高等数学下册复习题模拟试卷和答案
高等数学下册复习题模拟试卷和答案(简单实用共七套题)
高等数学下册复习题模拟试卷和答案(简单实用共七套题) 高等数学(下)模拟试卷一一、填空题(每空3分,共15分)z,的定义域为y2yy2(1)函数(2)已知函数z arctan20zx,则 x,(x,y)ds(3)交换积分次序,dyf(x,y)dx(4)已知L是连接(0,1),(1,0)两点的直线段,则 L(5)已知微分方程y ,2y ,3y 0,则其通解为二、选择题(每空3分,共15分)x,3y,2z,1 0(1)设直线L为 2x,y,10z,3 0,平面为4x,2y,z,2 0,则( )A. L平行于B. L在上C. L垂直于D. L与斜交 (2( )xyz,(1,0,,1)处的dz ,D.dx,2A.dx,dyB.dx,2222(3)已知是由曲面4z 25(x,y)及平面z 5所围成的闭区域,将在柱面坐标系下化成三次积分为( ) A. 0C.2(x,y)dv5d20rdr dz35B.2 0d240rdr dz202532 0d rdr5dz2r235D. ,则其收敛半径)1drdr dz(4)已知幂级数A. 2B. 1C. 2D. (5)微分方程y ,3y ,2y 3x,2e的特解y的形式为y ( ) A. xx,,xxB.(ax,b)xeC.(ax,b),ceD.(ax,b),cxe三、计算题(每题8分,共48分)x,11、求过直线L1:122y,20zz,3,1且平行于直线L2:x,22y,11z1的平面方程z2、已知z f(xy,xy),求 x, y3、设D {(x,y)x,y 4}22,利用极坐标求Dxdxdy24、求函数f(x,y) e(x,y,2y)的极值x t,sint (2xy,3sinx)dx,(x,e)dy L5、计算曲线积分,其中L为摆线 y 1,cost从点2y2x2O(0,0)到A( ,2)的一段弧xy xy,y xe6、求微分方程满足x 11的特解四.解答题(共22分)1、利用高斯公式计算半球面z2xzdydz,yzdzdx,zdxdy2,其中由圆锥面z 与上(10 )2、(1)判别级数n 1(,1)n,1n3n,1的敛散性,若收敛,判别是绝对收敛还是条件收敛;(6 )n(2)在x (,1,1)求幂级数n 1nx的和函数(6 )高等数学(下)模拟试卷二一(填空题(每空3分,共15分)z(1)函数ln(1,x,y)的定义域为 ;xyelnx0(2)已知函数z e,则在(2,1)处的全微分dz ; (3)交换积分次序, 1 dxf(x,y)dy2, ;(4)已知L是抛物线y x)点B(1,1上点O(0,0与之间的一段弧,则L(5)已知微分方程y ,2y ,y 0,则其通解为 .二(选择题(每空3分,共15分)x,y,3z 0(1)设直线L为 x,y,z 0,平面为x,y,z,1 0,则L与的夹角为( ); zA. 0B. 2C. 3D. 4 (2)设z f(x,y)是由方程z,3xyz a确定,则 xyz2233( );xy2yz2x,xz2A. xy,zB. z,xyC. xy,zD. z,xy (3)微分方程y ,5y ,6y xe 的特解y的形式为y ( );,A.(ax,b)e2xB.(ax,b)xe222xC.(ax,b),ceD.(ax,b),cxe22x2x(4)已知是由球面x,y,z a所围成的闭区域, 将三次积分为( ); A2dv在球面坐标系下化成a2 0d20sin d rdra2B.2 0d220d rdra20C. 02dd rdraD. 0ndsin d rdr(5)已知幂级数n 1 2n,12xn,则其收敛半径( ).12 B.1 C.2 D.三(计算题(每题8分,共48分)5、求过A(0,2,4)且与两平面 1:x,2z 1和 2:y,3z 2平行的直线方程 . zz6、已知z f(sinxcosy,e22x,y),求 x, y .7、设D {(x,y)x,y 1,0 y x},利用极坐标计算22arctanDyxdxdy.8、求函数f(x,y) x,5y,6x,10y,6的极值. 9、利用格林公式计算2223L(esiny,2y)dx,(ecosy,2)dyxx,其中L为沿上半圆周(x,a),y a,y 0、从A(2a,0)到O(0,0)的弧段. x,16、求微分方程四(解答题(共22分)y ,y(x,1)2的通解.1、(1)(6 )判别级数n 1敛;(,1)n,12sinn3的敛散性,若收敛,判别是绝对收敛还是条件收n(2)(4 )在区间(,1,1) .2、n 3n,3n,2= .3、已知y ln(1,x),在x 1处的微分dy . 2lim(n,2)224、定积分1,1(x2006sinx,x)dx 2 .dy 5、求由方程y,2y,x,3x 0所确定的隐函数的导数dx二(选择题(每空3分,共15分)2x,3x,2的间断点 1、x 2是函数(A)可去 (B)跳跃(C)无穷 (D)振荡 57 . y x,122、积分= .(A) (B),(C) 0 (D) 1 103、函数y e,x,1在(, ,0] 。
高等数学下考试题库(附答案)
高等数学下考试题库(附答案)《高等数学》试卷1(下)一.选择题(3分?10)1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ()..4 C2.向量j i b k j i a+=++-=2,2,则有().A.a ∥bB.a ⊥bC.3,π=b aD.4,π=b a3.函数1122222-++--=y x y x y 的定义域是().A.(){}21,22≤+≤y x y xB.(){}21,22<+<="" y="">C.(){}21,22≤+<="" y="">4.两个向量a与b 垂直的充要条件是(). A.0=?b a B.0 =?b a C.0 =-b a D.0 =+b a5.函数xy y x z 333-+=的极小值是(). B.2- D.1-6.设y x z sin =,则4,1πyz =().22B.22-C.2D.2-7.若p 级数∑∞=11n pn收敛,则(). A.p 1< B.1≤p C.1>p D.1≥p8.幂级数∑∞=1n nnx 的收敛域为().A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-9.幂级数nn x ∑∞=??02在收敛域内的和函数是().A.x -11 B.x -22 C.x -12 D.x-21 10.微分方程0ln =-'y y y x 的通解为(). A.x ce y = B.x e y = C.x cxe y = D.cx e y = 二.填空题(4分?5)1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设1333+--=xy xy y x z ,则=yx z2_____________________________.4.x+21的麦克劳林级数是___________________________. 三.计算题(5分?6)1.设v e z u sin =,而y x v xy u +==,,求.,yz x z 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,yz x z 3.计算σd y x D+22sin ,其中22224:ππ≤+≤y x D .4.求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径).四.应用题(10分?2)1.要用铁板做一个体积为23m 的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省 .试卷1参考答案一.选择题 CBCAD ACCBD 二.填空题1.0622=+--z y x .2.()()xdy ydx xy +cos .3.19622--y y x .4. ()n n n n x ∑∞=+-0121.5.()x e x C C y 221-+= . 三.计算题()()[]y x y x y e xzxy +++=??cos sin ,()()[]y x y x x e y z xy +++=??cos sin . 2.12,12+=??+-=??z yy z z x x z . 3.??=?πππρρρ?202sin d d 26π-. 4.3316R . 5.x x e e y 23-=. 四.应用题1.长、宽、高均为m 32时,用料最省.2..312x y =《高数》试卷2(下)一.选择题(3分?10)1.点()1,3,41M ,()2,1,72M 的距离=21M M (). A.12 B.13C.14D.152.设两平面方程分别为0122=++-z y x 和05=++-y x ,则两平面的夹角为().A.6πB.4πC.3πD.2π 3.函数()22arcsin y x z +=的定义域为().A.(){}10,22≤+≤y x y xB.(){}10,22<+<="" y="">C.()?≤+≤20,22πy x y x D.()?<+<20,22πy x y x4.点()1,2,1--P 到平面0522=--+z y x 的距离为(). .4 C5.函数22232y x xy z --=的极大值为(). B.1 C.1- D.2 16.设223y xy x z ++=,则()=??2,1xz ()..7 C7.若几何级数∑∞=0n n ar 是收敛的,则().A.1≤rB. 1≥rC.1<r< bdsfid="197" p=""></r<>D.1≤r8.幂级数()n n x n ∑∞=+01的收敛域为().A.[]1,1-B.[)1,1-C.(]1,1-D. ()1,1-9.级数∑∞=14sin n n na是(). A.条件收敛 B.绝对收敛 C.发散 D.不能确定二.填空题(4分?5)1.直线l 过点()1,2,2-A 且与直线??-==+=t z t y tx 213平行,则直线l 的方程为__________________________.2.函数xy e z =的全微分为___________________________.3.曲面2242y x z -=在点()4,1,2处的切平面方程为_____________________________________. 三.计算题(5分?6)1.设k j b k j i a32,2+=-+=,求.b a ?2.设22uv v u z -=,而y x v y x u sin ,cos ==,求.,yz x z 3.已知隐函数()y x z z ,=由233=+xyz x 确定,求.,yz x z 4.如图,求球面22224a z y x =++与圆柱面ax y x 222=+(0>a )所围的几何体的体积.四.应用题(10分?2)1.试用二重积分计算由x y x y 2,==和4=x 所围图形的面积. 试卷2参考答案一.选择题 CBABA CCDBA. 二.填空题 1.211212+=-=-z y x .2.()xdy ydx e xy +.3.488=--z y x .4.()∑∞=-021n n n x .5.3x y =. 三.计算题1.k j i238+-.2.()()()y y x y y y y x yz y y y y x x z 3333223cos sin cos sin cos sin ,sin cos cos sin +++-=??-=?? .3.22,zxy xz y z z xy yz x z +-=??+-=??. 4.-3223323πa . 5.x x e C e C y --+=221. 四.应用题 1.316. 2. 00221x t v gt x ++-=.《高等数学》试卷3(下)一、选择题(本题共10小题,每题3分,共30分)2、设a=i+2j-k,b=2j+3k ,则a 与b 的向量积为() A 、i-j+2k B 、8i-j+2k C 、8i-3j+2k D 、8i-3i+k 3、点P (-1、-2、1)到平面x+2y-2z-5=0的距离为() A 、2 B 、3 C 、4 D 、54、函数z=xsiny 在点(1,4π)处的两个偏导数分别为()A 、,22 ,22 B 、,2222- C 、22- 22- D 、22- ,225、设x 2+y 2+z 2=2Rx ,则yzx z ,分别为() A 、z y z R x --, B 、z y z R x ---, C 、zyz R x ,-- D 、zyz R x ,- 6、设圆心在原点,半径为R ,面密度为22y x +=μ的薄板的质量为()(面积A=2R π)A 、R 2AB 、2R 2AC 、3R 2AD 、A R 2217、级数∑∞=-1)1(n nnn x 的收敛半径为()A 、2B 、21 C 、1 D 、3 8、cosx 的麦克劳林级数为()A 、∑∞=-0)1(n n)!2(2n x n B 、∑∞=-1)1(n n )!2(2n x n C 、∑∞=-0)1(n n )!2(2n x n D 、∑∞=-0)1(n n)!12(12--n x n二、填空题(本题共5小题,每题4分,共20分) 1、直线L 1:x=y=z 与直线L 2:的夹角为z y x =-+=-1321___________。
高等数学下册复习题模拟试卷和答案.
