@高等数学(B2)期末模拟试卷(一)及答案
大一高数b期末考试题及答案
大一高数b期末考试题及答案一、选择题(每题3分,共30分)1. 函数f(x)=x^2+2x+1的导数是()。
A. 2x+2B. 2x+1C. x^2+2D. 2x2. 极限lim(x→0) (sin(x)/x)的值是()。
A. 0B. 1C. π/2D. 23. 以下哪个函数是奇函数()。
A. y=x^2B. y=x^3C. y=x^2+1D. y=x^3-14. 函数f(x)=e^x的不定积分是()。
A. e^x + CB. e^x - CC. ln(e^x) + CD. ln(x) + C5. 以下哪个选项是正确的洛必达法则的应用()。
A. lim(x→0) (x^2/x) = lim(x→0) (2x/1) = 0B. lim(x→0) (1/x) = lim(x→0) (0/0) = 1C. lim(x→0) (sin(x)/x) = lim(x→0) (cos(x)/1) = 1D. lim(x→0) (x^3/x^2) = lim(x→0) (3x^2/2x) = 06. 函数f(x)=x^3-3x的极值点是()。
A. x=0B. x=1C. x=-1D. x=27. 以下哪个选项是正确的二重积分计算()。
A. ∬(1/(x^2+y^2)) dxdy = πB. ∬(1/(x^2+y^2)) dxdy = 2πC. ∬(x^2+y^2) dxdy = πD. ∬(x^2+y^2) dxdy = 4π8. 以下哪个选项是正确的泰勒级数展开()。
A. e^x = 1 + x + x^2/2! + x^3/3! + ...B. sin(x) = x - x^3/3! + x^5/5! - ...C. cos(x) = 1 - x^2/2! + x^4/4! - ...D. ln(1+x) = x - x^2/2 + x^3/3 - ...9. 以下哪个选项是正确的多元函数偏导数的计算()。
专升本高等数学二(函数、极限与连续)模拟试卷1(题后含答案及解析)
专升本高等数学二(函数、极限与连续)模拟试卷1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.下列四组函数中f(x)与g(x)表示同一函数的是( )A.f(x)=tanx,g(x)=B.f(x)=lnx3,g(x)=3lnxC.f(x)=,g(x)=D.f(x)=ln(x2一1),g(x)=ln(x一1)+ln(x+1)正确答案:B解析:A、D选项中,两函数的定义域不同,C选项中,当x<0时,f(x)≠g(x),B选项中,f(x)=lnx3=3lnx=g(x),定义域均为x>0,故选B.知识模块:函数、极限与连续2.函数f(x)=是( )A.奇函数B.偶函数C.非奇非偶函数D.不能确定奇偶性正确答案:B解析:由于一1<x<1,从而定义域关于原点对称,又f(一x)==f(x),所以函数f(x)为偶函数.知识模块:函数、极限与连续3.= ( )A.B.1C.D.3正确答案:C解析:.知识模块:函数、极限与连续4.极限等于( )A.0B.1C.2D.+∞正确答案:D解析:因该极限属“”型不定式,用洛必达法则求极限.原式=(ex+e-x)=+∞.知识模块:函数、极限与连续5.当x→0时,无穷小x+sinx是比x ( )A.高阶无穷小B.低阶无穷小C.同阶但非等价无穷小D.等价无穷小正确答案:C解析:=2,故选C.知识模块:函数、极限与连续6.=6,则a的值为( )A.一1B.1C.D.2正确答案:A解析:因为x→0时分母极限为0,只有分子极限也为0,才有可能使分式极限为6,故[(1+x)(1+2x)(1+3x)+a]=1+a=0,解得a=一1,所以=6.知识模块:函数、极限与连续7.下列四种趋向中,函数y=不是无穷小的为( ) A.x→0B.x→1C.x→一1D.x→+∞正确答案:B解析:知识模块:函数、极限与连续8.设f(x)== ( )A.4B.7C.5D.不存在正确答案:A解析:知识模块:函数、极限与连续填空题9.函数y=ln(lnx)的定义域是_________.正确答案:(1,+∞)解析:y=ln(lnx),所以解得x>1,故函数的定义域为(1,+∞).知识模块:函数、极限与连续10.已知f(x)=2x2+1,则f(2x+1)= _________.正确答案:8x2+8x+3解析:用代入法得f(2x+1)=2(2x+1)2+1=8x2+8x+3.知识模块:函数、极限与连续11.=________.正确答案:解析:令.也可直接利用无穷小量代换.知识模块:函数、极限与连续12.=________.正确答案:e2解析:=e2.知识模块:函数、极限与连续13.设函数f(x)=在x=0处连续,则a=________.正确答案:3解析:因为函数f(x)在x=0处连续,则=a=f(0)=3.知识模块:函数、极限与连续14.设f(x)=在x=0处连续,则常数a与b满足的关系是________.正确答案:a=b解析:函数f(x)在x=0处连续,则有=b,即a=b.知识模块:函数、极限与连续解答题15.已知函数f(x)的定义域是[0,1],求函数f(x+4)的定义域.正确答案:因为f(x)的定义域是[0,1],所以在函数f(x+4)中,0≤x+4≤1,即一4≤x≤一3,所以f(x+4)的定义域为[一4,一3].涉及知识点:函数、极限与连续16.计算.正确答案:函数-x复合而成,利用有理化求得.故.涉及知识点:函数、极限与连续17.求.正确答案:0.∞型,先变形为,再求极限.=1.涉及知识点:函数、极限与连续18.求极限.正确答案:=1.涉及知识点:函数、极限与连续19.求极限.正确答案:原式==一15π2.涉及知识点:函数、极限与连续20.求极限.正确答案:所求极限为∞一∞型,不能直接用洛必达法则,通分变成型.涉及知识点:函数、极限与连续21.求.正确答案:涉及知识点:函数、极限与连续22.求极限.正确答案:1一,则有原式=.涉及知识点:函数、极限与连续23.若函数f(x)=在x=0处连续,求a.正确答案:由=一1.又因f(0)=a,所以当a=一1时,f(x)在x=0连续.涉及知识点:函数、极限与连续24.设f(x)=问a为何值时,f(x)在x=0连续;a 为何值时,x=0是f(x)的可去间断点.正确答案:f(0)=6,(1)若f(x)在x=0处连续,应有2a2+4=一6a=6,故a=一1;(2)若x=0是f(x)的可去间断点,则应有≠f(0),即2a2+4=一6a≠6,故a≠一1,所以a=一2时,x=0是可去间断点.涉及知识点:函数、极限与连续25.证明方程x3+x2+3x=一1至少有一个大于一1的负根.正确答案:令f(x)=x3+x2+3x+1,f(一1)=一2<0,f(0)一1>0,f(x)在(一1,0)上连续,由零点定理知,在(一1,0)内至少存在一点ξ,使得f(ξ)=0,所以方程在(一1,0)内至少有一根,即方程至少有一个大于一1的负根.涉及知识点:函数、极限与连续。
高等数学期末试题(含答案)
高等数学期末试题(含答案) 高等数学检测试题一。
选择题(每题4分,共20分)1.计算 $\int_{-1}^1 xdx$,答案为(B)2.2.已知 $2x^2y=2$,求$\lim\limits_{(x,y)\to(0,0)}\frac{x^4+y^2}{x^2y}$,答案为(D)不存在。
3.计算 $\int \frac{1}{1-x}dx$,答案为(D)$-2(x+\ln|1-x|)+C$。
4.设 $f(x)$ 的导数在 $x=a$ 处连续,且 $\lim\limits_{x\to a}\frac{f'(x)}{x-a}=2$,则 $x=a$ 是 $f(x)$ 的(A)极小值点。
5.已知 $F(x)$ 的一阶导数 $F'(x)$ 在 $\mathbb{R}$ 上连续,且 $F(0)=0$,则 $\frac{d}{dx}\int_0^x F'(t)dt$ 的值为(D)$-F(x)-xF'(x)$。
二。
填空:(每题4分,共20分)1.$\iint\limits_D dxdy=1$,若 $D$ 是平面区域 $\{(x,y)|-1\leq x\leq 1,1\leq y\leq e\}$,则 $\iint\limits_D y^2x^2dxdy$ 的值为(未完成)。
