浙教版《数学》七(上)第三章复习提纲

合集下载

浙教版七年级上数学第三章实数复习教案

浙教版七年级上数学第三章实数复习教案

浙教版七年级上数学第三章实数复习教案一、教学内容1. 实数的定义:有理数和无理数的分类,实数的性质。

2. 实数的运算:加法、减法、乘法、除法的运算规则。

3. 实数与方程:一元一次方程的解法,方程的解与实数的关系。

二、教学目标1. 理解实数的定义和性质,能够正确分类实数。

2. 掌握实数的运算规则,能够熟练进行实数的四则运算。

3. 学会解一元一次方程,理解方程的解与实数的关系。

三、教学难点与重点1. 教学难点:实数的分类,特别是无理数的概念。

2. 教学重点:实数的运算规则,一元一次方程的解法。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体教学设备。

2. 学具:笔记本、练习本、彩色笔。

五、教学过程1. 实践情景引入:讲解生活中实数应用的例子,如购物时价格的计算。

2. 实数的定义与分类:回顾实数的定义,讲解有理数和无理数的分类,举例说明。

3. 实数的运算:讲解实数的加法、减法、乘法、除法规则,结合实际例子进行演示。

4. 实数与方程:讲解一元一次方程的解法,结合实际例子进行演示。

5. 随堂练习:布置练习题,让学生实时巩固所学知识。

6. 例题讲解:挑选具有代表性的例题进行讲解,分析解题思路。

7. 课堂小结:回顾本节课所学内容,强调实数的运算规则和方程的解法。

六、板书设计1. 实数的定义与分类2. 实数的运算规则3. 实数与方程七、作业设计1. 作业题目:(3)解下列方程:2x + 1 = 7, 3x 4 = 22. 答案:(1)√3:无理数;2:有理数;0.333:有理数(2)(3) + 4 = 1, 5 2.5 = 2.5, 2 × (1.5) = 3, (2.5) ÷ 1.25 = 2(3)2x + 1 = 7,解得:x = 3;3x 4 = 2,解得:x = 2八、课后反思及拓展延伸1. 课后反思:本节课学生对实数的定义、分类和运算规则掌握较好,但在解方程方面仍需加强。

2. 拓展延伸:讲解实数在实际生活中的应用,如测量长度、面积等,让学生体会实数的重要性。

浙教版-数学-七年级上册-浙教版七年级(上)第三章《实数》教材分析

浙教版-数学-七年级上册-浙教版七年级(上)第三章《实数》教材分析

浙教版七年级(上)第三章《实数》教材分析本章的主要内容是有理数的开方、平方根、立方根,无理数和实数及其运算。

本章教材主要从以下七个方面进行分析:1、新“课标”下的本章教学目标根据《数学课程标准》中的陈述,我们得到本章的教学目标如下:(1)了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根。

(2)了解开方与乘方互逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根。

(3)了解无理数和实数的概念,知道实数与数轴上的点一一对应。

(4)能用有理数估计一个无理数的大致范围。

(5)会进行简单的实数四则运算,进一步认识近似数与有效数字的概念,能用计算器进行近似计算,并根据问题的要求对结果取近似值。

(6)能运用实数的运算解决一些简单的实际问题。

2、本章的知识结构3、本章的数学思想方法数学思想方法是数学知识的主要组成部分,也是数学教学的主要内容,通过分析,本章的数学思想方法主要有:(1)数形结合思想。

本章为数与形的转换提供了一个基本支撑点——数轴。

有了数轴这个基础,把数与形有机的联系起来了,这样就可以用数形结合思想解决问题了,如解释了“实数与数轴上的点的一一对应关系”及“实数的大小比较”。

(2)分类讨论的思想。

本章中关于实数的分类,就利用了这一思想。

(3)对立统一思想。

由于本章引入了无理数、实数的概念,把开方、平方及有理数运算和实数运算统一起来,所以,在这一章中,有利于对学生进行“对立统一”思想方法的教育。

(4)转化的思想。

本章中,通过“开方”的概念及计算器的应用,把有理数的运算转化为实数的运算。

这是非常重要的思想方法,对它的学习不仅解决了实数的运算,而且对进一步学习数学提供了一种重要的思想方法。

4、对本章教材的理解与处理本章教材注意突出学生的自主探索,通过一些熟悉的具体事物,让学生在观察、思考、探索中体会实数的意义,探索数量关系,掌握实数的运算,其教育价值体现在以下几个方面:(1)能使学生体会到数学与观察生活的紧密联系,认识到数、符号是刻画现实世界数量关系的重要语言。

浙教版七年级上册数学复习提纲合集

浙教版七年级上册数学复习提纲合集

浙教版七年级上册数学复习提纲合集优秀的人总能看到比自己更好的,而平庸的人总能看到比自己更差的。

下面本文库为您推荐浙教版七年级上册数学复习提纲合集。

第二章有理数1 、正数与负数在以前学过的0以外的数前面加上负号"-"的数叫负数。

与负数具有相反意义,即以前学过的0以外的数叫做正数(根据需要,有时在正数前面也加上"+")。

2 、有理数(1)正整数、0、负整数统称,正分数和负分数统称。

整数和分数统称。

0既不是数,也不是数。

(2)通常用一条直线上的点表示数,这条直线叫数轴。

数轴三要素:原点、、单位长度。

在直线上任取一个点表示数0,这个点叫做。

(3)只有符号不同的两个数叫做互为相反数。

例:2的相反数是;-2的相反数是;0的相反数是(4)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

两个负数,绝对值大的反而小。

3 、有理数的加减法(1)有理数加法法则:①同号两数相加,取相同的,并把绝对值相加。

②绝对值不相等的异号两数相加,取符号,并用减去较小的绝对值。

互为相反数的两个数相加和为0。

③一个数同0相加,仍得这个数。

(2)有理数减法法则:减去一个数,等于加这个数的相反数。

4、有理数的乘除法(1)有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0。

(2)乘积是1的两个数互为倒数。

例:- 的倒数是;绝对值是;相反数是。

(3)有理数除法法则1:除以一个不等于0的数,等于乘这个数的倒数。

有理数除法法则2:两数相除,同号得,异号得,并把相除。

0除以任何一个不等于0的数,都得0。

(4)求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。

在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。

负数的奇次幂是负数,负数的偶次幂是。

正数的任何次幂都是正数,0的任何次幂都是0。

数学:3.6《第三章复习》课件(浙教版七年级上)

数学:3.6《第三章复习》课件(浙教版七年级上)
2
8是 64
的平方根
不 要 搞 错 了
64的平方根是 ±8
64的值是 8
64的平方根是
8
4
64的立方根是
正整数 正有理数 正分数 有理数 零 有限小数或无限循环小数 负整数 负有理数 负分数
有限小数及无限循环小数
3 的相反数是 1)
3

6
的相反数是
6
2)

5
5
实数和数轴上的点一一对应
在数轴上表示的两个实数,右边的数总比左边的数大
将下列各数分别填入下列的集合括号中
3
9,
4 , 9
1 , 4
7,
,
5 , 7
2 , 16, 5, 3 8,
0,
3
25,
0.3737737773
算术平方根 开平方
乘 方
互为逆运算
开 方
平方根 立方根
负的平方根
开立方
一般地,如果一个数的平方等于a,这个数叫做a的平方根。(也叫二次方根)
若x2=a a≥0 则x a
一个正数有两个平方根,它们互为相反数,零的平方根还是 零。负数没有平方根。 求一个数的平方根的运算,叫做开平方。
正数a的正的平方根和零的平方根,统称算术平方根 。
4 2 3Leabharlann 是正数 等于本身是负数
2 3


2 3

3 2
2 3 ( 3 2) 2 3 3 2 2 3 3 3
化简
2
1 x x 1 x 1 ______
6、探索题
2 (1) 2 3 3 ( 2) 3 8 4 ( 3) 4 15

浙教版七年级上册数学复习提纲

浙教版七年级上册数学复习提纲

浙教版七年级上册数学复习提纲初中数学本身不是很难,但是每次考试时很多学生没有考到高分,归根结底是没有做好复习提纲,下面小编给大家分享一些浙教版七年级上册数学复习提纲,希望能够帮助大家,欢迎阅读!浙教版七年级上册数学复习提纲第一章有理数--------------1.1正数与负数①大于0的数叫正数。

