《一元二次方程》一元二次方程PPT课件设计

合集下载

人教版九年级数学上册《一元二次方程》课件(共13张PPT)

人教版九年级数学上册《一元二次方程》课件(共13张PPT)

【跟踪训练】
3.把方程 x(2x-1)=1 化成 ax2+bx+c=0 的形式,则 a,
b,c 的一组值是( A )
A.2,-1,-1
B.2,-1,1
C.2,1,-1
D.2,1,1
4.把下列关于 x 的一元二次方程化为一般形式,并指出其 二次项系数、一次项系数和常数项.
(1)3x2=5x-1; (2)a(x2-x)=bx+c(a≠0). 解:(1)一般形式为 3x2-5x+1=0,二次项系数为 3,一次 项系数为-5,常数项为 1. (2)一般形式为 ax2-(a+b)x-c=0,二次项系数为 a,一次 项系数为-(a+b),常数项为-c.
证明:∵关于 x 的一元二次方程 ax2+bx+c=0(a≠0)中的 二次项系数与常数项之和等于一次项系数,
∴a+c=b. ∴当 x=-1 时,ax2+bx+c=a-b+c=b-b=0, ∴-1 必是该方程的一个根.
•不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话, 另一眼睛看到纸的背面。2022年4月11日星期一2022/4/112022/4/112022/4/11 •书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/112022/4/112022/4/114/11/2022 •正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/112022/4/11April 11, 2022 •书籍是屹立在时间的汪洋大海中的灯塔。
第二十一章 一元二次方程
21.1 一元二次方程
1.一元二次方程的概念 只含有__一__个___未知数,并且未知数的最高次数是___2____ 的___整__式___方程,叫做一元二次方程. 注意:一元二次方程有三个特点:(1)只含有一个未知数; (2)未知数的最高次数是 2;(3)是整式方程.

《一元二次方程》数学PPT课件(10篇)

《一元二次方程》数学PPT课件(10篇)
4-7x2=0
一般形式
二次项 一次项 常数项 系数 系数
3x2-5x+1=0
3 -5 1
1x2 +1x-8=0
1
-7x2 +4=0 或-7x2 +00x+4=0 -7
或7x2 - 4=0
7
1 -8
04 0 -4
抢答: 一元二次方程
2x2+x+4=0
-4y2+2y=0 3x2-x-1=0
4x2-5=0
二次项系数
一次项系数
例1:判断下列方程是否为一元二次方程?
(1)x2+x =36
(2) x3+ x2=36
(3)x+3y=36
(4)
1 x2
2 x
0
(5) x+1=0 (6) x2 6 (7)4x2 1 (2x 3)2 3
(8)( x )2 2 x 6 0
练习巩固
下列方程哪些是一元二次方程? 为什么? (1)7x2-6x=0 (2)2x2-5xy+6y=0
?
问题(1) 有一块矩形铁皮,长100㎝,宽50㎝,在
它的四角各切去一个正方形,然后将四周突出部 分折起,就能制作一个无盖方盒,如果要制作的方 盒的底面积为3600平方厘米,那么铁皮各角应切 去多大的正方形?
分析:
设切去的正方形的边长为xcm,
则盒底的长为 (100-2x)cm ,宽
为 (50-2x)cmБайду номын сангаас.
① 只含一个未知数;
②未知数的最高次数是2.
③ 都是整式方程;
一元二次方程的一般形式
一般地,任何一个关于x 的一元二次方程都可以
化为 ax2 bx的形c 式0,我们把

《解一元二次方程》一元二次方程PPT(因式分解法)

