600MW超临界压力锅炉煤粉锅炉课程设计
600MW超临界机组热控控制系统培训教材.
合肥电厂600MW超临界机组热控控制系统培训教材(初稿)目录第一章锅炉控制 (01)第二章汽轮机控制 (27)第三章发电机控制 (96)第四章××厂家DCS控制系统介绍…………………………第页第五章其他控制系统介绍……………………………………第页第六章脱硫控制系统介绍………………………………………第页一、锅炉控制1、炉主要技术规范本期工程装设1台600MW燃煤汽轮发电机组,锅炉为东方锅炉厂制造超临界参数变压运行直流炉,单炉膛、一次再热、平衡通风、露天布置、固态排渣、全钢构架、全悬吊结构Π型锅炉。
燃用烟煤。
锅炉容量和主要参数:主蒸汽和再热蒸汽的压力、温度、流量等与汽轮机的参数相匹配,主蒸汽温度571℃,最大连续蒸发量(BMCR)为1900t/h(暂定),最终与汽轮机的VWO工况相匹配。
锅炉型号:DG1900/25.4-II1锅炉主要参数:过热蒸汽:最大连续蒸发量(B-MCR) 1900t/h额定蒸发量(BRL) 1807.9t/h额定蒸汽压力25.4MPa.g额定蒸汽温度571℃再热蒸汽:蒸汽流量(B-MCR/BRL) 1607.6/1525.5t/h进口/出口蒸汽压力(B-MCR) 4.71/4.52MPa.a 进口/出口蒸汽压力(BRL) 4.47/4.29MPa.a进口/出口蒸汽温度(B-MCR) 321/569℃进口/出口蒸汽温度(BRL) 315/569℃给水温度(B-MCR /BRL) 282/280℃注:a). 压力单位中“g”表示表压。
“a”表示绝对压(以后均同)。
b). 锅炉BRL 工况对应于汽机TRL 工况、锅炉B-MCR 工况对应于汽机VWO 工况。
锅炉运行方式:带基本负荷并参与调峰。
制粉系统:采用中速磨正压直吹冷一次风制粉系统,每炉按配6台中速磨煤机(设1台备用),煤粉细度按200目筛通过量为75%。
给水调节:机组配置2×50% B-MCR 调速汽动给水泵和一台30% B-MCR 容量的电动调速给水泵。
600NW锅炉课程设计
600NW锅炉课程设计一、课程目标知识目标:1. 学生能够理解600NW锅炉的基本结构、工作原理及主要参数。
2. 学生能够掌握锅炉热效率的计算方法,了解影响热效率的因素。
3. 学生能够掌握锅炉运行中的安全防护措施,了解安全事故的预防及处理方法。
技能目标:1. 学生能够运用所学知识,分析600NW锅炉的运行状况,判断可能存在的问题并提出解决方案。
2. 学生能够运用计算方法,对锅炉热效率进行简单计算,评估锅炉运行效果。
3. 学生能够通过实际操作,掌握锅炉的基本操作方法和维护保养技巧。
情感态度价值观目标:1. 学生能够认识到锅炉在能源转换和利用中的重要性,增强节能环保意识。
2. 学生能够通过学习锅炉安全知识,提高安全意识,养成严谨、负责的工作态度。
3. 学生能够培养团队合作精神,学会与他人共同分析问题、解决问题。
课程性质:本课程为专业实践课程,结合理论知识和实际操作,培养学生对600NW锅炉的运行、维护和管理能力。
学生特点:学生具备一定的锅炉理论知识,但对实际操作和安全知识掌握不足。
教学要求:教师需结合课本内容,注重理论与实践相结合,提高学生的实际操作能力。
同时,关注学生的情感态度价值观培养,使学生在掌握专业知识的同时,形成正确的职业素养。
教学过程中,将目标分解为具体的学习成果,便于教学设计和评估。
二、教学内容1. 锅炉基本结构及工作原理:介绍600NW锅炉的构造,包括炉膛、燃烧器、受热面、空气预热器等主要组成部分,分析其工作原理及相互关系。
(对应教材第1章)2. 锅炉参数及热效率计算:讲解锅炉的主要参数,如蒸发量、压力、温度等,并教授热效率的计算方法,分析影响热效率的因素。
(对应教材第2章)3. 锅炉安全运行与防护措施:介绍锅炉安全运行的基本要求,分析常见的安全事故原因及防护措施,如爆炸、泄漏等,并讲解应急预案。
(对应教材第3章)4. 锅炉运行维护与操作:教授锅炉的日常运行维护方法,如清洗、除垢、检查等,并指导学生进行实际操作,掌握基本操作技能。
600MW超临界压力锅炉煤粉锅炉课程设计
600MW超临界压力锅炉煤粉锅炉课程设计银川能源学院课程设计任务书设计题目:600MW超临界压力锅炉煤粉锅炉年级专业:能动1202 班专业:能源与动力工程*名:***学号:指导教师:目录第一章锅炉设计的目的及意义第一节锅炉课程设计的目的和内容 (1)第二节锅炉课程设计的方法和步骤 (2)第二章锅炉简介 (3)第一节锅炉的整体布置 (3)第二节锅炉炉膛及受热面结构 (3)第三节锅炉传热的基本方程 (3)第四节省煤器 (4)第五节过热器系统 (4)第六节再热器系统 (6)第七节燃料系统 (6)第八节烟风系统 (6)第九节锅炉辅助计算 (6)第十节燃料的燃料计算 (6)第十一节固体燃料燃料产生的烟气量计算 6 第三章计算 (3)第一节 600MW机组锅炉设计计算原始参数 (9)第二节理论空气量和理论烟气量的计算 (10)第三节锅炉燃料及热平衡计算 (11)第四节炉膛设计和水冷壁的计算 (13)第五节前屏过热器结构和热力计算.. 16 第六节后屏过热器结构和热力计算.. 23 第七节高温再热器结构和热力计算.. 27 第八节第一悬吊管结构和热力计算.. 32 第九节高温对流过热器结构和热力计算 (34)第十节第二悬吊管结构和热力计算.. 38 第十一节低温再热器垂直段结构和热力计算 (33)第十二节转向室结构和热力计算 (37)第十三节低温再热器水平段结构和热力计算 (39)第十四节省煤器结构和热力计算 (47)第十五节汽温校核 (48)第十六节空气预热器结构和热力计算52 第十七节热力计算数据的总校和计算结果汇总 (60)第四章参考文献 (61)第一章锅炉设计的目的和意义第一节锅炉课程设计的目的和内容一、锅炉课程设计的目的锅炉课程设计是《锅炉原理》课程的重要教学实践环节。
