第三章神经网络控制及应用(基础)

合集下载

神经网络原理及应用

神经网络原理及应用

神经网络原理及应用随着科技的不断进步,人们对于人工智能的热情也日趋高涨。

人工智能有很多种算法,其中神经网络是最为基础且应用最广泛的一种。

一、神经网络的原理神经网络是一种模拟人脑神经元的计算模型,它是由大量的神经元和它们之间的连接构成的。

每个神经元都有自己的输入和输出,这些输入通过一系列的“权重”给定了输入的影响程度,神经元通过函数将这些带权输入求和并送入输出函数得到输出。

其中,输入函数有不同的表现形式,一般来说,是将输入加权和的结果送入激活函数中,以输出神经元的值。

激活函数有很多种,常见有sigmoid函数、ReLU函数、tanh函数等。

而连接权重是神经网络中的一个非常重要的概念,它决定了神经元间的传递强度和方向。

在训练神经网络时,我们通常使用反向传播算法,根据训练数据来不断调整连接权重,以找到最小化损失函数的权重。

二、神经网络的应用神经网络有着广泛的应用,其中最为突出的有以下几个:1、图像识别神经网络可以对图像进行识别,这在计算机视觉和人机交互领域有着非常重要的应用。

神经网络学习识别图像的主要过程是输入训练数据,进行误差预测,然后调整网络权重以提高预测准确率。

2、自然语言处理神经网络可以通过训练学会自然语言处理任务,如语音识别、机器翻译和情感分析等。

在这些任务中,神经网络可以归纳出与自然语言相关的语法、语义和上下文信息,从而提高自然语言处理的准确性和速度。

3、推荐系统神经网络可以利用用户的历史行为和其他信息来推荐符合用户利益的商品、视频和新闻。

在这方面,神经网络可以识别隐藏在用户行为背后的模式和信号,以便提供更加精确的推荐服务。

4、游戏智能神经网络可以在游戏中进行决策,自动控制角色,提供游戏智能服务。

在这些应用中,神经网络开始了进化学习算法,以提高角色行动的判断力和反应速度,从而更好地帮助玩家取得游戏胜利。

三、神经网络的未来神经网络在许多领域的发展都取得了非常突出的成果。

随着硬件技术的不断进步和数据规模的不断增长,神经网络的未来前景也是一片光明。

人工神经网络学习总结笔记

人工神经网络学习总结笔记

人工神经网络学习总结笔记主要侧重点:1.概念清晰2.进行必要的查询时能从书本上找到答案第一章:绪论1.1人工神经网络的概述“认识脑”和“仿脑”:人工智能科学家在了解人脑的工作机理和思维的本质的基础上,探索具有人类智慧的人工智能系统,以模拟延伸和扩展脑功能。

我认为这是人工神经网络研究的前身。

形象思维:不易被模拟人脑思维抽象推理逻辑思维:过程:信息概念最终结果特点:按串行模式人脑与计算机信息处理能力的不同点:方面类型人脑计算机记忆与联想能力可存储大量信息,对信息有筛选、回忆、巩固的联想记忆能力无回忆与联想能力,只可存取信息学习与认知能力具备该能力无该能力信息加工能力具有信息加工能力可认识事物的本质与规律仅限于二值逻辑,有形式逻辑能力,缺乏辩证逻辑能力信息综合能力可以对知识进行归纳类比和概括,是一种对信息进行逻辑加工和非逻辑加工相结合的过程缺乏该能力信息处理速度数值处理等只需串行算法就能解决的应用问题方便,计算机比人脑快,但计算机在处理文字图像、声音等类信息的能力远不如人脑1.1.2人脑与计算机信息处理机制的比较人脑与计算机处理能力的差异最根本的原因就是信息处理机制的不同,主要有四个方面方面类型人脑计算机系统结构有数百亿神经元组成的神经网络由二值逻辑门电路构成的按串行方式工作的逻辑机器信号形式模拟量(特点:具有模糊性。