2.$\lim\limits_{x\to\infty}\frac{\left(\cos\frac{\pi}{n}\right)^2+\left(\cos\frac{2\pi}{n}\right)^2+\cdots+\left(\cos\frac{(n-1)\pi}{n}\right)^2}{n\pi}$ 的值为(未完成)。
3.设由方程 $xyz=e$ 确定的隐函数为 $z=z(x,y)$,则$\frac{\partial z}{\partial x}\bigg|_{(1,1)}$ 的值为(未完成)。
4.设 $D=\{(x,y)|x^2+y^2\leq a^2\}$,若$\iint\limits_D\sqrt{a^2-x^2-y^2}dxdy=\pi$,则 $D$ 的面积为(未完成)。
高数二期末考试题及答案
高数二期末考试题及答案一、选择题(每题4分,共20分)1. 下列函数中,哪一个是奇函数?A. \( f(x) = x^2 \)B. \( f(x) = x^3 \)C. \( f(x) = \sin(x) \)D. \( f(x) = \cos(x) \)答案:C2. 极限 \( \lim_{x \to 0} \frac{\sin(x)}{x} \) 的值是多少?A. 0B. 1C. \( \frac{1}{2} \)D. \( \infty \)答案:B3. 微分方程 \( y'' + y = 0 \) 的通解是?A. \( y = C_1 e^{-x} + C_2 e^x \)B. \( y = C_1 \cos(x) + C_2 \sin(x) \)C. \( y = C_1 x + C_2 \)D. \( y = C_1 \ln(x) + C_2 \)答案:B4. 定积分 \( \int_{0}^{1} x^2 dx \) 的值是多少?A. \( \frac{1}{3} \)B. \( \frac{1}{2} \)C. \( 1 \)D. \( 2 \)答案:A5. 曲线 \( y = x^3 \) 在点 \( (1,1) \) 处的切线斜率是?A. 3B. 1C. 0D. \( \frac{1}{3} \)答案:A二、填空题(每题5分,共20分)1. 函数 \( f(x) = x^2 - 6x + 8 \) 的最小值是 ________。
答案:22. 函数 \( f(x) = e^x \) 的导数是 ________。
答案:\( e^x \)3. 函数 \( y = \ln(x) \) 的定义域是 ________。
答案:\( (0, +\infty) \)4. 函数 \( y = \frac{1}{x} \) 的图像关于 ________ 对称。
答案:原点三、计算题(每题10分,共30分)1. 求函数 \( y = x^3 - 3x^2 + 4 \) 在 \( x = 2 \) 处的导数。
高等数学2B期末模拟题及参考答案2021-2版
高等数学2B 期末模拟题2一、选择题 1. 11sin ),(22-+=y x y x f 的定义域为( ) (A) 22{(,)|1}D x y x y =+= (B) 22{(,)|1}D x y x y =+≠(C) {(,)|0, 0}D x y x y =≠≠ (D) 22{(,)|0}D x y x y =+≠2. 2d L s =⎰( ),其中L 为圆周:221x y +=.(A) 4π (B) 2π(C) 0(D) 4π- 3. 已知级数1n n u ∞=∑收敛,则lim n n u →∞=( ) (A) 1 (B) 0 (C) ∞ (D) 不存在4. 2d d Dxy x y =⎰⎰( ),其中22{(,)|1,0}D x y x y y =+≤≥. (A) 4π (B) 2π (C) 0(D) 4π-二、判断题1. 设向量(1,2,2),(1,0,1)a b ==-,则a 与b 平行( ).2. (,)lim 4x y →=( ).3. 级数11(1)n n n ∞=+∑收敛( ).三、计算题1. 设y x f )1(+=,求d (1,1)f .2. 设)arctan(uv z =,而y v e u x 3,2==,求z x ∂∂. 四、应用题1. 求过点(2,0,3)-且与直线⎩⎨⎧=+-+=-+-012530742z y x z y x 平行的直线方程. 2. 求椭球面222236x y z ++=在点(1,1,1)处的切平面方程.五、当0,0,0x y z >>>时,已知函数(,,)ln 2ln 3ln f x y z x y z =++在附加条件22260x y z ++-=下存在最大值,求该最大值.六、计算重积分1. 计算二重积分2d d D y x y ⎰⎰,其中22{(,)|1,0}D x y x y y =+≤≥. 2. 计算三重积分d d d z x y z Ω⎰⎰⎰,其中Ω是由锥面22y x z +=与平面2=z 所围成的闭区域. 七、计算曲线积分与曲面积分1. 计算第二类曲线积分423(23)d (4)d L xy y x x xy y -++-⎰,其中L 为上半圆周22(2)1x y -+=上从(1,0) 到(2,1)的一段弧.2. 计算第二类曲面积分2d d d d d d x y z y z x z x y ∑+-⎰⎰,其中∑为介于0=z 与1=z 之间 的圆柱体229x y +≤的整个表面的外侧(包含上下底面). (提示:可利用高斯公式)八、证明级数111(1)ln(1)n n n ∞-=-+∑条件收敛. 九、将函数1()f x x=展开成(2)x -的幂级数. 十、设()f x 是周期为π2的周期函数,它在[,)ππ-上的表达式为1, 0 (),1, 0x f x x ππ≤<⎧=⎨≤<⎩--将()f x 展开成傅里叶级数.高等数学2B 期末模拟题参考答案2一、选择题1. B2. A3. B4. C二、判断题1. 错误2. 正确3. 正确三、计算题1. 解:1(1)y f y x x -∂=+∂,1)1,1(=∂∂x f ,(1)ln(1)y f x x y ∂=++∂,(1,1)2ln 2,f y ∂=∂ 故d (1,1)(1,1)d (1,1)d x y f f x f y =+d (2ln 2)d x y =+2. 解:d d z z u x u x ∂∂=⋅∂∂22121()x v e uv =⋅⋅+ 242619xx ye x y =+ 四、应用题1. 解:平面2470x y z -+-=的法向量为1(1,2,4)n →=-,平面35210x y z +-+=的法向量为2(3,5,2)n →=-,取所求直线的方向向量为12124352i j k s n n →→→=⨯=--)11,14,16(-=,又由所求直线过点(2,0,3)-,故所求直线的方程为23161411x y z -+==-. 2. 解:令222(,,)236F x y z x y z =++-,(,,)(2,4,6)x y z n F F F x y z →==,(1,1,1)|(2,4,6)n →=, 在点(1,1,1)处的切平面方程为2(1)4(1)6(1)0x y z -+-+-=,即2360x y z ++-=.五、解:令222(,,)ln 2ln 3ln (6),F x y z x y z x y z λ=+++++-解方程组22212022032060x y x F x x F y y F z z F x y z λλλλ⎧=+=⎪⎪⎪=+=⎪⎨⎪=+=⎪⎪⎪=++-=⎩,得唯一驻点, 故该点是函数的最值点.最大值为f =.六、计算重积分1. 解:原式2d d D y x y =⎰⎰1002d sin d r r r πθθ=⋅⎰⎰12002sin d d r r πθθ=⎰⎰43=. 2. 解一:(截面法)积分区域222(,)D :{(,,)|}02z x y x y z x y z z ∈+≤Ω=≤≤, 利用先二后一法得,20d d d d d d zD z x y z z z x y Ω=⎰⎰⎰⎰⎰⎰ 220d z z z π=⋅⎰24014z π=4π=. 解二:(投影法)利用柱面坐标系,积分区域02,02{(,,)|}2r r z r z θπθ≤≤≤≤Ω=≤≤, 22200d d d d d d r z x y z r r z z πθΩ=⎰⎰⎰⎰⎰⎰22012(4)d 2r r z π=⋅-⎰22401(2)4r z π=-4π=. 七、计算曲线积分与曲面积分1. 