新版流体力学泵与风机蔡增基第五版下答案-新版.pdf
泵与风机课后习题参考答案(完整版)(基础教育)
泵与风机(课后习题答案)第五章5-1 水泵在n=1450r/min 时的性能曲线绘于图5-48中,问转速为多少时水泵供给管路中的流量为Hc=10+17500q v 2(q v 单位以m 3/s 计算)?已知管路特性曲线方程Hc=10+8000q v 2(q v 单位以m 3/s 计算)。
2q v (L/s) 0 10 20 30 40 50 q v (m 3/s) 0 0.01 0.02 0.03 0.04 0.05 Hc (m ) 10 10.8 13.2 17.2 22.8 30同一水泵,且输送流体不变,则根据相似定律得:5-2 某水泵在管路上工作,管路特性曲线方程Hc=20+2000q v 2(q v 单位以m 3/s 计算),水泵性能曲线如图5-49所示,问水泵在管路中的供水量是多少?若再并联一台性能相同的水泵工作时,供水量如何变化? 【解】绘出泵联后性能曲线2q v (L/s) 0 10 20 30 40 50 60 q v (m 3/s) 0 0.01 0.02 0.03 0.04 0.05 0.06Hc (m ) 20 20.2 20.8 21.8 23.2 25 27.2 管路特性曲线与泵并联后性能曲线交于M 点(56L/s ,25m ).5-3为了增加管路中的送风量,将No.2风机和No.1风机并联工作,管路特性曲线方程为p =4 q v 2(q v 单位以m 3/s 计,p 以p a 计),No.1 及No.2风机的性能曲线绘于图5-50中,问管路中的风量增加了多少?2q v (103m 3/h) 0 5 10 15 20 25 q v (m 3/s) 0 1.4 2.8 4.2 5.6 7p (p a )0 7.84 31.36 70.56 125.44 196 ×103m 3/h ,700p a )于单独使用No.1风机相比增加了33×103-25×103=8 m 3/h5-4 某锅炉引风机,叶轮外径为1.6m ,q v -p 性能曲线绘于图5-51中,因锅炉提高出力,需改风机在B 点(q v =1.4×104m 3/h ,p =2452.5p a )工作,若采用加长叶片的方法达到此目的,问叶片应加长多少?min /r 114246145030m m p m p =⨯==v v v q n n q q ,【解】锅炉引风机一般为离心式,可看作是低比转速。
流体力学泵与风机 课后习题答案详解 蔡增基 第五版 中国建筑工业出版社
流体力学泵与风机 2-15解:(1)当1γ为空气 21p p = ()A B p h z p =++γ ()h z p p p B A +=-=∆γ 3.010008.9⨯⨯= k p a pa 94.22940== (2)当1γ为油 31p p =()z H h p p A +++=γ1()H h p p B γγ++=13H h z H h p p p p p B A γγγγγ--+++-=-=∆131h z h 1γγγ-+=1.090002.010008.91.010008.9⨯-⨯⨯+⨯⨯= k p a pa 04.22040== 2-16 解:21p p =()211h h H p p M +++=水γ 212h h p p a 汞油γγ++=()2121h h p h h H p a M 汞油水γγγ++=+++()2.010008.96.1378502.05.110008.998011⨯⨯⨯+⨯=++⨯⨯+-h h 26656785098002.098005.1980098011+=+⨯+⨯+-h h 1960147009802665619501--+=hm h 63.51= 2-28解:()21h h p -=γ()()()b h h h b h h h h P 02210212145sin 45sin 21-+--=γγ()()145sin 22310008.9145sin 232310008.9210⨯-⨯⨯+⨯-⨯-⨯⨯⨯=kN N 65.343465022510008.9==⨯⨯=()()()Pbl h h h bl h h h h l D D D 222110212145sin 45sin 21-+--=γγm 45.222510008.9222210008.92322210008.9=⨯⨯⨯⨯⨯+⨯⨯⨯=2-32 解:b h h b h h P 0222145sin 2145sin γγ+=2222210008.9212222110008.9⨯⨯⨯⨯⨯+⨯⨯⨯⨯=kN N 8576.1106.1108572810008.9==⨯⨯=Ph h b h h h h b h h l D 02102202102145sin 3245sin 2145sin 245sin ⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=γγ2810008.92372410008.9222410008.9⨯⨯⨯⨯⨯+⨯⨯⨯=2613= 26722613=-=p l T P G l T l P l G ⨯=⨯+⨯ 22672810008.9162.19⨯=⨯⨯⨯+⨯TkN T 31.10134.27481.9=+=2-41解:245sin 0=⨯=r hb h h P x ⨯⨯⋅⋅=21γ4212210008.9⨯⨯⨯⨯⨯=kN N 2.3939200==V P z γ=b r r r⎪⎭⎫⎝⎛⨯⨯⨯-=00245cos 45sin 2136045πγ 4212281214.310008.92⨯⎪⎭⎫⎝⎛⨯⨯-⨯⨯⨯⨯= kN N 344.2222344==kN P 1.45344.222.3922=+=3057.0arctan 2.39344.22arctanarctan≈===xz P P α3-3解:(1)s m v d Q /0049.010025.04432323=⋅⋅=⋅=ππs kg Q /9.4=ρ(2)s m v d d v /625.032131=⎪⎪⎭⎫⎝⎛= s m v d d v /5.232232=⎪⎪⎭⎫ ⎝⎛= 3-5解:s m h m Q /778.2/1000033==s m dQv /2042≤=π所以,177.04=≥πv Q d所以,mm m d 45045.0== 此时,s m dQdQv /4.1763585.0112.114422====ππ3-6解:22543212054d d A A A A A ππ======22114012021d d A A ππ=⋅="='22224012021d