离散的二进制数和二值逻辑容易被机器模拟的思维方式难以被机器模拟)和脉冲两种形式形式信息储存人脑中的信息分布存储于整个系统,所存储的信息是联想式的有限集中的串行处理机制信息处理机制高度并行的非线性信息处理系统(体现在结构上、信息存储上、信息处理的运行过程中)1.1.3人工神经网络的概念:在对人脑神经网络的基本认识的基础上,用数理方法从信息处理的角度对人脑神经网络进行抽象,并建立某种简化模型,称之为人工神经网络,是对人脑的简化、抽象以及模拟,是一种旨在模仿人脑结构及其功能的信息处理系统。

其他定义:由非常多个非常简单的处理单元彼此按某种方式相互连接而形成的计算系统,外部输入信息之后,系统产生动态响应从而处理信息。

深度学习原理与TensorFlow实践 第3章 神经网络

深度学习原理与TensorFlow实践  第3章 神经网络

深度学习原理与Tensorflow实践
生物神经元
3.3
神经网络基础知识—MP模型

深度学习原理与Tensorflow实践
MP模型示意图
3.4
神经网络基础知识—MP模型

深度学习原理与Tensorflow实践
3.5
神经网络基础知识—MP模型

深度学习原理与Tensorflow实践
3.6
神经网络基础知识—感知机
3.9
神经网络基础知识—梯度下降法
梯度是一个向量(矢量),表示某一函数在该点处的方向导数沿着该方向取得最大值,即函 数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大。
深度学习原理与Tensorflow实践
3.10
神经网络基础知识—梯度下降法
深度学习原理与Tensorflow实践
3.11
深度学习原理与Tensorflow实践
3.14
神经网络基础知识—三层感知机
三层感知机神经网络。 其中 L1层是输入层, L2层是隐含层, L3层是输出 层。与两层感知机不同的是三层感知机神经网络增加了隐含层。
深度学习原理与Tensorflow实践
3.15
神经网络基础知识—万能逼近定理
Cybenko等于1989年证明了具有隐含层(最少一层)感知机神经网络 在激励函数(也称激活函数)为sigmoid函数的情况下具有逼近任何函数 的作用。Hornik 等在1991年更加证明激励函数为任何非常数函数的情 况同样适用。这就是著名的万能逼近定理(universal approximation theorem)。也就是一个仅有单隐藏层的神经网络, 在神经元个数足够 多的情况下,通过非线性的激活函数,足以拟合任意函数。

神经网络控制基础人工神经网络课件ppt课件

神经网络控制基础人工神经网络课件ppt课件

其他工业领域应用案例
电力系统
神经网络控制可以应用于电力系统的负荷预测、故障诊断和稳定性 分析等方面,提高电力系统的运行效率和安全性。
化工过程控制
神经网络控制可以对化工过程中的各种参数进行实时监测和调整, 确保生产过程的稳定性和产品质量。
航空航天
神经网络控制在航空航天领域的应用包括飞行器的姿态控制、导航控 制和故障诊断等,提高飞行器的安全性和性能。
05 神经网络控制性能评估与优化
性能评估指标及方法
均方误差(MSE)
衡量神经网络输出与真实值之间的误差,值越小表示性能越好。
准确率(Accuracy)
分类问题中正确分类的样本占总样本的比例,值越高表示性能越好。
交叉验证(Cross-Validation)
将数据集分成多份,轮流作为测试集和训练集来评估模型性能。
强化学习在神经网络控制中应用
强化学习原理
通过与环境进行交互并根据反馈信号进行学习的方法,使神经网络能够自主学习 到最优控制策略。
强化学习算法
包括Q-learning、策略梯度等算法,用于求解神经网络控制中的优化问题,实现 自适应控制。
04 神经网络控制系统设计与实现
系统需求分析
功能性需求
明确系统需要实现的功能,如 数据输入、处理、输出等。
非监督学习
无需已知输出数据,通过挖掘输入数 据中的内在结构和特征进行学习,常 用于聚类、降维等任务。
深度学习在神经网络控制中应用
深度学习模型
通过构建深层神经网络模型,实现对复杂非线性系统的建模与控制,提高控制 精度和性能。
深度学习优化算法
采用梯度下降等优化算法对深度学习模型进行训练,提高训练效率和模型泛化 能力。