解:由423P xy y =-+,234Q x xy =-得, 324P Q x y y x∂∂=-=∂∂,故该积分与路径无关, 取积分路径L 为折线(1,0)(2,0)(2,1)→→,则21423310(23)d (4)d 3d (48)d L xy y x x xy y x y y -++-=+-⎰⎰⎰5=. 2. 解:由2,,P x Q y R z ===-得2P Q R x y z∂∂∂++=∂∂∂, 由高斯公式得,2d d d 2d d d x y z x y z ΩΩ==⎰⎰⎰⎰⎰⎰原式π18=.八、证明:该级数)1ln(1)1(11+-∑∞=-n n n 为交错级数, 由于11)1ln(1||+≥+=n n u n ,而∑∞=+111n n 发散,故∑∞=1n n u 发散, 又由1+>n n u u ,且1lim lim 0ln(1)n n n u n →∞→∞==+, 由莱布尼兹定理可知,原级数收敛,从而条件收敛.九、解:11()2(2)f x x x ==+-122(1)2x =-+ n n n n x )2(2)1(210--=∑∞=)40(<<x n n n n x )2(2)1(01--=∑∞=+)40(<<x十、解:所给函数满足收敛定理的条件,它在点(0,1,2,)x k k π==±±处不连续,在其他点处均连续,从而()f x 的傅里叶级数收敛,且当x k π=时级数收敛于1102-+=; 当x k π≠时,级数收敛于()f x . 001()cos d 11(1)cos d cos d 0(0,1,2,)n a f x nx x nx x nx x n πππππππ--==-+==⎰⎰⎰[]00001()sin d 11(1)sin d sin d 1cos 1cos 11cos cos 121(1)n n b f x nx x nx x nx x nx nx n n n n n n πππππππππππππππ---==-+⎡⎤⎡⎤=+-⎢⎥⎢⎥⎣⎦⎣⎦=--+⎡⎤=--⎣⎦⎰⎰⎰ 4,1,3,5,0,2,4,6,n n n π⎧=⎪=⎨⎪=⎩ 于是得)(x f 的傅里叶级数展开式为411()[sin sin3sin(21)]321f x x x k x k π=+++-+- k 141sin(21)(,0,,2,)21k x x x k πππ∞==--∞<<∞≠±±-∑。
高数B2分题型练习(答案)
高等数学B2分题型练习(参考答案) 一、单顶选择题1、 ()C2、()D3、()C4、()C5、()C6、()D7、 ()B8、()B9、()B10、()C 11、()D 12、()A 13、()A 14、()D 15、()D 16、()A 17、()B 18、()B19、()B 20、()C 21、()C 22、()C 23、()D 24、()C 25、()D 26、()A 27、()B28、()A 29、()A 30、()D 31、()D 32、()B 33、()A 34、()B 35、()C 36、()A二、填空题1、02、03、 04、05、12 6、12 7、0 8、2dx dy + 9、12dx dy + 10、0 11、0 12、222()xdx ydy x y ++ 13、1arccos 00(,)y dy f x y dx ⎰⎰14、12arcsin (,)ydy f x y dx π⎰⎰15、110(,)dx f x y dy ⎰ 16、210(,)xxdx f x y dy ⎰⎰17、1618、S 19、0a > 20、12p <≤ 21、( 22、2 23、[1,1)- 24、(2,4)- 25、0(1),(1,1)n nn x x ∞=-∈-∑ 26、0!n n x n ∞=∑ 27、210(1),(,)(21)!n n n x x n +∞=-∈-∞∞+∑ 28、110- 29、xe - 30、2x y e = 31、2± 32、312x x y C e C e -=+ 33、312y x C x C =++34、Cy x= 35、5212415y x C x C =++三、计算定积分1、求定积分cos 2sin x e xdx π⎰解:cos cos cos 222sin cos |1xx x exdx ed x ee πππ=-=-=-⎰⎰2、求定积分cos x xdx π⎰解:cos (sin )x xdx xd x ππ=⎰⎰00sin |sin x x xdxππ=-⎰0cos |2x π==- 3、求定积分220124xdx x ++⎰ 4、求定积分 21ln x xdx ⎰解:2222220001212444x x dx dx dx x x x +=++++⎰⎰⎰ 解:22211ln ln ()2x x xdx xd =⎰⎰ 222001arctan |ln(4)|22x x =++ 22211ln |22x x x dx =-⎰ ln 28π=+ 22132ln 2|2ln 244x =-=-5、求定积分2222dxx x -++⎰ 解:00022222(1)arctan(1)|()221(1)442dx d x x x x x πππ---+==+=--=++++⎰⎰ 6、求定积分解:令sin x t =,则cos dx tdt =,且当x =时,4t π=;1x =时,2π=t 。
高数b2期末考试试题及答案
高数b2期末考试试题及答案一、选择题(每题5分,共30分)1. 设函数f(x)=x^3-3x+1,求f'(x)的值。
A. 3x^2 - 3B. x^2 - 3xC. 3x^2 - 3xD. x^3 - 3x^2答案:A2. 计算定积分∫(0,1) x^2 dx。
A. 1/3B. 1/2C. 2/3D. 1/4答案:B3. 求极限lim(x→0) (sin x) / x。
A. 1B. 0C. 2D. ∞答案:A4. 判断下列级数是否收敛。
∑(1/n^2),n从1到∞。
A. 收敛B. 发散答案:A5. 判断函数f(x)=e^x在实数域R上的连续性。
A. 连续B. 不连续答案:A6. 求二阶偏导数f''(x,y),其中f(x,y)=x^2y+y^2。
A. 2xyB. 2xC. 2yD. 2答案:B二、填空题(每题5分,共20分)1. 设函数f(x)=ln(x+1),求f'(x)=______。
答案:1/(x+1)2. 计算定积分∫(0,2π) sin(x) dx=______。
答案:03. 求极限lim(x→∞) (1+1/x)^x=______。
答案:e4. 判断级数∑(1/n),n从1到∞是否收敛,答案是______。
答案:发散三、解答题(每题10分,共50分)1. 求函数f(x)=x^3-6x^2+11x-6的极值点。
答案:首先求导数f'(x)=3x^2-12x+11,令f'(x)=0,解得x=1,x=11/3。
经检验,x=1为极大值点,x=11/3为极小值点。
2. 计算定积分∫(0,1) e^x dx。
答案:∫(0,1) e^x dx = [e^x](0,1) = e^1 - e^0 = e - 1。
3. 求极限lim(x→0) (e^x - 1) / x。
答案:根据洛必达法则,lim(x→0) (e^x - 1) / x = lim(x→0) e^x = 1。
高等数学(B2)期末模拟试卷(一)与答案
