对应点Oʹ落在该反比例函数图象上(如图2),则点Dʹ的坐标是 .标是26.(7分)如果三角形三边的长a、b、c满足=b,那么我们就把这样的三角形叫做“匀称三角形”,如:三边长分别为1,1,1或3,5,7,…的三角形都是“匀称三角形”.(1)如图1,已知两条线段的长分别为a、c(a<c).用直尺和圆规作一个最短边、最长边的长分别为a、c的“匀称三角形”(不写作法,保留作图痕迹);(2)如图2,△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作⊙O的切线交AB延长线于点E,交AC于点F,若,判断△AEF是否为“匀称三角形”?请说明理由.27.(9分)如图1,在菱形ABCD中,AB=6,tan∠ABC=2,点E从点D出发,以每秒1个单位长度的速度沿着射线DA的方向匀速运动,设运动时间为t(秒),将线段CE绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CF.(1)求证:BE=DF;的长度有最小值,最小值等于 ;(2)当t=秒时,DF的长度有最小值,最小值等于(3)如图2,连接BD、EF、BD交EC、EF于点P、Q,当t为何值时,△EPQ是直角三角形?(4)如图3,将线段CD绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CG.在点E的运动过程中,当它的对应点F位于直线AD上方时,直接写出点F 到直线AD的距离y关于时间t的函数表达式.28.(10分)如图1,二次函数y1=(x﹣2)(x﹣4)的图象与x轴交于A、B两点(点A在点B的左侧),其对称轴l与x轴交于点C,它的顶点为点D.的坐标 .(1)写出点D的坐标(2)点P在对称轴l上,位于点C上方,且CP=2CD,以P为顶点的二次函数y2=ax2+bx+c(a≠0)的图象过点A.①试说明二次函数y2=ax2+bx+c(a≠0)的图象过点B;②点R在二次函数y1=(x﹣2)(x﹣4)的图象上,到x轴的距离为d,当点R的坐标为 时,二次函数y2=ax2+bx+c(a≠0)的图象上有且只有三个点到x轴的坐标为距离等于2d;③如图2,已知0<m<2,过点M(0,m)作x轴的平行线,分别交二次函数y1=(x﹣2)(x﹣4)、y2=ax2+bx+c(a≠0)的图象于点E、F、G、H(点E、G在对称轴l左侧),过点H作x轴的垂线,垂足为点N,交二次函数y1=(x﹣2)(x ﹣4)的图象于点Q,若△GHN∽△EHQ,求实数m的值.2016年江苏省镇江市中考数学试卷参考答案与试题解析一、填空题(本大题共有12小题,每小题2分,共计24分) 1.(2分)(2016•镇江)﹣3的相反数是的相反数是 3 .【分析】一个数的相反数就是在这个数前面添上“﹣”号. 【解答】解:﹣(﹣3)=3, 故﹣3的相反数是3. 故答案为:3.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.学生易把相反数的意义与倒数的意义混淆.2.(2分)(2016•镇江)计算:(﹣2)3= ﹣8 .【分析】(﹣2)3表示3个﹣2相乘.【解答】解:(﹣2)3=﹣8.【点评】乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行. 负数的奇数次幂是负数,负数的偶数次幂是正数.3.(2分)(2016•镇江)分解因式:x 2﹣9= (x +3)(x ﹣3) . 【分析】本题中两个平方项的符号相反,直接运用平方差公式分解因式. 【解答】解:x 2﹣9=(x +3)(x ﹣3). 故答案为:(x +3)(x ﹣3).【点评】主要考查平方差公式分解因式,熟记能用平方差公式分解因式的多项式的特征,即“两项、异号、平方形式”是避免错用平方差公式的有效方法.4.(2分)(202016•16•镇江)若代数式有意义,则实数x 的取值范围是的取值范围是 x ≥ .【分析】直接利用二次根式有意义的条件得出2x ﹣1≥0,进而得出答案. 【解答】解:若代数式有意义,则2x﹣1≥0,解得:x≥,则实数x的取值范围是:x≥.故答案为:x≥.【点评】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.5.(2分)(2016•镇江)正五边形每个外角的度数是镇江)正五边形每个外角的度数是 72°.【分析】利用正五边形的外角和等于360度,除以边数即可求出答案.【解答】解:360°÷5=72°.故答案为:72°.【点评】本题主要考查了多边形的外角和定理,任何一个多边形的外角和都是360°.6.(2分)(2016•镇江)如图,直线a∥b,Rt△ABC的直角顶点C在直线b上,∠1=20°,则∠2=70°.【分析】根据平角等于180°列式计算得到∠3,根据两直线平行,同位角相等可得∠3=∠2.【解答】解:∵∠1=20°,∴∠3=90°﹣∠1=70°,∵直线a∥b,∴∠2=∠3=70°,故答案是:70.【点评】本题考查了平行线的性质,本题考查了平行线的性质,平角的定义,平角的定义,平角的定义,熟记性质并准确识图是解题的熟记性质并准确识图是解题的关键.7.(2分)(2016•镇江)关于x 的一元二次方程2x 2﹣3x +m=0有两个相等的实数根,则实数m= .【分析】直接利用根的判别式得出b 2﹣4ac=9﹣8m=0,即可得出答案. 【解答】解:∵关于x 的一元二次方程2x 2﹣3x +m=0有两个相等的实数根, ∴b 2﹣4ac=9﹣8m=0, 解得:m=. 故答案为:.【点评】此题主要考查了根的判别式,正确掌握判别式的符号是解题关键.8.(2分)(2016•镇江)一只不透明的袋子中装有红球和白球共30个,这些球除了颜色外都相同,校课外学习小组做摸球试验,将球搅匀后任意摸出一个球,记下颜色后放回、搅匀,通过多次重复试验,算得摸到红球的频率是20%,则袋中有中有 6 个红球.【分析】在同样条件下,在同样条件下,大量反复试验时,大量反复试验时,大量反复试验时,随机事件发生的频率逐渐稳定在概率随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解. 【解答】解:设袋中有x 个红球. 由题意可得:=20%,解得:x=6, 故答案为:6.【点评】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.9.(2分)(2016•镇江)圆锥底面圆的半径为4,母线长为5,它的侧面积等于,它的侧面积等于 20π (结果保留π)【分析】根据圆锥的底面半径为4,母线长为5,直接利用圆锥的侧面积公式求出它的侧面积.【解答】解:根据圆锥的侧面积公式:πrl=π×4×5=20π, 故答案为:20π.【点评】此题主要考查了圆锥侧面积公式.此题主要考查了圆锥侧面积公式.掌握圆锥侧面积公式:掌握圆锥侧面积公式:S 侧=πrl 是解决问题的关键.10.(2分)(2016•镇江)a 、b 、c 是实数,点A (a +1、b )、B (a +2,c )在二次函数y=x 2﹣2ax +3的图象上,则b 、c 的大小关系是b < c (用“>”或“<”号填空)【分析】求出二次函数的对称轴,再根据二次函数的增减性判断即可.【解答】解:∵二次函数y=x 2﹣2ax +3的图象的对称轴为x=a ,二次项系数1>0, ∴抛物线的开口向上,在对称轴的右边,y 随x 的增大而增大,∵a +1<a +2,点A (a +1、b )、B (a +2,c )在二次函数y=x 2﹣2ax +3的图象上, ∴b <c ,故答案为:<.【点评】本题考查了二次函数图象上点的坐标特征,本题考查了二次函数图象上点的坐标特征,求出对称轴解析式,求出对称轴解析式,求出对称轴解析式,然后利然后利用二次函数的增减性求解更简便.11.(2分)(2016•镇江)如图1,⊙O 的直径AB=4厘米,点C 在⊙O 上,设∠ABC 的度数为x (单位:度,0<x <90),优弧的弧长与劣弧的弧长的差设为y (单位:厘米),图2表示y 与x 的函数关系,则α= 22.5 度.【分析】直接利用弧长公式表示出y与x之间的关系,进而代入(a,3π)求出答案.【解答】解:设∠ABC的度数为x,根据题意可得:y=﹣将(a,3π)代入得:3π=,解得:α=22.5°.故答案为:22.5.正确得出y与x之间的关系式是【点评】此题主要考查了动点问题的函数图象,此题主要考查了动点问题的函数图象,正确得出解题关键.12.(2分)(2016•镇江)有一张等腰三角形纸片,AB=AC=5,BC=3,小明将它沿虚线PQ剪开,得到△AQP和四边形BCPQ两张纸片(如图所示),且满足∠BQP=长的有 3个.∠B,则下列五个数据,3,,2,中可以作为线段AQ长的有【分析】作CD∥PQ,交AB于D,由平行线的性质和等腰三角形的性质得出∠B=∠ACB=∠CDB,证出CD=BC=3,△BCD∽△BAC,得出对应边成比例求出BD=,得出AD=AB﹣BD=,由平行线证出△APQ∽△ACD,得出对应边成比例求出AP= AQ,再分别代入AQ的长求出AP的长,即可得出结论.【解答】解:作CD∥PQ,交AB于D,如图所示:则∠CDB=∠BQP,∵AB=AC=5,∴∠B=∠ACB,∵∠BQP=∠B,∴∠B=∠ACB=∠CDB,∴CD=BC=3,△BCD∽△BAC,∴,即,解得:BD=,∴AD=AB﹣BD=,∵CD∥PQ,∴△APQ∽△ACD,∴,即,解得:AP=AQ,当AQ=时,AP=×=>5,不合题意,舍去;当AQ=3时,AP=×3=<5,符合题意;当AQ=时,点P与C重合,不合题意,舍去;当AQ=2时,AP=×2=<5,符合题意;当AQ=时,AP=×=<5,符合题意;综上所述:可以作为线段AQ长的有3个;故答案为:3.【点评】本题考查了相似三角形的判定与性质、本题考查了相似三角形的判定与性质、等腰三角形的判定与性质、等腰三角形的判定与性质、等腰三角形的判定与性质、平行平行线的性质;熟练掌握等腰三角形的性质与判定,证明三角形相似是解决问题的关键.二、选择题(本大题共有5小题,每小题3分,共计15分)13.(3分)(2016•镇江)2100000用科学记数法表示应为(用科学记数法表示应为( )A .0.21×108B .2.1×106C .2.1×107D .21×105【分析】分析:用科学记数法表示一个数,是把一个数写成a ×10n形式,其中a 为整数,1≤|a |<10,n 为整数.【解答】解:2100000=2.1×106故选:B【点评】本题是考查用科学记数法表示数.正确掌握10n的特征及科学记数法中n 与数位的关系.14.(3分)(2016•镇江)由若干个相同的小正方体搭成的一个几何体如图所示,它的俯视图为(它的俯视图为( )A .B .C .D .