《解一元二次方程》一元二次方程PPT(因式分解法)
分析:出现了x2 +4x,接近完全平方式的结构特点,考虑用配方法.
〔3〕9〔x+1〕2=〔2x-5〕2 ;
分析:移项易发现符合平方差公式,考虑用因式分解法.
〔4〕9x2-12x-1 = 0.
分析:方程的结构没有明显特殊性,考虑公式法.
解:∵ a = 9,b = -12,c = -1,
∴ Δ = b 2-4 a c =〔-12〕2-4×9×〔-1〕= 144+36
(x + m) 〔x + n〕=0
解法选择根本思路
1.一般地,当一元二次方程一次项系数为0时〔ax2+c=0〕, 应选用直接开平方法; 2.假设常数项为0〔 ax2+bx=0〕,应选用因式分解法; 3.假设一次项系数和常数项都不为0 (ax2+bx+c=0〕,先化为 一般式,看一边的整式是否容易因式分解,假设容易,宜选 用因式分解法,不然选用公式法; 4.当二次项系数是1,且一次项系数是偶数时,用配方法也较 简单.
不过现在教同学们一个 小办法,左边我为大家准备 了一张视力保健“远眺图” ,看看图就能缓解眼疲劳, 起到远眺解乏的作用。
远眺图是利用心理学 空间知觉原理,在一张二维 空间平面上,强烈显示出三 维空间的向远延伸的立体图 形,远视和视力良好的人在 长时间近距离用眼情况下引 起的视力疲劳,可以通过此 种方法获得一定的缓解。
远眺图使用方法
第一步、首先在能把远眺图都看清的位置,熟悉 一下最远处几个框细微的纹路,
第二步、然后逐渐加大距离至远眺图最远处的几 个框处于模糊与清晰之间的位置停止。
第三步、思想集中,认真排除干扰,精神专注, 开始远眺,双眼看整个图表,产生向前深进的感 觉,然后由外向内逐步辨认最远处几个框每一层 的绿白线条。

人教版九年级数学上册《一元二次方程》PPT优秀课件

人教版九年级数学上册《一元二次方程》PPT优秀课件


①都是整式方程; ②都只含一个未知数; ③未知数的最高次数都是2.
那么这三个方程与一元一次方程的区别在哪里? 它们有什么共同特点呢?
知识要点
一元二次方程的概念 等号两边都是整式,只含有一个未知数(一元),并且未知
数的最高次数是2(二次)的方程,叫做一元二次方程.
一元二次方程的一般形式是 ax2+bx +c = 0(a,b,c为常数, a≠0)
想一想: 还有其他的方法吗?试说明原因. (20-x)(32-2x)=570
32-2x
32
20-x 20
归纳小结
建立一元二次方程模型的一般步骤

审题,弄 清已知量 与未知量 之间的关 系
设 设未知数

找出等量 关系

根据等量 关系列方 程
随堂演练
1.下列关于x的方程一定是一元二次方程的是( D )
解:当x=-3时,左边=9-(-3)-2=10, 则左边≠右边, 所以-3不是方程x2-x-2=0的解; 下面几个数同理可证. 经检验得-1,2为原方程的根.
获取新知
知识点三:建立一元二次方程模型
问题 在一块宽20m、长32m的矩形空地上,修筑三条宽相等 的小路(两条纵向,一条横向,纵向与横向垂直),把矩形空 地分成大小一样的六块,建成小花坛.如图要使花坛的总面积 为570m2,问小路的宽应为多少?
4.如图,在一块长12 m,宽8 m的矩形空地上,修建同样宽的两条互 相垂直的道路(两条道路各与矩形的一条边平行),剩余部分栽种 花草,且栽种花草的面积为77 m2.设道路的宽为x m,则根据题意, 可列方程为 (12-x)(8-x)=77.
样的正方形,再将四周突出部分折起,就能制作一个无盖方盒.如果要制作的

一元二次方程的解法ppt课件

一元二次方程的解法ppt课件
的各项系数a、b、c确定的,当 2 -4ac≥0时,它的实数根

公式法推导过程
这叫做一元二次方程的求根公式,解一元二次方程时,
2
把各项系数的值直接代入这个公式,若 -4ac≥0就可以
求得方程的根,这种解一元二次方程的方法叫做公式法.
尝试与交流
2
2
在一元二次方程 +bx+c=0(a≠0)中,如果 -4ac<0那
解:原方程可变形为(2x-1+x)(2x-1-x)=0
即(3x-1)(x-1)=0
3x-1=0或x-1=0
所以x1=