②在正数前面加上“-”号的数,叫做负数。

③0既不是正数也不是负数。

0是正数和负数的分界,是的中性数。

④搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等。

⑤正整数、0、负整数统称整数(结合数轴和一元一次方程出题),正分数和负分数统称分数。

整数和分数统称有理数。

⑥非负数就是正数和零;非负整数就是正整数和0。

⑦“基准”题:有固定的基准数,和的求法:基准数×个数+与基准数相比较的数的代数和;平均数的求法:基准数+与基准数相比较的数的代数和÷个数(写出原数,也可用小学知识解答);“非基准”题:无固定的基准数,如明天和今天比,后天和明天比。

-------------1.2数轴①通常用一条直线上的点表示数,这条直线叫数轴。

②数轴三要素:原点、正方向、单位长度。

③数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。

④只有符号不同的两个数叫做互为相反数(和为零)。

(例:2的相反数是-2,如:2+(-2)=0;0的相反数是0)⑤数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。

从几何意义上讲,数的绝对值是两点间的距离(无方向性,有两个点)。

⑥数轴上两点间的距离=|M—N|⑥正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。

⑦两个负数,绝对值大的反而小。

⑧|a|≥0(即非负性);绝对值等于一个正数的值有两个(两个互为相反数)如:|a|=5,a=5或a=-5-------------1.3有理数的大小①数轴上不同的两个点表示的数,右边点表示的数总比左边点表示的数大。

浙教版七年级数学上册期末复习提纲

浙教版七年级数学上册期末复习提纲

浙教版七年级上册期末复习提纲第一章从自然数到有理数1、有理数的分类① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 2、数轴的定义:规定了原点、正方向、单位长度的直线叫做数轴。

3、相反数:只有符号不同的两个数叫做互为相反数。

(0的相反数是0) (1) a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ; (2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4、绝对值:数轴上一点a 到原点的距离表示a 的绝对值。

(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (aa ;绝对值的问题经常分类讨论;(3)0a 1aa>⇔= ;0a 1aa <⇔-=;5、有理数的大小(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小; (3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小; (5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0 6、互为倒数:乘积为1的两个数互为倒数; 注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;倒数是本身的数是±1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.第二章有理数的运算1、有理数的加法(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数.2、有理数的减法:减去一个数,等于加上这个数的相反数;即a-b=a+(-b )3、有理数的乘法(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零; (3)几个数相乘,有一个数为零,积为零;各个数都不为零,积的符号由负数的个数决定 4、有理数的除法:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a . 5、有理数的乘方:求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。

浙教版数学七年级上期末复习讲义大全

浙教版数学七年级上期末复习讲义大全

浙教版七年级上数学总结第一章 有理数1.用正负数表示相反意义的量2.正数和负数 像+ 21,+12,1.3,258等大于0的数〔"+"通常不写〕叫正数。

像-5,-2.8,-43等在正数前面加"—"〔读负〕的数叫负数。

[注]0既不是正数也不是负数。

3.有理数〔1〕整数:正整数、零和负整数统称为整数。

分数:正分数和负分数统称为分数。

有理数:整数和分数统称为有理数。

〔2〕有理数分类1〕按有理数的定义分类 2〕按正负分类正整数 正整数整数 0 正有理数有理数 负整数 有理数 正分数正分数 0 负整数分数 负有理数负分数 负分数4.数轴〔1〕规定了原点、正方向和单位长度的直线叫做数轴。

〔2〕数轴能形象地表示数,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数. 〔3〕在数轴上比较有理数的大小 。

1〕在数轴上表示的两个数,右边的数总比左边的数大。

2〕由正、负数在数轴上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。

5.相反数〔1〕只有符号不同的两个数称互为相反数,如-5与5互为相反数。

〔代数意义〕〔2〕从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。

〔几何意义〕 〔3〕0的相反数是0。

也只有0的相反数是它的本身。

〔4〕相反数是表示两个数的相互关系,不能单独存在。

〔5〕相反数的求法:数a 的相反数是—a 。

〔6〕多重符号化简多重符号化简的结果是由"-"号的个数决定的。

如果"-"号是奇数个,则结果为负;如果是偶数个,则结果为正。

可简写为"奇负偶正"。

6.绝对值〔1〕在数轴上表示数a 的点离开原点的距离,叫做数a 的绝对值。

〔2〕一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零.⎪⎩⎪⎨⎧<-=>=0,0,00,a a a a a a 〔3〕绝对值的主要性质一个数的绝对值是一个非负数,即a≥0,因此,在实数范围内,绝对值最小的数是零.〔4〕两个相反数的绝对值相等.<5>有理数大小比较原则正数都大于0,负数都小于0,正数大于一切负数。

浙教版七年级上册数学第三章《实数》知识点及典型例题

浙教版七年级上册数学第三章《实数》知识点及典型例题

期末复习三 实数 要求 知识与方法了解 平方根、算术平方根、立方根的概念无理数的概念实数的概念、实数与数轴上的点一一对应理解 实数的分类用有理数估计无理数,实数的大小比较实数的运算运用用计算器进行简单的混合运算用实数的运算解决一些简单的实际问题一、必备知识:1.一个正数a 有____________个平方根,正平方根用____________表示,负平方根用____________表示.0的平方根等于____________,____________没有平方根.2.一个正数有一个____________的立方根;一个负数有一个____________的立方根;0的立方根是____________.3.____________叫做无理数.常见的无理数有三种形式:①带π的,②开不尽的方根,③不是循环规律的无限小数.4.在数轴上表示两个实数,____________的数总比____________的数大.数轴上的点与____________一一对应.二、防范点:1.区分平方根和算术平方根的概念,注意一个正数的平方根必有两个.2.不要把无限小数都认为是无理数.如227,0.31等无限小数都是有理数.平方根、算术平方根及立方根例1 (1)14的算术平方根是________,16的平方根是________,64的立方根是________.(2)下列说法中正确的是( ) A .9的立方根是3B .-9的平方根是-3C .±4是64的立方根D .4是16的算术平方根【反思】注意一个正数的平方根有两个,立方根只有一个.算术平方根的双重非负性例2 (1)已知实数x ,y 满足|x -5|+y +6=0,求(x +y)2017的值;(2)对于有理数x ,2017-x +x -2017+1x的值是( ) A .0 B .2017 C .12017D .-2017 【反思】算术平方根具有双重非负性,第一,被开方数是一个非负数,第二,算术平方根的本身也是一个非负数.无理数、实数的概念及实数的分类例3 (1)在-4,3.14,π,10,1.51,27中,无理数的个数是( ) A .2个 B .3个 C .4个 D .5个(2)在0,3.14,13,2π,-8,81,-0.4,-9,4.262262226…(每两个”6”之间依次多一个”2”)中,属于有理数的有 ;属于无理数的有 ;属于正实数的有 ;属于负实数的有.【反思】无理数常见形式有三种:①开不尽的方根,②带π的,③不是循环规律的无限小数.所以不要把所有无限小数都认为是无理数.用有理数估计无理数,实数的大小比较例4(1)估计11的值在()A.1与2之间B.2与3之间C.4与5之间D.3与4之间(2)10的整数部分是________,37的小数部分是________.(3)把下列实数表示在数轴上,并将它们用”<”连接起来:-1.5,-3,3,0,π【反思】在数轴上表示无理数,往往取无理数的近似值表示在数轴上即可.实数与数轴相关问题例5(1)如图,以数轴的单位长度线段为边作一个正方形,以表示数2的点为圆心,正方形对角线长为半径画半圆,交数轴于点A和点B,则点A表示的数是________;点B表示的数是________.(2)如图所示,数轴上表示2,5的点分别为C,B,点C是AB的中点,则点A表示的数是________.【反思】实数与数轴相关问题,往往是利用数轴上两点间的距离公式,并结合方程思想求解.实数的运算例6计算下列各题:(1)16-(3-27+4);(2)9-(-3)2+3(-8)2-(-2)2;(3)用计算器计算3+(-3)×(2-3)(结果精确到0.001).【反思】实数的运算过程中,要弄清”a ”与”3a ”的区别,不要混淆.计算时往往要保留根号进行运算,到最后一步才借助计算器等取近似值.运用实数的运算解决一些简单的实际问题例7 将一个半径为10cm 的圆柱体容器里的药液,倒进一个底面是正方形的长方体容器内,如果药液在两个容器里的高度是一样的,那么长方体容器的底面边长是多少?(结果精确到0.1).【反思】关于实数运算的实际问题,往往与求体积、面积相关,注意体积、面积公式不要搞错.1.已知3≈1.732,30≈5.477,那么30000≈( )A .173.2B .±173.2C .547.7D .±547.72.请写出两个无理数,使它们的和是有理数____________.3.若a <14<b ,且a ,b 为连续正整数,则a 2-b 2=____________.4.计算:(1)4-144+||-16-5116=____________; (2)()-22+||2-1-(2+1)=____________.5.在如图所示的数轴上,点B 与点C 到点A 的距离相等,A 、B 两点对应的实数分别是1和-3,则点C 对应的实数是____________.第5题图6.计算: (1)9-169+|-4|-614;(2)(-3)2+|3-1|-(3+1).7.当运动中的汽车撞击到物体时,汽车所受到的损坏程度可以用”撞击影响”来衡量.某种型号的汽车的撞击影响可以用公式I =2v 2来表示,其中v(千米/分)表示汽车撞击时的行驶速度.假设这种型号的汽车在一次撞车实验中测得撞击影响为17,试求出撞击时该车的行驶速度(精确到1千米/分).参考答案期末复习三 实数【必备知识与防范点】1.正、负两a -a 0 负数 2.正 负 0 3.无限不循环小数 4.右边 左边实数【例题精析】例1 (1)12±2 2 (2)D 例2 (1)-1 (2)C 例3 (1)A (2)有理数有:0,3.14,13,81,-0.4,-9;无理数有:2π,-8,4.262262226…(每两个“6”之间依次多一个“2”);正实数有:3.14,13,2π,81,4.262262226…(每两个“6”之间依次多一个“2”);负实数有:-8,-0.4,-9.例4 (1)D (2)3 37-6 (3)画图略 -3<-1.5<0<3<π 例5 (1)2-2 2+2 (2)4- 5例6 (1)3 (2)2 (3)2.686例7 17.7cm【校内练习】1.A 2.答案不唯一,如:-π,π 3.-7 4.(1)-814(2)0 5.2+ 3 6.(1)原式=3-13+2-52=-1012. (2)原式=3+3-1-3-1=1. 7.根据I =2v 2,I =17,∴v 2=I 2=172,∴v =172≈3千米/分. 答:撞击时该车的行驶速度约为3千米/分.。