∫ (ex sin y − 2 y)dx + (ex cos y − 2)dy
9、 利用格林公式计算 L
,其中
L 为沿上半圆周 (x − a)2 + y2 = a2, y ≥ 0 、从 A(2a, 0) 到 O(0, 0) 的弧段.
y′ −
y
3
= (x +1)2
6、求微分方程
x +1
的通解.
四.解答题(共 22 分)
3 .已知 z = e xy ,则 ∂x = (1,0)
。 。
∫ 4 .设 L 为 x 2 + y 2
= 1上点 (1,0)到 (−1,0)的上半弧段,则
2ds =
L
。
e
ln x
∫ ∫dx f (x, y)dy =
5 .交换积分顺序 1 0
。
∑∞ (−1)n
6 .级数 n=1 n 是绝对收敛还是条件收敛?
⎧x + y + 3z = 0
(1)设直线
L
为
⎨ ⎩
x
−
y
−
z
=
0
,平面 π 为 x − y − z +1 = 0 ,则 L 与 π 的夹角为(
);
π
π
π
A. 0
B. 2
C. 3
∂z
(2)设 z
=
f
(x,
y) 是由方程 z3
− 3xyz
=
a3 确定,则
∂x
=
(
D. 4
);
yz
yz
xz
xy
A. xy − z2
间断点
(C)无穷
(D)振荡
(完整word版)高等数学下册试卷及答案
高等数学(下册)考试试卷(一)、填空题(每小题 3分,共计24分)1、 z=<log a (x 2 y 2)(a 0)的定义域为 D = 重积分ln(x 2 y 2 )dxdy 的符号为|x| |y| 1皿八 皿…、…, x (t )4、设曲线L 的参数方程表示为y (t )5、设曲面习2-入一y 9介于z(x 2的和为n 1n(n 1)二、选择题(每小题 2分,共计16分)1、二元函数z f (x, y )在(x 0,y 0)处可微的充分条件是(f (x, y)在(X o ,y o )处连续;3、由曲线 y ln x 及直线x y e 1,1所围图形的面积用二重积分表示6、微分方程 dy dxy taM 的通解为 x x7、方程y(4)4y0的通解为(C) z f x (x 0,y °) x f y (x 0,y °) y 当 v( x)2 ( y)2 。
时,是无穷小;(D) 12、设uz f x (x 0,y °) hmy 0(x)2yf(-) xf(Y),其中x f y (x 0,y 。
)y (y )2f 具有一阶连续导数,0。
2mU则x22y —U 等于((A)xy x y; (B) x;(C) y ;x (D)0 。
y3、设 :2x22y z 1, z0,则三重积分IzdV 等于( )f x (x ,y ) , f y (x, y )在(X 0, y o )的某邻域内存在;2、x ),则弧长元素ds分的外侧,则1)ds (B)(A) 4o 2do 2d1r 3sin cos dr ;(A)方程xy 2y x 2y 0是三阶微分方程;(B)方程y — x — ysin x 是一阶微分方程;dx dx(C) 方程(x 2 2xy 3)dx (y 2 3x 2y 2)dy 。
是全微分方程; (D)方程 曳 1x 宣是伯努利方程。
dx 2 x7、已知曲线y y(x)经过原点,且在原点处的切线与直线 2x y 6 0平行,而y(x)(B)典 °d ;「2sin dr ;2 (C) d1 3 .r sincos dr ; (D)1 3.r sincos dr 。
大学高数下册试题及答案
大学高数下册试题及答案《高等数学》测试题一一、选择题1.设有直线及平面,则直线A.平行于平面;B.在平面上;C.垂直于平面;D.与平面斜交. 2.二元函数在点处A.连续、偏导数存在; B.连续、偏导数不存在;C.不连续、偏导数存在;D.不连续、偏导数不存在. 3.设为连续函数,,则=A.; B.;C.D.. 4.设是平面由,,所确定的三角形区域,则曲面积分=A.7;B.;C.;D.. 5.微分方程的一个特解应具有形式A.;B.;C.;D.. 二、填空题1.设一平面经过原点及点,且与平面垂直,则此平面方程为;2.设,则=;3.设为正向一周,则0 ;4.设圆柱面,与曲面在点相交,且它们的交角为,则正数; 5.设一阶线性非齐次微分方程有两个线性无关的解,若也是该方程的解,则应有 1 . 三、设由方程组确定了,是,的函数,求及与. 解:方程两边取全微分,则解出从而四、已知点及点,求函数在点处沿方向的方向导数. 解:,从而五、计算累次积分). 解:依据上下限知,即分区域为作图可知,该区域也可以表示为从而六、计算,其中是由柱面及平面围成的区域. 解:先二后一比较方便,七.计算,其中是抛物面被平面所截下的有限部分. 解:由对称性从而八、计算,是点到点在上半平面上的任意逐段光滑曲线. 解:在上半平面上且连续,从而在上半平面上该曲线积分与路径无关,取九、计算,其中为半球面上侧. 解:补取下侧,则构成封闭曲面的外侧十、设二阶连续可导函数,适合,求.解:由已知即十一、求方程的通解. 解:解:对应齐次方程特征方程为非齐次项,与标准式比较得,对比特征根,推得,从而特解形式可设为代入方程得十二、在球面的第一卦限上求一点,使以为一个顶点、各面平行于坐标面的球内接长方体的表面积最小. 解:设点的坐标为,则问题即在求最小值。
令,则由推出,的坐标为附加题:1.判别级数是否收敛?如果是收敛的,是绝对收敛还是条件收敛?解:由于,该级数不会绝对收敛,显然该级数为交错级数且一般项的单调减少趋于零,从而该级数条件收敛2.求幂级数的收敛区间及和函数. 解:从而收敛区间为,3.将展成以为周期的傅立叶级数. 解:已知该函数为奇函数,周期延拓后可展开为正弦级数。
大学高等数学下考试题库(附答案)
大学高等数学下考试题库(附答案)一、选择题1. 设函数 f(x) 在区间 I 上连续,则下列命题正确的是()A. 函数 f(x) 在区间 I 上必定存在零点B. 函数 f(x) 在区间 I 上必定单调C. 函数 f(x) 在区间 I 上必定有界D. 若f(a)· f(b) < 0,则函数 f(x) 在区间 (a,b) 内至少存在一点 c,使得 f(c) = 0答案:D2. 设函数 f(x) 在区间 I 上可导,则下列命题正确的是()A. 函数 f(x) 在区间 I 上必定连续B. 函数 f(x) 在区间 I 上必定单调C. 函数 f(x) 在区间 I 上必定有界D. 若f'(a)· f'(b) < 0,则函数 f(x) 在区间(a,b) 内至少存在一点 c,使得 f'(c) = 0答案:A3. 下列极限中,极限存在的是()A. lim(x→∞) (1 + 1/x)^xB. lim(x→0) sin x/xC. li m(x→1) (x - 1)/(x^2 - 1)D. lim(x→π) (π - x)/x答案:B4. 下列函数中,奇函数的是()A. f(x) = x^3B. f(x) = x^2C. f(x) = |x|D. f(x) = e^x答案:A5. 下列导数中,导数不存在的是()A. f(x) = x^2 的导数B. f(x) = sin x 的导数C. f(x) = ln x 的导数D. f(x) = |x| 的导数答案:D二、填空题1. 设函数 f(x) 在区间 I 上连续,若f(a)· f(b) < 0,则函数 f(x) 在区间 (a,b) 内至少存在一点 c,使得 f(c) = ______.答案:02. 设函数 f(x) 在区间 I 上可导,若f'(a)· f'(b) < 0,则函数 f(x) 在区间 (a,b) 内至少存在一点 c,使得 f'(c) = ______.答案:03. 极限lim(x→∞) (1 + 1/x)^x = ______.答案:e4. 极限lim(x→0) sin x/x = ______.答案:15. 函数 f(x) = |x| 的导数 f'(x) = ______.答案:x / |x|(x ≠ 0)三、解答题1. 求极限lim(x→0) (sin x - x)/x^2.答案:lim(x→0) (sin x - x)/x^2 = -1/22. 求函数 f(x) = x^3 的单调区间.答案:函数 f(x) = x^3 在 (-∞,+∞) 上单调递增.3. 求函数 f(x) = ln x 的定义域.答案:函数 f(x) = ln x 的定义域为 (0,+∞).4. 求极限lim(x→π) (π - x)/x.答案:lim(x→π) (π - x)/x = -15. 设函数 f(x) 在区间 I 上连续,且f(a)· f(b) < 0,证明函数 f(x) 在区间 (a,b) 内至少存在一点 c,使得 f(c) = 0.答案:根据零点存在性定理,函数 f(x) 在区间(a,b) 内至少存在一点 c,使得 f(c) = 0.四、应用题1. 一物体从静止开始沿着直线运动,其加速度a(t) = 4t(单位:m/s^2),求物体在时间 t 内的位移 s(t).答案:s(t) = 1/2 a(t) t^2 = 1/2 4t t^2 = 2t^3(单位:m)2. 一质点在平面直角坐标系中的运动方程为 x(t) = t^2 - 3t + 2,y(t) = t^3 - 2t^2 + t,求质点在时间 t 内的速度 v(t) 和加速度 a(t).答案:v(t) = x'(t) = 2t - 3,a(t) = v'(t) = 2(单位:m/s)3. 某企业生产一种产品,固定成本为 10000 元,每生产一件产品的成本为 50 元,设该企业的生产量为x(件),求该企业的利润函数 L(x).答案:L(x) = 销售收入 - 固定成本 - 变动成本= (50x) - 10000 - 50x = -10000(元)。
高等数学下考试题库(附答案)