d A A ππ=⋅="='22334012021d d A A ππ=⋅="='22444012021d d A A ππ=⋅="='22554012021d d A A ππ=⋅="='2214014d d ππ=d d 1011=d r 10211=2224034d d ππ=d d 1032=d r 10232=2234054d d ππ=d d 1053=d r 10253=2244074d d ππ=d d 1074=d r 10274=2254094d d ππ=d d 1035=d r 10235=()()54321254321220240u u u u u d u u u u u d Q G ++++=++++==πρπρρ3-7解:干管前端的质量流量为:42562.2211111d A v Q πρρ⨯⨯==()s kg /128544.005.042562.22=⨯⨯⨯=πs kg Q Q Q /064272.02132===ρρρ()s m A Q v /247.2204.043.2064272.022222=⋅⋅==πρρ()s m A Q v /05.18045.0424.2064272.023333=⋅⋅==πρρ3-10解:将基准面建立在B 点经过的水平面上,列能量方程:gv p z gv p z 222222221111αγαγ++=++其中,m z 2.11=m p 5.11=γs m v /21= s m v dd v /5.4122212==121==ααg p g 25.40225.12.1222++=++γ871.125.4225.12.1222=-++=ggp γ3-11解:将2点所在的水平面作为基准面,列能量方程: gv p z gv p z 222222221111αγαγ++=++31=z 02=zγγ21p p =s m v /31=gv p gp 2023322221++=++γγs m gh v /2.83222=+=32.822112=⎪⎪⎭⎫ ⎝⎛=d d v v 所以,m d 12.02= 3-14解:以水面为基准面,列0-0和D-D 的能量方程:gv p z gv p z D D DD 22220000αγαγ++=++00=z00=γp02200=gv α 4-=D z0=γDpgv D D 2040002α++-=++ 所以,422=gv D D α,即,s m v D /85.88.924=⋅⋅=所以,s m v d Q D /017368.085.805.044322=⋅⋅==ππ81:1:2:24422==A D D D A A d d gv gv αα列0-0和A-A 断面的能量方程:gv p z gv p z A A AA 22220000αγαγ++=++8147000++-=++γAp所以,8147-=γAp 所以,kpa p A 1.68=列0-0和B-B 断面的能量方程:gv p z gv p z B B BB 22220000αγαγ++=++kpa p B 484.08.9814-=⋅-=列0-0和C-C 断面的能量方程:gv p z gv p z C C CC 22220000αγαγ++=++kpa p C 1.208.98142-=⨯⎪⎭⎫ ⎝⎛+-=0=D p3-18解:将基准面建在管道所在的水平面上,列能量方程:21222222111122-+++=++l h gv p z gv p z αγαγ128.998.0008.9490222+++=++gv α9.3222=gv s m v /74.82=3-19解:(1)(a )将基准面建在A 所在的水平面上,列0-0和C-C 断面的能量方程:gv p z gv p z C C CC 22220000αγαγ++=++gv C C 2000042α++=++422=gv C C α s m v C /85.88.98=⨯=1:4:2:22222==B C C C B B s s gv gv αα122=gv B B α s m v /43.48.921=⨯= 且 B A v v =(b ) (c )gv p z gv p z A A AA 22220000αγαγ++=++10004++=++γAp3=γAp k p a p A 4.29=(2)(a )2122000022-+++=++l C C CC h gv p z gv p z αγαγ其中,gv gv h l 2324222121+=-gv gv gv 223200004222222++++=++54222=gv 所以,s m v /96.32=s m v v /96.12121==(b ) (c )gv gv p z gv p z 2222212111120000+++=++αγαγ5300041++=++γp5341-=γp k p a p 32.331=gv gv gv p z gv p z 223242222222222220000++++=++αγαγ5423545400042⋅++++=++γp kpa p 76.112=3-20 解:()()212221221122-++=--++l a p v p z z v p ργγρs m d Q v /38.2005.014.34202.042221=⨯⨯⨯==πs m dQv /19.1005.014.3402.04222=⨯⨯==π2423222121v v p l ρρ+=-()()242322222122212211v v v p z z v p a ρρργγρ+++=--++22214v v =()()8.930306.02.1224232300212221221⨯+---+++=v v v v p ρρρρ()()8.930306.02.12424212230022222222⨯+---+++=v v v v ρρρρ8.9606.019.1026.0133002⨯⨯-⨯⨯+=pa 16.352=mm p h 6.449.716.3521===γ3-22解:s kN h kN G /048944.0/2.176==s m GQ /1347.77.08.910048944.033=⨯⨯==γs m dQdQv /09.914.31347.7444222=⨯===ππ()2122221122-++=-++l a p v p H v p ργγρ其中,01≈v ,pa h p 988.9101010331=⨯⨯⨯==-γ()γgv d H H 2035.0209.97.008.97.02.1098222+⨯+=⨯⨯-++-()8.97.08.9209.9035.0209.97.008.97.02.109822⨯⨯⨯+⨯+=⨯⨯-++-HHH