浙教版七年级上册复习提纲

浙教版七年级上册复习提纲

实数1、实数的分类:无理数的常见类型:开不尽的数;与π有关的;有规律但不循环的数.2、数轴:规定了原点、单位长度和正方向的直线叫做数轴.数轴上的点与实数具有“一一对应”的关系.3、相反数:实数a 与-a 叫做互为相反数,即只有符号不同.注意:①在数轴上,表示互为相反数的两个点,位于原点的两侧,并且到原点的距离相等;②零的相反数是零;③互为相反数和为零.4、倒数:1除以一个不等于零的实数,叫做这个实数的倒数.注意:①零没有倒数;②互为倒数积为1.5、绝对值:在数轴上表示实数a 的点到原点的距离叫做实数a 的绝对值,记作|a |.注意:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对是0.互为相反数的两个数绝对值相等.6、求几个相同因数的积的运算叫做乘方.乘方的结果叫做幂.在a n 中,a 叫做底数,n 叫做指数.注意:①请区分-22与(-2)2,⎝⎛⎭⎫232和223;②2次方也称平方;③3次方也称立方;④平方等于它本身的数是1和0,立方等于它本身的数是1,0,-1.7、平方根(立方根):如果一个数的平方(立方)等于a ,那么这个数叫做a 的平方根(立方根).注意:①负数没有平方根,零的平方根是零;②平方根等于它本身的数是0,立方根等于它本身的数是1,0,-1.8、算术平方根:正数的正的平方根和零的平方根,统称为算术平方根.a 的算术平方根记作a (a ≥0). 注意:算术平方根等于它本身的数是0和1.9、科学计数法:把一个数表示成a ×10n (1≤|a |<10,n 为整数)的形式,通常称为科学记数法.10、实数的大小比较方法(1) 利用比较法则:①正数都大于零,负数都小于零,正数大于一切负数;②两个正数,绝对值大的数大;③两个负数,绝对值大的数反而小.(2) 利用数轴:在数轴上表示的两个实数,右边的数总比左边的数大.11、实数的运算:先算乘方、开方,再算乘除,最后算加减;同级运算,按照从左到右的顺序进行;如果有括号,就先算括号里面的;尽可能应用运算律,适当改变运算顺序,使计算简便.整式1、单项式:数与字母或字母与字母的乘积组成的代数式叫做单项式.单独一个数或一个字母也叫单项式.单项式中的数字因数叫做单项式的系数.单项式中所有字母的指数的和叫做单项式的次数.2、多项式:几个单项式的和叫做多项式.在多项式中,每一个单项式叫做多项式的项,多项式中次数最高的项的次数叫做这个多项式的次数,其中不含字母的项叫做常数项.3、整式:单项式和多项式统称为整式.4、同类项:所含字母相同且相同字母的指数也分别相同的项叫做同类项.5、合并同类项法则:把同类项的系数相加,所得结果作为系数,字母与字母的指数不变.6、升(降)幂排列:按某一字母的指数从小(大)到大(小)的顺序排列多项式,叫做按这个字母的升(降)幂排列.7、整式的加减:实质上就是合并同类项.一元一次方程1、定义:只含有一个未知数,并且未知数的指数是一次的整式方程,叫做一元一次方程,其标准形式是:ax+b=0(a≠0).2、方程的解:使方程左右两边的值相等的未知数的值叫做方程的解,一元一次方程的解又叫方程的根.3、一元一次方程的解法:(1)解一元一次方程的一般步骤:①去分母;(注意添加括号,注意不要漏乘)②去括号;(注意不要漏乘,注意符号)③移项;(注意变号)④合并同类项;⑤方程两边同除以未知数的系数(同乘以未知数系数的倒数);(2)解一元一次方程的依据:①方程两边都加上或减去同一个数或数式,方程的解不变;②方程两边都乘或除以同一个不等于零的数,方程的解不变.4、列一元一次方程解决实际问题(1)列方程解应用题的步骤:①审题;②设元;③根据等量关系列出方程;④解方程;⑤检验并写出答案.(2)常用等量关系:①行程问题:路程=速度×时间.②工程问题:各部分工作量的和=总工作量.③储蓄问题:本息和=本金+利息.④销售问题:利润=售价-成本=利润率×成本;售价=成本×(1+利润率).⑤数字问题:若abc表示一个三位数,则有:abc=100a+10b+c.图形的基本知识1、线段、射线、直线(1)线段和射线是直线的一部分,直线无端点,射线有一个端点,线段有两个端点.(2)公理:①两点确定一条直线;②两点之间线段最短.(3)定义:①两点间的距离;②点到直线的距离;③线段的中点.(4)在同一平面内,过一点有且只有一条直线和已知直线垂直.(5)直线外一点与直线上各点连接的所有线段中,垂线段最短.2、角(1)定义:①角的两种定义;②角平分线;③余角、补角.(2)角的分类:锐角、直角、钝角、平角、周角.(3)角的度量(度、分、秒的换算)与比较.(4)余角、补角的性质:①同(或等)角的余角相等;②同(或等)角的补角相等.3、同一平面内直线的位置关系:平行或相交.。

浙教版数学七年级上册第三章《实数》复习教学设计

浙教版数学七年级上册第三章《实数》复习教学设计

浙教版数学七年级上册第三章《实数》复习教学设计一. 教材分析浙教版数学七年级上册第三章《实数》是学生在初中阶段首次接触实数的概念。

本章主要内容包括实数的定义、分类、运算以及实数与数轴的关系。

本章内容是后续学习代数和几何知识的基础,因此,对于学生的理解和掌握至关重要。

二. 学情分析七年级的学生已经具备了一定的数学基础,对于数学符号和运算规则有一定的了解。

但实数概念较为抽象,学生可能难以理解。

因此,在教学过程中,需要注重引导学生从具体实例中抽象出实数的概念,并理解实数与数轴的关系。

三. 教学目标1.理解实数的定义和分类,掌握实数的运算规则。

2.理解实数与数轴的关系,能够利用数轴解释和解决实数问题。

3.培养学生的抽象思维能力,提高学生解决实际问题的能力。

四. 教学重难点1.实数的定义和分类。

2.实数的运算规则。

3.实数与数轴的关系。

五. 教学方法1.采用问题驱动的教学方法,引导学生从具体实例中抽象出实数的概念。

2.利用数轴辅助教学,帮助学生理解实数与数轴的关系。

3.采用小组合作学习的方式,让学生在讨论中巩固实数的运算规则。

六. 教学准备1.准备相关实数的教学案例和实例。

2.制作数轴教具,用于教学演示。

3.准备实数运算的练习题,用于巩固练习。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾已学的有理数知识,如整数和分数的关系,有理数的运算规则等。