高等数学( B2)期末模拟试卷(一)题号一二三五六七总 分23四14得分一、选择题( 本大题共 10 小题,每题 3,共 30):1.z1y 2 ln( x 2 y 2 1) ,其定义域为 ----------------------------------(A ).4x 2A ( x, y)1 x 2y 2 4B ( x, y) 1 x 2 y 2 4C ( x, y)1 x 2 y 2 4D ( x, y)1 x 2y 24 .2. 设 z x y ,则 dz --------------------------------------------------------------------------(D ).A x y ln xdx yx y 1dyB yx y 1dx x y dyCyx y 1 ln xdx x y ln xdyDyx y 1 dx x y ln xdy .3. x 2 y21绕 y 轴旋转一周所生成的旋转体体积可表示为--------------(C ).由椭圆1625A 252dxB 45 y2dx24442dy .y 0Cx 2dyDx4. 设 a(1, 2, 3) , b (2, 3, 4) , c(1, 1, 2) ,则 (a b ) c. 为 --------------------(A ).A 5B1C1D 5 .5. 设: 2x 3 y 4z 50 , L :x1y z 1 ,则 与直 L 的关系为 ---( A ).2 3 4A L 与垂直B L 与 斜交C L 与 平行D L 落于 内.6. 若 D (x, y)x 2, y 4 , D 1 ( x, y) 0 x 2,0y4 , f ( x 2 y 2 ) 为 D 上的连续函数,则f ( x 2y 2 ) d 可化为 ----------------------------------------------------( C ).DAf ( x 2y 2 )dB 2f ( x 2y 2 )dD 1D 1C 4f ( x 2y 2 )dD 8f ( x 2y 2 )d .D 1D 17. 下列哪个函数是某一二阶微分方程的通解----------------------------------------------( C ).Ay cx e xBy c 1 e c 2 x xC y c 1 e xc 2 xD y c 1 c 2 (x e x ) .8. 下列哪个级数收敛 ---------------------------------------------------------------------------(D ).A( 1) nB1 n 1C1 n nD100 .n 1n100n100n 1 n 1009. 若d4,其中 D:0xa, 0yax ,则正数 a ---------------------( B ).D243A 2 3B 2C 2 3D 22.10. 若幂级数a n (x 1)n 在 x3处条件收敛,则其收敛半径为----------------- ( B ) .n 1A 1B2C 3D 4 .二 、 计算题( 本大题共 4 小题,每题 7 ,共 28 ):1. 设 zf (u, v) 具有二阶连续偏导数,若zz 2zf (sin x, cos y) ,求 ,.xx y解:z c o sxf 1 ,2z( z ) cos xf 12( sin y)sin y cos xf 12 .xx yy x2. 设 zsin(x 2y 2 ) ,求zdxdy. D :2x 2 y 24 2 .D解:zdxdy = (cos 2cos42 )D3. 设曲线 ye 2 x , y ln( x 1) 与直线 x 1 及 y 轴所围成的区域为 D ,求D 的面积.解D 的面积=1( e 2 1) 2ln 2 .24. 解微分方程 x dyyx 2 e x .解:dy1 y dxxe xdxxP( x)1, Q (x) xe xxP(x)dxln x ,Q(x)e P( x) dxdxxexeln xdxex故通解为 yx( e x C)y三 、 计算题( 本题 9 )设 I2dy2ysin x xdx ,( 1)改变积分次序;(2)计算 I 的值 .解: I2dyy 2ysin xdxxx2 dx 2 2xsin xdy x2sin x ( x2x 2 )dx 12x四、证明题( 本题 8 )求证:曲面xyza 上任何点处的切平面在各坐标轴上的截距之和等于a .解:设切点为( x 0 , y 0 , z 0 )且设 F ( x, y, z)x yza ,则切平面方程为:1 ( x x 0 )1 ( y y 0 )1(zz 0 )2 x 0 2 y 02 z 0令 y z 0 可得: 切平面在 x 轴上的截距为x 0 x 0 y 0 x 0 z 0 x 0 a同理可得: 切平面在 y, z 轴上的截距分别为 y 0 a, z 0 a ,因此切平面在各坐标轴上的截距之和等于x 0 ay 0 az 0 aa 。
专升本高等数学二(一元函数积分学)模拟试卷1(题后含答案及解析)
专升本高等数学二(一元函数积分学)模拟试卷1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.若F’(x)=G’(x),k为常数,则( )A.G(x)+F(x)=kB.G(x)一F(x)=kC.G(x)一F(x)=0D.(∫F(x)dx)’=(∫G(x)dx)’正确答案:B解析:F’(x)=G’(x),两边积分得∫F’(x)dx=∫G’(x)dx,则F(x)+C1=G(x)+C2,故F(x)一G(x)=C2一C1=k,故选B.知识模块:一元函数积分学2.若∫f’(x3)dx=x3+C,则f(x)= ( )A.x+CB.x3+CC.+CD.+C正确答案:C解析:∫f’(x3)dx=x3+C,两边求导得f’(x3)=3x2=,两边积分得∫f’(x)dx=+C.知识模块:一元函数积分学3.已知f’(lnx)=x,其中1≤x<+∞,及f(0)=0,则f(x)= ( )A.f(x)=exB.f(x)=ex一1,1<x<+∞C.f(x)=ex一1,0≤x<+∞D.f(x)=ex,1<x<+∞正确答案:C解析:令t=lnx得f’(t)=et,f(t)=et+C,由f(0)=0得C=一1,即f(t)=et一1,又1≤x<+∞,从而t=lnx≥0,故f(x)=ex一1,0≤x<+∞.知识模块:一元函数积分学4.已知arctanx2是函数f(x)的一个原函数,则下列结论中,不正确的是( )A.f(x)=B.当x→0时,f(x)和x是同阶无穷小量C.∫0+∞f(x)dx=D.∫f(2x)dx=arctan4x2+C正确答案:D解析:A项:f(x)=(arctanx2)’==2,所以f(x)和x是同阶无穷小量;C项:∫0+∞f(x)dx=arctanx2|0+∞==arctan4x2+C,故选D.知识模块:一元函数积分学5.下列积分中,值为零的是( )A.B.C.D.正确答案:A解析:对于A选项,xsin2x为奇函数,由积分性质知,xsin2xdx=0;对于B选项,∫-11|x|dx=2∫01xdx=x2|01=1;对于C选项,=1,故选A.知识模块:一元函数积分学6.已知∫0k(2x一3x2)dx=0,则k= ( )A.0或1B.0或一1C.0或2D.1或一1正确答案:A解析:∫0k(2x一3x2)dx=(x2一x3)|0k=k2一k3=k2(1一k)=0,所以k=0或k=1.知识模块:一元函数积分学7.使∫1+∞f(x)dx=1成立的f(x)为( )A.B.C.D.正确答案:A解析:对于选项A,∫1+∞f(x)dx=∫1+∞dx=|1+∞=1,故此积分收敛,且收敛于1;对于选项B,∫1+∞f(x)dx=∫1+∞dx=lnx|1+∞不存在;对于选项C,∫1+∞f(x)dx=∫1+∞e-xdx=一e-x|1+∞=e-1,故此积分收敛,但收敛于e-1;对于选项D,∫1+∞f(x)dx=∫1+∞dx=arctanx|1+∞=,故此积分收敛,但收敛于.故选A.知识模块:一元函数积分学8.∫0sinxcosxdx= ( )A.0B.C.1D.π正确答案:B解析:.知识模块:一元函数积分学9.图3—1中阴影部分的面积总和可表示为( )A.∫abf(x)dxB.|∫abf(x)dx|C.∫ac1f(x)dx+∫c1c2f(x)dx+∫c2bf(x)dxD.∫ac1f(x)dx一∫c1c2f(x)dx+∫c2bf(x)dx正确答案:D解析:面积为正值,故当f(x)<0时,其相应部分的面积应表示为,故选D,也可表示为∫ab|f(x)|dx.知识模块:一元函数积分学填空题10.=_________.正确答案:解析:+C.知识模块:一元函数积分学11.=_________.正确答案:一—arctanex+C解析:知识模块:一元函数积分学12.已知函数f(x)=,则定积分∫12f()dx的值等于_________.正确答案:解析:知识模块:一元函数积分学13.∫-11x7cosxdx=_________.正确答案:0解析:x7cosx为奇函数,积分区间关于原点对称,∫-11x7cosxdx=0.知识模块:一元函数积分学14.设f(x)=∫0x|t|dt,则f’(x)= _________.正确答案:|x|解析:当x>0时,f’(x)=(∫0xtdt)’=x,当x<0时,f’(x)=[∫0x(一t)dt]’=一x,当x=0时,f+’(0)==0,同理f-’(0)=0,所以f’(0)=0,故f’(x)=|x|.知识模块:一元函数积分学15.曲线y=2x与直线x+2y=2,x=2所围图形的面积是________.