通过课程设计,使学生对锅炉原理课程的知识得到巩固、充实和提高;掌握锅炉机组的热力计算方法,学会使用与热力计算相关的标准或导则,培养综合考虑锅炉机组设计与布置的初步能力;培养学生查阅资料和分析数据的能力,提高学生运算、绘图等基本技能;培养学生对待工程技术问题的严肃认真和负责的态度。
600wm锅炉课程设计
600wm锅炉课程设计一、课程目标知识目标:1. 学生能够理解600wm锅炉的基本结构及其工作原理,掌握热力学在锅炉中的应用。
2. 学生能够掌握锅炉主要参数的计算方法,如热效率、蒸发量等。
3. 学生能够了解锅炉运行中的安全知识,如压力容器安全、防火防爆等。
技能目标:1. 学生能够运用所学知识,进行锅炉的简单故障分析和处理。
2. 学生能够运用计算方法,进行锅炉运行参数的估算和分析。
3. 学生能够独立完成锅炉操作流程的模拟演练。
情感态度价值观目标:1. 学生能够认识到锅炉在能源转换和利用中的重要性,增强节能环保意识。
2. 学生能够培养对锅炉操作过程中安全、严谨的态度,提高职业素养。
3. 学生能够通过课程学习,激发对热能动力工程领域的兴趣和热情。
课程性质:本课程为专业实践课程,以600wm锅炉为载体,结合理论知识与实践操作,培养学生的专业素养和实际操作能力。
学生特点:学生为高中年级学生,已具备一定的热力学基础和动手能力,对实际操作有较高的兴趣。
教学要求:结合学生特点和课程性质,注重理论与实践相结合,强调实际操作能力的培养,确保学生在掌握知识的同时,能够将所学应用于实际工作中。
通过课程目标的分解,为教学设计和评估提供明确的方向。
二、教学内容本课程教学内容主要包括以下几部分:1. 锅炉基本结构和工作原理:介绍600wm锅炉的结构组成、工作原理及热力学在锅炉中的应用。
教学大纲:- 锅炉的构造及各部分功能- 热力学基本概念在锅炉中的应用2. 锅炉参数计算:讲解锅炉主要参数的计算方法,如热效率、蒸发量等。
教学大纲:- 热效率的计算及影响因素- 蒸发量的计算及实际应用3. 锅炉安全知识:介绍锅炉运行中的安全知识,包括压力容器安全、防火防爆等。
教学大纲:- 压力容器安全常识- 防火防爆措施及应急预案4. 锅炉操作流程:通过模拟演练,让学生掌握锅炉的操作流程。
教学大纲:- 锅炉启动、运行、停炉操作流程- 故障处理及日常维护方法5. 实践操作:结合实际锅炉设备,进行操作训练,提高学生的实际操作能力。
600mw锅炉机组课程设计
600mw锅炉机组课程设计一、课程目标知识目标:1. 让学生掌握600MW锅炉机组的基本结构、工作原理及运行特性,能描述其主要部件的功能和相互关系。
2. 使学生了解锅炉机组的热力学过程,包括燃烧、传热、蒸发和排放等方面的知识。
3. 让学生掌握锅炉机组运行中的参数检测、控制及调整方法,了解其安全、经济、环保等方面的要求。
技能目标:1. 培养学生运用所学知识对600MW锅炉机组进行运行分析、故障排除和优化调整的能力。
2. 提高学生运用现代技术手段进行锅炉机组运行监测、控制和维护的能力。
3. 培养学生团队协作、沟通表达及解决实际工程问题的能力。
情感态度价值观目标:1. 激发学生对能源动力工程领域的兴趣,培养其热爱专业、勤奋学习的态度。
2. 增强学生的环保意识,使其认识到节能减排的重要性,树立可持续发展观念。
3. 培养学生的责任感、敬业精神和团队合作精神,使其具备良好的职业道德素养。
课程性质:本课程为专业核心课程,以理论教学和实践操作相结合的方式进行。
学生特点:学生已具备一定的热力学、流体力学等基础知识,具有一定的分析问题和解决问题的能力。
教学要求:结合教材和实际工程案例,注重理论与实践相结合,提高学生的实际操作能力和工程素养。
通过课程学习,使学生能够达到上述课程目标,为将来从事相关工作打下坚实基础。
二、教学内容本课程教学内容主要包括以下几部分:1. 锅炉机组概述:介绍600MW锅炉机组的基本结构、工作原理和运行特性,对应教材第一章。
2. 锅炉主要部件:详细讲解锅炉的燃烧设备、受热面、蒸发器和空气预热器等主要部件的功能、结构及其运行维护要点,对应教材第二章。
3. 热力学过程:分析锅炉机组的热力学过程,包括燃烧、传热、蒸发和排放等,对应教材第三章。
4. 运行控制与调整:介绍锅炉机组的运行参数检测、控制及调整方法,涉及自动化控制系统,对应教材第四章。
5. 故障分析与处理:结合实际案例,讲解锅炉机组常见故障的分析、排除方法及预防措施,对应教材第五章。
锅炉课程设计指导书(附超临界锅炉设计实例word版本)
第一章锅炉设计的任务及热力计算的作用和分类设计工作是产品生产的第一道重要工序,设计好坏对产品的性能和质量有着决定性的作用。
设计布置新锅炉的要求是:确定锅炉的型式,决定各个部件的构造尺寸,在保证安全可靠的基础上力求技术先进、节约金属、制造安装简便,并有高的锅炉效率,以节约燃料消耗。