【分析】找出简单几何体的俯视图,对照四个选项即可得出结论. 【解答】解:俯视几何体时,发现:左三、中二、右二,观察四个选项发现,只有A 符合该几何体的俯视图, 故选A .【点评】本题考查了简单组合体的三视图,解题的关键是熟练掌握简单几何体三视图的画法.本题属于基础题,难度不大,解决该题型题目时,熟悉简单几何体的三视图是关键.15.(3分)(2016•镇江)一组数据6,3,9,4,3,5,12的中位数是(的中位数是( )A .3 B .4 C .5 D .6【分析】分析:把一组数据从小到大排列最中间的数或中间两数的平均数即为这组数据的中位数.【解答】解:把这组数据按从小到大排列,得3,3,4,5,6,9,12,共7个数,中间的数是5,所以这组数据的中位数是5. 故选:C【点评】本题考查中位数的意义:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.16.(3分)(2016•镇江)已知点P (m ,n )是一次函数y=x ﹣1的图象位于第一象限部分上的点,其中实数m 、n 满足(m +2)2﹣4m +n (n +2m )=8,则点P 的坐标为(坐标为( )A .(,﹣) B .(,)C .(2,1) D .(,)【分析】根据题意可以求得m 、n 的值,从而可以求得点P 的坐标,本题得以解决.【解答】解:∵(m +2)2﹣4m +n (n +2m )=8, 化简,得(m +n )2=4,∵点P (m ,n )是一次函数y=x ﹣1的图象位于第一象限部分上的点, ∴n=m ﹣1, ∴,解得,或∵点P (m ,n )是一次函数y=x ﹣1的图象位于第一象限部分上的点, ∴m >0,n >0,故点P 的坐标为(1.5,0.5), 故选D .【点评】本题考查一次函数图象上点的坐标特征,本题考查一次函数图象上点的坐标特征,解题的关键是明确题意,解题的关键是明确题意,解题的关键是明确题意,找出找出所求问题需要的条件.17.(3分)(2016•镇江)如图,在平面直角坐标系中,坐标原点O 是正方形OABC 的一个顶点,已知点B 坐标为(1,7),过点P (a ,0)(a >0)作PE ⊥x 轴,与边OA 交于点E (异于点O 、A ),将四边形ABCE 沿CE 翻折,点Aʹ、Bʹ分别是点A 、B 的对应点,若点Aʹ恰好落在直线PE 上,则a 的值等于(的值等于( )A .B .C .2 D .3【分析】作辅助线,根据点B 的坐标,求出OB 和正方形的边长,由正方形的对角线互相垂直平分得:DQ 是梯形CMNA 的中位线,则CM +AN=2DQ=7,证明△CMO ≌△ONA ,则ON=CM ,所以ON +AN=7,设AN=x ,则ON=7﹣x ,根据勾股定理列方程求出x 的值,并取舍,再根据正方形的边长求出OP 的长. 【解答】解:当点Aʹ恰好落在直线PE 上,如图所示,连接OB 、AC ,交于点D ,过点D 、A 作x 轴的垂线,垂足分别为Q 、N ,设CBʹ交x 轴于M ,则CM ∥QD ∥AN , ∵四边形OABC 是正方形, ∴OD=BD ,OB ⊥AC , ∵O (0,0),B (1,7),∴D (,),即DQ=由勾股定理得:OB===5,∵△ABO 是等腰直角三角形, ∴AB=AO=5,∵DQ 是梯形CMNA 的中位线, ∴CM +AN=2DQ=7, ∵∠COA=90°,∴∠COM +∠AON=90°, ∵∠CMO=90°,∴∠COM +∠MCO=90°, ∴∠AON=∠MCO ,∵四边形OABC 是正方形, ∴OA=OC ,∵∠CMO=∠ONA=90°, ∴△CMO ≌△ONA , ∴ON=CM , ∴ON +AN=7,设AN=x ,则ON=7﹣x ,在Rt △AON 中,由勾股定理得:x 2+(7﹣x )2=52, 解得:x=3或4, 当x=4时,CM=3,此时点B 在第二象限,不符合题意, ∴x=3, ∴OM=3, ∵AʹBʹ=PM=5, ∴OP=a=2, 故选C .【点评】本题是翻折变换问题,考查了翻折的性质和正方形及坐标与图形的性质,首先明确翻折变换首先明确翻折变换(折叠问题)(折叠问题)(折叠问题)实质上就是轴对称变换,实质上就是轴对称变换,实质上就是轴对称变换,折叠前后图形的形状和折叠前后图形的形状和大小不变,大小不变,位置变化,位置变化,位置变化,对应边和对应角相等;对应边和对应角相等;对应边和对应角相等;利用三角形全等和梯形中位线的性利用三角形全等和梯形中位线的性质,得出直角三角形两直角边的和为7,设未知数,根据勾股定理列方程得出结论.三、解答题(本大题共有11小题,共计81分) 18.(8分)(2016•镇江)(1)计算:tan45°﹣()0+|+|﹣﹣5| (2)化简:.【分析】(1)先计算三角函数值、零指数幂、绝对值,再计算加减即可; (2)先将减式因式分解后约分,再计算同分母的分式减法即可得. 【解答】解:(1)原式=1﹣1+5=5; (2)原式=﹣=﹣==1.【点评】本题主要考查实数的混合运算与分式的混合运算,熟练掌握分式的混合运算顺序与法则是解题的关键.19.(10分)(2016•镇江)(1)解方程:(2)解不等式:2(x﹣6)+4≤3x﹣5,并将它的解集在数轴上表示出来.【分析】(1)首先找出最简公分母,再去分母进而解方程得出答案;(2)首先去括号,进而解不等式得出答案.【解答】解:(1)去分母得:x=3(x﹣3),解得:x=,检验:x=时,x(x﹣3)≠0,则x=是原方程的根;(2)2(x﹣6)+4≤3x﹣52x﹣12+4≤3x﹣5,解得:x≥﹣3,如图所示:.【点评】此题主要考查了解分式方程以及解不等式,正确掌握解题步骤是解题关键.20.(6分)(2016•镇江)甲、乙、丙三名同学站成一排拍合影照留念.(1)请按从左向右的顺序列出所有可能站位的结果;(2)求出甲同学站在中间位置的概率.【分析】(1)利用列举法写出所有6种等可能的结果;(2)再找出甲站中间的结果数,然后根据概率公式求解.【解答】解:(1)三位好朋友合照的站法从左到右有:(甲乙丙),(甲丙乙),(乙甲丙),(乙丙甲),(丙甲乙),(丙乙甲),共有6种等可能的结果;(2)其中甲站中间的结果有2种,记为事件A,所以P(A)==.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.21.(6分)(2016•镇江)现如今,通过微信朋友圈发布自己每天行走的步数,已成为一种时尚,“健身达人”小张为了了解他的微信朋友圈里大家的运动情况,随机抽取了部分好友进行调查,把他们6月9日那天每天行走的步数情况分为五个类别:A(0﹣4000步)(说明:“0﹣4000”表示大于等于0,小于等于4000,下同),B(4001﹣8000步),C(8001﹣12000步),D(12001﹣16000步),E(16001步及以上),并将统计结果绘制了如图1的图2两幅不完整的统计图.请你根据图中提供的信息解答下列问题:(1)将图1的条形统计图补充完整;(2)已知小张的微信朋友圈里共500人,请根据本次抽查的结果,估计在他的微信朋友圈里6月9日那天行走不超过8000步的人数.【分析】(1)首先根据B类的人数占15%,求出总人数以及D类的人数,然后将图1的条形统计图补充完整即可.(2)用小张的微信朋友圈里的人数乘A、B两类的人数占的分率,估计在他的微信朋友圈里6月9日那天行走不超过8000步的人数是多少即可.【解答】解:(1)D类的人数有:9÷15%﹣(3+9+24+6)=60﹣42=18(人).(2)500×=500×=100(人)∴在他的微信朋友圈里6月9日那天行走不超过8000步的有100人.【点评】此题主要考查了条形统计图、扇形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.(6分)(2016•镇江)如图,AD、BC相交于点O,AD=BC,∠C=∠D=90°.(1)求证:△ACB≌△BDA;(2)若∠ABC=35°,则∠CAO=20°.【分析】(1)根据HL证明Rt△ABC≌Rt△BAD;(2)利用全等三角形的性质证明即可.【解答】(1)证明:∵∠D=∠C=90°,∴△ABC和△BAD都是Rt△,在Rt△ABC和Rt△BAD中,,∴Rt△ABC≌Rt△BAD(HL);(2)证明:∵Rt△ABC≌Rt△BAD,∴∠ABC=∠BAD=35°,∵∠C=90°,∴∠BAC=55°,∴∠CAO=∠CAB﹣∠BAD=20°.故答案为:20.【点评】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”,“HL”;全等三角形的对应边相等.23.(6分)(2016•镇江)公交总站(A点)与B、C两个站点的位置如图所示,已知AC=6km,∠B=30°,∠C=15°,求B站点离公交总站的距离即AB的长(结果保留根号).【分析】过C作CD垂直于AB,交BA延长线于点D,由∠B与∠ACB的度数,利用外角性质求出∠CAD的度数,在直角三角形ACD中,利用勾股定理求出CD 与AD的长,在直角三角形BCD中,利用勾股定理求出BD的长,由BD﹣AD求出AB的长即可.【解答】解:过点C作CD⊥AB,垂足为点D,∵∠B=30°,∠ACB=15°,∴∠CAD=45°,在Rt△ACD中,∠ADC=90°,∠CAD=45°,AC=6,∴CD=AD=3km,在Rt△BCD中,∠CDB=90°,∠B=30°,CD=3km,∴BD=3km,则AB=(3﹣3)km .【点评】此题考查了解直角三角形的应用,熟练掌握勾股定理是解本题的关键.24.(6分)(2016•镇江)校田园科技社团计划购进A 、B 两种花卉,两次购买每种花卉的数量以及每次的总费用如下表所示:花卉数量(单位:株) 总费用(单位:元)AB第一次购买1025225第二次购买 20 15 275(1)你从表格中获取了什么信息?)你从表格中获取了什么信息? 购买A 种花卉10株和B 种花卉25株共花费225元 (请用自己的语言描述,写出一条即可);(2)A 、B 两种花卉每株的价格各是多少元? 【分析】(1)答案不唯一,根据表格可得购买A 种花卉10株和B 种花卉25株共花费225元;(2)设A 种花卉每株x 元,B 种花卉每株y 元,根据题意可得A 种花卉10株的花费花费++B 种花卉25株的花费=225元,A 种花卉20株的花费株的花费++B 种花卉15株的花费=275元,根据等量关系列出方程组,再解即可.【解答】解:(1)购买A 种花卉10株和B 种花卉25株共花费225元, 故答案为:购买A 种花卉10株和B 种花卉25株共花费225元;(2)设A 种花卉每株x 元,B 种花卉每株y 元,由题意得:,解得:,答:A 种花卉每株10元,B 种花卉每株5元.