第3章 神经元、感知器和BP网络(1)

第3章 神经元、感知器和BP网络(1)
3
课程名:智能控制技术 2. 生物神经元工作状态
具有两种常规工作状态:兴奋与抑制。 当传入的神经冲动使细胞膜电位升高超过阈值时,细胞进入兴奋状态, 产生神经冲动并由轴突输出; 当传入的神经冲动使膜电位下降低于阈值时,细胞进入抑制状态,没 有神经冲动输出。
4
课程名:智能控制技术
二. 人工神经元模型 人工神经网络是利用物理器件来模拟生物神经网络的
课程名:智能控制技术
第三章 神经网络控制
神经网络是在生物功能启示下建立起来的一种数据处 理技术。它是由大量简单神经元互连而构成的一种计算结构, 在某种程度上模拟生物神经系统的工作过程,从而具备解决 实际问题的能力。
特点:
(1)非线性映射逼近能力。任意的连续非线性函数映射关系
可由多层神经网络以任意精度加以逼近。
下面介绍几种常见的网络结构: 1、 前向网络(前馈网络) 2、反馈网络
10
3.相互结合型网络
即网状结构,在这种神经 网络结构中,任何两个神经 元之间都可能双向联接。
课程名:智能控制技术
4.混合型网络
在前向网络基础上,在同层、 部分神经元之间也可双向联接。
11
课程名:智能控制技术
§3-2 监督学习及前馈神经网络
sgn(w1x1 w2 x2 T ) sgn(3x1 2x2 T )
根据题意:
x1 时: 3 5 T 0 得 T 2 x2 时: 12 12 T 0 得 T 0
x3 时: 38 T 0 得 T 5 为将样本按要求分两类, 5 T 2 ,根据题意选 T 3
8
课程名:智能控制技术
§3-1 神经网络的基本概念
3.1.1 神经元模型
一. 生物神经元模型 1、组成

前馈神经网络

前馈神经网络
返回 35
§3.3 BP网d1络 d2
dr
dM
输输输输
误差反向传y1 播神y2经网络yr ,简yM称BP (Back
Propagation)网络,是一种单向传播输 输的输多层前向网络。 在模式识别、图像处理、系统辨识、函数拟合、优 化计算、最优预测和自适应控w制rk 等领域有输 着输 较为广
泛的应用。
则p=1,2,…,P;
21
3.1.3感知器的学习
(3)计算各节点的实际输出ojp(t)=sgn[WjT(t)Xp], j=1,2,...,m;
(4)调整各节点对应的权值,Wj(t+1)= Wj(t)+η[djp-ojp(t)]Xp, j=1, 2,…,m, 其中为学习率,用于控制调整速度,太大
会影响训练的稳定性,太小则使训练的收敛速度变慢,
入向量中第一个分量x0恒等于-1,权向量中第一个分量 为阈值,试根据以上学习规则训练该感知器。
24
3.1.3感知器的学习
解:第一步 输入X1,得 WT(0)X1=(0.5,1,-1,0)(-1,1,-2,0)T=2.5 o1(0)=sgn(2.5)=1
W(1)= W(0)+η[d1- o1(0)] X1
W(3)= W(2)+η[d3- o3(2)] X3
=(0.7,0.8,-0.6,0)T+0.1[1-(-1)](-1,-1,1,0.5)T =(0.5,0.6,-0.4,0.1)T
第四步 返回到第一步,继续训练直到dp- op=0,p=1,2,3。
27
3.1.4单层感知器的局限性
问题:能否用感知器解决如下问题?
x1
O
O
x2
28
3.1.4单层感知器的