因此,在设计锅炉之前,应根据所给定的锅炉容量,参数和燃料特性,有目的地进行广泛深入的调查研究,综合利用有关的理论以及制造、运行方面的实践知识,进行各种技术方案的运筹和比较,并进行各种精确的计算。
一般开始设计时,先选定锅炉的总布置,进行燃料消耗量的计算,然后再决定锅炉结构,进行炉膛传热计算,决定对流受热面的结构,进行对流受热面的传热计算。
在以上的结构计算和传热计算中,须预先选定受热面的管径和壁厚,布置好水循环系统(汽包锅炉)或启动系统(超临界锅炉),以上计算(或称热力计算)结束以后,再根据它的计算结果,计算管壁温度和承压强度,并根据金属材料极限许用应力的等级,确定各受热面所应取用的合金材料,必要时可重新调整管径、壁厚,以便在满足强度的条件下,使制造总费用达到最低。
对于自然循环汽包炉,需要进行水循环计算,校核水循环是否安全可靠,最后还要进行空气动力计算,核算烟、风道流动阻力是否合理,并依此选择锅炉的送、引风机。
在一切都正常合理时,即可根据以上的初步设计和计算,作进一步的设计。
本锅炉设计的任务是进行热力计算,因为整台锅炉的热力计算是锅炉设计中的一项最主要的计算。
热力计算的方法,按照已知的条件和计算目的来分,可以分为设计计算和校核计算两种。
在设计新锅炉时的热力计算称为设计热力计算。
设计热力计算的任务是在给定的煤种、给定的给水温度前提下,确定保证达到额定蒸发量,选定的锅炉经济指标以及给定的蒸汽参数所必需的锅炉各受热面的结构尺寸。
例如我们在例题中给出的2102t/h锅炉的热力计算就是一个设计热力计算的例子。
在进行设计热力计算之前要进行锅炉的整体布置。
上海锅炉厂有限公司600MW等级超超临界Π型锅炉方案简介
上海锅炉厂有限公司600MW 等级超超临界Π型锅炉方案简介丘加友徐雪元杨震张建文王正光蔡宏彭玲(上海锅炉厂有限公司,上海200245)Brief introduction on Π-type ultra-supercritical boiler of 600MWQiu Jiayou, Xu Xueyuan, Yang Zhen, Zhang Jianwen, Wang Zhengguang, Cai Hong, Peng lingShanghai Boiler Works Co. Ltd.摘要:本文对上海锅炉厂有限公司600MW 等级超超临界Π 型锅炉方案进行了简要介绍,主要包括锅炉的技术规范,总体布置,受压件设计,燃烧系统设计,空气预热器设计等。
关键词:超超临界600MW Π型锅炉系统Abstract: This paper briefly illustrates the design of 600MW ultra-supercritical two pass boiler by Shanghai Boiler Works Co. Ltd., including technical specification, general outlet, design of pressure parts, design of combustion system, design of air-preheater and others. Key words: 600MW ultra-supercritical,two pass boiler,system1 锅炉的主要技术规范本方案锅炉为600MW 等级超超临界参数变压运行螺旋管圈直流炉、一次再热、单炉膛、平衡通风、运转层以上露天布置、固态排渣、全钢构架、全悬吊结构Π 型锅炉。
1.1 锅炉设计容量和参数名称单位BMCR BRL过热蒸汽流量t/h 1810 1724过热器出口蒸汽压力MPa(g) 29.15 29.04过热器出口蒸汽温度℃605 605再热蒸汽流量t/h 1529 1460再热器进口蒸汽压力MPa(g) 6.15 5.87再热器出口蒸汽压力MPa(g) 5.96 5.68再热器进口蒸汽温度℃369 360再热器出口蒸汽温度℃603 603省煤器进口给水温度℃295 2921.2 设计条件煤种为国内典型烟煤。
600mw锅炉课程设计
600MW 锅炉课程设计本课程设计旨在介绍 600MW 锅炉的主要设计参数、工作原理和运行特点,以及针对该类型锅炉的安全、经济、环保等方面的考虑。
一、600MW 锅炉的主要设计参数600MW 锅炉是一种大型热能动力设备,其主要设计参数包括:1. 锅炉容量:600MW2. 锅炉类型:超临界锅炉3. 锅炉工作压力:27MPa4. 锅炉工作温度:600℃5. 燃料类型:烟煤6. 燃烧方式:循环流化床燃烧7. 汽轮机类型:凝汽式汽轮机8. 汽轮机负荷:600MW二、600MW 锅炉的工作原理600MW 锅炉采用循环流化床燃烧技术,烟煤在锅炉内以流化态燃烧,产生高温高压的蒸汽。
蒸汽通过管道进入汽轮机,推动汽轮机旋转,产生动力。
汽轮机的旋转力推动发电机旋转,产生电能。
三、600MW 锅炉的运行特点600MW 锅炉在运行过程中,需要注意以下几个方面:1. 锅炉点火前需要进行预热,以避免锅炉内部产生过大的热应力。
2. 锅炉运行时需要保持稳定的燃烧工况,以避免锅炉内部温度、压力等参数发生大幅波动。
3. 锅炉定期需要进行检修和维护,以保证其安全、经济、环保的运行。
四、600MW 锅炉的安全考虑600MW 锅炉是一种高温高压的设备,其安全运行至关重要。
在锅炉运行过程中,需要对其进行严格的安全监控和控制,以防止发生意外事故。