H 0122.19.289.498+=+-所以,m H 64.32=()212211212212-++=-++l M M a p v p Hv p ργγρ()8.97.08.9209.9164.322035.0209.97.064.328.97.02.12109822⨯⨯⨯+⨯+=⨯⨯-++-M p 52.169.28968.7998++=+-M p所以,pa p M 45.63-= 3-26 3-28解:列连续性方程:s m DQv /18.34.014.344.04221=⨯⨯==πs m dQv /96.501.014.344.04222=⨯⨯==π列能量方程:gv p z gv p z 222222221111αγαγ++=++gv gv p 222112221ααγ-=m 98.1318.9218.396.5022=⨯-=kpa p 404.12938.998.1311=⨯=列动量方程:()12v v Q F-=∑ρ()12222144v v Q R d p D p -=-⨯-⨯ρππ()18.396.504.04.04404.12932-⨯=-⨯⨯R πkN R 339.14378.474.04.04404.12932=⨯-⨯⨯=πkN R 94.1112=3-33解:列能量方程:gv p z gv p z 222222221111αγαγ++=++其中,5321=v v 2221259v v =gv gv 209.0205.1222211αα++=++gv gv 225926.02222-=s m v /3.42= s m v /58.21=()12v v Q F-=∑ρ()1222212121v v Q R b h b h -=--ργγ其中,s m Q /644.45.12.158.23=⨯⨯=72.1644.410009.0108.9215.1108.9212323⨯⨯=-⨯⨯⨯-⨯⨯⨯RN R 2.480=4-2 (1) m mm d 1.0100== s kg Q /10=ρs m Q Q /01.03==ρρs m dQv /274.11.014.301.04422=⨯⨯==πs m /10519.126-⨯=ν 8387110519.11.0274.1Re 6=⨯⨯==-νvd(紊流)(2) s kg Q /10=ρs m Q Q /011765.0850103===ρρs m dQv /4987.11.014.3011765.04422=⨯⨯==π s m /1014.124-⨯=ν13151014.11.04987.1Re 4=⨯⨯==-νvd4-3 解:m d 3.0= C T 020= s m /107.1526-⨯=νs m dv /1067.1043.0107.152000Re 36max --⨯=⨯⋅=⋅=νs m A v Q /103947.743.014.31067.1043323max max --⨯=⨯⨯⨯=⋅=h kg Q /9.3136002.1103947.73=⨯⨯⨯=-ρ4-4 解:212=d d4212221==d d v v222111Re 2214Re ===ννd v d v 所以,2ReRe 21=4-12 紊流粗糙区,5106Re ⨯>νvd=Re ,所以,s m dv /14.325.010308.1106Re 65=⨯⨯⨯==-νs m d vQ /154.0425.014.314.34322=⨯==π4-13 s m s L Q /2.0/20031==s m dQ v /076433.44211==π 661107791.010308.125.0076433.4Re ⨯=⨯⨯==-νvds L Q /202= s m v /4076433.02=4210791.7Re ⨯=s L Q /53= s m v /1019.03= 43109478.1Re ⨯=查尼氏图,得到, 5106Re⨯=u4104Re ⨯=l123Re Re Re Re Re <<<<u l ,所以,1Q 属于紊流粗糙区,2Q 属于紊流过渡区,3Q 属于紊流光滑区, (1)对于1Q ,采用希弗林松公式,02326.025.0105.011.011.025.0325.01=⎪⎪⎭⎫ ⎝⎛⨯=⎪⎭⎫⎝⎛=-d K λm gv d l h f 888.78.92076433.425.010002326.0222111=⨯⨯⨯==λ(2)对于2Q ,采用阿公式,02547.010791.76825.0105.011.0Re 6811.025.04325.02=⎪⎪⎭⎫⎝⎛⨯+⨯=⎪⎭⎫ ⎝⎛+=-d K λm gv d l h f 086.08.924076433.025.010002547.0222222=⨯⨯⨯==λ(3)对于3Q ,采用布公式02678.05.194773164.0Re3164.025.025.03===λm g v d l h f 005676.08.9244076433.025.010002678.0222333=⨯⎪⎭⎫ ⎝⎛⨯⨯==λ4-15 5102Re⨯=u4000Re =lm d 05.0= m K 31025.0-⨯=s m dv u /028.405.010007.1102Re 65max =⨯⨯⨯==-νs L d v Q /905.7405.014.3028.4422maxmax =⨯==π26m i n 10056.805.010007.14000Re --⨯=⨯⨯==dv l νs L s m d v Q /1581.0/1001581.0405.014.310056.8432222minmin =⨯=⨯⨯==--π4-21 (1)a d d =212211av v =gv d l d v gv d l gv d l h f 2642Re 64221111211121111νλ===4212221211add v v h h f f ==19.1=a(2)75.425.12275.12122225.0225.0225.021125.0125.0125.021123164.023164.0ad d v v g v d l d v gv d l dvh h f f =⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==νν16.1=a(3)25.525.11222122225.0221125.01211211.0211.0ad d v v gvd l d K gv d l d K h h f