⾼等数学下考试题库(附答案)《⾼等数学》试卷1(下)⼀.选择题(3分?10)1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ().A.3B.4C.5D.62.向量j i b k j i a+=++-=2,2,则有().A.a ∥bB.a ⊥bC.3,π=b aD.4,π=b a3.函数1122222-++--=y x y x y 的定义域是().A.(){}21,22≤+≤y x y x B.(){}21,22<+C.(){}21,22≤+y x D (){}21,22<+≤y x y x4.两个向量a 与b垂直的充要条件是().A.0=?b aB.0 =?b aC.0 =-b aD.0 =+b a5.函数xy y x z 333-+=的极⼩值是(). A.2 B.2- C.1 D.1- 6.设y x z sin =,则4,1πyz =().A.22 B.22- C.2 D.2- 7.若p 级数∑∞=11n p n 收敛,则(). A.p 1< B.1≤p C.1>p D.1≥p8.幂级数∑∞=1n nnx 的收敛域为().A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-9.幂级数nn x ∑∞=??02在收敛域内的和函数是().A.x -11 B.x -22 C.x -12 D.x-21 10.微分⽅程0ln =-'y y y x 的通解为().A.xce y = B.xe y = C.xcxe y = D.cxe y =⼆.填空题(4分?5)1.⼀平⾯过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平⾯⽅程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z ,则=yx z2_____________________________. 4.x+21的麦克劳林级数是___________________________. 三.计算题(5分?6)1.设v e z usin =,⽽y x v xy u +==,,求.,yz x z 2.已知隐函数()y x z z ,=由⽅程05242222=-+-+-z x z y x 确定,求.,yz x z 3.计算σd y x D+22sin ,其中22224:ππ≤+≤y x D . 4.求两个半径相等的直交圆柱⾯所围成的⽴体的体积(R 为半径).四.应⽤题(10分?2)1.要⽤铁板做⼀个体积为23m 的有盖长⽅体⽔箱,问长、宽、⾼各取怎样的尺⼨时,才能使⽤料最省? .试卷1参考答案⼀.选择题 CBCAD ACCBD ⼆.填空题1.0622=+--z y x .2.()()xdy ydx xy +cos .3.19622--y y x .4.()n n n n x ∑∞=+-0121.5.()xe x C C y 221-+= .三.计算题 1.()()[]y x y x y e xzxy +++=??cos sin ,()()[]y x y x x e y z xy +++=??cos sin . 2.12,12+=??+-=??z yy z z x x z . 3.?=πππρρρ?202sin d d 26π-.4.3316R . 5.x xe ey 23-=.四.应⽤题1.长、宽、⾼均为m 32时,⽤料最省.2..312x y =《⾼数》试卷2(下)⼀.选择题(3分?10)1.点()1,3,41M ,()2,1,72M 的距离=21M M (). A.12 B.13 C.14 D.152.设两平⾯⽅程分别为0122=++-z y x 和05=++-y x ,则两平⾯的夹⾓为(). A.6π B.4π C.3π D.2π 3.函数()22arcsin yx z +=的定义域为().A.(){}10,22≤+≤y x y x B.(){}10,22<+C.()?≤+≤20,22πy x y x D.()?<+<20,22πy x y x 4.点()1,2,1--P 到平⾯0522=--+z y x 的距离为(). A.3 B.4 C.5 D.6 5.函数2 2232y x xy z --=的极⼤值为().A.0B.1C.1-D.21 6.设223y xy x z ++=,则()=??2,1xz ().A.6B.7C.8D.9 7.若⼏何级数∑∞=0n nar是收敛的,则().A.1≤rB. 1≥rC.1D.1≤r8.幂级数()nn xn ∑∞=+01的收敛域为().A.[]1,1-B.[)1,1-C.(]1,1-D. ()1,1- 9.级数∑∞=14sin n n na是(). A.条件收敛 B.绝对收敛 C.发散 D.不能确定⼆.填空题(4分?5)1.直线l 过点()1,2,2-A 且与直线??-==+=t z t y t x 213平⾏,则直线l 的⽅程为__________________________.2.函数xye z =的全微分为___________________________.3.曲⾯2242y x z -=在点()4,1,2处的切平⾯⽅程为_____________________________________.三.计算题(5分?6)1.设k j b k j i a32,2+=-+=,求.b a ?2.设22uv v u z -=,⽽y x v y x u sin ,cos ==,求.,y z x z 3.已知隐函数()y x z z ,=由233=+xyz x 确定,求.,yz x z 4.如图,求球⾯22224a z y x =++与圆柱⾯ax y x 222=+(0>a )所围的⼏何体的体积.四.应⽤题(10分?2) 1.试⽤⼆重积分计算由x y x y 2,==和4=x 所围图形的⾯积.试卷2参考答案⼀.选择题 CBABA CCDBA. ⼆.填空题 1.211212+=-=-z y x . 2.()xdy ydx exy+.3.488=--z y x .4.()=-021n n nx .5.3x y =. 三.计算题1.k j i238+-.2.()()()y y x y y y y x yz y y y y x x z 3333223cos sin cos sin cos sin ,sin cos cos sin +++-=??-=?? . 3.22,z xy xz y z z xy yz x z +-=??+-=??. 4.-3223323πa . 5.x xe C eC y --+=221.四.应⽤题1.316. 2. 00221x t v gt x ++-=.《⾼等数学》试卷3(下)⼀、选择题(本题共10⼩题,每题3分,共30分) 2、设a=i+2j-k,b=2j+3k ,则a 与b 的向量积为() A 、i-j+2k B 、8i-j+2k C 、8i-3j+2k D 、8i-3i+k 3、点P (-1、-2、1)到平⾯x+2y-2z-5=0的距离为() A 、2 B 、3 C 、4 D 、5 4、函数z=xsiny 在点(1,4π)处的两个偏导数分别为() A 、,22 ,22 B 、,2222- C 、22- 22- D 、22- ,22 5、设x 2+y 2+z 2=2Rx ,则yzx z ,分别为() A 、z y z R x --, B 、z y z R x ---, C 、zz R x ,-- D 、zyz R x ,- 6、设圆⼼在原点,半径为R ,⾯密度为22y x +=µ的薄板的质量为()(⾯积A=2R π)A 、R 2AB 、2R 2AC 、3R 2AD 、A R 221 7、级数∑∞=-1)1(n nnn x 的收敛半径为()A 、2B 、21C 、1D 、3 8、cosx 的麦克劳林级数为()A 、∑∞=-0)1(n n)!2(2n x n B 、∑∞=-1)1(n n )!2(2n x n C 、∑∞=-0)1(n n )!2(2n x n D 、∑∞=-0)1(n n)!12(12--n x n⼆、填空题(本题共5⼩题,每题4分,共20分) 1、直线L 1:x=y=z 与直线L 2:的夹⾓为z y x =-+=-1321___________。
高等数学下册复习题模拟试卷和答案(简单实用共七套题)
高等数学(下)模拟试卷一一、 填空题(每空3分,共15分)(1)函数z =+的定义域为(2)已知函数arctanyz x =,则zx∂=∂(3)交换积分次序,2220(,)y ydy f x y dx⎰⎰=(4)已知L 是连接(0,1),(1,0)两点的直线段,则()Lx y ds +=⎰(5)已知微分方程230y y y '''+-=,则其通解为 二、选择题(每空3分,共15分)(1)设直线L 为321021030x y z x y z +++=⎧⎨--+=⎩,平面π为4220x y z -+-=,则( )A. L 平行于πB. L 在π上C. L 垂直于πD. L 与π斜交 (2xyz +=(1,0,1)-处的dz =( )A.dx dy +B.dx ++D.dx -(3)已知Ω是由曲面222425()z x y =+及平面5z =所围成的闭区域,将22()x y dvΩ+⎰⎰⎰在柱面坐标系下化成三次积分为( ) A.225300d r dr dzπθ⎰⎰⎰ B.2453d r dr dzπθ⎰⎰⎰ C.2253502rd r dr dzπθ⎰⎰⎰D. 2252d r dr dzπθ⎰⎰⎰(4)已知幂级数,则其收敛半径( )A. 2B. 1C. 12D. (5)微分方程3232xy y y x e '''-+=-的特解y *的形式为y *=( ) A.B.()xax b xe + C.()xax b ce ++D.()x ax b cxe ++三、计算题(每题8分,共48分)1、 求过直线1L :12311x y z ---==-且平行于直线2L :21211x y z+-==的平面方程2、 已知22(,)z f xy x y =,求zx ∂∂, zy ∂∂ 3、设22{(,)4}D x y x y =+≤,利用极坐标求2Dx dxdy⎰⎰4、 求函数22(,)(2)x f x y e x y y =++的极值5、计算曲线积分2(23sin )()yL xy x dx x e dy ++-⎰, 其中L 为摆线sin 1co s x t t y t =-⎧⎨=-⎩从点(0,0)O 到(,2)A π的一段弧6、求微分方程 xxy y xe '+=满足11x y ==的特解四.解答题(共22分)1、利用高斯公式计算22xzdydz yzdzdx z dxdy∑+-⎰⎰,其中∑由圆锥面z =与上半球面z =(10)' 2、(1)判别级数111(1)3n n n n ∞--=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(6')(2)在(1,1)x ∈-求幂级数1nn nx∞=∑的和函数(6')高等数学(下)模拟试卷二一.填空题(每空3分,共15分)(1)函数ln(1)z x y =--的定义域为 ;(2)已知函数xyz e =,则在(2,1)处的全微分dz = ; (3)交换积分次序,ln 1(,)ex dx f x y dy⎰⎰= ;(4)已知L 是抛物线2y x =上点(0,0)O 与点(1,1B 之间的一段弧,则L=⎰;(5)已知微分方程20y y y '''-+=,则其通解为 .