,x
2=1

观察与思考
2=4(x+2)
(x+2)
解方程
小丽、小明的解法如下:
小丽、小明的解法,哪个正确?
因式分解法练习
1.用因式分解法解下列方程
①x2-3x=0
② 3x2= x
③2( x-1 ) + x ( x-1 ) =0
叫做因式分解法
例题8
解下列方程
① = −
② + − + =
原方程可变形为x2+4x=0
原方程可变形为
x(x+4)=0
(x+3)(1-x)=0
x=0或x+4=0
x+3=0或1-x=0.
所以x1=0,x2=-4
所以x1=-3,x2=1
例题9
解方程
(2x-1)2-x2=0
的矩形割补成一个正方形
数学实验室
一个矩形通过割、拼、补,成为一个正方形的过程配方
的过程
数学实验室
数学实验室
数学实验室
数学实验室

一元二次方程ppt课件

一元二次方程ppt课件
一元二次方程ppt课件
contents
目录
• 一元二次方程的定义 • 一元二次方程的解法 • 一元二次方程的应用 • 一元二次方程的判别式 • 一元二次方程的根的性质 • 一元二次方程的根与系数的关系
01
一元二次方程的定义
定义与特点
定义
只含有一个未知数,且未知数的 最高次数为2的整式方程叫做一元 二次方程。

根的判别条件
判别式
一元二次方程的判别式Δ=b²-4ac,当 Δ>0时,方程有两个不相等的实根;当 Δ=0时,方程有两个相等的实根;当 Δ<0时,方程没有实根。
VS
根的存在性
一元二次方程一定有两个实根,除非判别 式Δ<0。
根的性质与关系
根与系数的关系
一元二次方程的两个根x1和x2与系数a、b、c之间存在关系,如 x1+x2=-b/a,x1*x2=c/a等。
配方法
步骤 1. 将方程 $ax^2 + bx + c = 0$ 移项,使等号右侧为0。
2. 将二次项系数化为1,即方程两边都除以 $a$。
配方法
01
3. 将一次项系数的一半的平方加 到等式两边,使左侧成为一个完 全平方项。
02
4. 对方程两边同时开平方,得到 $x$ 的解。
公式法
总结词
利用一元二次方程的解的公式直接求解。
根的积
一元二次方程的根的积等于常数项与 二次项系数之比。
根的平方和与积的性质
要点一
根的平方和
一元二次方程的根的平方和等于常数项与二次项系数绝对 值的商。
要点二
根的平方积
一元二次方程的根的平方积等于二次项系数绝对值的商。
感谢您的观看

一元二次方程课件ppt

一元二次方程课件ppt

• 问题1、绿苑小区住宅设计,准备在每两幢楼 房之间,开辟面积为900平方米的一块长方 形绿地,并且长比宽多10米,那么绿地的长 和宽各为多少?
(x+10)
x
问题1、绿苑小区住宅设计,准备在每两幢楼房之间, 开辟面积为900平方米的一块长方形绿地,并且 长比宽多10米,那么绿地的长和宽各为多少?
例1.将方程(8-2x)(5-2x)=18化成一元二次 方程的一般形式,并写出其中的二次项系数、一次
项系数及常数项.
• 分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此, 方程(8-2x) (•5-2x)=18必须运用整式运算进行整理,包括 去括号、移项等.
• 解:去括号,得: • 40-16x-10x+4x2=18 • 移项,得:4x2-26x+22=0 • 其中二次项系数为4,一次项系数为-26,常数项为22.
3
你会用描点法画二次函数y=x2的图象吗?
观察y=x2的表达式,选择适当x值,并计算 相应的y值,完成下表:
x … -3 -2 -1 0 1 2 3 … y=x2 … 9 4 1 0 1 4 9 …
描点,连线 y 10
y=x2
8
6
4
2
?
-4 -3 -2 -1 0 1 2 3 4 x -2
二次函数 y=x2的图象 形如物体抛 射时所经过 的路线,我们 把它叫做抛 物线
方程
二次项 一次项 常数 系数 系数 项
2x2 x 3 0 2
1
-3
3x2 5 0
3
0
-5
x2 3x 0 1
-3
0
2、将下列一元二次方程化为一般形式,并分别 指出它们的二次项系数、一次项系数和常数项:

24.1 一元二次方程课件(共20张PPT)

24.1 一元二次方程课件(共20张PPT)
同学们再见!
授课老师:
时间:2024年9月15日
解:设有x人参加了这次聚会,根据题意,得 x(x-1)=10,整理,得 x2-x-20=0.
拓展提升
课堂小结
1.一元二次方程的概念只含有一个未知数,并且未知数的最高次数为2的整式方程,叫做一元二次方程.2.一元二次方程的一般形式 ax2+bx+c=0(a≠0).3.一元二次方程的解使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做这个方程的根.4.根据题意列一元二次方程
为什么规定a≠0?
因为a=0时,未知数的最高次数小于2
一元二次方程的项和各项系数
ax2+bx+c=0(a≠0)
一次项系数
例 将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项.
解:去括号,得 3x2-3x=5x+10. 移项,合并同类项,得一元二次方程的一般形式 3x2-8x-10=0. 其中二次项系数为3,一次项系数为-8,常数项为-10.
知识点1
一元二次方程的定义

如图,一个长为10 m的梯子斜靠在墙上,梯子的顶端A处到地面的距离为8 m.如果梯子的顶端沿墙面下滑1 m,那么梯子的底端B在地面上滑动的距离是多少米?如果设梯子的底端B在地面上滑动的距离为x,请列出方程,并谈谈所列方程的特征.
x2+12x-15=0
x2-90x+1 400=0,x2-45x+350=0,x2+12x-15=0
建立一元二次方程模型的一般步骤:(1)审题,认真阅读题目,弄清未知量和已知量之间的关系;(2)设出合适的未知数,一般设为x;(3)确定等量关系;(4)根据等量关系列出一元二次方程,有时要化为一般形式.

一元二次方程ppt课件

一元二次方程ppt课件
定义
一元二次方程是一个整式方程, 其一般形式为ax^2 + bx + c = 0 ,其中a、b、c是常数,且a≠0。
解释
一元二次方程只含有一个未知数, 并且未知数的最高次数是2。
举例
如2x^2 + 3x - 4 = 0,3x^2 - 5x + 2 = 0等。
一元二次方程的一般形式
形式
ax^2 + bx + c = 0,其中a、b 、c是常数,且a≠0。
判断下列哪个方程有两个不相 等的实数根,并说明理由: x^2 + 2x + 1 = 0
综合练习题
对于任何一个一元二次方程,如 何判断它的根的情况?
根据一元二次方程的特点,如何 利用配方法求解其根?
对于一个一元二次方程,如果它 的根的判别式小于0,那么这个
方程有什么特点?
CHAPTER 07
总结与回顾
• 如果Δ>0,方程有两个不同的实数解;
根的判别式的性质
• 如果Δ=0,方程有两个相同的实 数解;
• 如果Δ<0,方程没有实数解。
根的判别式的应用
通过根的判别式,我们可以快速判断一元二次方程的实数解的情况,不 需要求解方程。
在数学、物理、工程等领域中,根的判别式被广泛应用于解决涉及二次 方程的问题。
加强对一元二次方程的应用,结合实际 生活和相关学科,拓展应用领域。
进一步学习其他数学知识和方法,为后 培养自主学习和终身学习的意识,不断
续学习和工作打下坚实的基础。
学习和进步。
THANKS FOR WATCHING
感谢您的观看
公式法
通过配方法或公式法求解。
求根公式法
当Δ=b^2-4ac≥0时,方程有 实数解。此时,x=(b±√Δ)/(2a)。