神经网络在控制中的应用

神经网络在控制中的应用

1
28
角位移θ2 (rad)
1.2 0.8 0.4
0 -0.4 -0.8 -1.2
0
期望 RFNN
0.5
时间 t (Sec)
关节2的轨迹跟踪曲线
1
29
角位移θ1 (rad)
1.2 0.8 0.4
0 -0.4 -0.8 -1.2
0
期望 RFNNI
0.5
1
时间 t (Sec)
RNNI的第一个输出轨迹
期望轨迹:
1d (t) sin(2t)
d 2
(t)
cos(2t
)
摩擦项和扰动项 : F ( ) 0.5sign( )
Td
(
,
)
5 5
cos(5t) cos(5t)
27
角位移θ1 (rad)
1.2 0.8 0.4
0 -0.4 -0.8 -1.2
0
期望 RFNN
0.5
时间 t (Sec)
关节1的轨迹跟踪曲线
x2 y2 l12 l22 2l1l2 cos( 2 )
2
arccos
x2
y 2 l12 2l1l2
l22
,
0 2
Atny x
l22 x2 y2 l12 2l1 x2 y2 cos
arccos x2 y 2 l12 l22 , 0
2l1 x2 y 2
W (x, y)
W (k) J / W u p un / W
30
角位移θ2 (rad)
1.2
期望
0.8
RFNNI
0.4
0
-0.4
-0.8
-1.2
0
0.5

第三章神经网络控制及应用基础

第三章神经网络控制及应用基础




反馈型网络
2019/9/16
31
3.1.3.3 人工神经网络的学习
神经网络能够通过对样本的学习训练, 不断改变网络的连接权值以及拓扑结构,以 使网络的输出不断地接近期望的输出。这一 过程称为神经网络的学习或训练,其本质是 可变权值的动态调整。
2019/9/16
32
3.1.3.2 人工神经网络模型
22
3.1.3.1 人工神经元模型
神 (1)阈值型转移函数
经 元
1 x≥0
f(x)=

0 x<0

f (x)


1.0

0
(3-7)
x
2019/9/16
23
3.1.3.1 人工神经元模型
神 (2)非线性转移函数

元 的
f
(
x)

1
1 e
x
(3-8)
1 ex f (x) 1 ex

n
o j (t 1) f {[ wij xi (t)] T j}
(3-2)
i 1
2019/9/16
20
3.1.3.1 人工神经元模型
n

netj (t) wij xi (t)

i 1


net’j=WjTX

学 Wj=(w1 w2 … wn)T
模 型
X=(x1 x2 … xn)T
人工神经网络是一种旨在模仿人脑结构及其功能 的信息处理系统。
2019/9/16
1
3.1.1神经网络的基本特征与功能
结构特征: 并行式处理 分布式存储 容错性

神经网络理论基础 神经网络控制课件(第三版)