二.选择题(每空3分,共15分)(1)设直线L 为300x y z x y z ++=⎧⎨--=⎩,平面π为10x y z --+=,则L 与π的夹角为( );A. 0B. 2πC. 3πD. 4π(2)设(,)z f x y =是由方程333z xyz a -=确定,则zx∂=∂( );A. 2yzxy z - B. 2yzz xy - C. 2xzxy z - D. 2xyz xy - (3)微分方程256xy y y xe'''-+=的特解y *的形式为y *=( );A.2()xax b e+ B.2()xax b xe+ C.2()x ax b ce ++ D.2()xax b cxe++(4)已知Ω是由球面2222x y z a ++=所围成的闭区域, 将dvΩ⎰⎰⎰在球面坐标系下化成三次积分为( ); A222000sin ad d r drππθϕϕ⎰⎰⎰ B.22000ad d rdrππθϕ⎰⎰⎰C.200ad d rdrππθϕ⎰⎰⎰ D.220sin ad d r drππθϕϕ⎰⎰⎰(5)已知幂级数1212nnn n x∞=-∑,则其收敛半径( ).2B. 1C. 12 D.三.计算题(每题8分,共48分)5、 求过(0,2,4)A 且与两平面1:21x z π+=和2:32y z π-=平行的直线方程 .6、 已知(sin cos ,)x yz f x y e+=,求zx ∂∂, zy ∂∂ .7、 设22{(,)1,0}D x y x y y x =+≤≤≤,利用极坐标计算arctanDy dxdyx⎰⎰ .8、 求函数22(,)56106f x y x y x y =+-++的极值. 9、 利用格林公式计算(sin 2)(cos 2)x xLe y y dx e y dy-+-⎰,其中L 为沿上半圆周222(),0x a y a y -+=≥、从(2,0)A a 到(0,0)O 的弧段.6、求微分方程32(1)1yy x x '-=++的通解.四.解答题(共22分)1、(1)(6')判别级数11(1)2sin3n nnn π∞-=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(2)(4')在区间(1,1)-内求幂级数1nn xn ∞=∑的和函数 .2、(12)'利用高斯公式计算2xdydz ydzdx zdxdy∑++⎰⎰,∑为抛物面22z x y =+(01)z ≤≤的下侧高等数学(下)模拟试卷三一. 填空题(每空3分,共15分)1、 函数arcsin(3)y x =-的定义域为 .2、22(2)lim332n n n n →∞++-= .3、已知2ln(1)y x =+,在1x =处的微分dy = .4、定积分1200621(sin )xx x dx -+=⎰ .5、求由方程57230y y x x +--=所确定的隐函数的导数dydx=.二.选择题(每空3分,共15分)1、2x =是函数22132x y x x -=-+的 间断点 (A )可去 (B )跳跃 (C )无穷 (D )振荡2、积分10⎰= .(A) ∞ (B)-∞(C) 0 (D) 13、函数1xy e x =-+在(,0]-∞内的单调性是 。
《高等数学(下)》试题及参考答案
《高等数学(下)》习题答案一、单选题1、向量、垂直,则条件:向量、的数量积是(B)A充分非必要条件B充分且必要条件C必要非充分条件D既非充分又非必要条件2、当x→0时,y=ln(1+x)与下列那个函数不是等价的(C)Ay=x By=sinx Cy=1-cosx Dy=e^x-13、如果在有界闭区域上连续,则在该域上(C)A只能取得一个最大值B只能取得一个最小值C至少存在一个最大值和最小值D至多存在一个最大值和一个最小值4、函数f(x)在点x0极限存在是函数在该点连续的(A)A必要条件 B充分条件 C充要条件 D无关条件5、向量与向量平行,则条件:其向量积是(B)A充分非必要条件B充分且必要条件 C必要非充分条件 D既非充分又非必要条件6、当x→0时,下列变量中(D)为无穷小量Aln∣x∣ Bsin1/x Ccotx De^(-1/x^2)7、为正项级数,设,则当时,级数(C)A发散 B收敛 C不定 D绝对收敛8、设f(x)=2^x-1,则当x→0时,f(x)是x的(D)。
A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无穷9、已知向量,,,求向量在轴上的投影及在轴上的分量(A)A27,51 B25,27 C25,51 D27,2510、函数f(x)在点x0极限存在是函数在该点连续的(A)A必要条件 B充分条件 C充要条件 D无关条件11、下面哪个是二次曲面中椭圆柱面的表达式(D)A B C D12、曲线y=x/(x+2)的渐进线为(D)Ax=-2 By=1 Cx=0 Dx=-2,y=113、向量、的夹角是,则向量、的数量积是(A)A BC D14、当x→0时,函数(x²-1)/(x-1)的极限 (D)A等于2 B等于0 C为∞ D不存在但不为∞15、平面上的一个方向向量,平面上的一个方向向量,若与垂直,则(C)A BC D16、设φ(x)=(1-x)/(1+x),ψ(x)=1-³√x则当x→0时(D)Aφ与ψ为等价无穷小 Bφ是比ψ为较高阶的无穷小Cφ是比ψ为较低阶的无穷小 Dφ与ψ是同价无穷小17、在面上求一个垂直于向量,且与等长的向量(D)A B C D18、当x→0时,1/(ax²+bx+c)~1/(x+1),则a,b,c一定为(B)Aa=b=c=1 Ba=0,b=1,c为任意常数 Ca=0,b,c为任意常数 Da,b,c为任意常数19、对于复合函数有,,则(B)A B C D20、y=1/(a^2+x^2)在区间[-a,a]上应用罗尔定理, 结论中的点ξ=(B).A0 B2 C3/2 D321、设是矩形:,则(A)A B C D22、对于函数的每一个驻点,令,,,若,,则函数(A)A有极大值 B有极小值 C没有极值 D不定23、若无穷级数收敛,且收敛,则称称无穷级数(D)A发散 B收敛 C条件收敛 D绝对收敛24、交错级数,满足,且,则级数(B)A发散 B收敛 C不定 D绝对收敛25、若无穷级数收敛,而发散,则称称无穷级数(C)A发散B收敛 C条件收敛 D绝对收敛26、微分方程的通解是(B)A B C D27、改变常数项无穷级数中的有限项,级数的敛散性将会(B)A受到影响 B不受影响 C变为收敛 D变为发散28、设直线与平面平行,则等于(A)A2 B6 C8 D1029、曲线的方向角、与,则函数关于的方向导数(D)A BC D30、常数项级数收敛,则(B)A发散 B收敛 C条件收敛 D绝对收敛31、为正项级数,若存在正整数,当时,,而收敛,则(B)A发散 B收敛 C条件收敛 D绝对收敛32、下面哪个是二次曲面中椭圆抛物面的表达式(A)A B C D33、已知向量垂直于向量和,且满足于,求(B)A B C D34、平面上的一个方向向量,直线上的一个方向向量,若与垂直,则(B)A B C D35、下面哪个是二次曲面中双曲柱面的表达式(C)A B C D36、若为无穷级数的次部分和,且存在,则称(B)A发散 B收敛 C条件收敛 D绝对收敛37、已知向量两两相互垂直,且求(C)A1 B2 C4 D838、曲线y=e^x-e^(-x)的凹区间是(B)A(-∞,0) B(0,+∞) C(-∞,1) D(-∞,+∞)39、下面哪个是二次曲面中双曲抛物面的表达式(B)A B C D40、向量与轴与轴构成等角,与轴夹角是前者的2倍,下面哪一个代表的是的方向(C)A BC D41、下面哪个是二次曲面中单叶双曲面的表达式(A)A BC D42、函数y=3x^2-x^3在区间[1,3]上的最大值为(A)A4 B0 C1 D343、曲线y=lnx在点(A)处的切线平行于直线y=2x-3A(1/2,-1n2) B(1/2,-ln1/2) C(2,ln2) D(2,-ln2)44、若f(x)在x=x0处可导,则∣f(x)∣在x=x0处(C)A可导 B不可导 C连续但未必可导 D不连续45、y=√x-1 在区间[1, 4]上应用拉格朗日定理, 结论中的点ξ=(C).A0 B2 C44078 D346、arcsinx+arccos=(D)A∏ B2∏ C∏/4 D∏/247、函数y=ln(1+x^2)在区间[-1,2]上的最大值为(D)A4 B0 C1 Dln548、函数y=x+√x在区间[0,4]上的最小值为(B)A4 B0 C1 D349、当x→1时,函数(x²-1)/(x-1)*e^[(1/x-1)]的极限 (D)A等于2 B等于0 C为∞ D不存在但不为∞50、函数y=3x^2-x^3在区间[1,3]上的最大值为(A)A4 B0 C1 D3二、判断题1、由及所确定的立体的体积(对)2、y=∣x∣在x=0处不可导(对)3、设,,,且,则(错)4、对于函数f(x),若f′(x0)=0,则x0是极值点(错)5、二元函数的极小值点是(对)6、若函数f(x)在x0处极限存在,则f(x)在x0处连续(错)7、设是由轴、轴及直线所围城的区域,则的面积为(错)8、函数f(x)在[a,b]在内连续,且f(a)和f(b)异号,则f(x)=0在(a,b)内至少有一个实数根(对)9、若积分区域是,则(对)10、下列平面中过点(1,1,1)的平面是x=1(对)11、设,其中,,则(对)12、若函数f(x)在x0的左、右极限都存在但不相等,则x0为f(x)的第一类间断点(对)13、函数的定义域是(对)14、对于函数f(x),若f′(x0)=0,则x0是极值点(错)15、二元函数的两个驻点是,(对)16、y=ln(1-x)/(1+x)是奇函数(对)17、设表示域:,则(错)18、若函数f(x)在x0处连续,则f(x)在x0处极限存在(对)19、设是曲线与所围成,则(对)20、有限个无穷小的和仍然是无穷小(对)21、设,则(错)22、函数在一点的导数就是在一点的微分(错)23、函数在间断(对)24、罗尔中值定理中的条件是充分的,但非必要条件(对)25、设不全为0的实数使,则三个向量共面(对)26、函数z=xsiny在点(1,∏/4)处的两个偏导数分别为1,1(错)27、微分方程的一个特解应具有的形式是(对)28、设圆心在原点,半径为R,面密度为a=x²+y²的薄板的质量为RA(面积A=∏R²)(错)29、函数的定义域是整个平面(对)30、1/(2+x)的麦克劳林级数是2(错)31、微分方程的通解为(错)32、等比数列的极限一定存在(错)33、设区域,则在极坐标系下(对)34、函数极限是数列极限的特殊情况(错)35、,,则(对)36、sin10^0的近似值为017365(对)37、二元函数的极大值点是(对)38、定义函数极限的前提是该函数需要在定义处的邻域内有意义(对)39、将在直角坐标下的三次积分化为在球坐标下的三次积分,则(对)40、微分是函数增量与自变量增量的比值的极限(错)41、方程x=cos在(0,∏/2)内至少有一实根(错)42、微分方程y``+3y`+2y=0的特征根为1,2(错)43、f〞(x)=0对应的点不一定是曲线的拐点(对)44、求曲线x=t,y=t2,z=t3在点(1,1,1)处的法平面方程为(x-1)+2(y-1)+3(z-1)=0(对)45、1/x的极限为0(错)46、y=e^(-x^2) 在区间(-∞,0)(1,∞)内分别是单调增加,单调增加(错)47、导数和微分没有任何联系,完全是两个不同的概念(错)48、有限个无穷小的和仍然是无穷小(对)49、求导数与求微分是一样的,所以两者可以相互转化(对)50、在空间直角坐标系中,方程x²+y²=2表示圆柱面(对)。