五、600MW 锅炉的经济考虑600MW 锅炉是一种大型热能动力设备,其运行成本对电厂的经济效益产生重要影响。
为了降低锅炉的运行成本,需要采取一系列措施,如提高燃烧效率、减少热损失、优化运行方式等。
六、600MW 锅炉的环保考虑600MW 锅炉的运行会对环境造成一定的影响,如排放烟气、灰渣等。
600MW超临界锅炉课程设计正文
第1章设计任务书设计题目:600MW等级超临界压力煤粉锅炉原始资料如下:锅炉蒸发量:D sh=1913t/h过热蒸汽压力:p sh''=25.4MPa(表压)过热蒸汽温度:t sh''=571℃再热蒸汽流量:D rh=1586t/h再热蒸汽入口压力:p rh'=4.35MPa(表压)再热蒸汽入口温度:t rh'=310℃再热蒸汽出口压力:p rh''=4.16MPa(表压)再热蒸汽出口温度:t rh''=569℃给水压力:p fw=29.35MPa给水温度:t fw=282℃周围环境温度:t ca=20℃排烟温度:v exg=126℃制粉系统:直吹式、中速磨(1)燃料名称:神府东胜煤(2)煤的收到基成分(%):C ar=57.33, H ar=3.62,O ar=9.94, N ar=0.70,S ar=0.41, A ar=15.00, M ar=13.00(3)煤的干燥无灰基挥发分:V daf=33.64%(4)煤的收到基低位发热量:Q net,ar=21805kj/kg(5)灰熔点:DT、ST、FT>1500℃第2章燃料的数据校核和煤种判别2.1 燃料的数据校核计算列于表2-1。
表2-1 燃料的数据校核和煤种判别2.2 煤种判别:由燃料特性得知:因为V daf =33.64% ,10%<V daf<37%所以煤种为烟煤第3章锅炉整体布置的确定3.1 炉整体的外型--选Π型布置选择Π形布置的理由如下:(1)锅炉排烟口在下方送、引风机及除尘器等设备均可布置在地面,锅炉结构和厂房较低,烟囱也建在地面上;(2)对流竖井中,烟气下行流动便于清灰,具有自身除尘的能力;(3)各受热面易于布置成逆流的方式,以加强对流换热;(3)机炉之间的连接管道不长。
3.2 受热面的布置在炉膛内壁面,全部布置水冷壁受热面,其他受热面的布置主要受蒸汽参数、锅炉容量和燃料性质的影响。
600MW超超临界燃煤发电机组锅炉制粉及燃烧系统设计(淮南煤)毕业设计
南京工程学院毕业设计说明书(论文)作者:学号:系部:专业:热能与动力工程题目:600MW超超临界燃煤发电机组锅炉制粉及燃烧系统设计(淮南煤)指导者:讲师评阅者:讲师2016 年5月南京毕业设计说明书(论文)中文摘要毕业设计说明书外文摘要目录前言..... .. (1)第一章制粉系统与燃烧系统简介 (2)1.1 制粉系统简介 (2)1.2 煤粉燃烧器简介 (3)第二章主要设计参数及辅助计算 (5)2.1 原始数据 (5)2.2 辅助计算: (6)2.3 锅炉热平衡计算: (7)第三章制粉系统和磨煤机的选择 (9)3.1 选择依据 (9)3.2 制粉系统和磨煤机的选型 (9)第四章制粉系统的热力计算 (14)4.1 一般原则 (14)4.2中速磨煤机直吹式制粉系统的热力计算 (14)4.3双进双出钢球磨煤机直吹式制粉系统的热力计算 (19)第五章制粉系统的空气动力计算 (25)5.1基本原则 (25)5.2中速磨直吹式制粉系统的空气动力计算 (25)第六章制粉系统管道设计与计算 (27)6.1制粉系统管道设计原则 (27)6.2直吹式制粉系统设计计算 (27)6.3双进双出钢球磨煤机直吹式制粉系统管道设计计算及布置 (35)第七章制粉系统辅助设备的选择及设计 (44)7.1 原煤仓 (44)7.2 给煤机 (45)7.3 粗粉分离器 (45)7.4 细粉分离器 (46)7.5节流元件 (47)7.6制粉系统的风机 (47)第八章直吹式制粉系统两种磨煤机的比较分析 (51)第九章燃烧器的设计计算 (52)9.1 燃烧器设计原则 (52)9.2 燃烧器的选型与布置方式 (52)9.3 燃烧器的设计计算 (53)9.4 燃烧器结构设计 (56)第十章总结 (59)10.1本次设计成果 (59)10.2本次设计存在的不足 (59)参考文献 (60)致谢..... (61)附录..... (62)前言经济的快速发展使中国电力行业面临环境保护、资源节约、资源的合理开发与有效利用等多种压力。
锅炉系统课程设计——600MW等级超临界压力煤粉锅炉系统
锅炉系统课程设计——600MW等级超临
界压力煤粉锅炉系统
引言
锅炉是火力发电厂的核心设备之一,在电力工业中占有重要地位。
600MW等级超临界压力煤粉锅炉系统是一种先进的、高效的锅炉系统,广泛应用于现代火力发电厂中。
本课程设计旨在介绍该系统的结构、组成及其工作原理。
课程设计
本次课程设计主要包括以下内容:
1. 600MW等级超临界压力煤粉锅炉系统的概述
2. 该系统的结构及组成
3. 煤粉燃烧及其调节
4. 蒸汽发生器的参数控制
5. 空气预热器及其作用
6. 烟气脱硫及除尘
7. 安全装置
结论
通过本次课程设计,我们能够深入了解600MW等级超临界压力煤粉锅炉系统的结构、组成及其工作原理,有助于我们加深对现代火力发电厂中锅炉系统的认识,为今后相关领域的研究和生产提供理论支撑。
参考文献
[1] 张世荣, 康涛, 刘广义. 600MW超临界机组锅炉运行调整技术. 化工自动化及仪表, 2014(1): 30-32.