一元二次方程(第一课时)课件

一元二次方程(第一课时)课件
一元二次方程(第一课 时)ppt课件
本PPT课件将介绍一元二次方程的基本概念和解题方法,以及优化题的应用。 通过丰富的内容和精彩的图像,使学生能够轻松理解和掌握这个重要的数学 知识点。
引言
本节课将要介绍一元二次方程的定义和例子,并确定本堂课的学习目标。
一元二次方程的概念和公式
一元二次方程的定义
什么是一元二次方程?通过 实例来解释。
二次方程的标准形式和 一般形式
标准形式和一般形式的区别 是什么?如何转换?
解一元二次方程的公式
学习如何利用公式解一元二 次方程。
解一元二次方程的四种方法
1
直接公式法
使用直接公式解一元二次方程的骤和技巧。
2
完全平方公式法
通过完全平方公式解一元二次方程。
3
公式法
利用一元二次方程的公式进行求解。
4
图像法
推荐一些有关一元二次方程的优秀书籍和教材。
在线资源
分享一些相关的在线资源,供学生进一步学习。
二次函数及其图像分 析
学习如何分析二次函数图像以 解决优化问题。
求最值的思想和方法
通过思考和运用数学方法,找 到优化问题的最值。
小结
本堂课的主要内容回顾
总结本课所学的重点知识和技巧。
下节课预告
预告下节课将学习的内容和目标。
学习到的知识点总结
总结一元二次方程的基本概念和解题方法。
参考资料
书籍和教材
通过分析二次函数图像来解一元二次方程。
解题方法和技巧
1 变形思路
如何巧妙变形一元二次方程,找到解题的突破口。
2 整理形式
整理一元二次方程的形式,使解题更加简单明了。
3 注意二次方程的根性质