高等数学下册试题及答案解析.docx
高等数学(下册)试卷(一)一、填空题(每小题 3 分,共计24 分)1、z =log a ( x2y 2 )( a 0) 的定义域为D=。
2、二重积分ln( x2y 2 )dxdy 的符号为。
|x| |y| 13 、由曲线y ln x 及直线x y e 1 , y 1 所围图形的面积用二重积分表示为,其值为。
4L 的参数方程表示为x(t)(x),则弧长元素ds。
、设曲线y(t)5 、设曲面∑为x2y 29 介于z0 及 z 3 间的部分的外侧,则(x2y21)ds。
6、微分方程dyy tany的通解为。
dx x x7、方程y( 4) 4 y0 的通解为。
8、级数1的和为。
n1n(n1)二、选择题(每小题 2 分,共计16 分)1、二元函数z f ( x, y) 在 ( x0 , y0 ) 处可微的充分条件是()(A)f ( x, y)在(x0, y0)处连续;(B)f x( x, y),f y( x, y)在( x0, y0)的某邻域内存在;( C)z f x (x0 , y0 )x f y ( x0 , y0 ) y 当( x) 2(y) 20 时,是无穷小;( D)lim z f x ( x0 , y0 ) x f y ( x0 , y0 ) y0。
22x0(x)( y) y02、设u yf ( x)xf (y), 其中 f 具有二阶连续导数,则x2u y 2 u等于()y x x 2y 2(A)x y ;( B)x;(C) y;(D)0。
3、设: x 2y 2z21, z0, 则三重积分I zdV 等于()( A ) 4 2d2 d1 3sin cos dr ;r 02 dd 1 dr ;( B )r 2 sin0 022 d13sin cos dr ;( C )dr0 02d 13sin cos dr 。
( D )dr0 04、球面 x 2 y 2z 2 4a 2 与柱面 x 2 y 22ax 所围成的立体体积 V=()(A ) 4 2d2 a cos 4a2r 2dr ;(B ) 4 2d2 a cos r 4a2r 2dr ;(C ) 8 2d2 a cos r 4a2r 2dr ;(D )2d2a cos r 4a2r 2dr 。
高等数学下册复习题答案
当( x , y ) (0,0)时, P , Q ,
P Q , 均为连续函数 , 所以原点在 L外时, 积分为零 y x
P Q 的充分必要条件为 , 我们得到a 1 y x
当a 1时 , 原点在L内时, 作一原点为中心 , 半径为r的圆周c , 使c 包含在L内, 在介于L , c之间的区域用格林公式
D D
z Σ1 Σ Σ2 x y
3dV 5 3 4 5 8
十二、周期为 2的函数f ( x )在一个周期的表达式 x 1, x 0 f ( x) 2 x , 0 x 3 它的和函数为s( x ), 求s( ), s(0), s( ) 2
2x 1 1 2 ( 1 )n ( 1 n1 )( x 2 )n , 1 x 3 x x 2 n 0 4
八、设n是曲面2 x 2 3 y 2 z 2 6在点P (1,1,1)处指向外侧的法向量, 求函数 u 1 6 x 2 8 y 2 在点P处的梯度及沿方向 n 的方向导数 z
f ( ) f ( ) 1 2 解:s( ) , 2 2 f (0 ) f (0 ) 0 1 0 2 1 s( 0) , 2 2 2 3 s( ) s( 2 ) s( ) f ( ) 1 2 2 2 2 2
给(1)(2)(3)分别乘
x, y, z
,比较可得
x2 y2 z2 2 2 2 a b c
代入(4)得所求点为 x
a b c ,y ,z . 3 3 3
十. 已知L是平面上不通过原点的任意一条简单闭曲线,取正向,问 a 为何值时, 积分 xdx aydy L x 2 y 2 0 为什么? x ay P 2 xy Q 2axy P ( x, y) 2 Q ( x , y ) , x y2 x 2 y 2 y ( x 2 y 2 ) 2 x ( x 2 y 2 ) 2
高数下册考试卷和答案
高数下册考试卷和答案一、选择题(每题3分,共30分)1. 以下哪个函数是偶函数?A. f(x) = x^3B. f(x) = x^2C. f(x) = sin(x)D. f(x) = e^x答案:B2. 极限lim(x→0) [sin(x)/x]的值是多少?A. 0B. 1C. -1D. 2答案:B3. 以下哪个积分是发散的?A. ∫(0,1) 1/x dxB. ∫(0,1) x^2 dxC. ∫(0,1) e^x dxD. ∫(0,1) x dx答案:A4. 以下哪个是二阶导数?A. f'(x)B. f''(x)C. f'''(x)D. f(x)答案:B5. 以下哪个是多元函数的偏导数?A. ∂f/∂xB. f'(x)C. ∫f(x) dxD. ∇f答案:A6. 以下哪个是定积分的性质?A. ∫(a,b) f(x) dx = ∫(b,a) f(x) dxB. ∫(a,b) f(x) dx = ∫(a,c) f(x) dx + ∫(c,b) f(x) dxC. ∫(a,b) f(x) dx = ∫(a,b) f(-x) dxD. ∫(a,b) f(x) dx = ∫(a,b) f(a+b-x) dx答案:B7. 以下哪个是泰勒级数展开?A. f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + ...B. f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/3! + ...C. f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/4! + ...D. f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/5! + ...答案:A8. 以下哪个是柯西-施瓦茨不等式?A. (∑i=1^n a_i b_i)^2 ≤ (∑i=1^n a_i^2)(∑i=1^n b_i^2)B. (∑i=1^n a_i^2)(∑i=1^n b_i^2) ≤ (∑i=1^n a_i b_i)^2C. (∑i=1^n a_i b_i)^2 ≥ (∑i=1^n a_i^2)(∑i=1^n b_i^2)D. (∑i=1^n a_i^2)(∑i=1^n b_i^2) ≥ (∑i=1^n a_i b_i)^2答案:A9. 以下哪个是格林定理?A. ∮C (P dx + Q dy) = ∬D (∂Q/∂x - ∂P/∂y) dAB. ∮C (P dx + Q dy) = ∬D (∂P/∂x + ∂Q/∂y) dAC. ∮C (P dx + Q dy) = ∬D (∂Q/∂x + ∂P/∂y) dAD. ∮C (P dx + Q dy) = ∬D (∂P/∂x - ∂Q/∂y) dA答案:A10. 以下哪个是斯托克斯定理?A. ∮C (P dx + Q dy + R dz) = ∬S (∂R/∂y - ∂Q/∂z) dy dz + (∂P/∂z - ∂R/∂x) dz dx + (∂Q/∂x - ∂P/∂y) dx dyB. ∮C (P dx + Q dy + R dz) = ∬S (∂Q/∂x - ∂P/∂y) dy dz + (∂R/∂y - ∂Q/∂z) dz dx + (∂P/∂z - ∂R/∂x) dx dyC. ∮C (P dx + Q dy + R dz) = ∬S (∂R/∂x - ∂Q/∂z) dy dz + (∂P/∂z - ∂R/∂x) dz dx + (∂Q/∂x - ∂P/∂y) dx dyD. ∮C (P dx + Q dy + R dz) = ∬S (∂Q/∂x - ∂P/∂y) dy dz + (∂R/∂y - ∂Q/∂z) dz dx + (∂P/∂z - ∂R/∂x) dx dy答案:A二、填空题(每题3分,共30分)11. 函数f(x) = x^2 + 3x + 2的导数是_________。
高数(下)模拟题答案