f =⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛=14.1=a4-24 解:s m Q /002742.0602329.03=⨯= s m dQv /3972.105.014.3002742.04422=⨯⨯==π629.022=⎪⎭⎫ ⎝⎛+g vd l ζλ ()629.08.923972.162=⨯+ζ3151.0=ζ4-26 解:(1) 突然缩小375.03145.7815.015.0121=⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=A A ζ mm m gvh j 5.760765.08.922375.022211==⨯==ζ(2)5.02=ζmm m gvh j 102102.08.9225.022222==⨯==ζ(3)1693145.781122213=⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=A A ζ mm m h j 115115.08.92216923==⨯=(4)14=ζmm m h j 204204.08.922124==⨯=4-27 解:()()gv v gv v h h m m j j 222121-+-=''+'()()()()02212221=-+--=''+'gv v gv v h h m m vmj j所以,221v v v m +=此时,()j j j h gv v g v v v g v v v h h 2221222222121212211=-=⎪⎭⎫⎝⎛-++⎪⎭⎫ ⎝⎛+-=''+'4-29 解:s m h m Q /1044.4/16333-⨯==s m d Qv /2624.205.014.31044.44423211=⨯⨯⨯==-πs m dQv /5656.01.014.31044.44423222=⨯⨯⨯==-πm gv v p p h j 140674.08.925656.02624.28.910001739.522222121=⨯-+⨯⨯-=-+-=γgv h j 2211ζ= 5387.01=ζ gv h j 2222ζ= 619.82=ζ5-17 解:5.6082.014.32.12.01002.08842412111=⨯⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛=d d l S p πρλ 7.30422.014.32.12.05002.08842422222=⨯⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛=d d l S p πρλ973671.014.32.11.05002.08842432333=⨯⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛=d d l S p πρλ 3.101018973677.30425.608321=++=++=p p p p S S S S22211/91.227215.03.101018m N Q S p p =⨯== 22222/1.258616.03.101018m N Q S p p =⨯==5-25 解:()()⎪⎩⎪⎨⎧=++=++=1021520232322223221SQ Q Q S SQ Q Q S SQ 610=S解得,s m Q /10472.4331-⨯= s m Q /1041.2332-⨯= s m Q /1063.0333-⨯=5-27 解:94.10348.92.014.32.020002.08842412111=⨯⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛=g d d l S πλ 8.206988.91.014.31.0100025.08842422222=⨯⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛=g d d l S πλ 78.37258.92.014.32.072002.08842432333=⨯⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛=g d d l S πλ 038035.087.14311705.321111211=+=+='S S S 所以,25.6911='S1)()H QS S =+'231s m S S H Q /10186.604417163331-⨯==+'=2)H SQ=2H Q S =⎪⎭⎫⎝⎛'2211325133831432=+'=-'=S S S S gd πζ()1.25688.92.014.31325142=⨯⨯⨯=ζ5-28 解:286.1368.93.014.383.020002.084242=⨯⨯⨯⨯==g dd l S ABABAB AB πλ029.1098.93.014.383.016002.084242=⨯⨯⨯⨯==g d d l S AC ACACACπλ34.328.94.014.384.020002.084242=⨯⨯⨯⨯==g d d l S AD ADADADπλ772.818.93.014.383.012002.084242=⨯⨯⨯⨯===g d d l S S BC BCBCCDBC πλ5108.2⨯=A p2ABAB A Q S p γ= s m S p Q AB A AB /457868.08.91000286.136108.235=⨯⨯⨯==γ2ADAD A QS p γ= s m S p Q AD A AD /93993.08.9100034.32108.235=⨯⨯⨯==γ()()222BC BC BC AC A Q S Q S p +=()s m S S p Q Q BC AC ACD BC /23488.043=+==γs m Q Q Q BC AB /69275.022=+= s m Q Q Q CD AD /17481.123=+= s m Q Q Q /86756.13321=+= 22/2.44m kN Q S p BC BC C ==γ。
第五版 流体力学习题答案完整版