【点评】此题主要二元一次方程组的应用,此题主要二元一次方程组的应用,关键是正确理解表格所给信息,关键是正确理解表格所给信息,关键是正确理解表格所给信息,找出找出等量关系列出方程组.25.(7分)(2016•镇江)如图1,一次函数y=kx﹣3(k≠0)的图象与y轴交于点A,与反比例函数y=(x>0)的图象交于点B(4,b).(1)b=1;k=1;(2)点C是线段AB上的动点(与点A、B不重合),过点C且平行于y轴的直线l交这个反比例函数的图象于点D,求△OCD面积的最大值;(3)将(2)中面积取得最大值的△OCD沿射线AB方向平移一定的距离,得到△OʹCʹDʹ,若点O的对应点Oʹ落在该反比例函数图象上(如图2),则点Dʹ的坐标是 (,).标是【分析】(1)由点B的横坐标利用反比例函数图象上点的坐标特征即可求出b 值,进而得出点B的坐标,再将点B的坐标代入一次函数解析式中即可求出k 值;(2)设C(m,m﹣3)(0<m<4),则D(m,),根据三角形的面积即可得出S△OCD关于m的函数关系式,通过配方即可得出△OCD面积的最大值;(3)由(1)(2)可知一次函数的解析式以及点C、D的坐标,设点Cʹ(a,a﹣3),根据平移的性质找出点Oʹ、Dʹ的坐标,由点Oʹ在反比例函数图象上即可得出关于a的方程,解方程求出a的值,将其代入点Dʹ的坐标中即可得出结论.【解答】解:(1)把B(4,b)代入y=(x>0)中得:b==1,∴B(4,1),把B(4,1)代入y=kx﹣3得:1=4k﹣3,解得:k=1,故答案为:1,1;(2)设C(m,m﹣3)(0<m<4),则D(m,),∴S△OCD=m(﹣m+3)=﹣m2+m+2=﹣+,∵0<m<4,﹣<0,∴当m=时,△OCD面积取最大值,最大值为;(3)由(1)知一次函数的解析式为y=x﹣3,由(2)知C(,﹣)、D(,).设Cʹ(a,a﹣3),则Oʹ(a﹣,a﹣),Dʹ(a,a+),∵点Oʹ在反比例函数y=(x>0)的图象上,∴a﹣=,解得:a=或a=﹣(舍去),经检验a=是方程a﹣=的解.∴点Dʹ的坐标是(,).【点评】本题考查了反比例函数图象上点的坐标特征、一次函数图象上点的坐标特征以及平移的性质,解题的关键是:(1)求出点B的坐标;(2)找出S△OCD关于m的函数关系式;(3)找出关于a的方程.本题属于中档题,难度不大,解决该题型题目时,根据平移的性质找出平移后点的坐标是关键.26.(7分)(2016•镇江)如果三角形三边的长a、b、c满足=b,那么我们就把这样的三角形叫做“匀称三角形”,如:三边长分别为1,1,1或3,5,7,…的三角形都是“匀称三角形”.(1)如图1,已知两条线段的长分别为a、c(a<c).用直尺和圆规作一个最短边、最长边的长分别为a、c的“匀称三角形”(不写作法,保留作图痕迹);(2)如图2,△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作⊙O的切线交AB延长线于点E,交AC于点F,若,判断△AEF是否为“匀称三角形”?请说明理由.【分析】(1)根据题意可以画出相应的图形,本题得以解决;(2)根据“匀称三角形”的定义,由题目中信息的,利用切线的性质,等腰三角形的性质,三角形的全等以及勾股定理可以判断△AEF是否为“匀称三角形”.【解答】解:(1)所求图形,如右图1所示,(2)△AEF是“匀称三角形”,理由:连接AD、OD,如右图2所示,∵AB是⊙O的直径,∴AD⊥BC,∵AB=AC,∴点D是BC的中点,∵点O为AB的中点,∴OD∥AC,∵DF切⊙O于点D,∴OD⊥DF,∴EF⊥AF,过点B作BG⊥EF于点G,。
2016年江苏省镇江市中考数学试卷
(1)将图 的条形统计图补充完整;
(2)已知小张的微信朋友圈里共 人,请根据本次抽查的结果,估计在他的微信朋友圈里 月 日那天行走不超过 步的人数.
【答案】
解:(1) 类的人数有:
(人)
.
(2)
(人)
∴在他的微信朋友圈里 月 日那天行走不超过 步的有 人.
【考点】
【解答】
∵关于 的一元二次方程 = 有两个相等的实数根,
∴ = = ,
解得: .
8.一只不透明的袋子中装有红球和白球共 个,这些球除了颜色外都相同,校课外学习小组做摸球试验,将球搅匀后任意摸出一个球,记下颜色后放回、搅匀,通过多次重复试验,算得摸到红球的频率是 ,则袋中有________个红球.
【答案】
根据圆锥的底面半径为 ,母线长为 ,直接利用圆锥的侧面积公式求出它的侧面积.
【解答】
解:根据 、 、 在二次函数 的图象上,则 、 的大小关系是 ________ (用“ ”或“ ”号填空)
【答案】
【考点】
二次函数图象上点的坐标特征
【解析】
特殊角的三角函数值
【解析】
(1)先计算三角函数值、零指数幂、绝对值,再计算加减即可;
(2)先将减式因式分解后约分,再计算同分母的分式减法即可得.
【解答】
解:(1)原式 ;
(2)原式
.
(1)解方程:
(2)解不等式: ,并将它的解集在数轴上表示出来.
【答案】
解:(1)去分母得: ,
解得: ,
检验: 时, ,则 是原方程的根;
【答案】
【考点】
动点问题的解决方法
【解析】
直接利用弧长公式表示出 与 之间的关系,进而代入 求出答案.
2016数学中考试题及答案
2016数学中考试题及答案2016年的数学中考试题目是许多学生所关注的焦点。
本文将为您提供2016年数学中考试题目的详细内容以及相应的答案。
以下是数学试题的题目和答案:1. 选择题1.1 问题:已知直角三角形 ABC 中,∠B = 90°,BC = 4 cm,AC = 3 cm,则∠A 的值是多少?选项:A. 30°B. 45°C. 60°D. 90°1.2 问题:已知 a + b = 7,a - b = 3,则 a 和 b 的值分别是多少?选项:A. a = 5,b = 2B. a = 2,b = 5C. a = 7,b = 0D. a = 0,b = 7答案:1.1 答案:C1.2 答案:A2. 填空题2.1 问题:将两个相邻的自然数的平方相加,结果为 365,这两个自然数分别是多少?答案:13 和 142.2 问题:已知 x = -2 是方程 3x - 4 = 5x + 2 的解,求另一个解。
答案:-33. 计算题3.1 问题:已知函数 f(x) = x^2 + 3x + 2,求 f(-1) 的值。
答案:23.2 问题:某商品原价为 80 元,现在打折 30%,请计算折扣后的价格。
答案:56 元4. 解答题4.1 问题:请解答如下等式,求出变量 x 的值:2(x + 3) = 4x + 6答案:x = 34.2 问题:请解答如下问题,计算三个连续自然数的和,其中最小的自然数是 x:x + (x + 1) + (x + 2) = 60答案:x = 19以上便是2016年数学中考试题目的详细内容以及相应的答案。
希望对您复习和准备考试有所帮助。
祝您取得好成绩!。
江苏省镇江市扬中市2016届九年级数学上学期第二次段考试题(含解析)
江苏省镇江市扬中市2016届九年级数学上学期第二次段考试题一、填空题(每题2分,计24分)1.方程x2﹣2x=0的解为__________.2.数据:18,24,37,28,24,26,这组数据的中位数是__________元.3.有四张不透明的卡片为2,,π,,除正面的数不同外,其余都相同.将它们背面朝上洗匀后,从中随机抽取一张卡片,抽到写有无理数卡片的概率为__________.4.已知函数是二次函数,则m=__________.5.抛物线y=﹣(x+1)2﹣3与y轴交于点__________.6.已知抛物线y=x2﹣2x﹣1,则当__________时,y随x的增大而减小.7.如图是一个圆锥形冰淇淋,已知它的母线长是13cm,高是12cm,则这个圆锥形冰淇淋的底面面积是__________.8.如图,已知点A(0,1),B(0,﹣1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则∠BAC等于__________度.9.已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m=0的解为__________.10.已知⊙O和平面内一点P,点P到圆上点的最短和最长距离分别为2和6,则圆的半径长为__________.11.如图⊙O的半径为3,AB=BC,CD=DE,则阴影部分的面积和为__________.12.已知实数x、y满足x2+2x+y﹣3=0,则2x﹣y的最小值为__________.二、选择题(每题3分,计15分)13.一元二次方程x2﹣8x﹣1=0配方后可变形为( )A.(x+4)2=17 B.(x+4)2=15 C.(x﹣4)2=17 D.(x﹣4)2=1514.如图,△ABC内接于⊙O,∠BAC=30°,BC=12,则⊙O的直径为( )A.12 B.20 C.24 D.3015.若二次函数y=x2+bx的图象的对称轴是直线x=2,则关于x的方程x2+bx=5的解为( ) A.x1=0,x2=4 B.x1=1,x2=5 C.x1=1,x2=﹣5 D.x1=﹣1,x2=516.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的对称轴是直线x=1,其图象的一部分如图所示,对于下列说法:①abc<0;②a﹣b+c<0;③3a+c<0;④当y>0时,﹣1<x<3.其中正确的是( )A.①、②B.①、③C.①、②、③D.①、②、④17.如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B 运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是( )A.B.C.D.三、解答题(81分)18.解方程:(1)x2+4x﹣1=0(2)x(x﹣2)=﹣x(x﹣2)+6.19.某商场统计了今年1~5月A,B两种品牌冰箱的销售情况,并将获得的数据绘制成折线统计图(1)分别求该商场这段时间内A,B两种品牌冰箱月销售量的中位数和方差;(2)根据计算结果,比较该商场1~5月这两种品牌冰箱月销售量的稳定性.20.(1)甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人中的某一人.求第二次传球后球回到甲手里的概率.(请用“画树状图”或“列表”等方式给出分析过程)(2)如果甲跟另外n(n≥2)个人做(1)中同样的游戏,那么,第三次传球后球回到甲手里的概率是__________(请直接写出结果).21.已知关于x的一元二次方程(x﹣3)(x﹣2)=|m|.(1)求证:对于任意实数m,方程总有两个不相等的实数根;(2)若方程的一个根是1,求m的值及方程的另一个根.22.