神经网络理论基础 神经网络控制课件(第三版)
神经网络理论基础
神经网络理论基础
人脑
人的思维由脑完成
人脑约由10^11~10^12个神经元组成,每个神经 元约与10^4~10^5个神经元连接,能接受并处理 信息。因此,人脑是复杂的信息并行加工处理 巨系统。
人脑
可通过自组织、自学习,不断适应外界环境的 变化。其自组织、自学习性来源于神经网络结 构的可塑性,主要反映在神经元之间连接强度 的可变性上。
基础
神经网络理论基础
• 引言
• 生物神经元与人工神经元模型 • 感知器 • 线性神经网络 • 多层前馈网络与BP学习算法 • 径向基函数神经网络 • 小脑模型神经网络 • PID神经网络 • 局部递归型神经网络 • 连续型Hopfield网络 • 应用Simulink设计神经网络 • 应用GUI设计网络 • 小结
静态与动态网络 2. 按连接方式分:前馈型与反馈型 3.按逼近特性分:全局逼近型与局部逼近型 4.按学习方式分:有导师的学习;无导师的学习;
再励学习三种 从总的方面讲,一般将神经网络分为: 前馈、反馈、 介绍模拟生物神经元的人工神经元模型 2. 阐述控制中常用的前馈型与反馈型网络的理论
人工神经网络
人工神经网络 是从微观结构与功能上模拟人脑神经系统而建 立的一类模型,是模拟人的智能的一条途径。
人工神经网络 信息处理由人工神经元间的相互作用来实现, 由连接权来传递,具有学习能力、自适应性、 联接强度的可变性。
神经网络的分类
神经网络的不同分类: 1. 按性能分:连续型与离散型;确定型与随机型;

2019年西南石油大学电气信息学院硕士研究生考试大纲-智能控制及应用

2019年西南石油大学电气信息学院硕士研究生考试大纲-智能控制及应用

掌握将实际问题转化为产生式的方法;理解人机界面在专家系统中的功能和作用。
6.1 专家系统基本思想 6.2 专家系统的应用 重点:专家领域知识的构成及表示方法;推理机的工作原理
难点:专家系统知识获取、扩充、修改方法
第七章 应用举例
(4 学时)
目的要求:根据工程实例比较多种智能算法的优劣,通过讨论及实验数据说明智能算法与普
5.1 遗传算法的基本操作
5.2 遗传算法实现与改进 5.3 遗传算法在智能控制中应用 重点:遗传算法原理、在智能控制中的应用
难点:遗传算法实现方法与控制系统设计
第六章 专家系统
(4 学时)
目的要求:理解专家系统的构成;了解目前常用的知识表示方式有产生式规则、语义网络、
框架、状态空间、逻辑模式、脚本、过程、面向对象等知识表示方法;理解推理机的构成,
《智能控制及应用》课程教学大纲
一、课程基本信息
中文名称:智能控制及应用
英文名称:Intelligence Control and its Application
开课学院:电气信息学院
课程编码:Z5210301
学分:2.5
总学时:40
适用专业:控制工程、控制理论与控制工程
修读基础: 《高等数学》、《自动控制原理》、《现代控制理论》 主讲教师:
必修实验项目 项目编
序号 码
项目名称
1
基于 BP 神经网络的自整定 PID 控制仿真
2
直线倒立摆模糊控制设计
选修实验项目 项目编
序号 码
项目名称
1
用遗传算法求解函数最优化问题
2
双容水箱模糊控制设计
3
基于 SIMULINK 的控制系统的双模糊控制

第3章-反馈神经网络

第3章-反馈神经网络

因此上式第一项不大于0,只要W为非负定阵,第二项也
不大于0,于是有⊿E(t)≦0 ,也就是说E(t)最终将收敛到
一个常数值,对应的稳定状态是网络的一个吸引子。
1.1.2.2 吸引子与能量函数
以上分析表明,在网络从初态向稳态 演变的过程中,网络的能量始终向减小的 方向演变,当能量最终稳定于一个常数时, 该常数对应于网络能量的极小状态,称该 极小状态为网络的能量井,能量井对应于 网络的吸引子。
lim X ( t )
t
(2)网络的异步工作方式
网络运行时每次只有一个神经元 j 进行状态的调整计 算,其它神经元的状态均保持不变,即
x
j
(t
1)
sgn[net x j (t)
j
(t
)]
j i ji
(3)
(3)网络的同步工作方式
网络的同步工作方式是一种并行方式,所有神经元
同时调整状态,即
x j (t 1) sgn[net j (t)] j=1,2,…,n (4)
将收敛于一个常数,此时ΔE(t)=0 。综上所述,当网络工
作方式和权矩阵均满足定理1的条件时,网络最终将收敛到 一个吸引子。
综上所述,当网络工作方式和权矩阵均满足定理1的条 件时,网络最终将收敛到一个吸引子。
定理2 对于DHNN网,若按同步方式调整状态, 且连接权矩阵W为非负定对称阵,则对于任意初 态,网络都最终收敛到一个吸引子。
为(0,0,0)T,因此初态保持不变 x2
的概率为2/3,而变为(1,0,0)T
的概率为1/3。
x1 -0.1 -0.5
0.0 0.6
0.2 0.0 x3
第2步:此时网络状态为(1,0,0)T,更新x2后,得 x2=sgn[(-0.5)1+0.60-0]=sgn(-0.5)=0