《流体力学》答案1-6.当空气温度从00C 增加至020C 时,ν值增加15%,容重减少10%,问此时μ值增加多少?⎡⎤⎣⎦解0000000000(115%90%)()()0.035 3.5%gggγγννμμρνρνμρνγν⨯---====1-7.图示为一水平方向运动的木板,其速度为1m s ,平板浮在油面上,油深 1mm δ=,油的0.09807Pa s μ=,求作用于平板单位面积上的阻力?⎡⎤⎣⎦解10.0980798.070.001du Pa dy τμ==⨯= 1-9.一底面积为4045cm ⨯,高为1cm 的木板,质量为5kg ,沿着涂有润滑油的斜面等速向下运动,已知1m v s =,1mm δ=,求润滑油的动力粘滞系数?⎡⎤⎣⎦解0T GSin α-= 55255131313T GSin G g g α==⋅=⨯⨯=所以 10.400.451800.001du T A dy μμμ==⨯=但 259.8070.10513180Pa s μ⨯==⋅⨯所以1-10.一个圆锥体绕其铅直中心轴等速旋转,锥体与固定壁的间距为δ=1mm ,全部为润滑油充满,μ=0.1Pa.s ,当旋转角速度ω=16s -1,锥体底部半径R =0.3m,高H =0.5m 时,求:作用于圆锥的阻力矩。
解: 取微元体, 微元面积:阻力矩为:阻力: 阻力矩51213GVδ22cos 0dhdA r dl r du r dy dT dA dM dT rππθωτμμδτ=⋅=⋅-====⋅0333012cos 12()cos 12cos HHHM dM rdT r dAr r dh r dh r tg h tg h dhττπθωμπθδθωμπθδθ====⋅⋅=⋅⋅⋅=⋅=⋅⋅⋅⋅⎰⎰⎰⎰⎰⎰1-14.图示为一采暖系统图,由于水温升高引起水的体积膨胀,为了防止管道及暖气片胀裂,特在顶部设置一膨胀水箱,使水的体积有自由膨胀的余地,若系统内水的总体积38V m =,加热前后温度差050t C =,水的热胀系数0.0005α=,求膨胀水箱的最小容积?⎡⎤⎣⎦解因为 dV V dt α=所以 30.00058500.2dV Vdt m α==⨯⨯=2-2.在封闭管端完全真空的情况下,水银柱差250Z mm =,求盛水容器液面绝对压强1p 及测压管中水面高度1Z ?⎡⎤⎣⎦解312013.6109.80.056664a p Z p γ=+=⨯⨯⨯=11 6.6640.686809.8p Z m mm γ==== 2-6.封闭容器水面的绝对压强20107.7KNp m =,当地大气压强298.07a KNp m =,试求(1)水深0.8h m =的A 点的绝对压强和相对压强?(2)若容器水面距基准面高度5Z m =,求A 点的测压管高度和测压管水头。
流体力学泵与风机 蔡增基 第五版 下 答案讲解学习
流体力学泵与风机蔡增基第五版下答案1.描绘出下列流速场解:流线方程: yx u dy u dx = (a )4=x u ,3=y u ,代入流线方程,积分:c x y +=43直线族(b )4=x u ,x u y 3=,代入流线方程,积分:c x y +=283抛物线族(c )y u x 4=,0=y u ,代入流线方程,积分:c y =直线族(d )y u x 4=,3=y u ,代入流线方程,积分:c y x +=232抛物线族(e )y u x 4=,x u y 3-=,代入流线方程,积分:c y x =+2243椭圆族(f )y u x 4=,x u y 4=,代入流线方程,积分:c y x =-22双曲线族(g )y u x 4=,x u y 4-=,代入流线方程,积分:c y x =+22同心圆(h )4=x u ,0=y u ,代入流线方程,积分:c y =直线族(i )4=x u ,x u y 4-=,代入流线方程,积分:c x y +-=22抛物线族(j )x u x 4=,0=y u ,代入流线方程,积分:c y =直线族(k )xy u x 4=,0=y u ,代入流线方程,积分:c y =直线族(l )rc u r =,0=θu ,由换算公式:θθθsin cos u u u r x -=,θθθcos sin u u u r y +=220y x cx r xr c u x +=-=,220y x cyr y r c u y +=+=代入流线方程积分:c y x=直线族 (m )0=r u ,r c u =θ,220y x cy r yr c u x +-=-=,220y x cxr x r c u y +=+=代入流线方程积分:c y x =+22同心圆2.在上题流速场中,哪些流动是无旋流动,哪些流动是有旋流动。
如果是有旋流动,它的旋转角速度的表达式是什么?解:无旋流有:x uy u yx ∂∂=∂∂(或r ru u r∂∂=∂∂θθ)(a ),(f ),(h ),(j ),(l ),(m )为无旋流动,其余的为有旋流动对有旋流动,旋转角速度:)(21y ux u xy ∂∂-∂∂=ω(b )23=ω (c )2-=ω (d )2-=ω (e )27-=ω(g )4-=ω (i )2-=ω (k )x 2-=ω3.在上题流速场中,求出各有势流动的流函数和势函数。
工程流体力学泵与风机课后答案
⼯程流体⼒学泵与风机课后答案第1章绪论1.1 试从⼒学分析的⾓度,⽐较流体与固体对外⼒抵抗能⼒的差别。
答:固体在承受⼀定的外⼒后才会发⽣形变;⽽流体只要承受任何切⼒都会发⽣流动,直到切⼒消失;流体不能承受拉⼒,只能承受压⼒。
1.2 何谓连续介质模型?为了研究流体机械运动的规律,说明引⽤连续介质模型的必要性和可能性。
答:把流体当做是由密集质点构成的、内部⽆空隙的连续体来研究,这就是连续介质模型。
建⽴连续介质模型,是为了避开分⼦运动的复杂性,对流体物质的结构进⾏简化,建⽴连续介质模型后.流体运动中的物理量都可视为空间坐标和时间变址的连续函数.这样就可⽤数学分析⽅法来研究流体运动。
1.3 按作⽤⽅式的不同,以下作⽤⼒:压⼒、重⼒、引⼒、摩擦⼒、惯性⼒,哪些是表⾯⼒?哪些是质量⼒?答:压⼒、摩擦⼒是表⾯⼒;重⼒、引⼒、惯性⼒是质量⼒。
1.4 为什么说流体运动的摩擦阻⼒是内摩擦阻⼒?它与固体运动的摩擦⼒有何不同?答:上平板带动与其相邻的流层运动,⽽能影响到内部各流层运动,说明内部各流层间存在切向⼒,即内摩擦⼒,这就是黏滞性的宏观表象。
也就是说,黏滞性就是流体的内摩擦特性。
摩擦阻⼒存在于内部各流层之间,所以叫内摩擦阻⼒。
固体运动的摩擦⼒只作⽤于固体与接触⾯之间,内摩擦阻⼒作⽤于流体各流层之间。
1.5 什么是流体的粘滞性?它对流体流动有什么作⽤?动⼒粘滞系数µ和运动粘滞系数v有何区别及联系?答:黏滞性的定义⼜可表⽰为流体阻抗剪切变形的特性。
由于流体具有黏性,在流动时存在着内摩擦⼒,便会产⽣流动阻⼒,因⽽为克服流动阻⼒就必然会消耗⼀部分机械能。