如图,二次函数的图象与x轴相交于A(﹣3,0)、B(1,0)两点,与y轴相交于点C (0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)求二次函数的解析式;(2)当﹣3≤x≤0时y的取值范围是__________;(3)根据图象可知:当一次函数值小于等于二次函数值时,x的取值范围是__________.23.如图,抛物线y=ax2+bx(a>0)经过点A(2,0)和点B(﹣1,2).(1)求抛物线的解析式;(2)点C与点B关于抛物线的对称轴对称,求直线AC的函数关系式;(3)在抛物线的对称轴上求一点P,使得PA+PC最小.24.如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.(1)求证:AE是⊙O的切线;(2)当BC=6时,求劣弧AC的长.25.如图,在矩形纸片ABCD中,AB=9cm,BC=6cm,O在AB上,若以O为圆心,画弧与BC 相切于B,与CD相切于点E,交AD于点F,连结FO,若把扇形BOF剪下,围成一个圆锥的侧面(不计接口尺寸).求:(1)圆锥的底面半径;(2)阴影部分的面积.26.已知二次函数y=x2+2x+m的图象C1与x轴有且只有一个公共点.(1)求C1的顶点坐标;(2)将C1向下平移若干个单位后,得抛物线C2,如果C2与x轴的一个交点为A(﹣3,0),求C2的函数关系式,并求C2与x轴的另一个交点坐标;(3)若P(n,y1),Q(2,y2)是C1上的两点,且y1>y2,求实数n的取值范围.27.一家图文广告公司制作的宣传画板颇受商家欢迎,这种画板的厚度忽略不计,形状均为正方形,边长在10~30dm之间.每张画板的成本价(单位:元)与它的面积(单位:dm2)成正比例,每张画板的出售价(单位:元)由基础价和浮动价两部分组成,其中基础价与画板的大小无关,是固定不变的.浮动价与画板的边长成正比例.在营销过程中得到了表格中(1)求一张画板的出售价与边长之间满足的函数关系式;(2)已知出售一张边长为30dm的画板,获得的利润为130元(利润=出售价﹣成本价),①求一张画板的利润与边长之间满足的函数关系式;②当边长为多少时,出售一张画板所获得的利润最大?最大利润是多少?28.已知(如图)抛物线y=ax2﹣2ax+3(a<0),交x轴于点A和点B,交y 轴于点C,顶点为D,点E在抛物线上,连接CE、AC,CE∥x轴,且CE:AC=2:.(1)直接写出抛物线的对称轴和点A的坐标;(2)求此抛物线的解析式;(3)连接AE,点P为线段AE上的一个动点,过点P作PF∥y轴交抛物线于点F,设点P 的横坐标为m,求当m为何值时△AEF的面积最大,最大值为多少?(4)点C是否在以BD为直径的圆上?请说明理由.2015-2016学年江苏省镇江市扬中市九年级(上)第二次段考数学试卷一、填空题(每题2分,计24分)1.方程x2﹣2x=0的解为x1=0,x2=2.【考点】解一元二次方程-因式分解法;解一元一次方程.【专题】计算题.【分析】把方程的左边分解因式得x(x﹣2)=0,得到x=0或 x﹣2=0,求出方程的解即可.【解答】解:x2﹣2x=0,x(x﹣2)=0,x=0或 x﹣2=0,x1=0 或x2=2.故答案为:x1=0,x2=2.【点评】本题主要考查对解一元二次方程﹣因式分解法,解一元一次方程等知识点的理解和掌握,把一元二次方程转化成一元一次方程是解此题的关键.2.数据:18,24,37,28,24,26,这组数据的中位数是25元.【考点】中位数.【分析】将这组数据按从小到大的顺序排列后,最中间两个数的平均数就是这组数据的中位数.【解答】解:从小到大的排列这组数为:18,24,24,26,28,37,中位数为:(24+26)÷2=25.故答案为25.【点评】本题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.3.有四张不透明的卡片为2,,π,,除正面的数不同外,其余都相同.将它们背面朝上洗匀后,从中随机抽取一张卡片,抽到写有无理数卡片的概率为.【考点】概率公式;无理数.【分析】让无理数的个数除以数的总数即为所求的概率.【解答】解:四张卡片中2,为有理数,π,为无理数.故抽到写有无理数卡片的概率为.故答案为:【点评】本题考查随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.4.已知函数是二次函数,则m=﹣1.【考点】二次函数的定义.【分析】根据形如y=ax2(a是常数,且a≠0)是二次函数,可得答案.【解答】解:依题意得:m2+1=2且m﹣1≠0,解得m=﹣1.故答案是:﹣1.【点评】本题考查了二次函数的定义.注意:二次函数y=ax2中,a是常数,且a≠0.5.抛物线y=﹣(x+1)2﹣3与y轴交于点(0,﹣4).【考点】二次函数图象上点的坐标特征.【专题】计算题.【分析】计算自变量为0时的函数值即可.【解答】解:当x=0时,y=﹣(x+1)2﹣3=﹣1﹣3=﹣4,所以抛物线与y轴的交点坐标为(0,﹣4).故答案为(0,﹣4).【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.6.已知抛物线y=x2﹣2x﹣1,则当x<1时,y随x的增大而减小.【考点】二次函数的性质.【分析】由于二次函数的二次项系数a=1>0,由此可以确定抛物线开口方向,求得对称轴是x=1,然后即可确定在对称轴的左侧y随x的增大而减小,由此得到x的取值范围.【解答】解:∵y=x2﹣2x﹣1,∴a=1>0,∴抛物线开口向上,∴对称轴是x=﹣=1,∴当x<1时,y随x的增大而减小.故答案为:x<1.【点评】此题考查二次函数的性质,掌握二次函数的开口方向,对称轴以及增减性是解决问题的关键.7.如图是一个圆锥形冰淇淋,已知它的母线长是13cm,高是12cm,则这个圆锥形冰淇淋的底面面积是25πcm2.【考点】圆锥的计算.【专题】计算题.【分析】圆锥的母线AB=13cm,圆锥的高AO=12cm,圆锥的底面半径OB=r,在Rt△AOB中,利用勾股定理计算出r,然后根据圆的面积公式计算即可.【解答】解:如图,圆锥的母线AB=13cm,圆锥的高AO=12cm,圆锥的底面半径OB=r,在Rt△AOB中,(cm),∴S=πr2=π×52=25πcm2.故答案为25πcm2.【点评】本题考查了圆锥的有关计算,要理解圆锥的有关概念;也考查了勾股定理以及圆的面积公式.8.如图,已知点A(0,1),B(0,﹣1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则∠BAC等于60度.【考点】垂径定理;坐标与图形性质;等边三角形的判定与性质;勾股定理.【分析】求出OA、AC,通过余弦函数即可得出答案.【解答】解:∵A(0,1),B(0,﹣1),∴AB=2,OA=1,∴AC=2,在Rt△AOC中,cos∠BAC==,∴∠BAC=60°,故答案为60.【点评】本题考查了垂径定理的应用,关键是求出AC、OA的长.9.已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m=0的解为x1=﹣1或x2=3.【考点】抛物线与x轴的交点.【分析】由二次函数y=﹣x2+2x+m的部分图象可以得到抛物线的对称轴和抛物线与x轴的一个交点坐标,然后可以求出另一个交点坐标,再利用抛物线与x轴交点的横坐标与相应的一元二次方程的根的关系即可得到关于x的一元二次方程﹣x2+2x+m=0的解.【解答】解:依题意得二次函数y=﹣x2+2x+m的对称轴为x=1,与x轴的一个交点为(3,0),∴抛物线与x轴的另一个交点横坐标为1﹣(3﹣1)=﹣1,∴交点坐标为(﹣1,0)∴当x=﹣1或x=3时,函数值y=0,即﹣x2+2x+m=0,∴关于x的一元二次方程﹣x2+2x+m=0的解为x1=﹣1或x2=3.故答案为:x1=﹣1或x2=3.【点评】本题考查的是关于二次函数与一元二次方程,在解题过程中,充分利用二次函数图象,根据图象提取有用条件来解答,这样可以降低题的难度,从而提高解题效率.10.已知⊙O和平面内一点P,点P到圆上点的最短和最长距离分别为2和6,则圆的半径长为4或2.【考点】点与圆的位置关系.【分析】分类讨论:点在圆内,点在圆外,根据线段的和差,可得直径,根据圆的性质,可得半径.【解答】解:P在圆内时,圆的直径为2+6=8,圆的半径为4,P在圆外时,圆的直径为6﹣2=4,圆的半径为2,故答案为:4或2.【点评】本题考查了点与圆的位置关系,利用线段的和差得出圆的直径是解题关键,要分类讨论,以防遗漏.11.如图⊙O的半径为3,AB=BC,CD=DE,则阴影部分的面积和为π.【考点】扇形面积的计算.【分析】根据题意知,图中阴影部分的面积等于扇形BOD的面积.【解答】解:∵AB=BC,CD=DE,∴=,=,∴+=+∴∠BOD=90°,∴S阴影=S扇形OBD==π.故答案是:π.【点评】本题考查了扇形的面积计算及圆心角、弧之间的关系.解答本题的关键是得出阴影部分的面积等于扇形BOD的面积.12.已知实数x、y满足x2+2x+y﹣3=0,则2x﹣y的最小值为﹣5.【考点】二次函数的最值.【分析】把x2+2x+y﹣3=0变形得到2x﹣y=x2+4x﹣3,这样可以把2x﹣y看作是关于x的二次函数,由于a=1>0,则当x=﹣时,2x﹣y有最小值.【解答】解:∵x2+2x+y﹣3=0,∴y=﹣x2﹣2x+3,∴2x﹣y=2x+x2+2x﹣3=x2+4x﹣3∵a=1>0,∴当x==﹣2,2x﹣y有最小值=﹣5.故答案为:﹣5.【点评】本题考查了二次函数的最值问题,通过恒等变形得到2x﹣y是关于x的二次函数是解答此题的关键.二、选择题(每题3分,计15分)13.一元二次方程x2﹣8x﹣1=0配方后可变形为( )A.(x+4)2=17 B.(x+4)2=15 C.(x﹣4)2=17 D.(x﹣4)2=15【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程利用配方法求出解即可.【解答】解:方程变形得:x2﹣8x=1,配方得:x2﹣8x+16=17,即(x﹣4)2=17,故选C【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.14.如图,△ABC内接于⊙O,∠BAC=30°,BC=12,则⊙O的直径为( )A.12 B.20 C.24 D.30【考点】圆周角定理;等边三角形的判定与性质.【分析】首先作⊙O的直径CD,连接BD,可得∠CBD=90°,然后由直角三角形的性质,即可求得答案.【解答】解:作⊙O的直径CD,连接BD,∴∠CBD=90°,∵∠D=∠BAC=30°,BC=12,∴CD=2BC=24,即⊙O的直径为24.故选C.【点评】此题考查了圆周角定理以及直角三角形的性质.