神经网络及应用第三章感知器神经网络

神经网络及应用第三章感知器神经网络

Neural Networks & Application1第3章感知器神经网络z 单层感知器z 多层感知器z 基本BP 算法z 标准BP 算法的改进z 基于BP 算法的多层感知器设计基础z 基于BP 算法的多层感知器应用与设计实例z课件下载::8080/aiwebdrive/wdshare/getsh are.do?action=exhibition&theParam=liangjing@zzu.e Neural Networks & Application23.1 单层感知器z 1958年,美国心理学家Frank Rosenblatt 提出一种具有单层计算单元的神经网络,称为Perceptron, 及感知器。

z感知器研究中首次提出了自组织、自学习的思想,而且对于所能解决的问题存在着收敛算法,并能从数学上严格证明,因而对神经网络的研究起了重要推动作用。

z单层感知器的结构与功能都非常简单,所以在解决实际问题时很少被采用,但在神经网络研究中具有重要意义,是研究其他网络的基础,而且较易学习和理解,适合于作为学习神经网络的起点。

Neural Networks & Application33.1 单层感知器z3.1.1 感知器模型单层感知器:只有一层处理单元的感知器12(,,...,)Tm o o o =O 单层感知器输入层(感知层)输出层(处理层)12(,,...,)Tn x x x =X 12(,,...,),1,2,...,T j j nj w w w j m==j W Neural Networks & Application43.1 单层感知器对于处理层中任一节点,其净输入net ’j 为来自输入层各节点的输入加权和离散型单层感知器的变换函数一般采用符号函数1'nj ij ii net w x ==∑0sgn(')sgn()sgn()nT j j j ij i j i o net T w x ==−==∑W XNeural Networks & Application53.1 单层感知器z 3.1.2 感知器的功能z单计算节点感知器就是一个M-P 神经元模型,采取符号变换函数,又称为符号单元。