消耗的这部分机械能转变为热,或被流体吸收增加了流体的内能,或向外界散失,从⽽使得推动流体流动的机械能越来越⼩。
运动黏滞系数是动⼒黏滞系数与密度的⽐。
1.6 液体和⽓体的粘度随着温度变化的趋向是否相同?为什么?答:⽔的黏滞系数随温度升⾼⽽减⼩,空⽓的黏滞系数则随温度升⾼⽽增⼤。
新版流体力学泵与风机蔡增基第五版下答案-新版.pdf
xa
ux
y 2 ( y2 ( x a) 2 y 2 ( x a) 2 )
Q
y
y
uy
ห้องสมุดไป่ตู้
x 2 ( y 2 (x a)2 y 2 ( x a) 2 )
4 ydy
3xdx 2 y2 3 x2 2
(g)积分路径可以选
0,0 x,0 : dy 0, y 0
x,0 x, y : dx 0, x x
4ydy ( 4x)dx 2 y 2 2x 2
(L )积分路径可以选 0,0 x,0 : dy 0, y 0
x,0 x, y : dx 0, x x
ux ur cos u sin
1.描绘出下列流速场 解:流线方程: dx dy
ux uy
(a) u x 4 , u y 3 ,代入流线方程,积分:
3 y xc
4
直线族 (b) u x 4 , u y 3x ,代入流线方程,积分:
y 3 x2 c 8
抛物线族
(c) u x 4y , uy 0 ,代入流线方程,积分: y c
直线族 (d) u x 4 y , uy 3 ,代入流线方程,积分:
xa
6
驻点在 y 0, x
l 处,由 l 2
2,b
0.5 得椭圆轮廓方程:
x2 1
y2 (0.25) 2
1
即: x2 16 y2 1
8. 确定绕圆柱流场的轮廓线,主要取决于哪些量?已知
R 2 m ,求流函数和势函数。
解:需要流速 v0 ,柱体半径 R
v0 (r ∵R 2
R2 ) sin
r ∴ v0(r
4) sin r
R2
v0 (r
) cos
流体力学泵与风机(第五版)蔡增基课后习答案(一)
流动阻力和能量损失1.如图所示:(1)绘制水头线;(2)若关小上游阀门A ,各段水头线如何变化?若关小下游阀门B ,各段水头线又如何变化?(3)若分别关小或开大阀门A 和B ,对固定断面1-1的压强产生什么影响?解:(1)略(2)A 点阻力加大,从A 点起,总水头线平行下移。
由于流量减少,动能减少,使总水头线与测压管水头线之间的距离减小,即A 点以上,测压管水头线上移。
A 点以下,测压管水头线不变,同理讨论关小B 的闸门情况。
(3)由于1—1断面在A 点的下游,又由于A 点以下测压管水头线不变,所以开大或者关小阀门对1—1断面的压强不受影响。
对B 点,关小闸门,B 点以上测压管水头线上移,使1—1断面压强变大,反之亦然。
2.用直径的管道,输送流量为的水,如水温为mm d 100=s kg /105℃,试确定管内水的流态。
如用这样管道输送同样质量流量的石油,已知石油密度,运动粘滞系数3850m kg =ρ,试确定石油的流态。
s cm 214.1=υ解:(1)5℃时,水的运动粘滞系数sm 2610519.1−×=υ,=Av Q Q ρρ==v()231.0410110×××π20008386310519.1)1.0(41011.010Re 623>=××××××==−πυvd 故为紊流(2)200013141014.1)1.0(48501.010Re 42<=×××××=−π故为层流3.有一圆形风道,管径为300mm ,输送的空气温度20℃,求气流保持层流时的最大流量。
若输送的空气量为200kg/h ,气流是层流还是紊流?解:20℃时,空气的运动粘滞系数sm v 26107.15−−×=3205.1m kg =ρ2000Re ==υvdsm v 105.03.0107.1520006=××=−hkg s kg vA Q m 32109.83.04105.0205.132=×=×××==−πρ故,为紊流h kg 2004.水流经过一渐扩管,如小断面的直径为,大断面的直径1d 为,而,试问哪个断面雷诺数大?这两个断面的雷2d 221=d d 诺数的比值是多少?21Re Re 解:;2211A v A v Q ==4)(2122121===d dA A v v2214Re Re 221121=×==d v d v 故直径为的雷诺数大1d 5.有一蒸汽冷凝器,内有250根平行的黄铜管,通过的冷却水总流量为8L/s ,水温为10℃,为了使黄铜管内冷却水保持为紊流(紊流时黄铜管的热交换性能比层流好),问黄铜管的直径不得超过多少?解:0℃时,水的运动粘滞系数υ=1.31×10−6m 2/s24250d Q v ⋅⋅=π要使冷却水保持紊流,则4000Re ≥,4000≥υvd mm vd 61031.14000−××≤即:mmd 67.7≤若最小Re 取2000时,mmd 3.15≤6.设圆管直径,管长,输送石油的流量mm d 200=m L 1000=运动粘滞s L Q /40=系数,求沿程水头损失。
《流体力学及泵与风机》习题解答
= −2 x − y
=-1
ε zz =
∂v z =0 ∂z
ϖz =
∂v 1 ∂ (rvθ ) − r 2r ∂r ∂θ
∴ϖ z =
r02 r02 1 − v 1 − sin θ + v ( 1 − ) sin θ ∞ =0 ∞ 2 2 2r r r
H = z 2 − z1 +
v2 1.7 2 + hw = 0.2 + + 3.25 = 3.6m 2g 2 × 9.8
2
1
-9 解 由题意可知:在 y 方向 z 方向上速度可近似为 0,即: v
y
= vz = 0 ∂v x =0 ∂x ∂v x =0 ∂z
流 动 为 定 常 流 动 、 在 z 方 向 为 无 穷 大 故 : ∂∂t = 0 根据公式(1-37)得
1 6
-解
令被测管道的体积流量为 Q , 则
A1v1 = A2 v 2 = Q v1 = v 2 A2 A1 p1 + ρg ( z1 − z 2 + h) = p 2 + ρ m gh p1 − p 2 = ( ρ m − ρ ) gh − ρg ( z1 − z 2 )
(1) (2) (3)
易知:
f y = − g cos θ
fz = 0
0 = g sin θ −
∂ 2vx 1 ∂p +υ ρ ∂x ∂y 2
(1)
0 = − g cos θ −
0=
1 ∂p ρ ∂y
(2) (3)
显然 p = p( x, y) 同 1-9 题一样,由(2)得 p ( x, y ) = − ρg cos θy + c( x) 代入(1)式并积分
流体力学泵与风机习题答案