正确答案:一1解析:由题意分析得,所求图形的面积为∫02-1.知识模块:一元函数积分学解答题16.计算.正确答案:涉及知识点:一元函数积分学17.如果+C,试求∫f(x)dx.正确答案:由+C,两端对x求导,得,故∫f(x)dx=+ C.涉及知识点:一元函数积分学18.计算∫(要求写出解答过程).正确答案:涉及知识点:一元函数积分学19.∫0sin3xsin2xdx.正确答案:.涉及知识点:一元函数积分学20.设x>0时f(x)可导,且满足f(x)=1+∫1xf(t)dt,求f(x).正确答案:因f(x)=1+∫1xf(t)dt可导,在该式两边乘x得xf(x)=x+∫1xf(t)dt,两边对x求导得f(x)+xf’(x)=1+f(x),所以f’(x)=,则f(x)=lnx+C,再由x=1时,f(1)=1,得C=1,故f(x)=lnx+1.涉及知识点:一元函数积分学21.设f(2x一1)=xlnx,求∫13f(t)dt.正确答案:∫13f(t)dt2∫12f(2x-1)dx=2∫12xlnxdx=∫12lnxdx2=x2lnx|12一∫12xdx=4ln2-.涉及知识点:一元函数积分学22.求定积分arcsinxdx.正确答案:涉及知识点:一元函数积分学23.求由曲线y2=(x一1)3和直线x=2所围成的图形绕x轴旋转所得的旋转体的体积.正确答案:Vx=π∫12y2dx=∫12π(x一1)3dx=π.涉及知识点:一元函数积分学24.曲线x=y+ey,直线x=y,y=1,y=2围成一平面图形B,求图形B绕y 轴旋转一周所得的旋转体的体积Vy.正确答案:Vy=π∫12[(y+ey)2—y2]dy=π∫12(2yey+e2y)dy=.涉及知识点:一元函数积分学设直线y=ax与抛物线y=x2所围成图形的面积为S1,它们与直线x=1所围成图形的面积为S2,并且a<1.25.试确定a的值,使S1+S2达到最小,并求出最小值;正确答案:因为a<1,所以可分成0<a<1,a≤0两种情况,分别画出两种情况下的图形(如图3—8),求出S1+S2的最小值后,即可确定a的值.当0<a<1时,S=S1+S2=∫0a(ax一x2)dx+∫a1(x2一ax)dx=,令S’=a2一是极小值,即最小值;当a≤0时,S=S1+S2=∫a0(ax一x2)dx+∫01(x2一ax)dx=,因为S’=(a2+1)<0,S单调减少,故a=0时,S取得最小值,此时S=.比较可知,是最小值.涉及知识点:一元函数积分学26.求该最小值所对应平面图形绕x轴旋转一周所得旋转体的体积.正确答案:Vx=.涉及知识点:一元函数积分学。
天津城建大学高等数学b2试题及答案
天津城建大学高等数学b2试题及答案1、2.比3大- 1的数是[单选题] *A.2(正确答案)B.4C. - 3D. - 22、-270°用弧度制表示为()[单选题] *-3π/2(正确答案)-2π/3π/32π/33、下列各式与x3? ?2相等的是( ) [单选题] *A. (x3) ? ?2B. (x ? ?2)3C. x2·(x3) ?(正确答案)D. x3·x ?+x24、下列说法中,正确的是[单选题] *A.一个有理数不是正数就是负数(正确答案)B.正分数和负分数统称分数C.正整数和负整数统称整数D.零既可以是正整数也可以是负整数5、下列计算正确的是( ) [单选题] *A. 9a3·2a2=18a?(正确答案)B. 2x?·3x?=5x?C. 3 x3·4x3=12x3D. 3y3·5y3=15y?6、11.11点40分,时钟的时针与分针的夹角为()[单选题] * A.140°B.130°C.120°D.110°(正确答案)7、1、方程x2?-X=0 是(? ? )? ? ? ? ? ? 。
[单选题] *A、一元一次方程B、一元二次方程(正确答案)C、二元一次方程D、二元二次方程8、已知二次函数f(x)=2x2-x+2,那么f(2)的值为()。
[单选题] *1228(正确答案)39、21、在中,为上一点,,且,则(). [单选题] *A. 24B. 36C. 72(正确答案)D. 9610、10.下列各数:5,﹣,03003,,0,﹣,12,1010010001…(每两个1之间的0依次增加1个),其中分数的个数是()[单选题] *A.3B.4(正确答案)C.5D.611、2.(2020·新高考Ⅱ,1,5分)设集合A={2,3,5,7},B={1,2,3,5,8},则A∩B=( ) [单选题] * A.{1,8}B.{2,5}C.{2,3,5}(正确答案)D.{1,2,3,5,7,8}12、下列说法正确的是[单选题] *A.两个数的和必定大于每一个加数B.两个数的和必定不大于每一个加数C.两个有理数和的绝对值等于这两个有理数绝对值的和D.如果两个数的和是负数,那么这两个数中至少有一个是负数(正确答案)13、4.在﹣,,0,﹣1,4,π,2,﹣3,﹣6这些数中,有理数有m个,自然数有n 个,分数有k个,则m﹣n﹣k的值为()[单选题] *A.3(正确答案)B.2C.1D.414、37.若x2+2(m﹣1)x+16是完全平方式,则m的值为()[单选题] *A.±8(正确答案)B.﹣3或5C.﹣3D.515、29.已知2a=5,2b=10,2c=50,那么a、b、c之间满足的等量关系是()[单选题] *A.ab=cB.a+b=c(正确答案)C.a:b:c=1:2:10D.a2b2=c216、27.下列各函数中,奇函数的是()[单选题] *A. y=x^(-4)B. y=x^(-3)(正确答案)C .y=x^4D. y=x^(2/3)17、下列计算正确的是( ) [单选题] *A. (-a)·(-a)2·(-a)3=-a?B. (-a)·(-a)3·(-a)?=-a?C. (-a)·(-a)2·(-a)?=a?D. (-a)·(-a)?·a=-a?(正确答案)18、8.如图,一副分别含有30°和45°角的两个直角三角板,拼成如图所示图形,则∠BFD的度数是( ) [单选题] *A.15°(正确答案)B.25°C.30°D.10°19、9. 一个事件发生的概率不可能是(? ? ?) [单选题] *A.0B.1/2C.1D.3/2(正确答案)20、45.下列运算正确的是()[单选题] *A.(5﹣m)(5+m)=m2﹣25B.(1﹣3m)(1+3m)=1﹣3m2C.(﹣4﹣3n)(﹣4+3n)=﹣9n2+16(正确答案)D.(2ab﹣n)(2ab+n)=4ab2﹣n221、用角度制表示为()[单选题] *30°(正确答案)60°120°-30°22、4.﹣3的相反数是()[单选题] *A.BC -3D 3(正确答案)23、点A的坐标为(3,4),点B的坐标为(5,8),则它们的中点坐标是(D)[单选题] *A、(3,4)B、(3,5)C、(8,12)D、(4,6)(正确答案)24、5.已知集合A={x|x=3k+1,k∈Z},则下列表示不正确的是( ) [单选题] *A.-2∈AB.2 022?AC.3k2+1?A(正确答案)D.-35∈A25、29、将点A(3,-4)平移到点B(-3,4)的平移方法有()[单选题] *A.仅1种B.2种C.3种D.无数多种(正确答案)26、若m·23=2?,则m等于[单选题] *A. 2B. 4C. 6D. 8(正确答案)27、4.(2020·天津,1,5分)设全集U={-3,-2,-1,0,1,2,3},集合A={-1,0,1,2},B={-3,0,2,3},则A∩(?UB)=( ) [单选题] *B.{0,2}C.{-1,1}(正确答案)D.{-3,-2,-1,1,3}28、已知10?=5,则100?的值为( ) [单选题] *A. 25(正确答案)B. 50C. 250D. 50029、25.下列式子中,正确的是()[单选题] *A.﹣|﹣8|>7B.﹣6<|﹣6|(正确答案)C.﹣|﹣7|=7D.|﹣5|<30、14.在防治新型冠状病毒的例行体温检查中,检查人员将高出37℃的部分记作正数,将低于37℃的部分记作负数,体温正好是37℃时记作“0”。
高等数学B2综合检测1答案
2
8. 计算 ∫∫ x 2 + y 2 dσ , 其中 D = {( x, y ) | x 2 + y 2 ≤ 1, 0 ≤ x}.
D
解:
∫∫
D
2
x 2 + y 2 dσ = ∫
π /2
−π /2
dθ ∫ r × rdr =
0
1
π
3
.
9. 计算
x + y ≤2 x
∫∫
2
( x + 2 y )dσ .