高数(下)试题(一)解答一、1.0;2.1a b ⋅= 、3πθ=;3.1x >;4./2xy y =;5.10m =;6.(,)cos cos df x y y xydx x xydy =+;7.13x ≤<;8.312()x y c c x e -=+; 二、 B ;A ;B ;A ;A ;C ;A ;D ;A ;C ; 三、解:所求平面法向量为:11122111i jkn i j ==-+-故所求平面方程为:(1)(1)00x y x y ---=⇒-=. 四、解:两边对x 求偏导得:(1)zz z z z yz yz e yz xy x x x xy z e xy ∂∂∂=+⇒==∂∂∂--; 两边对y 求偏导得:(1)zz z z z xz xz e xz xy y y y xy z e xy ∂∂∂=+⇒==∂∂∂--. 五、解:222222222244164(4)(4)Dx y x y x y dxdy x y dxdy x y dxdy +≤≤+≤+-=--++-⎰⎰⎰⎰⎰⎰2224220224442202(4)(4)2(2)2(2)8647244d r rdr d r rdrr r r r ππθθπππππ=-+-=-+-=+=⎰⎰⎰⎰六、解:因为1(1)nn n a ∞=-∑发散,若lim 0n n a →∞=,则由交错级数可知,必有1(1)n n n a ∞=-∑收敛;故lim 0n n a →∞≠,由于0n a ≥,lim 0n n a →∞∴>,1lim lim11n n n n n u a →∞→∞∴=<+; 故级数11()1nn n a ∞=+∑收敛. 七、解:1(1)n a n n =+ ,1(1)lim lim1(1)(2)n n n na n n a n n +→∞→∞+==++,1;1R ρ∴== 又1x =±时,级数收敛,故收敛区间为[1,1]-;记12111()()()(1)1n n nn n n x x x S x S x S x n n n n ∞∞∞=====-=-++∑∑∑,则有: 1111'(),(11)1n n S x x x x ∞-===-<<-∑,10()ln(1)1xdxS x x x ∴==---⎰;又2211()(())',(11)11n n n n x xxS x xS x x x n x ∞∞===⇒==-<<+-∑∑ 20()ln(1)1xxdx xS x x x x ∴==----⎰,2ln(1)0,()1x x S x x -∴≠=--; ln(1)1ln(1),0()0,0x x x S x xx -⎧+--≠⎪∴=⎨⎪=⎩,又11,lim lim(1)11n n n x S S n →∞→∞===-=+. 八、解:设圆柱体的高为h ,底面半径为r ,222()2hr R +=,又体积为2V r h π=;则拉格朗日函数为2222(,)()4h L r h r h R r πλ=+--,令2222220102()02Lrh r r Lr h h L h R r πλπλλ∂⎧=-=⎪∂⎪∂⎪=-=⎨∂⎪∂⎪=--=⎪∂⎩,解得2222,336h R r h R === 由实际问题可知,这样求得的h ,r 可使得圆柱体的体积最大.模拟试题(二)解答一、1.极小值;2.220(,)(,)y ydy f x y dx dy f x y dy ππππ-+⎰⎰⎰⎰;3.90;4.4;5.3(1)e e π-;6.1q >; 二、C ;B ;D ;A ;B ;D ;B ;三、解:因为(3)(75)0(1)(4)(72)0(2)a b a b a b a b ⎧+⋅-=⎨-⋅-=⎩由(1)得22716150(3)a a b b +⋅-= ;由(2)得2273080(4)a a b b -⋅+= ;由(3),(4)得22b a b =⋅ 且有22b b = ,1cos 2a b a b θ⋅∴==⋅,3πθ=.四、解:设曲线方程为,设00(,)x y 为其上任一点,则切线方程为:'00()()y y f x x x -=-,切线必过原点,则有'000()y f x x -=-⋅;故曲线满足的微分方程为:dy y dy dx y cx dx x y x =⇒=⇒=; 又曲线过点1(2,1)22xc y ⇒=⇒=.五、证明:设,,u tx v ty w tz ===,两边对t 求导得:1(,,)k f f f x y z kt f x y z u v w-∂∂∂++=∂∂∂ 两边乘以t 得:(,,)k f f f tx ty tz kt f x y z u v w∂∂∂++=∂∂∂ 即 (,,)f f f u v w k f u v w u v w ∂∂∂++=∂∂∂,(,,)f f f x y z kf x y z x y z∂∂∂∴++=∂∂∂. 六、21n n a ∞=∑ 收敛,而211n n ∞=∑收敛,2211()n n a n ∞=+∑收敛;又2212n n a a n n +≥⋅,由比较判别法可知1n n a n∞=∑绝对收敛.七、432dx x y ay y =+为一阶线性微分方程,先求3dx x ay y = 33dx dy x cy x y =⇒=,令3'32()()3()dx x c y y c y y c y y dy=⋅⇒=⋅+; 代入原方程得:'342()2()c y y y c y y c ⋅=⇒=+.故原方程的通解为:2353()x y c y y cy =+⋅=+;又53(0)20224y c c =⇒=+⋅⇒=-,即求得特解为534x y y =-.八、解:切向量为2{1,2,3}t t 垂直于{1,2,1},则有211430,13t t t t ++=⇒=-=-,故所求之点为(1,1,1)--和111(,,)3927--. 九、解:过点(1,1,1)作垂直于平面1x y z ++=的直线方程得:111111x y z ---==; 用参数表示成:1;1;1x t y t z t =+=+=+,则此直线与平面的交点即为所求:2(1)(11)(1)13t t t +++++=⇒=-,投影坐标为:111(,,)333.十、解:特征方程为312300,1r r r r ⋅-=⇒==±,方程的通解为123xx c c ec e -++; 又"(0)0,'(0)2,(0)0y y y ===,由此可解出10c =,21c =-,31c =; 故满足要求的积分曲线为:x x y e e -=-+.模拟试题(三)解答一、1.76;2.2'3ln 3sin 1'sin 3xy y z F z x xz yz y F xy yz z ∂--=-=∂+;3.12S u -;4.(3,2)-,(1,0); 5.3;6.32;7.12cos sin y C x C x =+;8.3322dx dy +;9.4(1)e π-; 二、 C ;A ;D ;A ;C ;C ;C ;C ;C ;三、解:222()cos sin 111ax axax du u u dy u dz y z e e ae a x x dx x y dx z dx a a a αααααα-=+⋅+=+⋅++++.四、解:0!n xn x e n ∞==∑,121!x n n e x x n -∞=-∴=∑,111()(1)!x n n d e nx dx x n -∞=-∴=+∑; 又因为211()x x x d e xe e dx x x --+=,所以12111()(1)!x n x x n d e nx xe e dx x n x -∞=--+∴==+∑ 当取1x =时,111(1)!1n n e e n ∞=-+==+∑. 五、解:因为22(3412288)169x y z d ++-=设2222(,,,)(3412288)(1)96x F x y z x y z y z λλ=+--+++-,则有22216(3412288)0488(3412288)204(3412288)201096xy z F x y z x F x y z y F x y z z x F y z λλλλ⎧=++-+=⎪⎪=++-+=⎪⎨=++-+=⎪⎪=++-=⎪⎩,解得:72,3,16x y y z λ===± 得点的坐标为13(9,,)88和13(9,,)88---把点13(9,,)88和13(9,,)88---代入距离公式得:121232013,,13d d d d ==<,故最近点为13(9,,)88,最远点为13(9,,)88---.六、解:22(1)01(1)!lim1(1)n n n n n+→+++ 七、解:因为112231111()nn ii n n n i S a aa a a a a a a a +++==-=-+-++-=-∑故n S 单调递增,且有上界11a C -,所以n S 有极限,即原级数收敛.八、解:1.(2)()242240A B a b a b ab ba λλλλ⋅=++=+++=+=2λ∴=-2.6S A B =⨯=(2)()2226A B a b a b a b b a λλλ∴⨯=+⨯+=⨯+⨯=-=所以1λ=-或5λ=.九、1.04πθ≤≤,12r ≤≤;22440101sin cos r I d arctg rdr d rdrr ππθθθθθ∴==⎰⎰⎰⎰2222401()413342216464d rdr ππππθθ-==⋅==⎰⎰; 2.02πθ≤≤ ,01r ≤≤;1122220(1)(1)(1)(221)44I d ln r rdr ln r d r ln πππθ∴=+=++=-⎰⎰⎰.模拟试题(四)解答一、1.4a =-;2.32-;3.(1,-2,-3);4.22x y -;5.[1,1]-;6.sin y x c =+; 7.220nn n a x ∞=∑;8.11001xI dx e dy e ==-⎰⎰;9.外积为零或a b λ= ;10.aR b =;二、 A ;A ;D ;B ;B ;C ;A ;C ;A ;C ;三、证明:'z f x ∂=∂ ,2"'zf x yϕ∂=⋅∂∂,''z f y ϕ∂=⋅∂,22"z f x ∂=∂; 222z z z z x x y y x∂∂∂∂∴⋅=⋅∂∂∂∂∂. 四、解:2211x x y y yyx I dy e dx ydy e dy==⎰⎰⎰⎰ 2111100111(1)(1)222y x yy y yyedy y e dy ye dy y e ==-=-=--=⎰⎰⎰.五、解:六、解:设方程为660x y z D +-+=,即166x y zD D D ++=-- 11,6666D DD D ⋅⋅=∴=±;故所求方程为660x y z D +-±=. 七、解:111222ABC S a b a c b c ∆=⨯=⨯=⨯即sin sin sin ab C ac B bc A ==;所以原式得证.八、解:1121(1)22n n n n a n a n ++⋅=→+⋅ ,2R ∴= 当2x =-时,11(2)2n n n n -∞=-⋅∑收敛;当2x =时,1122n nn n -∞=⋅∑发散 即收敛区间为[2,2]-;设11()2n n n x S x n -∞==⋅∑,则两边求积分得:012()2212nx n n xx x S x dx x x ∞====--∑⎰ 22(),22(2)S x x x ∴=-≤≤-.九、解:设cos ,sin x y θθ==,并且θ是从π变到0,得sin (sin )cos cos d d πθθθθθθπ--=⎰.模拟试题(五)解答一、1.22221x y a b+≤;2.5、103、2;3.(0,0);4./2xy y =;5.1-、2y ;6.332;7.