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.15.若二次函数y=x2+bx的图象的对称轴是直线x=2,则关于x的方程x2+bx=5的解为( ) A.x1=0,x2=4 B.x1=1,x2=5 C.x1=1,x2=﹣5 D.x1=﹣1,x2=5【考点】抛物线与x轴的交点.【分析】根据题意可知抛物线经过点(0,0),由抛物线的对称性可求得b=﹣4,然后将b=﹣4代入方程得到关于x的一元二次方程,最后的方程的解即可.【解答】解:令y=0得:x2+bx=0.解得:x1=0,x2=﹣b.∵抛物线的对称轴为x=2,∴﹣b=4.解得:b=﹣4.将b=﹣4代入x2+bx=5得:x2﹣4x=5.整理得:x2﹣4x﹣5=0,即(x﹣5)(x+1)=0.解得:x1=5,x2=﹣1.故选:D.【点评】本题主要考查的是抛物线与x轴的交点,利用抛物线的对称性求得b的值是解题的关键.16.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的对称轴是直线x=1,其图象的一部分如图所示,对于下列说法:①abc<0;②a﹣b+c<0;③3a+c<0;④当y>0时,﹣1<x<3.其中正确的是( )A.①、②B.①、③C.①、②、③D.①、②、④【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴判定b与0的关系以及2a+b=0;当x=﹣1时,y=a﹣b+c;然后由图象确定当x取何值时,y>0.【解答】解:①∵开口向下,∴a<0,∵对称轴在y轴右侧,∴﹣>0,∴b>0,∵抛物线与y轴交于正半轴,∴c>0,∴abc<0,故正确;②∵对称轴为直线x=1,抛物线与x轴的一个交点横坐标在2与3之间,∴另一个交点的横坐标在0与﹣1之间;∴当x=﹣1时,y=a﹣b+c<0,故正确;③∵对称轴x=﹣=1,∴2a+b=0,∴b=﹣2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣(﹣2a)+c=3a+c<0,故正确;④如图,当﹣1<x<3时,y不只是大于0.故错误.∴正确的是①②③.故选:C.【点评】此题考查图象与二次函数系数之间的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.17.如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B 运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是( )A.B.C.D.【考点】动点问题的函数图象.【专题】应用题;压轴题.【分析】分F在线段PD上,以及线段DQ上两种情况,表示出y与x的函数解析式,即可做出判断.【解答】解:当F在PD上运动时,△AEF的面积为y=AE•AD=2x(0≤x≤2),当F在AD上运动时,△AEF的面积为y=AE•AF=x(6﹣x)=﹣x2+3x(2<x≤4),图象为:故选A【点评】此题考查了动点问题的函数问题,解决本题的关键是读懂图意,得到相应y与x 的函数解析式.三、解答题(81分)18.解方程:(1)x2+4x﹣1=0(2)x(x﹣2)=﹣x(x﹣2)+6.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法.【分析】(1)方程两边同时加上5,利用配方法解方程即可;(2)首先去括号得到x2﹣2x﹣3=0,然后利用因式分解法解方程即可.【解答】解:(1)∵x2+4x﹣1=0,∴x2+4x+4=5,∴(x+2)2=5,∴x+2=±,∴x1=﹣2+,x2=﹣2﹣;(2)∵x(x﹣2)=﹣x(x﹣2)+6,∴2x(x﹣2)=6,∴x2﹣2x﹣3=0,∴(x﹣3)(x+1)=0,∴x+1=0或x﹣3=0,∴x1=﹣1,x2=3.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.19.某商场统计了今年1~5月A,B两种品牌冰箱的销售情况,并将获得的数据绘制成折线统计图(1)分别求该商场这段时间内A,B两种品牌冰箱月销售量的中位数和方差;(2)根据计算结果,比较该商场1~5月这两种品牌冰箱月销售量的稳定性.【考点】折线统计图;中位数;方差.【专题】计算题.【分析】(1)根据折线统计图得出A,B两种品牌冰箱的销售台数,分别求出中位数与方差即可;(2)根据(1)的结果比较即可得到结果.【解答】解:(1)A品牌冰箱月销售量从小到大的排列为:13,14,15,16,17,B品牌冰箱月销售量从小到大排列为:10,14,15,16,20,∴A品牌冰箱月销售量的中位数为15台,B品牌冰箱月销售量的中位数为15台,∵==15(台);==15(台),则S A2==2,S B2==10.4;(2)∵S A2<S B2,∴A品牌冰箱的月销售量稳定.【点评】此题考查了折线统计图,中位数,以及方差,熟练掌握各自的求法是解本题的关键.20.(1)甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人中的某一人.求第二次传球后球回到甲手里的概率.(请用“画树状图”或“列表”等方式给出分析过程)(2)如果甲跟另外n(n≥2)个人做(1)中同样的游戏,那么,第三次传球后球回到甲手里的概率是(请直接写出结果).【考点】列表法与树状图法.【分析】(1)根据画树状图,可得总结果与传到甲手里的情况,根据传到甲手里的情况比上总结过,可得答案;(2)根据第一步传的结果是n,第二步传的结果是n2,第三步传的结果是总结过是n3,传给甲的结果是n(n﹣1),根据概率的意义,可得答案.【解答】解:(1)画树状图:共有9种等可能的结果,其中符合要求的结果有3种,∴P(第2次传球后球回到甲手里)==.(2)第三步传的结果是n3,传给甲的结果是n(n﹣1),第三次传球后球回到甲手里的概率是=,故答案为:.【点评】本题考查了树状图法计算概率,计算概率的方法有树状图法与列表法,画树状图是解题关键.21.已知关于x的一元二次方程(x﹣3)(x﹣2)=|m|.(1)求证:对于任意实数m,方程总有两个不相等的实数根;(2)若方程的一个根是1,求m的值及方程的另一个根.【考点】根的判别式;一元二次方程的解;根与系数的关系.【分析】(1)要证明方程有两个不相等的实数根,即证明△>0即可;(2)将x=1代入方程(x﹣3)(x﹣2)=|m|,求出m的值,进而得出方程的解.【解答】(1)证明:∵(x﹣3)(x﹣2)=|m|,∴x2﹣5x+6﹣|m|=0,∵△=(﹣5)2﹣4(6﹣|m|)=1+4|m|,而|m|≥0,∴△>0,∴方程总有两个不相等的实数根;(2)解:∵方程的一个根是1,∴|m|=2,解得:m=±2,∴原方程为:x2﹣5x+4=0,解得:x1=1,x2=4.即m的值为±2,方程的另一个根是4.【点评】此题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.同时考查了一元二次方程的解的定义.22.如图,二次函数的图象与x轴相交于A(﹣3,0)、B(1,0)两点,与y轴相交于点C (0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)求二次函数的解析式;(2)当﹣3≤x≤0时y的取值范围是0≤y≤4;(3)根据图象可知:当一次函数值小于等于二次函数值时,x的取值范围是﹣2<x<0.【考点】抛物线与x轴的交点;待定系数法求二次函数解析式;二次函数与不等式(组).【专题】计算题.【分析】(1)设交点式y=a(x+3)(x﹣1),然后把C点坐标代入可求出a的值,从而得到抛物线解析式;(2)先把(1)中的解析式配成顶点式,得到二次函数的最大值,然后观察函数图象,写出﹣3≤x≤0时y的取值范围;(3)先利用抛物线的对称性确定D点坐标,然后写出一次函数图象在抛物线下方所对应的自变量的取值范围即可.【解答】解:(1)设抛物线解析式为y=a(x+3)(x﹣1),把C(0,3)代入得a•3•(﹣1)=3,解得a=﹣1.所以抛物线解析式为y=﹣(x+3)(x﹣1),即y=﹣x2﹣2x+3;(2)y=﹣x2﹣2x+3=﹣(x+1)2+4,所以x=﹣1时,y有最大值4,所以当﹣3≤x≤0时y的取值范围是0≤y≤4;(3)因为点C、D是二次函数图象上的一对对称点,所以D(﹣2,3),当﹣2<x<0时,一次函数值小于等于二次函数值.故答案为0≤y≤4;﹣2<x<0.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了待定系数法求抛物线解析式.23.如图,抛物线y=ax2+bx(a>0)经过点A(2,0)和点B(﹣1,2).(1)求抛物线的解析式;(2)点C与点B关于抛物线的对称轴对称,求直线AC的函数关系式;(3)在抛物线的对称轴上求一点P,使得PA+PC最小.【考点】待定系数法求二次函数解析式;待定系数法求一次函数解析式;轴对称-最短路线问题.【专题】计算题.【分析】(1)把A(2,0)和点B(﹣1,2)代入y=ax2+bx得a、b的方程组,然后解方程组求出a、b即可得到抛物线解析式;(2)抛物线的对称轴为直线x=1,则C点坐标为(3,2),然后利用待定系数法求直线AC 的解析式;(3)如图,连结OC交直线x=1于点P,由于点A与点O关于直线x=1对称,则PA=PO,则PA+PC=PO+PC=OC,利用根据两点之间线段最短可判断此时P点满足条件,接着利用待定系数法求出直线OC的解析式为y=x,然后计算自变量为1所对应的函数值即可得到P点坐标.【解答】解:(1)把A(2,0)和点B(﹣1,2)代入y=ax2+bx得,解得,所以抛物线解析式为y=x2﹣x;(2)抛物线的对称轴为直线x=1,而点C与点B关于抛物线的对称轴对称,所以C点坐标为(3,2),设直线AC的解析式为y=mx+n,把A(2,0),C(3,2)代入得,解得,所以直线AC的解析式为y=2x﹣4;(3)如图,连结OC交直线x=1于点P,因为点A与点O关于直线x=1对称,则PA=PO,所以PA+PC=PO+PC=OC,根据两点之间线段最短得此时PA+PC的值最小,设直线OC的解析式为y=kx,把C(3,2)代入得3k=2,解得k=,所以直线OC的解析式为y=x,当x=1时,y=,所以此时P点坐标为(1,).【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.也考查了最短路径问题.24.如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.(1)求证:AE是⊙O的切线;(2)当BC=6时,求劣弧AC的长.