0 y 0 0
1
1
5. 设级数 ∑ (1 − un ) 收敛,则 lim un =
n =1 n →∞ > 1 时, ∫
+∞
1
dx 1 1− p 1 = = x . p − x 1− p p 1 1
+∞
7. 下列级数中绝对收敛的是【 C 】 ∞ ∞ ∞ (−1) n 1 A. ∑ (−1) n B. ∑ C. ∑ (1 − cos ) n n n =1 n =1 n =1
原方程的特解形式为 y* = ax 2 e3 x , 记 y* = Q( x)e3 x , 则代入原方程得, Q ′′ = 1 ,取
x2 x2 3x x2 3x * 3x Q′( x) = x, Q( x) = ,即 y = e , 原方程的通解为: y = (C1 + C2 x)e + e . 2 2 2 * 2 3x 注:也可将 y = ax e 代入原方程,确定 a . 1 1 11. 将 f ( x) = 及 g ( x) = 展开为 ( x − 1) 的幂级数. (3 − x) 2 3− x
+ c2 e x . 【特征根: r = −2,1 】
[专升本类试卷]专升本高等数学二(无穷级数)模拟试卷1.doc
[专升本类试卷]专升本高等数学二(无穷级数)模拟试卷1一、选择题1 若a n发散,则 ( )2 下列各选项正确的是 ( )3 若级数收敛,则下列级数中收敛的是 ( )4 下列级数中收敛的是( )5 下列级数中,绝对收敛的是 ( )6 当( )时,无穷级数(一1)nμn(μn>0)收敛.(A)U n+1≤μn(n=1,2,…)(B)μn=0(C)μn+1≤μn(n=1,2,…)且=0(D)μn+1≥μn(n=1,2,…)7 下列级数中,绝对收敛的是 ( )8 设幂级数a n x n在x=2处收敛,则该级数在x=一1处必定 ( )(A)发散(B)条件收敛(C)绝对收敛(D)敛散性不能确定9 级数a n3n收敛,则级数(一1)n a n2n ( ) (A)发散(B)条件收敛(C)绝对收敛(D)收敛性不确定二、填空题10 级数的和为_________.11 已知级数=________.12 若级数收敛,则a=________.13 幂级数x n的收敛半径R为________.14 已知=________.15 若幂级数a n x n在x=一3处条件收敛,则收敛半径R为________.16 幂级数的收敛区间为_________.17 判断的敛散性.18 判断的敛散性.18 判别下列级数是否收敛,如果收敛,是绝对收敛还是条件收敛?19 ;20 (a>0).21 判断的敛散性.22 求级数2n x2n的收敛半径与收敛域.23 求幂级数x n的收敛域.24 若a n(x一1)n,求a n.25 求幂级数1+(|x|<1)的和函数f(x)及其极值.26 将lnx展成x一2的幂级数.27 将函数f(x)=展开成x的幂级数.。
2019年高等数学B期末考试题及答案
2019年高等数学B期末考试题及答案一、选择题(每题4分,共20分)1. 函数f(x)=x^2+3x-4的零点个数是()。
A. 0B. 1C. 2D. 3答案:C2. 极限lim(x→0) (sin x)/x的值是()。
A. 0B. 1C. -1D. 2答案:B3. 以下哪个函数是偶函数()。
A. f(x) = x^3B. f(x) = x^2C. f(x) = x^2 + xD. f(x) = x^2 - x答案:B4. 以下哪个积分是发散的()。
A. ∫(0,1) 1/x dxB. ∫(0,1) x^2 dxC. ∫(0,1) e^x dxD. ∫(0,1) 1/(1+x^2) dx答案:A5. 以下哪个级数是收敛的()。
A. 1 + 1/2 + 1/4 + 1/8 + ...B. 1 - 1/2 + 1/4 - 1/8 + ...C. 1 + 1/2 + 1/3 + 1/4 + ...D. 1/2 + 1/4 + 1/8 + 1/16 + ...答案:B二、填空题(每题4分,共20分)6. 函数f(x)=x^3-3x的导数是_________。
答案:3x^2-37. 函数y=ln(x)的不定积分是_________。
答案:xln(x)-x+C8. 曲线y=x^2在x=1处的切线斜率是_________。
答案:29. 函数f(x)=e^x的原函数是_________。
答案:e^x+C10. 极限lim(x→∞) (1+1/x)^x的值是_________。
答案:e三、计算题(每题10分,共30分)11. 计算定积分∫(0,2) x^2 dx。
答案:[1/3x^3](0,2) = 8/312. 求函数f(x)=x^3-6x^2+9x的极值点。
答案:极值点为x=0和x=3。
13. 证明函数f(x)=x^2在区间(-∞,+∞)上是凸函数。
答案:证明略。
四、解答题(每题15分,共30分)14. 给定函数f(x)=x^3-3x,求其在区间[-2,2]上的最大值和最小值。
专升本高等数学二(多元函数积分学)模拟试卷1(题后含答案及解析)
专升本高等数学二(多元函数积分学)模拟试卷1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.化二重积分f(x,y)dxdy为极坐标下的二次积分,其中D由y=x2及y=x围成,正确的是( )A.∫0dθ∫0tanθf(rcosθ,rsinθ)rdrB.∫0dθ∫0tanθsecθf(rcosθ,rsinθ)rdrC.∫0dθ∫0tanθsecθf(rcosθ,rsinθ)rdrD.∫0dθ∫0tanθcscθf(rcosθ,rsinθ)rdr正确答案:C解析:由题意可得直角坐标系下的D可表示为:0≤x≤1,x2≤y≤x,令x=rcos θ,y=rsinθ,则0≤θ≤,0≤r≤tanθsecθ,则二重积分可表示为f(rcosθ,rsinθ)rdr,故选C.知识模块:多元函数积分学2.若D={(x,y)|a2≤x2+y2≤4a2,(a>0)},则二重积分dxdy= ( )A.3πa2B.πa3C.πa2D.πa3正确答案:D解析:=∫02πdθ∫a2ar2dr=πa3.知识模块:多元函数积分学3.区域D为( )时,dxdy=2.A.|x|≤1,|y|≤1B.|x|+|y|≤1C.0≤x≤1,0≤y≤2xD.0≤x2+y2≤2正确答案:B解析:由二重积分的性质知=SD=2,可求得A的面积SD=4,B的面积SD=2×2×=2,C的面积SD=2×1×=1,D的面积SD==2π,故选B.知识模块:多元函数积分学4.设L为抛物线x一1=y2一2y上从点A(1,0)到点B(1,2)的一段弧,则∫L(ey+x)dx+(xey一2y)dy= ( )A.e一1B.e+1C.e2一5D.e2+5正确答案:C解析:=ey,所以积分与路径无关,原积分路径可以改为沿着x=1从A点到B点,则∫L(ey+x)dx+(xey-2y)dy=∫02(ey一2y)dy=(ey一y2)|02=e2一5,故选C.知识模块:多元函数积分学5.设L是y=x2上从点(0,0)到点(1,1)之间的有向弧,则∫L(x3一y)dx一(x+siny)dy= ( )A.B.C.D.正确答案:B解析:=一1,所以积分与路径无关,则可把积分看成先所以积分∫L(x3-y)dx—(x+siny)dy=∫01x3dx+∫01-(1+siny)dy=(-1+cos1)一(0+1)=cos1—.知识模块:多元函数积分学6.已知闭曲线L:x2+y2=4,则对弧长的曲线积分(4x2+4y2一6)ds= ( )A.40πB.12πC.6πD.4π正确答案:A解析:令x=2cost,y=2sint,则(4x2+4y2一6)ds=∫02π10dt=∫02π20dt=40π.知识模块:多元函数积分学填空题7.比较积分I1=(x+y)7dσ与I2=(x+y)8dσ的大小,其中D由Ox轴、Oy轴及直线x+y=1围成,则________.正确答案:I1≥I2解析:在区域D内可知x+y≤1,所以在区域D上(x+y)7≥(x+y)8(等号仅在x+y=1处取得),故(x+y)7dσ≥(x+y)8dσ,即I1≥I2.知识模块:多元函数积分学8.设=4π,这里a>0,则a=________.正确答案:a=4解析:=aπ=4π,所以a=4.知识模块:多元函数积分学9.设I=交换积分次序,则有I=________.正确答案:∫04dx∫x24xf(x,y)dy解析:I=∫016dy的积分区域为D={(x,y)|0≤y≤16,}={(x,y)|0≤x≤4,x2≤y≤4x},所以I=∫04dx∫x24xf(x,y)dy.知识模块:多元函数积分学10.化二次积分I=∫02dx为极坐标下的二次积分,则I=_______.正确答案:I=dθ∫02secθcosr.rdr解析:因积分区域D={(x,y)|0≤x≤2,x≤y≤}={(x,y)|1≤tan θ≤,0≤rcosθ≤2)}={(θ,r)|,0≤r≤2secθ},所以I=dθ∫02secθcosr.Rdr 知识模块:多元函数积分学11.设D:|x|≤1,|y|≤1,且[f(x,y)+2]dσ=________.正确答案:9解析:=1+2×2×2=9.知识模块:多元函数积分学12.设a>0,f(x)=g(x)=而D表示全平面,则I=f(x)g(y—x)dxdy=________.正确答案:a2解析:I=f(x)g(y—x)dxdy=a2dxdy=a2∫01dx∫xx+1dy=a2∫01[(x+1)一x]dx=a2.知识模块:多元函数积分学13.若L为圆周曲线x2+y2=a2,方向为逆时针方向,则曲线积分2xdy 一3ydx=_______.正确答案:5πa2解析:L围成的平面图形的面积SD=πa2,则5dxdy=5SD=5πa2.知识模块:多元函数积分学14.设L为x2+y2=1逆时针方向,则xy2dy-x2ydx=_______.正确答案:解析:xy2dy一x2ydx=y2一(-x2)dxdy=∫02πdθ∫01r2.rdr=.知识模块:多元函数积分学15.设L:y=x2(0≤x≤),则∫Lxds=_______.正确答案:解析:由于L由方程y=x2(0≤x≤)给出,因此∫Lxds=.知识模块:多元函数积分学解答题16.交换积分次序∫12dx∫xf(x,y)dy.