答:通过描述物理量在空间的分布来研究流体运动的方法称为欧拉法。 17.什么是拉格朗日法? 答:通过描述每一质点的运动达到了解流体运动的方法。 18.什么是恒定流动?什么是非恒定流动? 答: 动平衡的流动,各点流速不随时间变化,由流速决定的压强、粘性力也不 随时间变化,这种流动称之为恒定流动反之为非恒定流动。 19.什么是沿程损失? 答: 在沿程不变的管段上,流动阻力沿程也基本不变,称这类阻力为沿程阻力, 克服沿程阻力引起的能量损失为沿程损失。 20.什么是局部损失? 答:在边壁急剧变化的区域,阻力主要地集中在该区域中及其附近,这种集中分 布的阻力称为局部阻力。克服局部阻力的能量损失为局部损失。 21.什么叫孔口自由出流和淹没出流? 答: 在容器侧壁或底壁上开一孔口,容器中的液体自孔口出流到大气中,称为 孔口自由出流。如出流到充满液体的空间,则称为淹没出流。 22.什么是有旋流动?什么是无旋流动? 答: 流体微团的旋转角速度不完全为零的流动称为有旋流动,流场中各点旋转 角速度等于零的运动,成为无旋运动。 23.在流体力学中,拉格朗曰分析法和欧拉分析法有何区别? 答: 拉格朗曰法着眼于流体中各质点的流动情况跟踪每一个质点观察与分析该 质点的运动历程然后综合足够多的质点的运动情况以得到整个流体运动的规律。
欧拉法着眼于流体经过空间各固定点时的运动情况它不过问这些流体运动情况是哪些流体质点表现出来的也不管那些质点的运动历程因此拉格朗曰分析法和欧拉分析法是描述流体的运动形态和方式的两种不同的基本方法
流体力学泵与风机 习题解答
土木与制冷工程学院 李晓燕、吴邦喜
1
一、填 空 题 1.流体力学中三个主要力学模型是(1)连续介质模型(2)不可压缩流体力学 模型(3)无粘性流体力学模型。 2.在现实生活中可视为牛顿流体的有水 和空气 等。 3.流体静压力和流体静压强都是压力的一种量度。它们的区别在于:前者是作 用在某一面积上的总压力;而后者是作用在某一面积上的平均压强或某一点的压 强。 4.均匀流过流断面上压强分布服从于水静力学规律。 5.和液体相比,固体存在着抗拉、抗压和抗切三方面的能力。 6.空气在温度为 290 K,压强为 760 mmHg 时的密度和容重分别为 ρa = 1.2 kg/m3
《流体力学泵与风机》(蔡增基龙天渝)第3章课后题答案
《流体⼒学泵与风机》(蔡增基龙天渝)第3章课后题答案⼀元流体动⼒学基础1.直径为150mm 的给⽔管道,输⽔量为h kN /7.980,试求断⾯平均流速。
解:由流量公式vA Q ρ= 注意:()vA Q s kg h kN ρ=?→//A Qv ρ=得:s m v /57.1=2.断⾯为300mm ×400mm 的矩形风道,风量为2700m 3/h,求平均流速.如风道出⼝处断⾯收缩为150mm ×400mm,求该断⾯的平均流速解:由流量公式vA Q = 得:A Q v =由连续性⽅程知2211A v A v = 得:s m v /5.122=3.⽔从⽔箱流经直径d 1=10cm,d 2=5cm,d 3=2.5cm 的管道流⼊⼤⽓中. 当出⼝流速10m/ 时,求(1)容积流量及质量流量;(2)1d 及2d 管段的流速解:(1)由s m A v Q /0049.0333==质量流量s kg Q /9.4=ρ (2)由连续性⽅程:33223311,A v A v A v A v ==得:s m v s m v /5.2,/625.021==4.设计输⽔量为h kg /294210的给⽔管道,流速限制在9.0∽s m /4.1之间。
试确定管道直径,根据所选直径求流速。
直径应是mm 50的倍数。
解:vA Q ρ= 将9.0=v ∽s m /4.1代⼊得343.0=d ∽m 275.0 ∵直径是mm 50的倍数,所以取m d 3.0= 代⼊vA Q ρ= 得m v 18.1= 5.圆形风道,流量是10000m 3/h,,流速不超过20 m/s 。
试设计直径,根据所定直径求流速。
直径规定为50 mm 的倍数。
解:vA Q = 将s m v /20≤代⼊得:mm d 5.420≥ 取mm d 450= 代⼊vA Q = 得:s m v /5.17=6.在直径为d 圆形风道断⾯上,⽤下法选定五个点,以测局部风速。
流体力学泵与风机蔡增基课后习题答案
绪论1. 流体的容重及密度有何区别及联系?解: © = 〉 g 〉是流体的本身属性。
© 还与g 有关。
2.已知水的密度 〉 = 1000kg/m 3 ,求其容重。
若有这样的水1L,它的质量和重力各是多少?解: © = 〉 g=1000×9.807=9807N/m 3m= 〉 v=1000×0.001=1kg G=mg=1×9.807=9.807N3.什么是流体的粘滞性?它对流体流动有什么作用?动力粘滞系数 ∝和运动粘滞系数⎠有何区别及联系?答:流体内部质点间或流层间因为相对运动的性质叫粘滞性,它使流动的能量减少。
∝表征单位速度梯度作用下的切应力,反映粘滞性的动力性质。
⎠是单位速度梯度作用下的切应力对单位体积质量作用产生的阻力加速度。
⎠ = ∝ / 〉 4.水的容重 © =9.17kN/ m 3 , ∝ =0.599×10 3 pa.s 求它的运动粘滞系数⎠解:⎠ = ∝= ∝ g/ © =6.046×10 5 m 2 /s〉5.空气容重 © =11.5N/ m 3,⎠ =0.157cm 2 /s,求它的动力粘滞系数 ∝。
解: ∝ = 〉⎠ = ©⎠= 11.5 ⋅ 0.157 ⋅10 4 / 9.807 = 1.841⋅10 5 pa.sg6.当空气从0℃增加到20℃时, ⎠增加15%,容重减少10%,问此时 ∝增加多少?解: ∝ = 〉⎠ = ©⎠g = (1 10%)(1 + 15%)© 0⎠ 0g© ⎠= 1.035 0 0g所以 ∝增加了3.5%7.水平方向运动的木板,其速度为1m/s,平板浮在油面上,™ = 10mm ,油的 ∝ =0.09807pa.s。
求作用于平板单位面积上的阻力。
解:⎜ = ∝ du = 0.09807 ⋅1/ 0.01 = 9.807 N / m 2dy8.温度为20℃的空气,在直径为2.5cm 管中流动,距管壁上1mm 处的空气速度为3cm/s。
《流体力学及泵与风机》习题解答
θ
)
dθdrdt
θ
r
r
θ
∂v r v r ∂vθ + + =0 r r∂θ ∂r
1
-2 解:可根据连续性方程判断 (1) ∂∂vx + ∂∂vy = 2k
x y
∴当 k=0 时满足条件 k≠0 时不满足条件 ∴满足条件
(2) ∂∂vx + ∂∂vy
x
y
= 2y +1− 2y −1 = 0
(3) ∂∂vr
0=
(2)