【考点】切线的判定;弧长的计算.(1)由AB是⊙O的直径,根据半圆(或直径)所对的圆周角是直角,即可得∠ACB=90°,【分析】又由∠BAC=30°,易求得∠BAE=90°,则可得AE是⊙O的切线;(2)首先连接OC,易得△OBC是等边三角形,则可得∠AOC=120°,由弧长公式,即可求得劣弧AC的长.【解答】解:(1)∵AB是⊙O的直径,∴∠ACB=90°.∴∠BAC=30°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,∴AE是⊙O的切线;(2)如图,连接OC,∵∠B=∠D=60°,OB=OC,∴△BCO是等边三角形,∴∠BOC=60°,∴∠AOC=120°,AB=2BC=12,∴AO=6,∴劣弧AC的长为=2π.【点评】此题考查了切线的判定、圆周角定理以及弧长公式等知识.此题难度适中,注意数形结合思想的应用,注意辅助线的作法.25.如图,在矩形纸片ABCD中,AB=9cm,BC=6cm,O在AB上,若以O为圆心,画弧与BC 相切于B,与CD相切于点E,交AD于点F,连结FO,若把扇形BOF剪下,围成一个圆锥的侧面(不计接口尺寸).求:(1)圆锥的底面半径;(2)阴影部分的面积.【考点】切线的性质;扇形面积的计算;圆锥的计算.【专题】计算题.【分析】(1)连接OE,由CD与圆O相切,利用切线的性质得到OE垂直于CD,且OE为圆的半径,由AB﹣OB求出OA的长,在直角三角形AOF中,利用勾股定理求出AF的长,利用锐角三角函数定义求出cos∠AOF的值,确定出∠AOF的度数,进而得到∠BOF的度数,利用弧长公式求出弧BF长,即为圆锥的底面周长,求出圆锥底面半径即可;(2)阴影部分面积=矩形AOED面积﹣三角形AOF面积﹣扇形EOF面积,求出即可.【解答】解:(1)连接OE,∵CD与圆O相切,∴OE⊥CD,且OE=OB=OF=BC=6cm,∴矩形ABCD中,OA=AB﹣OB=9﹣6=3cm,在Rt△AOF中,OA=3cm,OF=6cm,∴cos∠AOF==,即∠AOF=60°,AF==3cm,∴∠BOF=120°,∴l弧长==4π,则圆锥得地面半径为=2cm;(2)∵∠BOF=120°,∠EOB=90°,∴∠EOF=30°,∴S阴影=S矩形AOED﹣S△AOF﹣S扇形EOF=3×6﹣×3×3﹣=18﹣﹣3π.【点评】此题考查了切线的性质,扇形面积公式,弧长公式,勾股定理,以及锐角三角函数定义,熟练掌握切线的性质是解本题的关键.26.已知二次函数y=x2+2x+m的图象C1与x轴有且只有一个公共点.(1)求C1的顶点坐标;(2)将C1向下平移若干个单位后,得抛物线C2,如果C2与x轴的一个交点为A(﹣3,0),求C2的函数关系式,并求C2与x轴的另一个交点坐标;(3)若P(n,y1),Q(2,y2)是C1上的两点,且y1>y2,求实数n的取值范围.【考点】抛物线与x轴的交点;二次函数的性质;二次函数图象上点的坐标特征;二次函数图象与几何变换.【分析】(1)由于二次函数y=x2+2x+m的图象C1与x轴有且只有一个公共点,那么顶点的纵坐标为0,由此可以确定m.(2)首先设所求抛物线解析式为y=(x+1)2+k,然后把A(﹣3,0)代入即可求出k,也就求出了抛物线的解析式;(3)由于图象C1的对称轴为直线x=﹣1,所以知道当x≥﹣1时,y随x的增大而增大,然后讨论n≥﹣1和n≤﹣1两种情况,利用前面的结论即可得到实数n的取值范围.【解答】(1)y=x2+2x+m=(x+1)2+m﹣1,对称轴为直线x=﹣1,∵与x轴有且只有一个公共点,∴顶点的纵坐标为0,∴C1的顶点坐标为(﹣1,0);(2)设C2的函数关系式为y=(x+1)2+k,把A(﹣3,0)代入上式得(﹣3+1)2+k=0,得k=﹣4,∴C2的函数关系式为y=(x+1)2﹣4.∵抛物线的对称轴为直线x=﹣1,与x轴的一个交点为A(﹣3,0),由对称性可知,它与x轴的另一个交点坐标为(1,0);(3)当x≥﹣1时,y随x的增大而增大,当n≥﹣1时,∵y1>y2,∴n>2.当n<﹣1时,P(n,y1)的对称点坐标为(﹣2﹣n,y1),且﹣2﹣n>﹣1,∵y1>y2,∴﹣2﹣n>2,∴n<﹣4.综上所述:n>2或n<﹣4.【点评】此题比较复杂,首先考查抛物线与x轴交点个数与其判别式的关系,接着考查抛物线平移的性质,最后考查抛物线的增减性.27.一家图文广告公司制作的宣传画板颇受商家欢迎,这种画板的厚度忽略不计,形状均为正方形,边长在10~30dm之间.每张画板的成本价(单位:元)与它的面积(单位:dm2)成正比例,每张画板的出售价(单位:元)由基础价和浮动价两部分组成,其中基础价与画板的大小无关,是固定不变的.浮动价与画板的边长成正比例.在营销过程中得到了表格中(2)已知出售一张边长为30dm的画板,获得的利润为130元(利润=出售价﹣成本价),①求一张画板的利润与边长之间满足的函数关系式;②当边长为多少时,出售一张画板所获得的利润最大?最大利润是多少?【考点】二次函数的应用;待定系数法求一次函数解析式.【分析】1)利用待定系数法求一次函数解析式即可得出答案;(2)①首先假设一张薄板的利润为W元,它的成本价为ax2元,由题意,得:W=y﹣ax2,进而得出m的值,求出函数解析式即可;②利用二次函数的最值公式求出二次函数的最值即可.【解答】解:(1)设正方形画板的边长为xdm,出售价为每张y元,且y=kx+b(k≠0),由表格中的数据可得,,解得,从而一张画板的出售价y与边长x之间满足函数关系式y=6x+100;(2)①设每张画板的成本价为ax2,利润W=6x+100﹣ax2,当x=30时,W=130,180+100﹣900a=130,得a=,一张画板的利润W 与边长x之间满足函数关系式W=﹣x2+6x+100;②由W=﹣(x﹣18)2+154,知当x=18时,W有最大值,W最大=154,因此当正方形画板的边长为18dm时,可获最大利润154元.【点评】本题考查了二次函数的最值求法以及待定系数法求一次函数解析式,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-baiduwenku**百度文库baiduwenku**百度文库精品文库---baiduwenku**百度文库baiduwenku**百度文库2016年江苏省镇江市中考数学试卷一、填空题(本大题共有12小题,每小题2分,共计24分)1.(2分)﹣3的相反数是.2.(2分)计算:(﹣2)3=.3.(2分)分解因式:x2﹣9=.4.(2分)若代数式有意义,则实数x的取值范围是.5.(2分)正五边形每个外角的度数是.6.(2分)如图,直线a∥b,Rt△ABC的直角顶点C在直线b上,∠1=20°,则∠2=°.7.(2分)关于x的一元二次方程2x2﹣3x+m=0有两个相等的实数根,则实数m=.8.(2分)一只不透明的袋子中装有红球和白球共30个,这些球除了颜色外都相同,校课外学习小组做摸球试验,将球搅匀后任意摸出一个球,记下颜色后放回、搅匀,通过多次重复试验,算得摸到红球的频率是20%,则袋中有个红球.9.(2分)圆锥底面圆的半径为4,母线长为5,它的侧面积等于(结果保留π)10.(2分)a、b、c是实数,点A(a+1、b)、B(a+2,c)在二次函数y=x2﹣2ax+3的图象上,则b、c的大小关系是b c(用“>”或“<”号填空)11.(2分)如图1,⊙O的直径AB=4厘米,点C在⊙O上,设∠ABC的度数为x(单位:度,0<x<90),优弧的弧长与劣弧的弧长的差设为y(单位:厘米),图2表示y与x的函数关系,则α=度.12.(2分)有一张等腰三角形纸片,AB=AC=5,BC=3,小明将它沿虚线PQ剪开,得到△AQP和四边形BCPQ两张纸片(如图所示),且满足∠BQP=∠B,则下列五个数据,3,,2,中可以作为线段AQ长的有个.二、选择题(本大题共有5小题,每小题3分,共计15分)13.(3分)2100000用科学记数法表示应为()A.0.21×108B.2.1×106C.2.1×107D.21×10514.(3分)由若干个相同的小正方体搭成的一个几何体如图所示,它的俯视图为()A.B.C.D.15.(3分)一组数据6,3,9,4,3,5,12的中位数是()A.3 B.4 C.5 D.616.(3分)已知点P(m,n)是一次函数y=x﹣1的图象位于第一象限部分上的点,其中实数m、n满足(m+2)2﹣4m+n(n+2m)=8,则点P的坐标为()A.(,﹣) B.(,)C.(2,1) D.(,)17.(3分)如图,在平面直角坐标系中,坐标原点O是正方形OABC的一个顶点,已知点B坐标为(1,7),过点P(a,0)(a>0)作PE⊥x轴,与边OA交于点E(异于点O、A),将四边形ABCE沿CE翻折,点A′、B′分别是点A、B的对应点,若点A′恰好落在直线PE上,则a的值等于()A.B.C.2 D.3三、解答题(本大题共有11小题,共计81分)18.(8分)(1)计算:tan45°﹣()0+|﹣5|(2)化简:.19.(10分)(1)解方程:(2)解不等式:2(x﹣6)+4≤3x﹣5,并将它的解集在数轴上表示出来.20.(6分)甲、乙、丙三名同学站成一排拍合影照留念.(1)请按从左向右的顺序列出所有可能站位的结果;(2)求出甲同学站在中间位置的概率.21.(6分)现如今,通过微信朋友圈发布自己每天行走的步数,已成为一种时尚,“健身达人”小张为了了解他的微信朋友圈里大家的运动情况,随机抽取了部分好友进行调查,把他们6月9日那天每天行走的步数情况分为五个类别:A(0﹣4000步)(说明:“0﹣4000”表示大于等于0,小于等于4000,下同),B(4001﹣8000步),C(8001﹣12000步),D(12001﹣16000步),E(16001步及以上),并将统计结果绘制了如图1的图2两幅不完整的统计图.请你根据图中提供的信息解答下列问题:(1)将图1的条形统计图补充完整;(2)已知小张的微信朋友圈里共500人,请根据本次抽查的结果,估计在他的微信朋友圈里6月9日那天行走不超过8000步的人数.22.(6分)如图,AD、BC相交于点O,AD=BC,∠C=∠D=90°.(1)求证:△ACB≌△BDA;(2)若∠ABC=35°,则∠CAO=°.23.(6分)公交总站(A点)与B、C两个站点的位置如图所示,已知AC=6km,∠B=30°,∠C=15°,求B站点离公交总站的距离即AB的长(结果保留根号).24.(6分)校田园科技社团计划购进A、B两种花卉,两次购买每种花卉的数量以及每次的总费用如下表所示:花卉数量(单位:株)总费用(单位:A B元)第一次购买1025225第二次购买2015275(1)你从表格中获取了什么信息?(请用自己的语言描述,写出一条即可);(2)A、B两种花卉每株的价格各是多少元?25.