人工神经网络及应用智慧树知到课后章节答案2023年下长安大学

人工神经网络及应用智慧树知到课后章节答案2023年下长安大学

人工神经网络及应用智慧树知到课后章节答案2023年下长安大学长安大学第一章测试1.Synapse is the place where neurons connect in function. It is composed ofpresynaptic membrane, synaptic space and postsynaptic membrane.()A:对 B:错答案:对2.Biological neurons can be divided into sensory neurons, motor neurons and()according to their functions.A:multipolar neurons B:interneuronsC:Pseudo unipolar neural networks D:bipolar neurons答案:interneurons3.Neurons and glial cells are the two major parts of the nervous system. ()A:错 B:对答案:对4.Neurons are highly polarized cells, which are mainly composed of two parts:the cell body and the synapse. ()A:错 B:对答案:对5.The human brain is an important part of the nervous system, which containsmore than 86 billion neurons. It is the central information processingorganization of human beings. ()A:对 B:错答案:对第二章测试1.In 1989, Mead, the father of VLSI, published his monograph "( )", in which agenetic neural network model based on evolutionary system theory wasproposed.A:Learning MachinesB:Journal Neural NetworksC:Analog VLSI and Neural SystemsD:Perceptrons: An Introduction to Computational Geometry答案:Analog VLSI and Neural Systems2.In 1989, Yann Lecun proposed convolutional neural network and applied itto image processing, which should be the earliest application field of deeplearning algorithm. ()A:对 B:错答案:对3.In 1954, Eccles, a neurophysiologist at the University of Melbourne,summarized the principle of Dale, a British physiologist, that "each neuronsecretes only one kind of transmitter ".()A:错 B:对答案:对4.In 1972, Professor Kohonen of Finland proposed a self-organizing featuremap (SOFM) neural network model. ()A:对 B:错答案:对5.Prediction and evaluation is an activity of scientific calculation andevaluation of some characteristics and development status of things orevents in the future according to the known information of objective objects.()A:对 B:错答案:对第三章测试1.The function of transfer function in neurons is to get a new mapping outputof summer according to the specified function relationship, and thencompletes the training of artificial neural network. ()A:对 B:错答案:对2.The determinant changes sign when two rows (or two columns) areexchanged. The value of determinant is zero when two rows (or two columns) are same. ()A:对 B:错答案:对3.There are two kinds of phenomena in the objective world. The first is thephenomenon that will happen under certain conditions, which is calledinevitable phenomenon. The second kind is the phenomenon that may ormay not happen under certain conditions, which is called randomphenomenon. ()A:错 B:对答案:对4.Logarithmic S-type transfer function, namely Sigmoid function, is also calledS-shaped growth curve in biology. ()A:错 B:对答案:对5.Rectified linear unit (ReLU), similar to the slope function in mathematics, isthe most commonly used transfer function of artificial neural network. ()A:错 B:对答案:对第四章测试1.The perceptron learning algorithm is driven by misclassification, so thestochastic gradient descent method is used to optimize the loss function. ()A:misclassification B:maximum C:minimumD:correct答案:misclassification2.Perceptron is a single-layer neural network, or neuron, which is the smallestunit of neural network. ()A:错 B:对答案:对3.When the perceptron is learning, each sample will be input into the neuronas a stimulus. The input signal is the feature of each sample, and the expected output is the category of the sample. When the output is different from the category, we can adjust the synaptic weight and bias value until the output of each sample is the same as the category. ()A:对 B:错答案:对4.If the symmetric hard limit function is selected for the transfer function, theoutput can be expressed as . If the inner product of the row vector and the input vector in the weight matrix is greater than or equal to -b, the output is 1, otherwise the output is -1. ()A:错 B:对答案:对5.The basic idea of perceptron learning algorithm is to input samples into thenetwork step by step, and adjust the weight matrix of the network according to the difference between the output result and the ideal output, that is tosolve the optimization problem of loss function L(w,b). ()A:错 B:对答案:对第五章测试1.The output of BP neural network is ()of neural network.A:the output of the last layer B:the input of the last layerC:the output of the second layer D:the input of the second layer答案:the output of the last layer2.BP neural network has become one of the most representative algorithms inthe field of artificial intelligence. It has been widely used in signal processing, pattern recognition, machine control (expert system, data compression) and other fields. ()A:对 B:错答案:对3.In 1974, Paul Werbos of the natural science foundation of the United Statesfirst proposed the use of error back propagation algorithm to train artificialneural networks in his doctoral dissertation of Harvard University, anddeeply analyzed the possibility of applying it to neural networks, effectivelysolving the XOR