正确答案:因积分区域D={(x,y)|1≤x≤2,≤y≤x}={(x,y)|≤x≤2}+{(x,y)|1≤y≤2,y≤x≤2},所以原式=+∫12dy∫y2f(x,y)dx.涉及知识点:多元函数积分学17.求(x3+y)dxdy,其中D是由曲线y=x2与直线y=1所围成的有界平面区域.正确答案:由于积分区域D关于y轴对称,因此x3dxdy=0.记D1为区域D在第一象限的部分,则=2∫01dx∫x21ydy=∫01(1-x4)dx=.所以(x3+y)dxdy=.涉及知识点:多元函数积分学18.计算|xy|dσ,其中D由x轴,y+x=1和y—x=1围成.正确答案:如图5—5所示,D:0≤y≤1,y一1≤x≤1一y,故|xy|d σ=∫01dy∫y-10(-xy)dx+∫01dy∫01-yxydx=∫01dy+∫01dy=∫01y(y-1)2dy=.涉及知识点:多元函数积分学19.计算(x2一y2)dxdy,D是闭合区域:0≤y≤sinx,0≤x≤π.正确答案:(x2一y2)dxdy=∫0πdx∫0sinx(x2一y2)dy=∫0π(x2sinx一sin3x)dx=(-x2cosx)|0π+2∫0πxcosxdx一∫0πsinxdx—∫0πcos2xdcosx=π2一.涉及知识点:多元函数积分学20.计算sin(x2+y2)dσ,其中D:≤x2+y2≤π.正确答案:涉及知识点:多元函数积分学21.计算(xey+x2y2)dxdy,其中D是由y=x2,y=4x2,y=1围成.正确答案:因D关于y轴对称,且xey是关于x的奇函数,x2y2是关于x 的偶函数,则I=xeydxdy+x2y2dxdy=0+x2y2dxdy,I=2∫01dy x2y2dx=2∫01y2dy=.涉及知识点:多元函数积分学22.计算二重积分,其中D是由y2=2x,x=1所围成的平面区域.正确答案:如图5—8所示,D={(x,y)|≤x≤1},所以,涉及知识点:多元函数积分学23.计算,其中D:x2+y2≤x.正确答案:改写积分区域D为:(x-)2+y2≤.如图5—11所示,因积分区域为圆,故选择极坐标系下计算二重积分.涉及知识点:多元函数积分学24.计算∫L(exsiny-2y)dx+(excosy-2)dy,其中L为上半圆周(x-a)2+y2=a2(y≥0)沿逆时针方向.正确答案:取L1为y=0(x:0→2a),则L+L1为封闭曲线,其所围区域D为半圆面,则由格林公式(exsiny一2y)dx+(excosy一2)dy=(excosy—excosy+2)dσ=πa2=πa2.因此,原积分=πa2一∫L1(exsiny一2y)dx+(excosy一2)dy=πa2一[∫02a(ex.sin0-2.0)dx+0]=πa2一0=πa2.涉及知识点:多元函数积分学25.计算对坐标的曲线积分I=∫L(x+y一1)dx+(x—y+1)dy,其中L是曲线y=sinx上由点0(0,0)到点A(,1)的一段弧.正确答案:令P(x,y)=x+y一1,Q(x,y)=x—y+1.因为,所以积分与路径无关.引入点B(,0),则I=(x+y一1)dx+(x—y+1)dy+(x+y一1)dx+(x—y+1)dy=.涉及知识点:多元函数积分学26.计算(x+y)ds,其中L为连接点O(0,0),A(1,0),B(0,1)的闭折线.正确答案:如图5-15,涉及知识点:多元函数积分学。
《高等数学》期末考试B卷(附答案)
《高等数学》期末考试B卷(附答案)【编号】ZSWD2023B0089一、填空题 (每空2分,共20分) 1、]1sin sin 1[lim x x x x x 【答案】12、设)(x f 的定义域是]1,0[,那么函数)2(x f 的定义域是 【答案】]0,(3、设函数1,121,211)(1x x x x x x x f x a, 当 a ______________时使)(lim 1x f x 存在 【答案】2ln4、设42sin x y ,则dydx=__________________。
【答案】3448sin cos x x x5、已知成本函数为5002)(2 x x x C ,当产量为1000时,边际成本为______ _. 【答案】20026、若 C x dx xx f sin )(ln ',则 )(x f【答案】C e x )sin(7、已知2111x y dt t,求dy dx【答案】221xx8、函数21()(1)x e f x x x 的可去间断点是0x =__0___, 补充定义0()f x =_____ , 则函数()f x 在0x 处连续。
【答案】0,-2二、单项选择题(每小题2分,共10分)1、当0x 时,与31000x x 等价无穷小的是( )AB C x D 3x【答案】C2、以下结论正确的是( )A 函数)(x f 在),(b a 内单调增加且在),(b a 内可导,则必有0)(' x f ;B 函数)(x f 在),(b a 内的极大值必大于极小值;C 函数)(x f 极值点不一定是驻点;D 函数)(x f 在0x 的导数不存在,则0x 一定不是)(x f 的极值点.【答案】C3、设()x y f e , 则 dy ( ).A. '()x x f e deB. '()()x f e d xC. '()x x f e e dxD.'()x x f e de【答案】D4、设函数()f x 在区间(,)a b 内可导, 1x 和2x 是(,)a b 内的任意两点, 且 12x x , 则至少存在一点 , 使( )成立.A '()()()() (,)f b f a f b a a bB '212112 ()()()() (,)f x f x f x x x xC '111()()()() (,)f b f x f b x x bD '222 ()()()() (,)f x f a f x a a x 【答案】B5、在开区间),(b a 内,)(x f 和)(x g 满足)()(''x g x f ,则一定有( )A. )()(x g x fB. 1)()( x g x fC. ''[()][()]f x dx g x dxD. )()(x dg x df【答案】D【编号】ZSWD2023B0089三、计算题(每小题5分,共35分) 1、求极限20sin tan sin limxx xx x 2200222200sin tan tan (cos 1)limlimsin sin 10,sin ,cos 1,tan 21()sin tan 12 lim lim sin 2x x x x x x x x x x x x x x x x x x x x x x x x x x x Q :解2、已知)(u f 可导,))(1ln(2x e f y ,求'y .解: 令u ex2, ))(1ln())(1ln(2u f e f y x利用复合函数求导法得''')(1)(u u f u f y x)(1)(222'2x x x e f e f e .3、讨论函数221,0(), 0x e x f x x x的连续性和可导性;解:当0x 和0x 时,函数()f x 对应的都是定义区间内的初等函数,故均连续和可导。
高等数学B2期末试卷及其答案
华南农业年夜学期末测验试卷〔A 卷〕2010学年第2学期测验科目: 初等数学B Ⅱ 测验范例:〔闭卷〕测验 测验时刻:120分钟学号姓名年级专业一、 填空题〔本年夜题共5小题,每题3分,共15分〕 1.曲面是由坐标面xoy 上的曲线绕轴扭转一周而成。
2.设函数在点处存在偏导数,那么它在该点处获得极值的须要前提是。
3.设,那么。
4.设发散,那么。
5.已经知道某二阶常系数齐次线性微分方程的通解为,那么该微分方程为。
二、选择题〔本年夜题共5小题,每题3分,共15分〕 6.与向量跟都垂直的单元向量是〔〕 〔A〕;〔B 〕;〔C 〕;〔D 〕。
7.设函数可微,且,假设,那么的值为〔〕 〔A〕;〔B 〕;〔C 〕;〔D 〕。
8.设是延续函数,那么〔〕 〔A 〕;〔B 〕; 〔C 〕;〔D 〕。
9.以下级数前提收敛的是〔〕 〔A 〕;〔B 〕;〔C 〕;〔D 〕。
10.差分方程的一个特解方式为〔是待定常数〕〔〕 〔A 〕;〔B 〕; 〔C 〕;〔D 〕。
三、盘算题〔本年夜题共8小题,每题7分,共56分〕11.求平行于立体且与球面相切的立体的方程。
12.求二重极限。
13.设,而,,求14.设,责备微分。
15.盘算二次积分。
1.5CM16.推断级数的敛散性,假如收敛,是相对收敛依然前提收敛,并阐明来由。
17.求解初值咨询题:。
18.求幂级数的收敛域,并求其跟函数。
四、使用题〔此题8分〕19.设某公司所属的甲、乙两厂消费统一种产物,当甲、乙两厂的产量分不为跟〔单元:千件〕时,总本钱函数为〔单元:万元〕现有总本钱53万元,咨询怎样布置消费才干使甲、乙两厂的产量之跟最年夜?五、证实题〔此题6分〕20.设跟收敛,且〔〕,证实也收敛。
2010初等数学BⅡ期末测验试卷参考谜底:一、填空题:1.,。
2.。
3.。
4.。
5.。
二、选择题:6.〔A〕。
7.〔B〕。
8.〔C〕。
9.〔D〕。
10.〔D〕。
三、盘算题:1.5CM11.【解】依题意可设立体的方程为…………………………〔2分〕又因为立体与球面相切,故球心到立体的间隔即是球面半径,即…………………………〔5分〕那么,故立体的方程为或……………〔7分〕12.【解】因为,因而……………〔4分〕因而,有……………〔7分〕13.【解】由链式法那么,有……………………………………〔2分〕………………〔6分〕……………〔7分〕14.【解】因为,,故,……………………………………〔3分〕因而,有…………………………〔7分〕15.【解】…………………………〔3分〕………………………〔7分〕16.【解】设,因为〔〕,由比拟判不法可知,原级数不相对收敛。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学(B2)期末模拟试卷(一)
一、选择题(本大题共10小题,每题3',共30'):
1. )1ln(41222
2-++--=
y x y x z ,其定义域为----------------------------------(A ).