[2] 梁华峰, 刘韶辉, 肖俊波. 超临界火电机组高低温再热中低压缸凝汽器能力提升技术. 电力建设, 2012(7): 66-70.。
600mw超临界煤粉锅炉校核热力计算课程设计任务书
能源与动力工程学院课程设计任务书热能与动力工程专业班课程名称锅炉原理题目600MW超临界煤粉锅炉校核热力计算任务起止日期: 2014 年 11 月 24 日~ 2014 年 12 月 12 日学生姓名汪洋14 年 10 月 26 日指导教师何金桥14 年 10 月 28 日教研室主任年月日院长年月日能源与动力工程学院主要内容:根据给定的锅炉的结构布置与尺寸,计算当改为燃用现在给定的煤后锅炉的各项运行参数,根据计算结果分析运行中可能会出现的问题,并提出相应的措施。
基本要求:1.所有计算均采用列表形式。
各误差应符合热力计算要求[1][2][3]。
计算中必须采用国际单位。
2.对说明书与计算列表中各数据与公式应注明其来源,例如:根据假设(并在何处进行了检验);根据给定的数据;根据参考资料[x](Page:YY)选取等。
3.与本次热力计算或与本变工况计算有关的结构计算项目需列表计算。
与本次热力计算无关的结构设计计算可以不做也不用列表。
4.制图符合制图规范。
说明书条理清楚。
并按要求装订成册。
5.每人独立完成设计任务。
并进行答辩。
已知技术条件与参数1、锅炉结构数据与设计工况数据:见指导书。
2、煤质特性如下:C ar H a O ar N ar S ar A ar M ar V daf Q ar,net DT ST FT% % % % % % %% KJ/Kg℃℃℃56.8 4.2 9.6 0.7 0.619.28.934.22236611301280 1350课题完成后应提交的文件(设计说明书、图表、设计图纸等)1、锅炉整体布置图(A3图纸)。
2、给定的煤的元素分析与煤质特性数据的校核。
燃烧计算。
3、锅炉的整体的热力计算。
4、课程设计说明书(包括计算目的,计算原始条件,计算方法,传热热力系统图,热力计算流程图,锅炉结构与布置的简介及结构图,计算列表,分析该工况变化对锅炉运行可能造成的影响,并对锅炉运行调整或改造提出建议)。
600MW垂直水冷壁超临界锅炉的设计
600MW垂直水冷壁超临界锅炉的设计600MW垂直水冷壁超临界锅炉的设计随着我国火力发电事业的迅速发展和对环境保护的需要,提高机组效率、降低单位能耗,因而大力减少煤耗量和污染物总排放量如CO2、SO2、NOX、飞灰等已成为当务之急,发展超临界以致超超临界机组,以及采用低NOx 燃烧和尾部脱硫装置等均是重要途径之一。
此外,随着机组调峰和两班制运行的需要,旧式的定压运行超临界机组已不能适应,因此世界上八十年代以来新投运的超临界机组绝大部分采用变压运行。
此种超临界锅炉的关键部件之一的水冷壁则有螺旋管圈和垂直管圈两种型式。
哈尔滨锅炉责任有限公司在开发采用这两种型式的水冷壁管圈的变压运行超临界锅炉均做了大量工作。
本文对采用内螺纹管垂直水冷壁的600MW超临界锅炉的方案设计,包括水冷壁主要设计参数的选取、锅炉总体布置特点及启动旁路系统的选型分析做了全面的论述。
1、变压运行超临界锅炉水冷壁特点1、1 运行特点及各阶段设计要求变压运行超临界锅炉的水冷壁有螺旋管圈和垂直管二种。
对于垂直型水冷壁来说,大多采用再循环泵供起动和低负荷时用,随着负荷的增大,此种水冷壁要经过低负荷控制循环、亚临界直流和超临界直流三个阶段。
以某电厂600MW超临界机组方案设计为例,因汽机变压运行的最高点负荷为额定负荷的80%(β=0.8),相当于锅炉最大连续负荷(MCR)的69.4%左右,而水冷壁则在60%负荷时通过临界点(图1)。
若以直流工况到控制循环的切换点选定为35%负荷,则由图2可看出在0~35%负荷间为亚临界控制循环,在35~60%负荷间为亚临界直流而在60~100%负荷间为超临界直流。
图1 水冷壁出口压力与负荷关系控制循环运行时水冷壁的出口为具有饱和温度的汽水混合物,因此沿炉膛周界各水冷壁管的工质温度和管壁温度是均匀的,不存在温度偏差问题,而且由于此阶段水冷壁的最高工作压力已降到约12MPa,远低于亚临界区,已不存在膜态沸腾问题,但由于压力较低,水冷壁管内工质的比容(主要是蒸发段内的比容)显著增大而水冷壁入口水的比容变化甚小,导致节流孔圈阻力在回路总阻力中的比例显著降低,使各水冷壁管间的流量偏差增大,水冷壁的安全性检验除应保证不出现直流状态和过热外,还应保证水动力的稳定性。
锅炉原理课程设计-某超临界600MW锅炉炉膛热力计算(全套图纸)
课程设计报告名称:锅炉原理课程设计题目:某超临界600MW锅炉炉膛热力计算(金竹山无烟煤)成绩:全套CAD图纸加153893706《锅炉原理》课程设计任务书一、目的与要求1,按照前苏联1973年锅炉热力计算标准对某台超临界600MW锅炉炉膛部分进行热力计算。
2,按照2008版教学一览,本课程设计应该安排在1-2教学周。
由于2015年9月3日北京阅兵,根据学校统一安排,本学期第1周放假,锅炉原理课程设计只能在1周时间(即第2周)内完成。
二、主要内容1.燃料燃烧产物计算2.烟气焓温表计算3.某超临界600MW炉膛结构计算(含前屏)4.该超临界600MW炉膛热力计算(含前屏)5.热力计算汇总表三、进度计划四、设计(实验)成果要求1.每3名学生分为1组,计算一个煤种。
答辩时,以组为单位进行。
2.每名学生提交课程设计报告1份。
独立回答老师提出的问题。