(7分)如图1,一次函数y=kx﹣3(k≠0)的图象与y轴交于点A,与反比例函数y=(x>0)的图象交于点B(4,b).(1)b=;k=;(2)点C是线段AB上的动点(与点A、B不重合),过点C且平行于y轴的直线l交这个反比例函数的图象于点D,求△OCD面积的最大值;(3)将(2)中面积取得最大值的△OCD沿射线AB方向平移一定的距离,得到,若点O的对应点O′落在该反比例函数图象上(如图2),则点D′的坐△O′C′D′标是.26.(7分)如果三角形三边的长a、b、c满足=b,那么我们就把这样的三角形叫做“匀称三角形”,如:三边长分别为1,1,1或3,5,7,…的三角形都是“匀称三角形”.(1)如图1,已知两条线段的长分别为a、c(a<c).用直尺和圆规作一个最短边、最长边的长分别为a、c的“匀称三角形”(不写作法,保留作图痕迹);(2)如图2,△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作⊙O的切线交AB延长线于点E,交AC于点F,若,判断△AEF是否为“匀称三角形”?请说明理由.27.(9分)如图1,在菱形ABCD中,AB=6,tan∠ABC=2,点E从点D出发,以每秒1个单位长度的速度沿着射线DA的方向匀速运动,设运动时间为t(秒),将线段CE绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CF.(1)求证:BE=DF;(2)当t=秒时,DF的长度有最小值,最小值等于;(3)如图2,连接BD、EF、BD交EC、EF于点P、Q,当t为何值时,△EPQ是直角三角形?(4)如图3,将线段CD绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CG.在点E的运动过程中,当它的对应点F位于直线AD上方时,直接写出点F 到直线AD的距离y关于时间t的函数表达式.28.(10分)如图1,二次函数y1=(x﹣2)(x﹣4)的图象与x轴交于A、B两点(点A在点B的左侧),其对称轴l与x轴交于点C,它的顶点为点D.(1)写出点D的坐标.(2)点P在对称轴l上,位于点C上方,且CP=2CD,以P为顶点的二次函数y2=ax2+bx+c(a≠0)的图象过点A.①试说明二次函数y2=ax2+bx+c(a≠0)的图象过点B;②点R在二次函数y1=(x﹣2)(x﹣4)的图象上,到x轴的距离为d,当点R的坐标为时,二次函数y2=ax2+bx+c(a≠0)的图象上有且只有三个点到x 轴的距离等于2d;③如图2,已知0<m<2,过点M(0,m)作x轴的平行线,分别交二次函数y1=(x﹣2)(x﹣4)、y2=ax2+bx+c(a≠0)的图象于点E、F、G、H(点E、G在对称轴l左侧),过点H作x轴的垂线,垂足为点N,交二次函数y1=(x﹣2)(x ﹣4)的图象于点Q,若△GHN∽△EHQ,求实数m的值.2016年江苏省镇江市中考数学试卷参考答案与试题解析一、填空题(本大题共有12小题,每小题2分,共计24分)1.(2分)﹣3的相反数是3.【解答】解:﹣(﹣3)=3,故﹣3的相反数是3.故答案为:3.2.(2分)计算:(﹣2)3=﹣8.【解答】解:(﹣2)3=﹣8.3.(2分)分解因式:x2﹣9=(x+3)(x﹣3).【解答】解:x2﹣9=(x+3)(x﹣3).故答案为:(x+3)(x﹣3).4.(2分)若代数式有意义,则实数x的取值范围是x≥.【解答】解:若代数式有意义,则2x﹣1≥0,解得:x≥,则实数x的取值范围是:x≥.故答案为:x≥.5.(2分)正五边形每个外角的度数是72°.【解答】解:360°÷5=72°.故答案为:72°.6.(2分)如图,直线a∥b,Rt△ABC的直角顶点C在直线b上,∠1=20°,则∠2=70°.【解答】解:∵∠1=20°,∴∠3=90°﹣∠1=70°,∵直线a∥b,∴∠2=∠3=70°,故答案是:70.7.(2分)关于x的一元二次方程2x2﹣3x+m=0有两个相等的实数根,则实数m=.【解答】解:∵关于x的一元二次方程2x2﹣3x+m=0有两个相等的实数根,∴b2﹣4ac=9﹣8m=0,解得:m=.故答案为:.8.(2分)一只不透明的袋子中装有红球和白球共30个,这些球除了颜色外都相同,校课外学习小组做摸球试验,将球搅匀后任意摸出一个球,记下颜色后放回、搅匀,通过多次重复试验,算得摸到红球的频率是20%,则袋中有6个红球.【解答】解:设袋中有x个红球.由题意可得:=20%,解得:x=6,故答案为:6.9.(2分)圆锥底面圆的半径为4,母线长为5,它的侧面积等于20π(结果保留π)×4×5=20π,【解答】解:根据圆锥的侧面积公式:πrl=π故答案为:20π.10.(2分)a、b、c是实数,点A(a+1、b)、B(a+2,c)在二次函数y=x2﹣2ax+3的图象上,则b、c的大小关系是b<c(用“>”或“<”号填空)【解答】解:∵二次函数y=x2﹣2ax+3的图象的对称轴为x=a,二次项系数1>0,∴抛物线的开口向上,在对称轴的右边,y随x的增大而增大,∵a+1<a+2,点A(a+1、b)、B(a+2,c)在二次函数y=x2﹣2ax+3的图象上,∴b<c,故答案为:<.11.(2分)如图1,⊙O的直径AB=4厘米,点C在⊙O上,设∠ABC的度数为x(单位:度,0<x<90),优弧的弧长与劣弧的弧长的差设为y(单位:厘米),图2表示y与x的函数关系,则α=22.5度.【解答】解:设∠ABC的度数为x,根据题意可得:y=﹣将(a,3π)代入得:3π=,.解得:α=22.5°故答案为:22.5.12.(2分)有一张等腰三角形纸片,AB=AC=5,BC=3,小明将它沿虚线PQ剪开,得到△AQP和四边形BCPQ两张纸片(如图所示),且满足∠BQP=∠B,则下列五个数据,3,,2,中可以作为线段AQ长的有3个.【解答】解:作CD∥PQ,交AB于D,如图所示:则∠CDB=∠BQP,∵AB=AC=5,∴∠B=∠ACB,∵∠BQP=∠B,∴∠B=∠ACB=∠CDB,∴CD=BC=3,△BCD∽△BAC,∴,即,解得:BD=,∴AD=AB﹣BD=,∵CD∥PQ,∴△APQ∽△ACD,∴,即,解得:AP=AQ,当AQ=时,AP=×=>5,不合题意,舍去;当AQ=3时,AP=×3=<5,符合题意;当AQ=时,点P与C重合,不合题意,舍去;当AQ=2时,AP=×2=<5,符合题意;当AQ=时,AP=×=<5,符合题意;综上所述:可以作为线段AQ长的有3个;故答案为:3.二、选择题(本大题共有5小题,每小题3分,共计15分)13.(3分)2100000用科学记数法表示应为()A.0.21×108B.2.1×106C.2.1×107D.21×105【解答】解:2100000=2.1×106故选:B14.(3分)由若干个相同的小正方体搭成的一个几何体如图所示,它的俯视图为()A.B.C.D.【解答】解:俯视几何体时,发现:左三、中二、右二,观察四个选项发现,只有A符合该几何体的俯视图,故选A.15.(3分)一组数据6,3,9,4,3,5,12的中位数是()A.3 B.4 C.5 D.6【解答】解:把这组数据按从小到大排列,得3,3,4,5,6,9,12,共7个数,中间的数是5,所以这组数据的中位数是5.故选:C16.(3分)已知点P(m,n)是一次函数y=x﹣1的图象位于第一象限部分上的点,其中实数m、n满足(m+2)2﹣4m+n(n+2m)=8,则点P的坐标为()A.(,﹣) B.(,)C.(2,1) D.(,)【解答】解:∵(m+2)2﹣4m+n(n+2m)=8,化简,得(m+n)2=4,∵点P(m,n)是一次函数y=x﹣1的图象位于第一象限部分上的点,∴n=m﹣1,∴,解得,或∵点P(m,n)是一次函数y=x﹣1的图象位于第一象限部分上的点,∴m>0,n>0,故点P的坐标为(1.5,0.5),故选D.17.(3分)如图,在平面直角坐标系中,坐标原点O是正方形OABC的一个顶点,已知点B坐标为(1,7),过点P(a,0)(a>0)作PE⊥x轴,与边OA交于点E(异于点O、A),将四边形ABCE沿CE翻折,点A′、B′分别是点A、B的对应点,若点A′恰好落在直线PE上,则a的值等于()A.B.C.2 D.3【解答】解:当点A′恰好落在直线PE上,如图所示,连接OB、AC,交于点D,过点D、A作x轴的垂线,垂足分别为Q、N,设CB′交x轴于M,则CM∥QD∥AN,∵四边形OABC是正方形,∴OD=BD,OB⊥AC,∵O(0,0),B(1,7),∴D(,),即DQ=由勾股定理得:OB===5,∵△ABO是等腰直角三角形,∴AB=AO=5,∵DQ是梯形CMNA的中位线,∴CM+AN=2DQ=7,∵∠COA=90°,∴∠COM+∠AON=90°,∵∠CMO=90°,∴∠COM+∠MCO=90°,∴∠AON=∠MCO,∵四边形OABC是正方形,∴OA=OC,∵∠CMO=∠ONA=90°,∴△CMO≌△ONA,∴ON=CM,∴ON+AN=7,设AN=x,则ON=7﹣x,在Rt△AON中,由勾股定理得:x2+(7﹣x)2=52,解得:x=3或4,当x=4时,CM=3,此时点B在第二象限,不符合题意,∴x=3,∴OM=3,,∵A′B′=PM=5∴OP=a=2,故选C.三、解答题(本大题共有11小题,共计81分)18.(8分)(1)计算:tan45°﹣()0+|﹣5|(2)化简:.【解答】解:(1)原式=1﹣1+5=5;(2)原式=﹣=﹣==1.19.(10分)(1)解方程:(2)解不等式:2(x﹣6)+4≤3x﹣5,并将它的解集在数轴上表示出来.【解答】解:(1)去分母得:x=3(x﹣3),解得:x=,检验:x=时,x(x﹣3)≠0,则x=是原方程的根;(2)2(x﹣6)+4≤3x﹣52x﹣12+4≤3x﹣5,解得:x≥﹣3,如图所示:.20.(6分)甲、乙、丙三名同学站成一排拍合影照留念.(1)请按从左向右的顺序列出所有可能站位的结果;(2)求出甲同学站在中间位置的概率.【解答】解:(1)三位好朋友合照的站法从左到右有:(甲乙丙),(甲丙乙),(乙甲丙),(乙丙甲),(丙甲乙),(丙乙甲),共有6种等可能的结果;(2)其中甲站中间的结果有2种,记为事件A,所以P(A)==.21.(6分)现如今,通过微信朋友圈发布自己每天行走的步数,已成为一种时尚,“健身达人”小张为了了解他的微信朋友圈里大家的运动情况,随机抽取了部分好友进行调查,把他们6月9日那天每天行走的步数情况分为五个类别:A(0﹣4000步)(说明:“0﹣4000”表示大于等于0,小于等于4000,下同),B(4001﹣8000步),C(8001﹣12000步),D(12001﹣16000步),E(16001步及以上),并将统计结果绘制了如图1的图2两幅不完整的统计图.