为学生引入实数的概念做铺垫。

2.呈现(15分钟)呈现实数的定义和分类,让学生从具体实例中抽象出实数的概念。

通过讲解和示例,让学生理解实数与数轴的关系。

3.操练(15分钟)让学生进行实数运算的练习,巩固学生对实数运算规则的理解。

教师可提供解答过程,让学生跟随讲解,逐步掌握实数的运算方法。

4.巩固(10分钟)采用小组合作学习的方式,让学生在小组内讨论实数运算问题,共同解决难题。

教师可适时给予指导,帮助学生巩固实数的运算规则。

5.拓展(10分钟)让学生利用数轴解释和解决实数问题,如判断实数的大小关系、求解实数的相反数等。

新浙教版七年级上册数学第三章《实数》知识点及典型例题

新浙教版七年级上册数学第三章《实数》知识点及典型例题

新浙教版七年级上册数学第三章《实数》知识点及典型例题注意掌握以下公式:①⎧=⎨⎩② =考点一、关于“……说法正确的是……”的题型 考点二、有关概念的识别 考点三、计算类型题 考点四、数形结合类型五、实数绝对值的应用 考点六、实数非负性的应用 考点七、实数应用题将考点与相关习题联系起来考点一、关于“……说法正确的是……”的题型 1、下列说法正确的是( )A .有理数只是有限小数B .无理数是无限小数C .无限小数是无理数D .4π是分数2、有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④是17的平方根。

其中正确的有( ) A .0个 B .1个 C .2个 D .3个3、下列结论中正确的是 ( )A .数轴上任一点都表示唯一的有理数B .数轴上任一点都表示唯一的无理数 C. 两个无理数之和一定是无理数 D. 数轴上任意两点之间还有无数个点 考点二、有关概念的识别1、下面几个数:.0.34,1.010*******π,227) A. 1 B. 2 C. 3 D. 4 2、下列说法中正确的是( )A.3 B. 1的立方根是±1 C. =±1 D. 5的平方根的相反数3、一个自然数的算术平方根为a ,则与之相邻的前一个自然数是 考点三、计算类型题1,则下列结论正确的是( )A.4.5<a<5.0B.5.0<a<5.5C.5.5<a<6.0D.6.0<a<6.54、对于有理数x 1x的值是3 4、4(x-1)2=9考点四、数形结合1. 点A在数轴上表示的数为35,点B在数轴上表示的数为5A,B两点的距离为______2、如图,数轴上表示12的对应点分别为A,B,点B关于点A的对称点为C,则点C表示的数是()A2-1 B.12C.22D2-2考点五、实数绝对值的应用1、32232+23考点六、实数非负性的应用123|49|7a baa--=+,求实数a,b的值。

浙教版七年级上数学第三章实数复习教案

浙教版七年级上数学第三章实数复习教案

浙教版七年级上数学第三章实数复习教案一、教学内容1. 实数的概念与分类2. 实数的运算规则3. 实数与数轴的关系4. 实数在实际问题中的应用二、教学目标1. 理解实数的概念,掌握实数的分类及性质。

2. 掌握实数的运算规则,能够正确进行实数的加减乘除运算。

3. 能够运用实数知识解决实际问题,提高数学应用能力。

三、教学难点与重点1. 教学难点:实数的概念及分类,实数的运算规则。

2. 教学重点:实数的性质,实数与数轴的关系,实数在实际问题中的应用。

四、教具与学具准备1. 教具:多媒体课件,实数教学挂图。

2. 学具:学生每人准备一张数轴图纸,直尺,计算器。

五、教学过程1. 导入:通过一个实践情景引入实数概念,例如气温变化、身高测量等,让学生感受实数在实际生活中的应用。

2. 新课讲解:(2)讲解实数的运算规则,通过例题讲解,让学生掌握实数的加减乘除运算。

(3)分析实数与数轴的关系,让学生能够在数轴上表示实数。

3. 随堂练习:(1)完成教材第3.1节的练习题,巩固实数的概念与分类。

(2)完成教材第3.2节的练习题,提高实数运算能力。

六、板书设计1. 实数的概念与分类2. 实数的运算规则3. 实数与数轴的关系4. 实数在实际问题中的应用七、作业设计1. 作业题目:2. 答案:(1)实数:2,3/4,√2,5.5。

(2)运算结果:5.2,3.8,2,4。

(3)见数轴图。

八、课后反思及拓展延伸1. 反思:通过本节课的学习,学生是否掌握了实数的概念、分类、运算规则及其与数轴的关系?针对学生的掌握情况,调整教学方法,提高教学效果。

2. 拓展延伸:引入无理数的概念,让学生了解无理数与有理数的区别,为后续学习打下基础。

同时,鼓励学生探索实数在生活中的应用,提高数学素养。

重点和难点解析1. 实数的概念与分类2. 实数的运算规则3. 实数与数轴的关系4. 实数在实际问题中的应用5. 教学过程中的实践情景引入6. 作业设计中的题目和答案一、实数的概念与分类重点和难点解析:实数的概念是本章的核心,学生需要理解实数包括有理数和无理数两部分。

最新浙教版七年级上册全册各章知识点总结及配套练习(期末复习资料)

最新浙教版七年级上册全册各章知识点总结及配套练习(期末复习资料)