五、考核方式1.课设报告:60%2.答辩:20%3.签到:20%一、课程设计的目的与要求1.燃料燃烧产物计算2.烟气焓温表计算3.某超临界600MW炉膛结构计算(含前屏)4.该超临界600MW炉膛热力计算(含前屏)5.热力计算汇总表5.1烟气总焓降5.2辐射总换热量5.3 工质总焓升二、课程设计正文1.结构示意图2.热力计算流程图3.煤质参数表600MW机组锅炉设计计算原始参数烟气焓温表6.下部炉膛结构计算过程表表4-6 炉膛结构特征和水冷壁有效系数的计算一、炉膛结构计算二、水冷壁热有效系数的计算三、在BMCR工况下,假定下面5层燃烧运行,同时每层燃烧器给粉量相同8. 上部炉膛结构计算过程表表4-8 减温水假设表4-9 前屏结构计算119. 上部炉膛热力计算过程表表4-10 前屏热力计算一、烟气参数二、炉内直接辐射热 三、屏区空间(烟气)穿透辐射四、前屏对流传热量的计算与校核14五、附加受热面对流吸热量10. 热力计算汇总表10.1烟气总焓降10.2辐射总换热量 10.3 工质总焓升三、课程设计总结或结论1. 除去散热损失,炉膛烟气总焓降等于工质总焓升。
600MW超临界锅炉课程设计正文
第1章设计任务书设计题目:600MW等级超临界压力煤粉锅炉原始资料如下:锅炉蒸发量:D sh=1913t/h过热蒸汽压力:p sh''=25.4MPa(表压)过热蒸汽温度:t sh''=571℃再热蒸汽流量:D rh=1586t/h再热蒸汽入口压力:p rh'=4.35MPa(表压)再热蒸汽入口温度:t rh'=310℃再热蒸汽出口压力:p rh''=4.16MPa(表压)再热蒸汽出口温度:t rh''=569℃给水压力:p fw=29.35MPa给水温度:t fw=282℃周围环境温度:t ca=20℃排烟温度:v exg=126℃制粉系统:直吹式、中速磨(1)燃料名称:神府东胜煤(2)煤的收到基成分(%):C ar=57.33, H ar=3.62,O ar=9.94, N ar=0.70,S ar=0.41, A ar=15.00, M ar=13.00(3)煤的干燥无灰基挥发分:V daf=33.64%(4)煤的收到基低位发热量:Q net,ar=21805kj/kg(5)灰熔点:DT、ST、FT>1500℃第2章燃料的数据校核和煤种判别2.1 燃料的数据校核计算列于表2-1。
表2-1 燃料的数据校核和煤种判别2.2 煤种判别:由燃料特性得知:因为V daf =33.64% ,10%<V daf<37%所以煤种为烟煤第3章锅炉整体布置的确定3.1 炉整体的外型--选Π型布置选择Π形布置的理由如下:(1)锅炉排烟口在下方送、引风机及除尘器等设备均可布置在地面,锅炉结构和厂房较低,烟囱也建在地面上;(2)对流竖井中,烟气下行流动便于清灰,具有自身除尘的能力;(3)各受热面易于布置成逆流的方式,以加强对流换热;(3)机炉之间的连接管道不长。
3.2 受热面的布置在炉膛内壁面,全部布置水冷壁受热面,其他受热面的布置主要受蒸汽参数、锅炉容量和燃料性质的影响。
过程控制课程设计600MW超临界直流锅炉主汽温控制系统-主汽温控制-.
课程设计报告(2013—2014年度第二学期)名称:过程控制技术与系统题目:600MW超临界直流锅炉主汽温控制系统院系:控制与计算机工程学院班级:姓名:学号:设计周数: 1 周日期: 2014 年6月30日《过程控制》课程设计任务书一、目的与要求“过程控制课程设计”是“过程控制”课程的一个重要组成部分。
通过实际工业过程对象控制方案的选择、控制功能的设置、工程图纸的绘制等基础设计和设计说明的撰写,培养学生基本控制系统工程设计能力、创新意识,完成工程师基本技能训练。
二、主要内容1.根据对被控对象进行的分析,确定系统自动控制结构,给出控制系统原理图;2.根据确定控制设备和测量取样点和调节机构,绘制控制系统工艺流程图(PID图);3.根据确定的自动化水平和系统功能,选择控制仪表,完成控制系统SAMA图(包括系统功能图和系统逻辑图);4.对所设计的系统进行仿真试验并进行系统整定;5.编写设计说明书。
三、进度计划四、设计(实验)成果要求1.绘制所设计热工控制系统的SAMA图;2.根据已给对象,用MATABL进行控制系统仿真整定,并打印整定效果曲线;3.撰写设计报告五、考核方式提交设计报告及答辩学生姓名:简一帆指导教师:张建华2014年 6月 30 日一、课程设计目的与要求1. 通过实际工业过程对象控制方案的选择、控制功能的设置、工程图纸的绘制等基础设计和设计说明的撰写,培养学生基本控制系统工程设计能力、创新意识,完成工程师基本技能训练。
2. 掌握过程控制系统设计的两个阶段:设计前期工作及设计工作。
2.1设计前期工作(1)查阅资料。
对被控对象动态特性进行分析,确定控制系统的被调量和调节量。
(2)确定自动化水平。
包括确定自动控制范围、控制质量指标、报警设限及手自动切换水平。
(3)提出仪表选型原则。
包括测量、变送、调节及执行仪表的选型。
2.2设计工作(1)根据对被控对象进行的分析,确定系统自动控制结构,给出控制系统原理图。
世界首台600MW超临界W型火焰无烟煤锅炉调试技术与实践(可编辑优质文档)
3调试过程和内容
调试期间,锅炉共启动14次、停炉13次。停炉原因为正常停炉、设备异常、或操作失误。试运时间和主要工作内容见表3。
表33号锅炉启动调试主要阶段一览表
序号
阶段名称
时间
主要内容
1
冷态试验
05月08日~05月12日
冷态空气动力场
2
锅炉冲管
05月23日~05月27日
一阶段稳压降压相结合的吹管工艺
2)锅炉炉膛给水流量大于570T/h,且大、小溢流阀全关、储水罐水位不上升。
3)通过贮水箱水位和分离器出口蒸汽的过热度来判断,即大、小溢流阀全关、储水罐水位不上升,分离器出口蒸汽的过热度5~8℃。
4.4劣质无烟煤燃烧技术
4.4.1实际燃煤