请你根据图中提供的信息解答下列问题:(1)将图1的条形统计图补充完整;(2)已知小张的微信朋友圈里共500人,请根据本次抽查的结果,估计在他的微信朋友圈里6月9日那天行走不超过8000步的人数.【解答】解:(1)D类的人数有:9÷15%﹣(3+9+24+6)=60﹣42=18(人).(2)500×=500×=100(人)∴在他的微信朋友圈里6月9日那天行走不超过8000步的有100人.22.(6分)如图,AD、BC相交于点O,AD=BC,∠C=∠D=90°.(1)求证:△ACB≌△BDA;(2)若∠ABC=35°,则∠CAO=20°.【解答】(1)证明:∵∠D=∠C=90°,∴△ABC和△BAD都是Rt△,在Rt△ABC和Rt△BAD中,,∴Rt△ABC≌Rt△BAD(HL);(2)证明:∵Rt△ABC≌Rt△BAD,∴∠ABC=∠BAD=35°,∵∠C=90°,∴∠BAC=55°,∴∠CAO=∠CAB﹣∠BAD=20°.故答案为:20.23.(6分)公交总站(A点)与B、C两个站点的位置如图所示,已知AC=6km,∠B=30°,∠C=15°,求B站点离公交总站的距离即AB的长(结果保留根号).【解答】解:过点C作CD⊥AB,垂足为点D,∵∠B=30°,∠ACB=15°,∴∠CAD=45°,在Rt△ACD中,∠ADC=90°,∠CAD=45°,AC=6,∴CD=AD=3km,在Rt△BCD中,∠CDB=90°,∠B=30°,CD=3km,∴BD=3km,则AB=(3﹣3)km.24.(6分)校田园科技社团计划购进A、B两种花卉,两次购买每种花卉的数量以及每次的总费用如下表所示:花卉数量(单位:株)总费用(单位:A B元)第一次购买1025225第二次购买2015275(1)你从表格中获取了什么信息?购买A种花卉10株和B种花卉25株共花费225元(请用自己的语言描述,写出一条即可);(2)A、B两种花卉每株的价格各是多少元?【解答】解:(1)购买A种花卉10株和B种花卉25株共花费225元,故答案为:购买A种花卉10株和B种花卉25株共花费225元;(2)设A种花卉每株x元,B种花卉每株y元,由题意得:,解得:,答:A种花卉每株10元,B种花卉每株5元.25.(7分)如图1,一次函数y=kx﹣3(k≠0)的图象与y轴交于点A,与反比例函数y=(x>0)的图象交于点B(4,b).(1)b=1;k=1;(2)点C是线段AB上的动点(与点A、B不重合),过点C且平行于y轴的直线l交这个反比例函数的图象于点D,求△OCD面积的最大值;(3)将(2)中面积取得最大值的△OCD沿射线AB方向平移一定的距离,得到△O′C′D′,若点O的对应点O′落在该反比例函数图象上(如图2),则点D′的坐标是(,).【解答】解:(1)把B(4,b)代入y=(x>0)中得:b==1,∴B(4,1),把B(4,1)代入y=kx﹣3得:1=4k﹣3,解得:k=1,故答案为:1,1;(2)设C(m,m﹣3)(0<m<4),则D(m,),∴S△OCD=m(﹣m+3)=﹣m2+m+2=﹣+,∵0<m<4,﹣<0,∴当m=时,△OCD面积取最大值,最大值为;(3)由(1)知一次函数的解析式为y=x﹣3,由(2)知C(,﹣)、D(,).设C′(a,a﹣3),则O′(a﹣,a﹣),D′(a,a+),∵点O′在反比例函数y=(x>0)的图象上,∴a﹣=,解得:a=或a=﹣(舍去),经检验a=是方程a﹣=的解.∴点D′的坐标是(,).26.(7分)如果三角形三边的长a、b、c满足=b,那么我们就把这样的三角形叫做“匀称三角形”,如:三边长分别为1,1,1或3,5,7,…的三角形都是“匀称三角形”.(1)如图1,已知两条线段的长分别为a、c(a<c).用直尺和圆规作一个最短边、最长边的长分别为a、c的“匀称三角形”(不写作法,保留作图痕迹);(2)如图2,△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作⊙O的切线交AB延长线于点E,交AC于点F,若,判断△AEF是否为“匀称三角形”?请说明理由.【解答】解:(1)所求图形,如右图1所示,(2)△AEF是“匀称三角形”,理由:连接AD、OD,如右图2所示,∵AB是⊙O的直径,∴AD⊥BC,∵AB=AC,∴点D是BC的中点,∵点O为AB的中点,∴OD∥AC,∵DF切⊙O于点D,∴OD⊥DF,∴EF⊥AF,过点B作BG⊥EF于点G,∵∠BGD=∠CFD=90°,∠BDG=∠CDF,BD=CD,∴△BGD≌△CFD(ASA),∴BG=CF,∵,∴,∵BG∥AF,∴,在Rt△AEF中,设AE=5k,AF=3k,由勾股定理得,EF=4k,∴,∴△AEF是“匀称三角形”.27.(9分)如图1,在菱形ABCD中,AB=6,tan∠ABC=2,点E从点D出发,以每秒1个单位长度的速度沿着射线DA的方向匀速运动,设运动时间为t(秒),将线段CE绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CF.(1)求证:BE=DF;(2)当t=6+6秒时,DF的长度有最小值,最小值等于12;(3)如图2,连接BD、EF、BD交EC、EF于点P、Q,当t为何值时,△EPQ是直角三角形?(4)如图3,将线段CD绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CG.在点E的运动过程中,当它的对应点F位于直线AD上方时,直接写出点F 到直线AD的距离y关于时间t的函数表达式.【解答】解:(1)∵∠ECF=∠BCD,即∠BCE+∠DCE=∠DCF+∠DCE,∴∠DCF=∠BCE,∵四边形ABCD是菱形,在△DCF和△BCE中,∵,∴△DCF≌△BCE(SAS),∴DF=BE;(2)如图1,当点E运动至点E′时,DF=BE′,此时DF最小,在Rt△ABE′中,AB=6,tan∠ABC=tan∠BAE′=2,∴设AE′=x,则BE′=2x,∴AB=x=6,则AE′=6∴DE′=6+6,DF=BE′=12,故答案为:6+6,12;(3)∵CE=CF,∴∠CEQ<90°,①当∠EQP=90°时,如图2①,∵∠ECF=∠BCD,BC=DC,EC=FC,∴∠CBD=∠CEF,∵∠BPC=∠EPQ,∴∠BCP=∠EQP=90°,∵AB=CD=6,tan∠ABC=tan∠ADC=2,∴t=6秒;②当∠EPQ=90°时,如图2②,∵菱形ABCD的对角线AC⊥BD,∴EC与AC重合,∴DE=6,∴t=6秒;(4)y=t﹣12﹣,如图3,连接GF分别交直线AD、BC于点M、N,过点F作FH⊥AD于点H,由(1)知∠1=∠2,又∵∠1+∠DCE=∠2+∠GCF,∴∠DCE=∠GCF,在△DCE和△GCF中,∵,∴△DCE≌△GCF(SAS),∴∠3=∠4,∵∠1=∠3,∠1=∠2,∴∠2=∠4,∴GF∥CD,又∵AH∥BN,∴四边形CDMN是平行四边形,∴MN=CD=6,∵∠BCD=∠DCG,∴∠CGN=∠DCN=∠CNG,∴CN=CG=CD=6,∵tan∠ABC=tan∠CGN=2,∴GN=12,∴GM=6+12,∵GF=DE=t,∴FM=t﹣6﹣12,∵tan∠FMH=tan∠ABC=2,∴FH=(t﹣6﹣12),即y=t﹣12﹣.28.(10分)如图1,二次函数y1=(x﹣2)(x﹣4)的图象与x轴交于A、B两点(点A在点B的左侧),其对称轴l与x轴交于点C,它的顶点为点D.(1)写出点D的坐标(3,﹣1).(2)点P在对称轴l上,位于点C上方,且CP=2CD,以P为顶点的二次函数y2=ax2+bx+c(a≠0)的图象过点A.①试说明二次函数y2=ax2+bx+c(a≠0)的图象过点B;②点R在二次函数y1=(x﹣2)(x﹣4)的图象上,到x轴的距离为d,当点R的坐标为(3﹣,1)、(3+,1)或(3,﹣1)时,二次函数y2=ax2+bx+c (a≠0)的图象上有且只有三个点到x轴的距离等于2d;③如图2,已知0<m<2,过点M(0,m)作x轴的平行线,分别交二次函数y1=(x﹣2)(x﹣4)、y2=ax2+bx+c(a≠0)的图象于点E、F、G、H(点E、G在对称轴l左侧),过点H作x轴的垂线,垂足为点N,交二次函数y1=(x﹣2)(x ﹣4)的图象于点Q,若△GHN∽△EHQ,求实数m的值.【解答】解:(1)∵y1=(x﹣2)(x﹣4)=x2﹣6x+8=(x﹣3)2﹣1,∴顶点D的坐标为(3,﹣1).故答案为:(3,﹣1).(2)①∵点P在对称轴l上,位于点C上方,且CP=2CD,∴点P的坐标为(3,2),∴二次函数y1=(x﹣2)(x﹣4)与y2=ax2+bx+c的图象的对称轴均为x=3,∵点A、B关于直线x=3对称,∴二次函数y2=ax2+bx+c(a≠0)的图象过点B.②∵二次函数y2=ax2+bx+c的顶点坐标P(3,2),且图象上有且只有三个点到x 轴的距离等于2d,∴2d=2,解得:d=1.令y1=(x﹣2)(x﹣4)=x2﹣6x+8中y1=±1,即x2﹣6x+8=±1,解得:x1=3﹣,x2=3+,x3=3,∴点R的坐标为(3﹣,1)、(3+,1)或(3,﹣1).故答案为:(3﹣,1)、(3+,1)或(3,﹣1).③(方法一)设过点M平行x轴的直线交对称轴l于点K,直线l也是二次函数y2=ax2+bx+c(a≠0)的图象的对称轴.∵二次函数y2=ax2+bx+c过点A、B,且顶点坐标为P(3,2),∴二次函数y2=﹣2(x﹣2)(x﹣4).设N(n,0),则H(n,﹣2(n﹣2)(n﹣4)),Q(n,(n﹣2)(n﹣4)),∴HN=2(n﹣2)(n﹣4),QN=(n﹣2)(n﹣4),∴=2,即=.∵△GHN∽△EHQ,∴.∵G、H关于直线l对称,∴KG=KH=HG,∴.设KG=t(t>0),则G的坐标为(3﹣t,m),E的坐标为(3﹣2t,m),由题意得:,解得:或(舍去).故当△GHN∽△EHQ,实数m的值为1.(方法二)令y1=x2﹣6x+8=m,解得:x=3±,∴点E(3﹣,m).∵二次函数y2=ax2+bx+c过点A、B,且顶点坐标为P(3,2),∴二次函数y2=﹣2(x﹣2)(x﹣4).令y2=﹣2(x﹣2)(x﹣4)=﹣2x2+12x﹣16=m,解得:x=3±,∴点G(3﹣,m),点H(3+,m).当x=3+时,y1=(x﹣2)(x﹣4)=(1+)(﹣1)=﹣m,∴点Q(3+,﹣m).HG=x H﹣x G=,HE=x H﹣x E=+,HN=y H﹣y N=m,HQ=y H﹣y Q=m,∵△GHN∽△EHQ,∴==,整理得:4﹣2m=m+1,解得:m=1,将检验后可得m=1是方程=的解.故当△GHN∽△EHQ,实数m的值为1.赠送—物理解题中的审题技巧审题过程,就是破解题意的过程,它是解题的第一步,而且是关键的一步,通过审题分析,能在头脑里形成生动而清晰的物理情景,找到解决问题的简捷办法,才能顺利地、准确地完成解题的全过程。