(1,1,2);8.4e ;9.221x ce -+;10.0a b ⋅=二、 D ;C ;D ;C ;B ;A ;B 或C ;A ;D ;C ; 三、解:210sin sin x x Dxx ds dx dy x x=⎰⎰⎰⎰112001100sin ()(1)sin 1(1)cos (1)cos cos 01sin1xx x dx x xdxxx d x x x xdx =-=-=-=--=-⎰⎰⎰⎰四、解:因为22(,)xy z f x y e =-121222xy xy zf x f ye xf ye f x ∂=⋅+⋅=+∂ 21112221222[(2)]()[(2)]xy xy xy xy xy zx f y f xe e xye f ye f y f xe x y∂=⋅-+⋅+++⋅-+⋅∂∂ 222111222242()(1)xy xy xy xyf e x y f e xy f xye f =-+-+++.五、解:因为(1)n a n n =+,1(1)(2)limlim 1(1)n n n na n n a n n +→∞→∞++==+,1;1R ρ∴==又1x =±时,级数发散,故收敛区间为(1,1)-; 记11(1)()n n n n xs x ∞-=+=∑,两边积分得,01(1)()xn n n x s x dx ∞=+=∑⎰211()1xx n n x s x dxdx xx∞+===-∑⎰⎰,2//323()()1(1)x x s x x x -==-- 故31(23)(1)()(1)nn x x n n xxs x x ∞=-+==-∑.六、解:因为2222(26);6(26)6x y z d d x y z +--==+--设2222(,,,)(26)(21)F x y z x y z x y z λλ=+--+++-,则有2224(26)402(26)202(26)20210x y zF x y z x F x y z y F x y z z F x y z λλλλ=+--+=⎧⎪=+--+=⎪⎨=-+--+=⎪⎪=++-=⎩,解得:12x y z ==-=± 把点(1/2,1/2,-1/2)和(-1/2,-1/2,1/2)代入距离公式得:122646,33d d ==,故最近点为(1/2,1/2,-1/2),最远点为(-1/2,-1/2,1/2). 七、/24621(arctan )11x x x x x==-+-++3572460arctan (1)357xx x x x x x x dx x =-+-+=-+-+⎰当1x =时,111arctan11357=-+-+1(1)111arctan111213574n n n π∞=-∴=-+-+=-=-+∑ .八、解:直线的方向向量为:1443215ij kl i j k =-=-----方程为325431x y z +--==.。
高等数学下册复习题模拟试卷和答案
高等数学下册复习题模拟试卷和答案高等数学(下)模拟试卷一一、填空(每空3分,共15分)11?x?yx?y的定义域为(1)函数zy?Z那是阿肯斯吗?X(2)已知函数z??(3)交换积分次序,20岁?2yy2f(x,y)dx=(4)已知l是连接(0,1),(1,0)两点的直线段,则二、选择题(每空3分,共15分)(x?y)ds?l(5)已知微分方程y2y??3y?0,则其通解为十、3岁?2z?1.0(1)将直线L设置为?2倍?Y10z?3.0,飞机?4X?2岁?Z2.0,然后()a.l平行于?b.l在?上c.l垂直于?d.l不?斜交(2)设()a、 dx?戴布。
dx?2dyc。
2dx?2码。
dx?2天(3)已知?表面4Z?25(x?Y)和平面Z?由5包围的封闭区域将被转换成柱坐标系中的三次积分,即()a2?0252?04xyz?是由方程x2?y2?z2?2确定,则在点(1,0,?1)处的dz?222(x?52?y2)dv?d??r3dr?dz002502rb.Dr3dr?dz002?二万二千五百c.2.0d??r3dr?5dzd然后是它的收敛半径()0d??rdr?DZ(4)已知幂级数1a.2b.1c.2d.十、2(5)微分方程y3y??2岁?3倍?2E的特解y的形式是?()a。
xxx(ax?b)xe(ax?b)?ce(ax?b)?cxeb.c.d.三、计算题(每题8分,共48分)x?2y?1zx?1y?2z?3ll11的平面方程0?1且平行于直线2:21、求过直线1:1?z?z22z?f(xy,xy),求?x,?y2、已知3.设定d?{(x,y)x?y?4},利用极坐标求2x222x??dxdyd4、求函数f(x,y)?e(x?y?2y)的极值十、T辛特?(2xy?3sinx)dx?(x?e)dy?5.计算曲线积分L,其中L是摆线?Y1.成本从点算起2yo(0,0)到a(?,2)的一段弧xy?1的特解6、求微分方程xy??y?xe满足x?1四、回答问题(共22分)1、利用高斯公式计算22xzdydz?yzdzdx?zdxdy22z?十、Y其中,所述锥面不22z?2?x?y?)半球面所围成的立体表面的外侧(102、(1)判别级数n?1?(?1)?n?1n3n?1的敛散性,若收敛,判别是绝对收敛还是条件收敛;(6?)(2)在X里?(?1,1)功率系列N?一nxn的和函数(6?)高等数学(第二部分)模拟试卷2一.填空题(每空3分,共15分)4x?y2z?22ln(1?X?Y)的结构域为;(1)功能xy(2)已知函数z?e,则在(2,1)处的全微分dz?;(3)交易所整合令,e1dxlnx0f(x,y)dy2=;)点B(1,1)之间的弧,然后(4)我们知道l是抛物线y?X(0,0)上的点olyds;(5)已知微分方程y2y??Y0,一般解决方案为2、多项选择题(每个空白3分,共15分)xy3z0(1)设直线l为?x?y?z?0,平面?为x?y?z?1?0,则l不?的夹角为();a、 0b。
高等数学下考试题库及答案
高等数学下考试题库及答案一、单项选择题(每题4分,共20分)1. 函数f(x)=x^2+3x-4的零点个数是()。
A. 0B. 1C. 2D. 3答案:C2. 曲线y=e^x与y=ln x的交点个数是()。
A. 0B. 1C. 2D. 3答案:B3. 函数f(x)=x^3-3x+1的单调递增区间是()。
A. (-∞, +∞)B. (-∞, 1)C. (1, +∞)D. (-∞, 1)∪(1, +∞)答案:C4. 函数f(x)=x^2-4x+3的极小值是()。
A. 0B. 1C. 2D. 3答案:B5. 曲线y=x^3-3x^2+2x+1的拐点个数是()。
A. 0B. 1C. 2D. 3答案:C二、填空题(每题4分,共20分)6. 函数f(x)=x^2-4x+3的零点是_________。
答案:1和37. 函数f(x)=e^x-x-1的零点是_________。
答案:18. 函数f(x)=x^3-3x+1的极小值点是_________。
答案:19. 函数f(x)=x^2-4x+3的极大值是_________。
答案:010. 曲线y=x^3-3x^2+2x+1的拐点坐标为_________。
答案:(0,1)和(2,5)三、计算题(每题10分,共30分)11. 计算定积分∫₀¹(x^2+2x)dx。
解:∫₀¹(x^2+2x)dx = (1/3x^3+x^2)|₀¹ = 1/3+1 = 4/3。
12. 计算二重积分∬D(x^2+y^2)dσ,其中D是由x^2+y^2=1所围成的圆盘。
解:∬D(x^2+y^2)dσ = ∬(0,2π)∫(0,1)(r^2)rdrdθ = (1/3)π。
13. 计算曲线积分∮C(xy)dx+(yz)dy+(zx)dz,其中C为单位圆x^2+y^2=1在xy平面上的投影。
解:∮C(xy)dx+(yz)dy+(zx)dz = ∮(0,2π)(-1/2)sin^2θdθ = π/2。
高等数学下册试卷及答案
高等数学下册试卷及答案高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分)1、z=loga(x+y)的定义域为D={(x,y)|x+y>0}。
2、二重积分∬|x|+|y|≤1 2ln(x+y)dxdy的符号为负。
3、由曲线y=lnx及直线x+y=e+1,y=1所围图形的面积用二重积分表示为∬(e+1-x)dx dy,其值为e-1.4、设曲线L的参数方程表示为{x=φ(t)。
y=ψ(t)} (α≤t≤β),则弧长元素ds=√[φ'(t)²+ψ'(t)²]dt。
5、设曲面∑为x+y=9介于z=0及z=3间的部分的外侧,则∫∫∑(x²+y²+1)ds=18√2.6、微分方程y'=x/(y²+1)的通解为y=1/2ln(y²+1)+1/2x²+C。
7、方程y''-4y=tanx的通解为y=C1e^(2x)+C2e^(-2x)-1/2cosxsinx。
8、级数∑n=1∞1/(n(n+1))的和为1.二、选择题(每小题2分,共计16分)1、二元函数z=f(x,y)在(x,y)处可微的充分条件是(B)f_x'(x,y),f_y'(x,y)在(x,y)的某邻域内存在。
2、设u=yf(x)+xf(y),其中f具有二阶连续导数,则x²+y²等于(A)x+y。
3、设Ω:x+y+z≤1.z≥0,则三重积分I=∭ΩzdV等于(D)∫0^1∫0^(1-z)∫0^(1-x-y)zdxdydz。
4、球面x²+y²+z²=16a²与柱面x²+y²=2ax所围成的立体体积V=(C)8∫0^π/2∫0^(2acosθ)∫0^√(16a²-r²)rdzdrdθ。
注:原文章中第一题的符号“>”应该是“≥”,已进行更正。
高数下期末复习模拟试题3份
2
∂P ∂P = 在 D 内 连 续 , 且 有 ∂x ∂y , 则
∫
L
( P( x, y ) + y )dx + ( P( x, y ) − x)dy =(
)
2 − 2 a A、 ;
B、 − 2a ;
2
C、 − a ;
2
D、 a
→
2
7. 设流体速度场 v = ci + y j ( c 为常数 ), 则单 位时间内由半径为 2 的球面内部流出球
u = f ( x, xy ), v = g ( x + xy ) ,
∂u ∂u 求 ∂x , ∂y
。
x +t
∂u ∂u 2.(8 分)设 u ( x, t ) = ∫ x −t f ( z )dz ,求 ∂x , ∂t 。 四、求解下列问题(共计 15 分) 。
1.计算 I
= ∫ 0 dx ∫ x e dy 。 (7 分)
即
∫
x0 0
ydx −
1 2 x0 y 0 = x0 2
将 ( x 0 , y 0 ) 改为 ( x, y ) 得: 求导得: y ′ −
∫
x
0
ydx −
1 xy = x 2 2
1 y = −4 ,且 y (1) = 1 x