试运期间,锅炉实际燃用煤质为山西潞安贫煤和湖南本省劣质无烟煤的混煤,低位发热量一般在18000~20000kJ/kg,干燥无灰基挥发份一般在8~11%之间,灰分一般在29~36%之间,入炉煤热值接近设计煤质,但挥发份略高于设计煤质,见表2。
4调试技术主要特点
4.1采用稳压和降压相结合的吹管工艺
采用一阶段主、再热蒸汽系统串联吹管、油煤燃烧、稳压和降压相结合的吹管方法。当制粉系统投运不能满足稳压吹管时采用降压吹管,既缩短吹管时间,保证吹管质量,又可充分暴露和消除锅炉、包括制粉系统的缺陷。同时在稳压吹管时可进行25%负荷的燃烧初调整,减少吹管及以后调试燃油、及缩短调试工期。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
600MW超临界压力锅炉煤粉锅炉课程设计银川能源学院课程设计任务书设计题目:600MW超临界压力锅炉煤粉锅炉年级专业:能动1202 班专业:能源与动力工程*名:***学号:指导教师:目录第一章锅炉设计的目的及意义第一节锅炉课程设计的目的和内容 (1)第二节锅炉课程设计的方法和步骤 (2)第二章锅炉简介 (3)第一节锅炉的整体布置 (3)第二节锅炉炉膛及受热面结构 (3)第三节锅炉传热的基本方程 (3)第四节省煤器 (4)第五节过热器系统 (4)第六节再热器系统 (6)第七节燃料系统 (6)第八节烟风系统 (6)第九节锅炉辅助计算 (6)第十节燃料的燃料计算 (6)第十一节固体燃料燃料产生的烟气量计算 6 第三章计算 (3)第一节 600MW机组锅炉设计计算原始参数 (9)第二节理论空气量和理论烟气量的计算 (10)第三节锅炉燃料及热平衡计算 (11)第四节炉膛设计和水冷壁的计算 (13)第五节前屏过热器结构和热力计算.. 16 第六节后屏过热器结构和热力计算.. 23 第七节高温再热器结构和热力计算.. 27 第八节第一悬吊管结构和热力计算.. 32 第九节高温对流过热器结构和热力计算 (34)第十节第二悬吊管结构和热力计算.. 38 第十一节低温再热器垂直段结构和热力计算 (33)第十二节转向室结构和热力计算 (37)第十三节低温再热器水平段结构和热力计算 (39)第十四节省煤器结构和热力计算 (47)第十五节汽温校核 (48)第十六节空气预热器结构和热力计算52 第十七节热力计算数据的总校和计算结果汇总 (60)第四章参考文献 (61)第一章锅炉设计的目的和意义第一节锅炉课程设计的目的和内容一、锅炉课程设计的目的锅炉课程设计是《锅炉原理》课程的重要教学实践环节。
通过课程设计,使学生对锅炉原理课程的知识得到巩固、充实和提高;掌握锅炉机组的热力计算方法,学会使用与热力计算相关的标准或导则,培养综合考虑锅炉机组设计与布置的初步能力;培养学生查阅资料和分析数据的能力,提高学生运算、绘图等基本技能;培养学生对待工程技术问题的严肃认真和负责的态度。
二、锅炉课程设计的内容本书的设计任务是根据一台给定规范和形式的600MW等级超临界压力直流煤粉锅炉的原始资料,进行锅炉的结构设计和热力计算。
2.1锅炉设计计算时应提供的原始资料(1)锅炉的主要参数,包括锅炉蒸发量、再热蒸汽流量、给水压力和温度、过热蒸汽和再热蒸汽的压力和温度。
(2)给定的燃料和燃料特性。
(3)锅炉概况,如锅炉结构和受热面布置、制粉系统、燃烧设备的形式等。
(4)锅炉结构简图、烟风和汽水系统流程简图等。
在设计计算时,锅炉的排烟温度和热空气温度应预先选定,也可以原始数据给定。
炉膛出口烟气温度和烟道烟气温度,以及汽水流程中各受热面进出口处工质的温度和焓,应根据技术要求在合理的范围内选定。
2.2课程设计的内容(1)锅炉炉膛及主要受热面的结构设计。
(2)额定负荷下锅炉的热力计算。
(3)绘制锅炉受热面的结构图。
(4)编写课程设计报告。
三、锅炉设计的要求随着科学技术的进步和国家对节能、环保要求的提高,电力工业的发展日益受到资源和环境等因素的制约,以降低能源消耗、减少污染物排放为目标的节能减排能力已成为衡量一个企业竞争力的首要标准。
因此,针对新型锅炉的技术发展趋势以及新情况下对锅炉系统的特殊要求,科技工作者子在锅炉设计时应着重考虑以下几个方面:(1)采用成熟、先进的超临界压力技术,确保机组具有较高的循环效率和可用率。
(2)选用合适的炉膛尺寸及热负荷指标,采用先进的燃烧方式和燃烧设备,在保证炉膛不结渣和不产生水冷壁高温腐蚀的前提下,提高锅炉的燃烧效率、减小炉内烟气温度及速度偏差、降低锅炉的NOX排放。
(3)采用成熟可靠的受热面布置方式,减小汽温偏差,保证受热面安全可靠。
(4)具有较好的煤种适应性和低负荷稳燃性能以及良好的启、停及调峰性能等。
第二节锅炉课程设计的方法和步骤一、锅炉课程设计热力计算方法锅炉热力计算可分为设计计算和校核计算。
两者的计算方法基本相同,都从燃料燃烧和热平衡计算开始,然后按烟气流向对锅炉机组的各个受热面(炉膛、屏式过热器、对流过热器等)进行计算,其区别在于计算任务和所需求的数据不同。
设计计算的任务是根据给定的锅炉容量、参数和燃料特性来确定锅炉机组的结构尺寸和各个部件的受热面面积,并确定锅炉的燃料消耗量、锅炉效率、各受热面交界处工质和烟气的温度和焓、各受热面的吸热量和介质速度等参数,为选择辅助设备和进行空气动力计算、水动力计算、管子金属壁温计算和强度计算等提供原始资料。
校核计算的任务是在给定锅炉负荷和燃料特性的前提下,按锅炉机组已有的结构和尺寸,去确定各个受热面交界处的水温、汽温、空气和烟气温度、锅炉效率、燃料消耗量以及空气和烟气的流量和流速。
校核计算是为了估计锅炉机组按指定燃料运行的经济指标,寻求必要的改进锅炉结构的措施,选择辅助设备(或检验原有辅助设备的适用性)以及为空气动力、水动力、壁温和强度等计算提供原始资料。