浙教版七年级数学上册各章知识点总结一有理数一、必备知识:1.规定了____________、____________和____________的直线叫做数轴.2.在数轴上,表示互为相反数(0除外)的两个点,位于原点的____________,并且到原点的距离____________.3.一个正数的绝对值是____________;一个负数的绝对值是它的相反数;0的绝对值是0.____________的两个数的绝对值相等.4.在数轴上表示的两个数,____________的数总比____________的数大;两个负数比较大小,绝对值大的数____________.【答案】1.原点单位长度正方向 2.两侧相等 3.它本身互为相反数 4.右边左边反而小二、防范点:1.到数轴上的某点距离等于a的点所表示的数有两种情况,已知某数的绝对值求某数时也要注意有两个答案.2.两个负数比较大小时,注意绝对值大的数反而小.考点精练用正数、负数表示相反意义的量例1(1)如果南湖的水位升高0.4m,水位变化记做+0.4m,那么水位下降0.3m时,水位变化可以记做________m.(2)在下列各组中,哪个选项表示互为相反意义的量( )A.足球比赛胜5场与负2场B.向东走3千米与向南走4千米C.长大1岁和减少2公斤D.下降与上升【答案】 (1)-0.3 (2)A有理数的分类例2 把下列各数分别填在题后相应的集合中: -52,0,-1,0.73,2,-5,78,-29.52,+28. 正数集合:{ } 负整数集合:{ } 分数集合:{ } 非负整数集合:{ }【答案】正数:0.73,2,78,+28;负整数:-1,-5;分数:-52,0.73,78,-29.52;非负整数:0,2,+28.相反数与绝对值例3 (1)-32的相反数是________,-14的倒数是________,2-5的绝对值是________.(2)若实数a 、b 满足|a +2|+b -4=0,则ab=________.(3)绝对值小于4的整数有________个,它们的和是________,积是________. 【答案】(1)32-45-2 (2)-12(3)7 0 0有理数的大小比较例4 (1)比较大小:-23________-34.(2)如图,在数轴上有a ,b 两个有理数,则下列结论中,不正确的是( )A .a +b<0B .a -b<0C .ab<0D .(-ab)3>0【答案】(1)> (2)B绝对值相关问题例5 (1)检验4个工件,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的工件是( )A .-2B .-3C .3D .5(2)已知实数a ,b 在数轴上的位置如图所示,下列结论错误的是( )A .|a|<1<|b|B .1<-a <bC.1<|a|<b D.-b<a<-1(3)x是2的相反数,|y|=3,则x-y的值是________.【答案】 (1)A(2)A(3)-5或1数轴相关问题例6(1)把表示下列各数的点画在数轴上,再按从小到大的顺序,用”<”把这些数连接起来:3,-1,5,0,-|-4|.(2)如果数轴上的两点A,B,它们与原点O的距离分别是:A到O有3个单位,B到O 有5个单位,则A,B两点之间的距离等于________个单位.(3)一刻度尺如图所示放在数轴上(数轴的单位长度是1cm),数轴上的原点对应刻度尺上的3.6cm,A点和B点分别对应刻度尺上的”15cm”和”0cm”,则A点和B点在数轴上分别表示数________和________.【答案】(1)画图略-|-4|<-1<0<3<5 (2)2或8 (3)11.4 -3.6用正、负数解决生活实际问题例7根据《青少年生长参考》的身高标准表,一个13周岁的男生的标准身高为156.0cm,若记该标准身高为0,高于该标准记为”+”,低于该标准记为”-”.某校七年级一组男生共有8名13周岁的学生,在体检中测得他们的身高汇总如下表:姓名张民王峰李志伟吴浩王小飞赵康鹏胡彪张远身高(cm) -1.5 2.8 0.8 0 -0.7 1.6 0 -1.1(1)哪位学生的身高最高?哪位学生的身高最矮?(2)张民身高多少?李志伟呢?(3)该组男生中身高最高的比最矮的高多少?【答案】(1)王峰张民(2)154.5cm 156.8cm(3)4.3cm课后练习1.5个城市的国际标准时间(单位:时)在数轴上表示如图所示,那么北京时间1月4日20时应是( )第1题图A.伦敦时间1月4日11时B.巴黎时间1月4日13时C.纽约时间1月4日5时D.首尔时间1月4日19时2.数轴上到-3的距离等于2的数是____________.3.甲、乙两支同样的温度计如图所示放置,如果向左移动甲温度计,使其度数20正对着乙温度计的度数-10,那么此时甲温度计的度数-5正对着乙温度计的度数是____________.第3题图4.将一些半径相同的小圆按如图所示的规律摆放,第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,…,依此规律,第7个图形的小圆个数是____________.第4题图5.在数轴上,点A与点B表示的数分别为a和2(a<2),已知点C是线段AB的三等分点,且点C表示的数为1,则a的值是____________.6.如图,已知数轴的单位长度为1.(1)如果点A,B表示的数是互为相反数,那么点C表示的数是____________;(2)如果点D,B表示的数是互为相反数,那么点C表示的数是____________(填”正数”或”负数”),图中表示的5个点中,表示的数的绝对值最小的一个点是____________,最小的绝对值是____________;(3)若点A 为原点,CF =3,求点F 表示的数.第6题图7.阅读:因为一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以当a≥0时,a =a ;当a <0时,a =-a.根据以上阅读完成:(1)|3.14-π|=____________;(2)计算:⎪⎪⎪⎪⎪⎪1-12+⎪⎪⎪⎪⎪⎪12-13+⎪⎪⎪⎪⎪⎪13-14+…+⎪⎪⎪⎪⎪⎪199-1100.8.阅读理解:若A 、B 、C 为数轴上三点,点C 是线段AB 上一点,若点C 到点A 的距离是点C 到点B 的距离的2倍,我们就称点C 是【A ,B 】的好点,如图1,点A 表示的数为-1,点B 表示的数为2,表示1的点C 到点A 的距离是2,到点B 的距离是1,那么点C 是【A ,B 】的好点;又如,表示0的点D 到点A 的距离是1,到点B 距离是2,那么点D 就不是【A ,B 】的好点,但点D 是【B ,A 】的好点.知识运用:如图2,M 、N 为数轴上两点,点M 所表示的数为-2,点N 所表示的数为4.(1)数____________所表示的点是【M ,N 】的好点;(2)如图3,A 、B 为数轴上两点,点A 所表示的数为-20,点B 所表示的数为40,现有一只电子蚂蚁P 从点B 出发,以每秒2个单位的速度向左运动,到达点A 时停止,运动的时间为t 秒.当t 为何值时,点P 、A 和B 中恰有一个点为其余两点的好点?第8题图【答案】1.B 2.-5或-1 3.15 4.605.-1或12 【解析】①AC=13AB 时,1-a =13(2-a),得a =12;②BC=13AB 时,2-1=13(2-a),得a =-1. 6.(1)-1 (2)正数 C 0.5 (3)5或-17.(1)π-3.14 (2)⎪⎪⎪⎪⎪⎪1-12+⎪⎪⎪⎪⎪⎪12-13+⎪⎪⎪⎪⎪⎪13-14+…+⎪⎪⎪⎪⎪⎪199-1100=1-12+12-13+13-14+…+199-1100=1-1100=99100.8.(1)2 (2)t 为10秒或20秒二 有理数的运算一、必备知识:1.若两个有理数的乘积为____________,就称这两个有理数____________. 2.有理数的各种运算律:加法交换律、加法结合律、乘法交换律、乘法结合律、分配律.3.有理数混合运算的法则是:先算____________,再算____________,最后算____________.如有括号,先进行____________运算.4.把一个数表示成____________与____________的幂相乘的形式叫做科学记数法. 【答案】1 互为倒数 3.乘方 乘除 加减 括号里的 4.a(1≤a<10) 10 二、防范点:1.倒数不要和相反数混淆,倒数符号不变,相反数要变号.2.乘方运算不要和乘法运算混淆,如23和32不相等.3.有理数混合运算中注意运算顺序,特别是乘、除同级运算时,注意从左到右的运算顺序.4.求用科学记数法表示的数及带单位的有理数的精确位数时要注意单位及10的幂的位数. 考点精练倒数的概念例1 (1)2020的倒数为( )A .-2020B .2020C .-D .(2)已知a 与b 互为倒数,m 与n 互为相反数,则12ab -9m -9n 的值是________.【答案】 (1)D (2)12有理数运算法则及运算顺序例2 下列计算错在哪里?应如何改正? (1)74-22÷70=70÷70=1; (2)(-112)2-23=114-6=-434;(3)23-6÷3×13=6-6÷1=0.【答案】(1)运算顺序错.改正为:74-22÷70=74-4÷70=74-235=733335;(2)运算法则错.改正为:(-112)2-23=94-8=-234;(3)运算法则和运算顺序都错.改正为:23-6÷3×13=8-6×13×13=8-23=713.有理数的混合运算例3 计算:(1)(-2)2+3×(-2)-1÷(14)2;(2)-32-[-(12)2-116]×(-2)÷(-1)2017.【答案】(1)-18 (2)-838有理数的简便计算例4 用简便方法计算:(1)(-6134)-(-512)+(134)-(+8.5);(2)19999899×(-11);(3)(-5)×713+7×(-713)-(+12)×713.【答案】 (1)-63 (2)-2199989(3)-176近似数及科学记数法例5 (1)数361000000用科学记数法表示,以下表示正确的是( )A .0.361×109B .3.61×108C .3.61×107D .36.1×107(2)下列近似数精确到哪一位? ①4.7万 ②17.68(3)用四舍五入法按要求取下列各数的近似数: ①0.61548(精确到千分位);②73540(精确到千位).【答案】 (1)B (2)①千位 ②百分位 (3)①0.615 ②7.4×104有理数混合运算的应用例6 出租车司机王师傅从上午8:00~9:00在某市区东西向公路上营运,共连续运载八批乘客.若规定向东为正,向西为负,王师傅营运八批乘客里程如下:(单位:千米)+5,-6,+3,-7,+5,+4,-3,-4.(1)将最后一批乘客送到目的地时,王师傅在第一批乘客出发地的什么位置? (2)已知王师傅的车在市区耗油成本约为0.6元/千米,若出租车的收费标准为:起步价8元(不超过3千米),若超过3千米,超过部分按每千米2元收费,则王师傅在上午8:00~9:00扣除耗油成本后赚了多少元?【答案】 (1)正西方向3千米处 (2)67.8元 课后练习1.计算:3×(-1)3+(-5)×(-3)____________. 2.已知(x -2)2+||2y +6=0,则x +y =____________.3.如图,数轴上A 、B 两点分别对应实数a 、b ,则a 与b 之间的关系是____________.(写出一个正确关系式即可)第3题图4.由四舍五入得到的近似数0.50,精确到____________位,它表示大于或等于____________且小于____________的数.5.数轴上A 、B 两点位于原点O 的两侧,点A 表示的实数是a ,点B 表示的实数是b ,若||a -b =2016,且AO =2BO ,则a +b 的值是____________.6.计算:(1)(34-112+13)×(-60);(2)(-3)2÷92+(-1)2017-|-2|.7.已知x ,y 为有理数,现规定一种新运算※,满足x※y=xy +1. (1)求2※3的值; (2)求(3※5)※(-2)的值;(3)探索a※(b+c)与a※b+a※c 的关系,并用等式把它们表达出来.【答案】.12 2.-1 3.答案不唯一,如a >b 4.百分 0.495 0.505 5.±6726.(1)(34-112+13)×(-60)=-60×34+60×112-60×13=-45+5-20=-60.(2)(-3)2÷92+(-1)2017-|-2|=9×29-1-2=-1. 