A {}41),(2
2
<+<y x y x B {
}
41),(2
2<+≤y x y x C {
}41),(2
2≤+<y x y x D {
}
41),(2
2≤+≤y x y x .
2. 设y
x z =,则=dz --------------------------------------------------------------------------(D ). A dy yx xdx x y y
1
ln -+ B dy x dx yx y y +-1
C xdy x xdx yx
y y ln ln 1+- D xdy x dx yx y y ln 1+-.
3. 由椭圆
116
252
2=+y x 绕y 轴旋转一周所生成的旋转体体积可表示为--------------( C ). A 520
2y dx π
⎰
B 520
4y dx π⎰ C 420
2x dy π⎰ D 4
20
4x dy π⎰.
4. 设)3,2,1(=a ρ,)4,3,2(=b ρ,)2,1,1(-=c ρ
,则.)(c b a ρρρ⋅⨯为--------------------(A ).
A 5-
B 1-
C 1
D 5. 5. 设05432:=+++∏z y x ,4
1
321:
-=
=-z y x L ,则∏与直L 的关系为---( A ). A L 与∏垂直 B L 与∏斜交 C L 与∏平行 D L 落于∏内.
6. 若{}4,2),(≤≤=y x y x D ,{}
40,20),(1≤≤≤≤=y x y x D ,)(2
2y x f +为D 上的连续函数,则
σd y x f D
)(22⎰⎰
+可化为----------------------------------------------------(C ).
A
σd y x f D )(
1
22⎰⎰+ B σd y x f D )(21
22⎰⎰+
C σd y x f
D )(4
1
22⎰⎰
+ D σd y x f D )(81
22⎰⎰+.
7. 下列哪个函数是某一二阶微分方程的通解----------------------------------------------( C ).
A x
e cx y += B x e
c y x
c +=+21
C x c e c y x
21+= D )(21x
e x c c y +=.
8. 下列哪个级数收敛---------------------------------------------------------------------------(D ). A
∑∞
=-1
)1(n n
B
∑
∞
=+1
1001
n n C ∑∞
=+1
100n n n
D
∑∞
=1
100
100
n n . 9. 若⎰⎰=D
d 4σ,其中ax y a x D ≤≤≤≤0,0:,则正数=a ---------------------( B ).
A 3
22 B 2 C 3
4
2 D 2
32. 10. 若幂级数
∑∞
=-1
)1(n n
n
x a
在3=x 处条件收敛,则其收敛半径为-----------------( B ). A 1 B 2 C 3 D 4.
二、计算题(本大题共4小题,每题7',共28'):
1. 设),(v u f z =具有二阶连续偏导数,若)cos ,(sin y x f z =,求
.,2y x z x z ∂∂∂∂∂ 解: ,cos 1xf x
z
=∂∂
=∂∂∂y x z 2.cos sin )sin (cos )(1212xf y y xf x z y -=-⋅=∂∂∂∂ 2. 设)sin(2
2
y x z +=,求⎰⎰
D
zdxdy . D :22224ππ≤+≤y x .
解:
⎰⎰
D
zdxdy =)4cos (cos 22πππ-
3. 设曲线x
e y 2=, )1ln(+=x y 与直线1=x 及y 轴所围成的区域为D ,求D 的面积.
解D 的面积=
2ln 2)1(212
-+e . 4. 解微分方程.2x e x y dx
dy
x -+=
解:x xe y x
dx dy -=-1
x xe x Q x
x P -=-=)(,1
)(
⎰
-=∴x dx x P ln )(, x x x dx
x P e dx e xe dx e
x Q ----=⋅=⎰
⎰⎰ln )()(
故通解为)(C e
x y x
+-=-
三、计算题(本题9')设⎰⎰
=20
2sin π
πy y
dx x
x
dy I ,(1)改变积分次序;
(2)计算I 的值.
解:⎰
⎰
=
20
2
sin π
πy
y
dx x
x
dy I =πππ
π
π
2
1)2(sin sin 2022022-=-=⎰⎰⎰dx x x x x dy x x dx x
x 四、证明题(本题8')求证:曲面a z y x =++上任何点处的切平面在各坐标
轴上的截距之和等于a .
解:设切点为(000,,z y x )且设=),,(z y x F a z y x -++,
则切平面方程为:
+
-)(2100
x x x +
-)(2100
y y y 0)(2100
=-z z z
令0==z y 可得:切平面在x 轴上的截距为 a x z x y x x 000000=++
同理可得:切平面在z y ,轴上的截距分别为,,00a z a y
因此切平面在各坐标轴上的截距之和等于a a z a y a x =++000。
五、计算题(本题8')求1
1
(1)n n
n x n +∞
=-∑的收敛域及和函数.
解:解:x x n x n n n n n n =⋅+⋅-++-++++∞→1
1
)1(1
11
)1(1
)1()1(lim
Θ 故12)1(1
21
+-+∞
=∑n x n n n
的收敛半径为1
易知当1=x 时,1)1(11+-+∞
=∑n x n n n
收敛;当1-=x 时,1)1(11
+-+∞
=∑n x n n n 发散 因此1)1(1
1
+-+∞
=∑n x n n n
在]1,1(-收敛。
六、计算题(本题8')设)(x f y =是第一象限内连接A )1,0(,B )0,1(的一段连续曲线,
),(y x M 为该曲线上任意一点,点C 为M 在x 轴上的投影,O 为坐标原点.若梯形OCMA
的面积与曲边三角形CBM 的面积之和为
3
1
63+x ,求)(x f 的表达式. 解:⎰+=
++133
1
6)1(2x x ydx y x 11
122)1(2122++=⇒-=-'⇒=-'++Cx x y x
x y x y x y y x y 由20)1(-=⇒=C y ,故 2
)1()(-=x x f
七、应用题(本题9')设生产某种产品必须投入两种要素, 1x 和2x 分别为两种要素的
投入量,产出量为 3
223
1
12x x Q =, 若两种要素的价格之比为
42
1
=p p ,试问: 当产出量12=Q 时, 两种要素的投入量21 , x x 各为多少,可以使得投入总费用最小?
解:.该题为求费用函数 221121),(x p x p x x C += 在条件1223
223
11=x x 下的最小值问题.为此作拉格朗日函数 )212(),,(3223
112211x x x p x p x x L -++=λλ
令⎪⎩
⎪⎨⎧
12
20340
3232
23113123112322321121==-==-=-
-
x x x x p L x x p L x x λλ⎪⎩⎪⎨⎧==⇒122832231112x x x x
⎩⎨⎧==⇒24
321x x ,即两种要素各投入3,24可使得投入总费用最小.。