为了计算方便,设计计算也通常采用校核计算的方法,先根据经验并参考同类型锅炉结构,预先布置好各部件受热面的结构尺寸,然后进行校核计算。
如不合适,修改后再进行校核计算。
对锅炉机组做校核计算时,烟气的中间温度、内部工质温度、排烟温度以及热空气温度等都是未知数,上述温度需先假设,然后用渐进法(见此逼近法)去确定。
二、锅炉课程设计的步骤锅炉课程设计的步骤包括:(1)了解给定锅炉的结构、受热面布置、汽水和烟风系统流程等。
(2)进行锅炉热力计算,包括各受热面的设计、结构计算、校核计算等。
(3)锅炉总体的热量平衡校核和误差检查。
(4)编写课程设计报告。
第二章锅炉简介第一节锅炉的整体布置本课程设计锅炉为超临界参数变压运行螺旋管圈直流炉,单炉膛、一次中间再热、四角切圆燃烧方式、全钢架悬吊结构、Ⅱ形布置、固态排渣。
炉后尾部布置2台三分仓容式空气预热器。
锅炉总体布置见图。
600mw超临界压力锅炉整体布置锅炉燃烧系统为配6台中速磨煤机的直吹式制粉系统,24只直流式燃烧器分六层布置于炉膛下部四角,煤粉和空气从四角送入,在炉膛中呈切圆方式燃烧。
在锅炉最大出力工况时,5台磨煤机和五层20只燃烧器投入运行,1台磨煤机备用。
在主燃烧器和炉膛出口之间布置一组分离燃尽风(SOFA )喷嘴。
第二节 锅炉炉膛及主要受热面的结构炉膛传热计算的目的是要确定炉膛辐射受热面(水冷壁)的吸热量、炉膛出口烟气温度和炉膛热流密度的分布。
炉膛设计的任务是:在选定了炉膛出口烟温 时,确定需布置多少辐射受热面积;或在布置好了炉 内受热面后,校核炉膛出口烟温是否合理。
炉膛传热计算主要是计算炉内高温火焰和水冷壁 之间的辐射换热量。
由于炉内烟气流速较小,对流传 热较弱,所占炉膛换热份额很少,故计算时流传热量 可以忽略。
采用先进可靠的计算方法,确保设计结果经得起实践的检验。
要达到上述要求,必须在进行广泛深入调查研究的基础上,综合运用相关的理论知识以及制造和运行方面的实践经验,集合国内外先进技术,在对各种技术方案进行精确计算分析的同时,通过试验对结果进行约验证,从而批国家各个方案的优劣。
第三节 炉膛传热的基本方程根据斯蒂芥一波尔茨曼定律,炉膛内火焰与被包围着的水冷壁之间的辐射换热量为:fb xt f H T T a Q )(440-=σ式中:σ-绝对黑体辐射常数H f -有效辐射受热面面积T-火焰的平均温度T b -水冷壁表面温度a xt -炉膛系统黑度此外,根据烟气侧热平衡方程,即烟气在炉膛内放出的热最应等于燃料在 炉膛内有效放热景与烟气从炉膛出口流出吋带走的热量之差,即 )('''L L j f I Q B Q -=ϕ式中:Q,——燃料在炉膛内的有效放热量,kJ/kg ; I l -炉膛出口处烟气的焓,kJ/kg ;Φ-保热系数;B j -计算燃料耗量,kg/s第四节 省煤器省煤器的作用是在给水进入水冷壁以前,将水进行预热,并借以回收锅炉排烟中的部分热量,提高其经济性。
省煤器布置于锅炉的后烟井低温再热器下面,采用光管蛇形管,顺列排列,与烟气成逆流布置,并由悬吊管悬吊,悬吊管内的工质来自省煤器。
为了确保后烟井的烟气分布均匀,在后烟井入口的后墙包覆管及省煤器进口处前后墙包覆管上均焊有烟气阻流板,以防止形成烟气走廊,造成局部磨损。
如图第五节过热器系统过热器系统按蒸汽流向可分为:顶棚和包覆过热器,前屏过热器,后屏过热器和末级过热器(高温对流过热器),其中主受热面为前屏过热器,后屏过热器和末级过热器。
一、过热蒸汽系统流从汽水分离器引出的蒸汽进入炉顶进口集箱,经前炉顶管至炉顶出口集箱,为减少蒸汽阻力损失,在BMCR工况下约35.6%的蒸汽经旁路管直接进入炉顶出口集箱。
从炉顶出口集箱引出的蒸汽经过后炉顶管,后烟井包覆,后烟井延伸侧墙,再汇总至后烟井侧墙上集箱,分四路引入前屏进口集箱,进入前屏加热后进入前屏出口集箱,再分两路经第一级喷水减温后进入后屏过热器进口集箱,流经后屏并进入后屏过热器出口集箱,从后屏过热器出口集箱分两路经第二级喷水减温后进入末级过热器进口集箱,在末级过热器加热后进入末级过热器出口集箱。
再由两根末级过热器出口集箱引出管引出至两根主蒸汽管道并送往汽轮机高压缸。
二、前屏过热器前屏过热器(也称大屏,分隔屏过热器)布置于炉膛上部,不仅可吸收炉膛上部的烟气辐射热,还能分隔烟气流,起到减弱切圆燃烧时炉膛出口烟气残余旋转的作用,降低炉膛出口烟温偏差。
三、后屏过热器后屏加热器布置在炉膛上部,前屏之后,炉膛折焰角的前方,可吸收部分炉膛上部的辐射热量。
四、末级过热器末级过热器布置于水平烟道,在高温再热器和炉膛后墙水冷壁悬吊管之后,受热面呈顺列逆流布置,主要靠对流传热吸收热量。
五、减湿系统过热器汽温通过两级喷水控制,第一级喷水布置在前屏过热器出口管道上,第二级喷水布置在后屏过热器出口管道上,过热器喷水取自省煤器进口管道的给水。
第六节再热器系统再热器系统由低温再热器和高温再热器两级组成。
一、再热蒸汽系统流程自汽机高压缸排出的蒸汽分成两路经事故喷水减温器后引入低温再热器进口集箱,经低温再热器后进入低温再热器出口集箱,再经过两根连接管道引至高温再热器进口集箱,经过高温再热器后从高温再热器出口集箱上引至两根蒸汽管道,送往汽轮机中压缸,其流程图如图所示。
低温再热器和高温再热器之间通过连接管道进行左右交叉,以减少因炉膛左右侧烟温偏差而引起的再热蒸汽温度偏差。
二、低温再热器低温再热器布置于后竖井烟道中,顺列排列,与烟气成逆流布置,靠对流传热吸收热量,低温再热器又分成水平段和垂直段。
垂直段布置于水平烟道的尾部竖井前墙悬吊管之后锅炉转向室的入口处。
三、高温再热器由于再热蒸汽采用摆动燃烧器调温,故高温再热器布置于炉膛折焰角上部烟气高温区,与烟气成顺流流动,顺列布置。