7.(1)7 (2)-31(3)∵a※(b+c)=a(b +c)+1=ab +ac +1,a ※b +a※c=ab +1+ac +1.∴a※(b+c)+1=a※b+a※c.三 实数一、必备知识:1.一个正数a 有____________个平方根,正平方根用____________表示,负平方根用____________表示.0的平方根等于____________,____________没有平方根.2.一个正数有一个____________的立方根;一个负数有一个____________的立方根;0的立方根是____________.3.____________叫做无理数.常见的无理数有三种形式:①带π的,②开不尽的方根,③不是循环规律的无限小数.4.在数轴上表示两个实数,____________的数总比____________的数大.数轴上的点与____________一一对应.【答案】1.正、负两 a - a 0 负数 2.正 负 0 3.无限不循环小数 4.右边 左边 实数二、防范点:1.区分平方根和算术平方根的概念,注意一个正数的平方根必有两个. 2.不要把无限小数都认为是无理数.如227,0.31等无限小数都是有理数.考点精练平方根、算术平方根及立方根例1 (1)14的算术平方根是________,16的平方根是________,64的立方根是________.(2)下列说法中正确的是( )A .9的立方根是3B .-9的平方根是-3C .±4是64的立方根D .4是16的算术平方根【答案】(1)12±2 2 (2)D算术平方根的双重非负性例2 (1)已知实数x ,y 满足|x -5|+y +6=0,求(x +y)2017的值;(2)对于有理数x ,2017-x +x -2017+1x的值是( )A .0B .2017C .12017D .-2017 【答案】(1)-1 (2)C无理数、实数的概念及实数的分类例3 (1)在-4,3.14,π,10,1.51,27中,无理数的个数是( )A .2个B .3个C .4个D .5个(2)在0,3.14,13,2π,-8,81,-0.4,-9,4.262262226…(每两个”6”之间依次多一个”2”)中,属于有理数的有 ; 属于无理数的有 ; 属于正实数的有 ; 属于负实数的有 . 【答案】(1)A (2)有理数有:0,3.14,13,81,-0.4,-9;无理数有:2π,-8,4.262262226…(每两个“6”之间依次多一个“2”);正实数有:3.14,13,2π,81,4.262262226…(每两个“6”之间依次多一个“2”);负实数有:-8,-0.4,-9.用有理数估计无理数,实数的大小比较例4 (1)估计11的值在( )A .1与2之间B .2与3之间C .4与5之间D .3与4之间(2)10的整数部分是________,37的小数部分是________. (3)把下列实数表示在数轴上,并将它们用”<”连接起来: -1.5,-3,3,0,π【答案】(1)D (2)337-6 (3)画图略 -3<-1.5<0<3<π实数与数轴相关问题例5 (1)如图,以数轴的单位长度线段为边作一个正方形,以表示数2的点为圆心,正方形对角线长为半径画半圆,交数轴于点A 和点B ,则点A 表示的数是________;点B 表示的数是________.(2)如图所示,数轴上表示2,5的点分别为C ,B ,点C 是AB 的中点,则点A 表示的数是________.【答案】(1)2- 2 2+ 2 (2)4-5实数的运算例6 计算下列各题: (1)16-(3-27+4);(2)9-(-3)2+3(-8)2-(-2)2;(3)用计算器计算3+(-3)×(2-3)(结果精确到0.001).【答案】(1)3 (2)2 (3)2.686运用实数的运算解决一些简单的实际问题例7 将一个半径为10cm 的圆柱体容器里的药液,倒进一个底面是正方形的长方体容器内,如果药液在两个容器里的高度是一样的,那么长方体容器的底面边长是多少?(结果精确到0.1).【答案】17.7cm 课后练习1.已知3≈1.732,30≈5.477,那么30000≈( )A .173.2B .±173.2C .547.7D .±547.72.请写出两个无理数,使它们的和是有理数____________. 3.若a <14<b ,且a ,b 为连续正整数,则a 2-b 2=____________. 4.计算:(1)4-144+||-16-5116=____________; (2)()-22+||2-1-(2+1)=____________.5.在如图所示的数轴上,点B 与点C 到点A 的距离相等,A 、B 两点对应的实数分别是1和-3,则点C 对应的实数是____________.第5题图6.计算:(1)9-169+|-4|-614;(2)(-3)2+|3-1|-(3+1).7.当运动中的汽车撞击到物体时,汽车所受到的损坏程度可以用”撞击影响”来衡量.某种型号的汽车的撞击影响可以用公式I =2v 2来表示,其中v(千米/分)表示汽车撞击时的行驶速度.假设这种型号的汽车在一次撞车实验中测得撞击影响为17,试求出撞击时该车的行驶速度(精确到1千米/分).【答案】1.A 2.答案不唯一,如:-π,π 3.-7 4.(1)-814 (2)0 5.2+ 36.(1)原式=3-13+2-52=-1012. (2)原式=3+3-1-3-1=1.7.根据I =2v 2,I =17,∴v 2=I 2=172,∴v =172≈3千米/分. 答:撞击时该车的行驶速度约为3千米/分.四 代数式一、必备知识:1.数和表示数的字母相乘,或字母和字母相乘时,____________可以省略不写,或用____________来代替.数和字母相乘,在省略乘号时,要把数字写在字母的____________.2.由数与字母或字母与字母相乘组成的代数式叫做____________.单项式中数字因数叫做这个单项式的____________,所有字母的指数的____________叫做这个单项式的____________.3.由几个____________相加组成的代数式叫做多项式.在多项式中,每个单项式叫做多项式的____________,不含字母的项叫做____________,____________就是这个多项式的次数.4.合并同类项法则:把同类项的____________相加,所得的结果作为系数,____________不变.5.整式的加减运算可归结为____________和____________.【答案】1.乘号 “·” 前面 2.单项式 系数 和 次数 3.单项式 项 常数项 次数最高的项的次数 4.系数 字母和字母的指数 5.去括号 合并同类项二、防范点:1.用代数式表示简单数量关系时,若是带单位的和式不要遗漏括号.2.区分单项式次数和多项式次数的概念,单项式次数是所有字母指数和,而多项式次数只是次数最高的项的次数,指数不用求和.3.求代数式值的过程中,当字母表示的数为负数或分数时,注意添加括号. 4.进行整式加减运算的过程中,往往每个多项式都要添加括号进行加减.5.当括号前是”-”号时,去掉括号和”-”号时,各项都要改变符号,不要遗漏. 考点精练用代数式表示简单的数量关系及代数式的实际背景或几何意义例1 (1)用代数式表示: ①x 的2倍与y 的-3倍的差; ②a 与b 的平方的和; ③x 的相反数与3的倒数的差. (2)说出下列代数式的意义: ①3a +b ; ②(a-b)2; ③x-1y .【答案】 (1)①2x-(-3y); ②a+b 2; ③-x -13.(2)①a 的3倍与b 的和; ②a 与b 的差的平方; ③x 与y 的倒数的差求代数式的值例2 (1)当a =3,b =-2时,代数式(a -b)(a +b)的值是________; (2)当a +b =2,a -b =5时,代数式(a +b)3·(a -b)2的值是________; (3)当x +2y =-6时,代数式-x +10-2y 的值是________. 【答案】(1)5 (2)200 (3)4单项式和多项式例3 (1)下列说法正确的是( )A .单项式-25x 2y 的系数是25,次数是2 B .单项式x 的系数是0,次数是0 C .ab -32是二次单项式 D .单项式-3x 2y 2的系数是-32,次数为3(2)多项式15x 3-2y 4-1是________次________项式,次数最高项是________.【答案】(1)D (2)四 三 -2y 4整式的加减例4 (1)化简:2(a 2+a -3)-3(a 2-1).(2)先化简,再求值:5a 2b -{2a 2b -[3ab 2-(4ab 2-2a 2b)]},其中a =-3,b =0.5. (3)试说明代数式(2a -3b +5)-(2-b +a)-(a -2b -6)的值与a ,b 的取值无关.【答案】(1)-a 2+2a -3 (2)原式=5a 2b -ab 2=23.25(3)化简结果为9,所以和a ,b 的取值无关.运用整式加减解决简单的实际问题例5 如图,四边形ABCD 和四边形ECGF 都是正方形. (1)用含x ,y 的式子表示三角形BGF 的面积; (2)用含x ,y 的式子表示阴影部分面积;(3)求当x =2cm ,y =3cm 时,阴影部分的面积是多少?【答案】(1)12xy +12y 2(2)12x 2+12y 2-12xy (3)72cm 2课后练习1.已知代数式3x 2-4x +6的值为9,则x 2-43x +9的值为____________.2.已知A =x -5x 2,B =x 2-11x +6,那么化简2A -B 的结果是____________. 3.一个两位数的个位数字为a ,十位数字比个位数字大2,则这个数为____________.(用含有a 的代数式表示)4.(1)先化简,再求值:2(a 2-ab)-3(23a 2-ab),其中a =23,b =-6;(2)若代数式(2x 2+ax -y +b)-(2bx 2+3x +5y +1)的值与字母x 的取值无关,求a ,b 的值.5.台风登陆浙江,使余姚、宁波受灾严重.某企业在杭州和绍兴的两个分厂同时捐赠生活物资若干,杭州厂可支援外地4车,绍兴厂可支援外地10车.现在决定给余姚8车,宁波6车,每车的运费如下表.设杭州运往余姚的生活物资为x 车. (1)用含x 的代数式填表:(2)若总运费为6750元,则杭州运往余姚的生活物资应为多少车? 【答案】1.10 2.13x -11x 2-6 3.11a +204.(1)原式=2a 2-2ab -2a 2+3ab =ab ,当a =23,b =-6时,原式=ab =23×(-6)=-4. (2)原式=(2-2b)x 2+(a -3)x -6y +b -1,∵代数式的值与字母x 的取值无关,∴2-2b =0,a -3=0,即a =3,b =1.5.(1)(2)由题意得:6750=550x +800(4-x)+300(8-x)+560(2+x),解得x =3.答:若总运费为6750元,则杭州运往余姚的生活物资应为3车.一元一次方程(一)一、必备知识:1.方程的两边都是____________,只含有____________未知数,并且未知数的指数是____________,这样的方程叫做一元一次方程.2.等式的性质1:等式的两边都加上(或都减去)____________数或式,所得结果仍是等式.等式性质2:等式的两边都乘或除以同一个____________(除数不能为0),所得结果仍是等式.3.解方程常见的变形有____________,____________,____________,____________,____________.【答案】1.整式 一个 一次 2.同一个 数或式 3.去分母 去括号 移项 合并同类项 两边同除以未知数的系数 二、防范点:1.利用等式性质2时,注意除数或式不能为0. 2.移项要注意变位置,变符号两个变.3.去分母时不要漏乘没分母的单项式,去掉分母后,分子部分为一个整体,要添加括号.4.用分配律去括号时注意不要漏项,并注意每一项的符号变化. 考点精练一元一次方程的概念例1 (1)下列方程中,是一元一次方程的是( )A .x 2-4x =3B .x +2y =1C .x -1=0D .x -1=1x(2)关于x 的方程(m -1)x n -2-3=0是一元一次方程,则m ,n 应满足的条件为:m________,n________.【答案】(1)C (2)≠1 =3一元一次方程的解例2 (1)请写出一个未知数x 的系数为2,且解为x =-3的一元一次方程________.