《应用一元二次方程》一元二次方程演示课件 PPT

《应用一元二次方程》一元二次方程演示课件 PPT

思考:这个问题设什么为x?有几种设法?
思考:(1)若设年平均增 (1)某公司今年的销售收入是a万元,如果每年的增长率都是x,那么一年后的销售收入将达到____ _ _万元(用代数式表示)
892(1+x)2=2083
长率为x,你能用x的代 1254(1+y)2=3089
上网计算 思考:(1)若设年平均增长率为x,你能用x的代数式表示2002年的台数吗?
1月1日 12月31日 12月31日 12月31日 12月31日
问题1:截止2000年12月31日,我国的上网计算机 总台数为892万台;截止2002年12月31日,我国的 上网计算机总台数为2083万台;
(1)求2000年12月31日至2002年12月31日我国计 算机上网总台数的年平均增长率(精确到0.1%)
解 2第、二关章键之一处元:二分次析方题程解意,方找出程等量并关系检,列验出方根程。的准确性及是否符合实际意义并作答。
练一练:
某单位为节省经费,在两个月内将开支从 每月1600元降到900元,求这个单位平均每 月降低的百分率是多少?
练一练:
某校坚持对学生进行近视眼的防治,近视学生 人数逐年减少.据统计,今年的近视学生人数是 前年人数的75℅,那么这两年平均每年近视学 生人数降低的百分率是多少(精确到1℅)?
(2) 上网计算机总台数2001年12月31日至2003年12月31日与2000 年12月31日至2002年12月31日相比,哪段时间年平均增长率较大?
2001年12月31日总台数为1254万台, 2003年12月31日总台数为3089万台
(2)解:设2001年12月31日至2003年12月31日上网计 算机总台数的年平均增长率为y,由题意得
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方 程的解也叫做一元二次方程的根.
新知探究 跟踪训练 1. 下列哪些数是一元二次方程 x2-4x+3=0 的解? -1, 0, 1, 3.
2. 方程 x2+x-12=0 的两个根为( D )
A.x1=-2,x2=6 C.x1=-3,x2=4
新知探究
跟踪训练 把下列方程化成一元二次方程的一般形式,并写出它们的二次项系
数、一次项系数和常数项.
(1) x 2 2 4;
x2 4x 0 1 -4 0
(2)2 x 3 x 4 x2 10 ;
x2 2x 14 0 1 2 -14
(3)x2 x 1 1. 32
2x2 3x 9 0 2 -3 -9
新知探究 知识点3
第二十一章 一元二次方程
一元二次方程
知识回顾
判断下列式子是否是一元一次方程:
3x 1 42
3x 2
5x2 x 4 0
7x 1 5y 4
1、只含有一个未知数 一元一次方程 2、未知数的次数都是1
3、等号两边都是整式
学习目标
1.理解一元二次方程的概念. 2.掌握一元二次方程的一般形式. 3.了解一元二次方程的根的概念.
课堂导入
要设计一座2 m高的人体雕像,使雕像的上部(腰以上)与下部(腰以下)的高度比, 等于下部与全部的高度比,雕像的下部应设计为多高?
A
C 2m
xm
B
x2+2x−4=0 .
新知探究
知识点1
问题1 如图,有一块矩形铁皮,长100 cm,宽50 cm,在它的四角各切一个同 样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作 的无盖方盒的底面积为3 600 cm2,那么铁皮各角应切去多大的正方形?
新知探究 知识点1
问题2 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和 时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队 参赛?
新知探究
知识点1
观察由上面的问题得到的方程有什么特点?
x2+2x−4=0
x2−75x+350=0
x2−x=56
新知探究 跟踪训练 B
A.10×6-4×6x=32 B.(10-2x)(6-2x)=32 C.(10-x)(6-x)=32 D.10×6-4x2=32
感谢您的阅读! 为 了 便于学习和使用,本 文档下载后内容可随意修 改调整及打印 , 欢 迎 下 载 !
B.x1=-6,x2=2 D.x1=-4,x2=3
随堂练习 1
下列选项中是一元二次方程的是( D )
3x A.x2 1
2
B.5x2+y=0
C.ax2+bx+c=0
D.(x-1)(x+2)=1
不是整式 不是一元
缺少a≠0的条件
随堂练习 2
根据下列问题列方程,并将所列方程化成一元二次方程的一般形式: (1)一个圆的面积是 6.28 cm2,求半径; (2)一个直角三角形的两条直角边相差 3 cm,面积是 9 cm2,求较长的直 角边.
ax2+bx+c=0(a≠0)
一元二次方程的解(根)
对接中考 1
若 2n(n≠0) 是关于 x 的方程 x2-2mx+2n=0 的根,则 m-n 的值为

对接中考 2 (2019·资阳中考)a是方程2x²=x+4的一个根,则代数式4a²-2a的值是 8 .
对接中考 3
如图,有一张矩形纸片,长10 cm,宽 6 cm,在它的四角各剪去一个同样的小正 方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面面积是 32 cm2,求剪去 的小正方形的边长.设剪去的小正方形的边长是 x cm,根据题意可列方程为 (B )
2.若方程 (m+2)x|m|−3mx+1=0 是关于x 的一元二次方程,则 ( B )
A.m≠±2
B.m=2
C.m=−2
D.m=±2
新知探究 知识点2 一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式: ax²+bx+c=0 (a≠0) 这种形式叫做一元二次方程的一般形式 . 其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数 项.
随堂练习 3
如果 2 是方程 x2-c=0 的一个根,那么常数 c 是多少?求出这个方程的其他根.
随堂练习 4
已知 a 为方程 x2-3x+1=0 的一根,求 a3-4a2+4a-1 的值.
课堂小结 一 元 二 次 方 程
是整式方程
一元二次方程的概念
只含有一个未知数
相关文档
最新文档