(3) 由(3)式知压强在 z 方向上为常数,仅为 x y 的函数,把(2)积分 p ( x, y ) = − ρgy + c( x) 代入(1)式并积分
∂p ∂z
vx =
c ′( x) 2 y + Ey + F 2µ
由 边 界 条 件 知 : y=0
F =0
p 其中: c′( x) = ∂ ∂x
列出 1—2 断面伯努利方程,得: 由(2)和(3)可得:
2 v2 − v12 =
2 v1 p1 p2 v2 + z1 + = + z2 + ρg 2 g ρg 2g
2
2( ρ m − ρ ) gh
将(1)代入得
v2 = A12 2 A12 − A2
ρ
2( ρ m − ρ ) gh
ρ
2( ρ m − ρ ) gh 2 ρ ( A12 − A2 )
π
−a 0 −a rΚ 1 Γ sin θ Γ cos θ rΚ1 sin θdθ + rΚ1 cos θdθ + ∫ 0dx + ∫ 0dx + ∫ 0πdy + ∫ 0dy − rΚ 1 −a −a 0 2πrΚ1 2πrΚ1
流体力学泵与风机第五版答案第五章
流体力学泵与风机第五版答案第五章一、单选题(每题3分,共10道小题,总分值30分)1.某给定的开敞式(进、出水池水面为一个大气压)离心泵系统中,当进水池的水面升高时,水泵的工作扬程将减小,而其轴功率将()。
(3分)A不变B增大C减小正确答案B您的答案是 B回答正确展开2.离心式水泵叶轮的叶片形状一般采用()。
(3分)A向前弯曲B径向延伸C向后弯曲正确答案C您的答案是未作答回答错误展开3.两台风机并联运行的主要目的是()(3分)A增加流量B增加扬程C增加全压D既增加扬程也增加全压正确答案A您的答案是未作答回答错误展开4.立式混流水轮机的安装高程是指()的高程。
(3分)A其固定底座平面;B其基准面;C其进口导叶水平中心平面。
正确答案C您的答案是未作答回答错误展开5.离心式泵的主要部件不包括()(3分)A叶轮B汽缸C机壳D吸入室正确答案B您的答案是未作答回答错误展开6.某台水泵在转速不变时,当输送的水温度增加时,其轴功率()(3分)A增加B降低C不变D先降低,后增加正确答案B您的答案是未作答回答错误展开7.当流体以的方向进入叶轮时,离心式泵的无限多叶片的理论扬程为()(3分)8.下列各项中与有效汽蚀余量NPSHa值无关的是()(3分)A吸入管路参数B管路中流量C泵的结构D泵入口压力正确答案C您的答案是未作答回答错误展开9.水轮机的轴功率N()(3分)A是发电机的输出功率B是水轮机的输出功率C等于正确答案B您的答案是未作答回答错误展开10.对于某叶片式流体机械,当流过它的流量偏离设计值时,冲角会发生变化,正冲角将导致在叶片的()产生旋涡。
(3分)A工作面B背面C工作面和背面正确答案B您的答案是未作答回答错误展开二、判断题(每题3分,共10道小题,总分值30分)1.给定流量等其他参数不变,控制在一定的限制范围内提高叶轮的转速,其叶片进口的冲角将加大。
()(3分)正确答案正确您的答案是未作答回答错误展开2.有限多叶片叶槽内轴向旋涡的旋向与叶轮转动的方向相同。
流体力学泵与风机 课后习题答案详解 蔡增基 第五版 中国建筑工业出版社
流体力学泵与风机2-15解:(1)当为空气(2)当为油2-16解:2-28 解:2-32 解:2-41 解:3-3解:(1)(2)3-5 解:所以,所以,此时,3-6 解:3-7解:干管前端的质量流量为:3-10解:将基准面建立在B点经过的水平面上,列能量方程:其中,3-11解:将2点所在的水平面作为基准面,列能量方程:所以,3-14解:以水面为基准面,列0-0和D-D的能量方程:所以,,即,所以,列0-0和A-A断面的能量方程:所以,所以,列0-0和B-B断面的能量方程:列0-0和C-C断面的能量方程:3-18解:将基准面建在管道所在的水平面上,列能量方程:3-19解:(1)(a)将基准面建在A所在的水平面上,列0-0和C-C断面的能量方程:且(b)(c)(2)(a)其中,所以,(b)(c)3-20 解:3-22解:其中,,所以,所以,3-263-28解:列连续性方程:列能量方程:列动量方程:3-33解:列能量方程:其中,其中,4-2 (1)(紊流)(2)4-3 解:4-4 解:所以,4-12 紊流粗糙区,,所以,4-13查尼氏图,得到,,所以,属于紊流粗糙区,属于紊流过渡区,属于紊流光滑区,(1)对于,采用希弗林松公式,(2)对于,采用阿公式,(3)对于,采用布公式4-154-21 (1)(2)(3)4-24 解:4-26 解:(1)突然缩小(2)(3)(4)4-27 解:所以,此时,4-29 解:5-17 解:5-25 解:解得,5-27 解:所以,1)2)5-28 解:继续阅读。
流体力学泵与风机(第五版) 蔡增基 课后习题答案(1)
2 0.25
⋅
L ⋅ v2 d ⋅ 2g
∴ h1 ∽ v 2 11. 某风管 直径 d=500mm ,流速 v =20m/s ,沿程 阻力 系数
λ =0.017,空气温度
t=200C
求风管的 K 值。 解:Re= vd = 20 × 500 × 10 =6.4×105,故为紊流 −6
υ
15.7 × 10
4
Q π 2 ⋅d 4
L v2 hf =π ⋅ ⋅ d 2g
=λ· L d
hf Q2 L
·
Q2 π2 4 ⋅ d ⋅ 2g 16 k⎞ ,又λ= 0.11⎛ ⎜ ⎟
⎝d ⎠
0.25
λ=
π2 8
·g·d5·
∴K=0.18mm 19.矩形风道的断面尺寸为 1200×600mm ,风道内空气的温 度为 45℃,流量为 42000 m3/h,风道壁面材料的当粗糙度 K=0.1mm, 今用酒精微压计量测风道水平段 AB 两点的压差 ,
流动阻力和能量损失
1.如图所示: ( 1)绘制水头线; ( 2)若关小上游阀门 A,各
段水头线如何变化?若关小下游阀门 B,各段水头线又如何 变化?(3)若分别关小或开大阀门 A 和 B,对固定断面 1-1 的压强产生什么影响? 解: ( 1)略 (2)A 点阻力加大,从 A 点起,总水头线平行下移。由于 流量减少,动能减少,使总水头线与测压管水头线之间的距 离减小,即 A 点以上,测压管水头线上移。A 点以下,测压 管水头线不变,同理讨论关小 B 的闸门情况。 (3)由于 1—1 断面在 A 点的下游,又由于 A 点以下测压管 水头线不变,所以开大或者关小阀门对 1—1 断面的压强不 受影响。对 B 点,关小闸门, B 点以上测压管水头线上移, 使 1—1 断面压强变大,反之亦然。 2.用直径 d = 100mm 的管道,输送流量为 10kg / s 的水,如水温为 5℃,试确定管内水的流态。如用这样管道输送同样质量流