(2)若x =-2是关于x 的方程2x +3m +5=0的解,则m 的值为________.(3)已知关于x 的方程9x -3=kx +14有整数解,那么满足条件的所有整数k =__________.【答案】(1)答案不唯一,如2x =-6 (2)-13(3)8,10,-8,26等式的基本性质例3 (1)如果a =b ,那么下列式子不一定成立的是( )A .a +c =b +cB .c -a =c -bC .ac =bcD .a c =b c(2)已知2x +y =0,且x≠0,则yx的值为( )A .-2B .-12 C .2 D .12(3)在括号内填写解方程中一些步骤的依据: 2-x 4=x3+1. 解:去分母,得:3(2-x)=4x +12( ), 去括号,得:6-3x =4x +12( ), 移项,得:-3x -4x =12-6( ), 合并同类项,得:-7x =6, 系数化为1,得:x =-67( ).【答案】(1)D (2)A (3)等式性质2 去括号法则或分配律 等式性质1 等式性质2解一元一次方程例4 (1)解方程2x 0.3+0.5-0.1x 0.2=1时,把分母化为整数正确的是( )A .20x 3+5-x 2=10B .20x 3+5-x 2=1C .20x 3+0.5-0.1x 2=10 D .2x 3+5-x2=1(2)某同学在解关于y 的方程2y -13=y +a 2-1去分母时,方程右边的-1没有乘6,结果求得方程的解为y =2,试求a 的值及此方程的解.(3)解方程:①5(x +8)-5=6(2x -7); ②3y -14-1=5y -76; ③0.1x -0.20.02-x +10.5=3.【答案】 (1)B (2)a =13,y =-3. (3)①x=11; ②y=-1; ③x=5.课后练习1.下列各项正确的是( )A .7x =4x -3移项得7x -4x =3B .由2x -13=1+x -32去分母得2(2x -1)=1+3(x -3) C .由2(2x -1)-3(x -3)=1去括号得4x -2-3x -9=1 D .由2(x +1)=x +7去括号、移项、合并同类项得x =52.关于x 的方程|m -1|x|n -2|-13=0是一元一次方程,则m ,n 应满足的条件为:m____________,n____________.3.定义新运算a※b 满足:(a +b)※c=a※c+b ,a ※(b +c)=a※b-c ,并规定:1※1=5,则关于x 的方程(1+4x)※1+1※(1+2x)=12的解是x =____________.4.当x 取何值时,代数式3x +26和x -2是互为相反数?5.解方程:(1)1-3x -52=1+5x 3;(2)32[23(x4-1)-2]-x =2.【答案】1.D 2.≠1 =3或1 3.14.由题意得3x +26+x -2=0,解方程得x =109.5.(1)x =1 (2)x =-8一元一次方程(二)一、必备知识:1.问题解决的基本步骤:____________,____________,____________,____________. 2.行程问题:速度×时间=路程,速度和×时间=总路程,速度差×时间=追及的路程.3.工程问题:工作效率×工作时间=工作总量,甲、乙合作的工作效率=甲的工作效率+乙的工作效率.4.利率问题:本金×利率×存期=利息,利息×税率=利息税,本金+利息-利息税=实得本利和.【答案】1.理解问题 制订计划 执行计划 回顾 二、防范点:1.各类问题中的数量关系要理清.如行程问题中速度、时间、路程之间的关系,工程问题中工作效率、工作时间、工作总量之间的关系等.利用常见的相等关系列方程.2.调配问题中要分清是内部调配还是外部调配,配套问题中注意两个量之间的比例关系不要搞错.3.题意比较复杂时要用线段图示、列表等方法分析题意. 考点精练一元一次方程的应用例1 (1)小华带x 元钱去买甜点,若全买红豆汤圆,刚好可买30杯;若全买豆花,刚好可买40杯.已知豆花每杯比红豆汤圆便宜1元,依据题意可列出的方程是________________.(2)如图,要求以下的”□”内填入同一个数字.求这个数字是________.9 □ 1 × 3 □763(3)要锻造一个边长为50mm 的立方体零件毛坯,需要取直径为100mm 的圆钢长为________mm (结果保留π).(4)小华的爸爸三年前为小华存了一份5000元的教育储蓄,今年到期时的本息和是5405元,请你帮小华算一算,这种储蓄的年利率是________.(5)植树节期间,我市某初中学校组织植树活动,已知在甲处植树的有13人,在乙处植树的有17人.现调15人去支援,使在甲处植树的人数是乙处植树人数的12,问应调往甲、乙两处各多少人?(6)甲、乙两人分别从A 、B 两地出发,甲骑摩托车,乙骑自行车,沿同一条路线相向匀速行驶.出发后经3小时两人相遇.已知在相遇时乙比甲少行驶了90千米,相遇后经1小时甲到达B 地.问甲、乙行驶的速度分别是多少?【答案】(1)x 30=x 40+1 (2)2 (3)50π(4)2.7% (5)调往甲处2人,调往乙处13人. (6)甲的速度是45千米/小时,乙的速度是15千米/小时.利用一元一次方程解决方案决策问题例2 一家电信公司推出两种移动电话计费方法:计费方法A 是每月收月租费58元,通话时间不超过160分钟的部分免费,超过160分钟的按每分钟0.25元加收通话费;计费方法B 是每月收取月租费88元,通话时间不超过250分钟的部分免费,超过250分钟的按每分钟0.20元收通话费.现在设通话时间是x 分钟.(1)当通话时间超过160分钟,请用含x 的代数式表示计费方法A 的通话费用;(2)当通话时间超过250分钟,请用含x的代数式表示计费方法B的通话费用;(3)用计费方法A的用户一个月累计通话360分钟所需的话费,若改用计费方法B,则可通话多少分钟?(4)请你分析,当通话时间超过多少分钟时采用计费方法B合算?【答案】(1)A:58+0.25(x-160)=(0.25x+18)元;(2)B:88+0.2(x-250)=(0.2x+38)元;(3)由题意得:0.2x+38=0.25×360+18,解得:x=350.(4)由于超过一定时间后,B的计费方式每分钟费用小于A的计费方式,因此时间越多,B的计费方式越合算.当用x分钟时,两种计费方式所需费用一样,得0.2x+38=0.25x+18,解得:x=400.答:当通话时间超过400分钟时,采用计费方法B合算.例3霞霞和瑶瑶两位学生在数学活动课中,把长为30cm,宽为10cm的长方形白纸条黏合起来.霞霞按图1所示方法黏合起来得到长方形ABCD,黏合部分的长度为a cm;瑶瑶按图2所示方法黏合起来得到长方形A1B1C1D1,黏合部分的长度为b cm.【图形理解】若霞霞和瑶瑶两位学生按各自要求分别黏合两张白纸条(如图3),则DC =____________cm,D1C1=____________cm(用含a或b的代数式表示);若霞霞和瑶瑶两位学生按各自要求分别黏合n张白纸条(如图1、2),则DC=____________cm(用含a和n的代数式表示),D1C1=____________cm(用含b和n的代数式表示);【问题解决】若a=b=6,霞霞用7张长为30cm,宽为10cm的长方形白纸条黏合成一个长方形ABCD,瑶瑶用n张长为30cm,宽为10cm的长方形白纸条黏合成一个长方形A1B1C1D1.若长方形ABCD的面积与长方形A1B1C1D1的面积相等,求n的值?【拓展应用】若a=6,b=4,长为30cm,宽为10cm的长方形白纸条共有30张.问如何分配30张长方形白纸条,才能使霞霞和瑶瑶按各自要求黏合起来的长方形面积相等(要求30张长方形白纸条全部用完)?若能,请求出霞霞和瑶瑶分别分配到几张长方形白纸条;若不能,请说明理由.【答案】图形理解:(60-a) (20-b) [30n-a(n-1)] [10n-b(n-1)]问题解决:由题知:10×[30×7-6×(7-1)]=30×[10n-6×(n-1)],∴1560=120n,∴n=13.答:n的值为13.拓展应用:设长为30cm,宽为10cm的长方形白纸条分配给霞霞x张,则瑶瑶(30-x)张.∴10×[30x-6×(x-1)]=30×[10×(30-x)-4×(30-x-1)],∴24x+6=3(300-10x-120+4x+4),∴x=13,∴30-x=30-13=17(张).答:长为30cm,宽为10cm的长方形白纸条分配给霞霞13张,瑶瑶17张.课后练习1.甲、乙两人分别从相距162千米的A,B两地同时出发,甲骑自行车,乙骑摩托车,相向匀速行驶.已知乙的速度是甲的3倍.经过2小时后,乙的摩托车发生故障,停在路边等待甲,又经过了1小时两人相遇,问甲、乙两人的速度各是多少?2.民航规定:旅客可以免费携带a kg物品,若超过a kg,则要收取一定的费用,当携带物品的质量为b kg(b>a)时,所交费用为Q=10b-200(单位:元).(1)若小明携带了35kg物品,质量大于a kg,则他应该交多少费用?(2)若小王交了100元费用,则他携带了多少千克的物品?(3)若收费标准以超重部分的质量m(kg)计算,在保证所交费用Q不变的情况下,试用m 表示Q.3.某地的一种绿色蔬菜,在市场上若直接销售,每吨利润为1000元,经粗加工后销售,每吨利润4000元,经精加工后销售,每吨利润7000元.当地一家公司现有这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果对蔬菜进行精加工,每天可加工6吨,但每天两种方式不能同时进行.受季节等条件的限制,必须用15天时间将这批蔬菜全部销售或加工完毕.为此,公司研制了三种方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能地对蔬菜进行精加工,没来得及加工的蔬菜,在市场上直接销售;方案三:将一部分蔬菜进行精加工,其余蔬菜进行粗加工,并刚好15天完成.如果你是公司经理,你会选择哪一种方案,说明理由.【答案】1.设甲的速度是x千米/小时,则乙的速度是3x千米/小时,由题意可得:2(x+3x)+x=162,解得x=18,∴3x=54千米/小时.答:甲的速度是18千米/小时,乙的速度是54千米/小时.2.(1)Q=35×10-200=150元.(2)设小王携带了x kg物品,由10x-200=100,得x=30.(3)由10a-200=0,得a=20,则m=b-a=b-20,即b=m+20,Q=10b-200=10m 元.3.方案一:4000×140=560000(元);方案二:15×6×7000+(140-15×6)×1000=680000(元);方案三:设精加工x吨,则x6+140-x16=15,解得x=60,7000×60+4000×(140-60)=740000(元).答:选择第三种方案.图形的初步知识(一)一、必备知识:1.点、线、面、体称为____________.2.经过两点____________一条直线.3.线段有____________端点,它可以用表示它的____________端点的____________字母表示,也可以用一个____________字母表示.射线有____________端点,它可以用表示它的端点和射线上另外一个点的两个____________字母表示,表示端点的字母要写在____________.直线____________端点,它可以用它上面任意两个点的____________字母表示,也可以用一个____________字母表示.4.在所有连结两点的线中,____________最短.连结两点的____________叫做两点间的距离.【答案】1.几何图形 2.有一条而且只有 3.两个两个大写小写1个大写前面没有大写小写 4.线段线段的长度二、防范点:1.表示线段、直线时,注意区分大小写字母,小写字母一个就够,大写字母表示的话要两个字母,不要大小写字母一起用.射线的表示注意端点字母必在前.2.两点间距离概念注意两个关键词,一个是”线段”,一个是”长度”,两者缺一不可.考点精练几何图形例1(1)如图,长方形绕它的一条边MN所在的直线旋转一周形成的几何体是( )(2)你能说出下面的图形中,哪些是平面图形,哪些是立体图形吗?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙教版《数学》七(上)第三章复习提纲
(原创编写,如有错误请批评指正)
1、平方根
...的定义:如果一个数的________等于a,那么这个数叫做a的平方根(也叫a的二次方根)。