该方程的通解为 y = (c + (−4)e
∫
−
∫ x dx1dx源自e∫ x dx∂ 2u ∂ 2u 数,则 x ∂x 2 + y ∂y 2
等于(
)
(A) x + y (B) x ; (C) y
(D)0 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学(下)模拟试卷一一、 填空题(每空3分,共15分)(1)函数z =+的定义域为 (2)已知函数arctany z x =,则zx ∂=∂(3)交换积分次序,2220(,)y y dy f x y dx⎰⎰=(4)已知L 是连接(0,1),(1,0)两点的直线段,则()Lx y ds +=⎰(5)已知微分方程230y y y '''+-=,则其通解为 二、选择题(每空3分,共15分)(1)设直线L 为321021030x y z x y z +++=⎧⎨--+=⎩,平面π为4220x y z -+-=,则( )A. L 平行于πB. L 在π上C. L 垂直于πD. L 与π斜交 (2xyz +=(1,0,1)-处的dz =( )A.dx dy +B.dxD.dx (3)已知Ω是由曲面222425()z x y =+及平面5z =所围成的闭区域,将22()x y dv Ω+⎰⎰⎰在柱面坐标系下化成三次积分为( ) A.2253d r dr dzπθ⎰⎰⎰ B.2453d r dr dzπθ⎰⎰⎰ C.2253502rd r dr dzπθ⎰⎰⎰D. 22520d r dr dzπθ⎰⎰⎰(4)已知幂级数,则其收敛半径( )A. 2B. 1C. 12D. (5)微分方程3232x y y y x e '''-+=-的特解y *的形式为y *=( )A.B.()x ax b xe +C.()xax b ce ++D.()xax b cxe ++三、计算题(每题8分,共48分)1、 求过直线1L :123101x y z ---==-且平行于直线2L :21211x y z+-==的平面方程 2、 已知22(,)z f xy x y =,求zx ∂∂, z y ∂∂3、设22{(,)4}D x y x y =+≤,利用极坐标求2Dx dxdy ⎰⎰4、 求函数22(,)(2)xf x y e x y y =++的极值5、计算曲线积分2(23sin )()yL xy x dx x e dy ++-⎰, 其中L 为摆线sin 1cos x t t y t =-⎧⎨=-⎩从点(0,0)O 到(,2)A π的一段弧6、求微分方程 xxy y xe '+=满足 11x y ==的特解四.解答题(共22分)1、利用高斯公式计算22xzdydz yzdzdx z dxdy ∑+-⎰⎰ ,其中∑由圆锥面z =与上半球面z =所围成的立体表面的外侧 (10)' 2、(1)判别级数111(1)3n n n n ∞--=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(6')(2)在(1,1)x ∈-求幂级数1nn nx∞=∑的和函数(6')高等数学(下)模拟试卷二一.填空题(每空3分,共15分)(1)函数z =的定义域为 ; (2)已知函数xyz e =,则在(2,1)处的全微分dz = ;(3)交换积分次序,ln 1(,)e x dx f x y dy⎰⎰= ;(4)已知L 是抛物线2y x =上点(0,0)O 与点(1,1)B 之间的一段弧,则=⎰;(5)已知微分方程20y y y '''-+=,则其通解为 .二.选择题(每空3分,共15分)(1)设直线L 为300x y z x y z ++=⎧⎨--=⎩,平面π为10x y z --+=,则L 与π的夹角为( );A. 0B. 2πC. 3πD. 4π(2)设(,)z f x y =是由方程333z xyz a -=确定,则z x ∂=∂( ); A. 2yz xy z - B. 2yz z xy - C. 2xz xy z - D. 2xy z xy -(3)微分方程256x y y y xe '''-+=的特解y *的形式为y *=( );A.2()xax b e + B.2()xax b xe + C.2()xax b ce ++ D.2()xax b cxe ++ (4)已知Ω是由球面2222x y z a++=所围成的闭区域, 将dv Ω⎰⎰⎰在球面坐标系下化成三次积分为( ); A222sin ad d r drππθϕϕ⎰⎰⎰ B.220ad d rdrππθϕ⎰⎰⎰C.200ad d rdrππθϕ⎰⎰⎰ D.220sin a d d r drππθϕϕ⎰⎰⎰(5)已知幂级数1212nnn n x ∞=-∑,则其收敛半径( ).2B. 1C. 12 D.三.计算题(每题8分,共48分)5、 求过(0,2,4)A 且与两平面1:21x z π+=和2:32y z π-=平行的直线方程 .6、 已知(sin cos ,)x yz f x y e +=,求zx ∂∂, z y ∂∂ .7、 设22{(,)1,0}D x y x y y x =+≤≤≤,利用极坐标计算arctanDydxdy x ⎰⎰ .8、 求函数22(,)56106f x y x y x y =+-++的极值. 9、 利用格林公式计算(sin 2)(cos 2)xx Ley y dx e y dy-+-⎰,其中L 为沿上半圆周222(),0x a y a y -+=≥、从(2,0)A a 到(0,0)O 的弧段.6、求微分方程 32(1)1y y x x '-=++的通解.四.解答题(共22分)1、(1)(6')判别级数11(1)2sin3n n n n π∞-=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(2)(4')在区间(1,1)-内求幂级数1nn x n ∞=∑的和函数 .2、(12)'利用高斯公式计算2xdydz ydzdx zdxdy∑++⎰⎰,∑为抛物面22z x y =+(01)z ≤≤的下侧高等数学(下)模拟试卷三一. 填空题(每空3分,共15分)1、 函数arcsin(3)y x =-的定义域为 .2、22(2)lim 332n n n n →∞++-= .3、已知2ln(1)y x =+,在1x =处的微分dy = . 4、定积分1200621(sin )x x x dx -+=⎰ .5、求由方程57230y y x x +--=所确定的隐函数的导数dydx =.二.选择题(每空3分,共15分)1、2x =是函数22132x y x x -=-+的 间断点 (A )可去 (B )跳跃 (C )无穷 (D )振荡2、积分10⎰= .(A) ∞ (B)-∞(C) 0 (D) 13、函数1xy e x =-+在(,0]-∞内的单调性是 。
(A )单调增加; (B )单调减少;(C )单调增加且单调减少; (D)可能增加;可能减少。
4、1sin xtdt⎰的一阶导数为 .(A )sin x (B )sin x - (C )cos x (D )cos x -5、向量{1,1,}a k =- 与{2,2,1}b =--相互垂直则k = . (A )3 (B )-1 (C )4 (D )2三.计算题(3小题,每题6分,共18分)1、求极限123lim()21x x x x +→∞+-2、求极限30sin limx x x x →-3、已知ln cos xy e =,求dy dx四.计算题(4小题,每题6分,共24分)1、已知221t x y t ⎧=⎪⎨⎪=-⎩,求22d y dx 2、计算积分2cos x xdx⎰3、计算积分1arctan xdx ⎰4、计算积分⎰五.觧答题(3小题,共28分)1、(8)'求函数42341y x x=-+的凹凸区间及拐点。
2、(8)'设111()11xxxf xxe+⎧≥⎪⎪+=⎨⎪<⎪+⎩求2(1)f x dx-⎰3、(1)求由2y x=及2y x=所围图形的面积;(6)'(2)求所围图形绕x轴旋转一周所得的体积。
(6)'高等数学(下)模拟试卷四一.填空题(每空3分,共15分)1、函数1yx=的定义域为.2、,0ax e dx a +∞->⎰= .3、已知sin(21)y x =+,在0.5x =-处的微分dy = .4、定积分121sin 1xdx x -+⎰= .5、函数43341y x x =-+的凸区间是 . 二.选择题(每空3分,共15分)1、1x =是函数211x y x -=-的 间断点 (A )可去 (B )跳跃(C )无穷 (D )振荡 2、若()0,(0)0,(0)1,limx f ax a f f x →'≠==-==(A)1 (B)a(C)-1 (D) a -3、在[0,2]π内函数sin y x x =-是 。
(A )单调增加; (B )单调减少;(C )单调增加且单调减少; (D)可能增加;可能减少。
4、已知向量{4,3,4}a =- 与向量{2,2,1}b =则a b ⋅ 为 . (A )6 (B )-6 (C )1 (D )-35、已知函数()f x 可导,且0()f x 为极值,()f x y e =,则x x dy dx==.(A )0()f x e (B )0()f x ' (C )0 (D )0()f x三.计算题(3小题,每题6分,共18分)1、求极限10lim(1-)k xx kx +→2、求极限12cos 2sin limsin xx t dtx x→⎰3、已知1ln sinxy e=,求dy dx四. 计算题(每题6分,共24分)1、设10ye xy --=所确定的隐函数()yf x =的导数0x dydx=。
2、计算积分arcsin xdx⎰3、计算积分π⎰4、计算积分,0a >⎰五.觧答题(3小题,共28分)1、(8)'已知2223131at x t aty t ⎧=⎪⎪+⎨⎪=⎪+⎩,求在2t =处的切线方程和法线方程。
2、(8)'求证当0a b >>时,1ln ln 1a b aa b b -<<- 3、(1)求由3y x =及0,2y x ==所围图形的面积;(6)'(2)求所围图形绕y 轴旋转一周所得的体积。
(6)'高等数学(下)模拟试卷五一. 填空题(每空3分,共21分)1.函数y y x z )ln(-=的定义域为 。
2.已知函数22y xez +=,则=dz 。
3.已知xy e z =,则=∂∂)0,1(xz。
4.设L 为122=+y x 上点()0,1到()0,1-的上半弧段,则=⎰ds L 2 。
5.交换积分顺序⎰⎰=x edy y x f dx ln 01),( 。