a(a≥0)的平方根记为___________。

(1)一个正数a有_____、______两个平方根,它们互为相反数;正平方根用______表示,负平方根用______表示,因此一个正数a的平方根就用______表示。

(2)零的平方根是_________。

(3)________没有平方根。

2、算术平方根
.....的定义:正数的__________和______的平方根,统称算术平方根。

一个数a (a≥0)的算术平方根记做__________。

例如:25的平方根是:______;64的算术平方根是:______;7的平方根是:______;
= _______________;-= __________________;±= _____________。

3、立方根
...的定义:如果一个数的立方等于a,那么这个数就叫a的__________(也叫a的三次方根)。

a的立方根记为___________。

(1)一个正数有一个_____的立方根;一个负数有一个_____的立方根;零的立方根是____。

(2
例如:27的立方根是:______;-64的立方根是:______;-5的立方根是:______。

_________;= _________;-= _________;-= _________。

4、求一个数的平方根的运算叫做__________;求一个数的立方根的运算叫做__________。

5、平方是它本身的数是________;平方根是它本身的数是________;算术平方根是它本身的数是________;立方是它本身的数是________;立方根是它本身的数是______________。

6、无理数
...的定义:______________________________小数叫做无理数。

常见的无理数类型:
(1)根号型(开不尽方的数):如______、______等;
(2)圆周率型:如______、_____等;
(3)构造型:如0.1010010001…(每2个1之间依次多个0)等无限不循环小数。

7、____________和_____________统称实数
..。

相关文档
最新文档