loop problem that single sensor cannot handle. ()A:对 B:错答案:对4.In the standard BP neural network algorithm and momentum BP algorithm,the learning rate is a constant that remains constant throughout the training process, and the performance of the learning algorithm is very sensitive tothe selection of the learning rate. ()答案:对5.L-M algorithm is mainly proposed for super large scale neural network, andit is very effective in practical application. ()A:对 B:错答案:错第六章测试1.RBF neural network is a novel and effective feedforward neural network,which has the best local approximation and global optimal performance. ()A:对 B:错答案:对2.At present, RBF neural network has been successfully applied in nonlinearfunction approximation, time series analysis, data classification, patternrecognition, information processing, image processing, system modeling,control and fault diagnosis. ()A:对 B:错答案:对3.The basic idea of RBF neural network is to use radial basis function as the"basis" of hidden layer hidden unit to form hidden layer space, and hiddenlayer transforms input vector. The input data transformation of lowdimensional space is mapped into high-dimensional space, so that theproblem of linear separability in low-dimensional space can be realized inhigh-dimensional space. ()答案:对4.For the learning algorithm of RBF neural network, the key problem is todetermine the center parameters of the output layer node reasonably. ()A:对 B:错答案:错5.The method of selecting the center of RBF neural network by self-organizinglearning is to select the center of RBF neural network by k-means clustering method, which belongs to supervised learning method. ()A:错 B:对答案:错第七章测试1.In terms of algorithm, ADALINE neural network adopts W-H learning rule,also known as the least mean square (LMS) algorithm. It is developed fromthe perceptron algorithm, and its convergence speed and accuracy have been greatly improved. ()A:错 B:对答案:对2.ADALINE neural network has simple structure and multi-layer structure. It isflexible in practical application and widely used in signal processing, system identification, pattern recognition and intelligent control. ()A:对 B:错答案:对3.When there are multiple ADALINE in the network, the adaptive linear neuralnetwork is also called Madaline which means many Adaline neural networks.()A:对 B:错答案:对4.The algorithm used in single-layer ADALINE network is LMS algorithm,which is similar to the algorithm of perceptron, and also belongs tosupervised learning algorithm. ()A:对 B:错答案:对5.In practical application, the inverse of the correlation matrix and thecorrelation coefficient are not easy to obtain, so the approximate steepestdescent method is needed in the algorithm design. The core idea is that theactual mean square error of the network is replaced by the mean squareerror of the k-th iteration.()A:错 B:对答案:对第八章测试1.Hopfield neural network is a kind of neural network which combines storagesystem and binary system. It not only provides a model to simulate humanmemory, but also guarantees the convergence to ().A:local minimum B:local maximumC:minimumD:maximum答案:local minimum2.At present, researchers have successfully applied Hopfield neural network tosolve the traveling salesman problem (TSP), which is the most representative of optimization combinatorial problems. ()A:错 B:对答案:对3.In 1982, American scientist John Joseph Hopfield put forward a kind offeedback neural network "Hopfield neural network" in his paper NeuralNetworks and Physical Systems with Emergent Collective ComputationalAbilities. ()A:对 B:错答案:对4.Under the excitation of input x, DHNN enters a dynamic change process, untilthe state of each neuron is no longer changed, it reaches a stable state. This process is equivalent to the process of network learning and memory, and the final output of the network is the value of each neuron in the stable state.()A:错 B:对答案:对5.The order in which neurons adjust their states is not unique. It can beconsidered that a certain order can be specified or selected randomly. The process of neuron state adjustment includes three situations: from 0 to 1, and1 to 0 and unchanged. ()A:错 B:对答案:对第九章测试pared with GPU, CPU has higher processing speed, and has significantadvantages in processing repetitive tasks. ()A:对 B:错答案:错2.At present, DCNN has become one of the core algorithms in the field of imagerecognition, but it is unstable when there is a small amount of learning data.()A:对 B:错答案:错3.In the field of target detection and classification, the task of the last layer ofneural network is to classify. ()A:对 B:错答案:对4.In AlexNet, there are 650000 neurons with more than 600000 parametersdistributed in five convolution layers and three fully connected layers andSoftmax layers with 1000 categories. ()A:对 B:错答案:错5.VGGNet is composed of two parts: the convolution layer and the fullconnection layer, which can be regarded as the deepened version of AlexNet.()A:错 B:对答案:对第十章测试1.The essence of the optimization process of D and G is to find the().A:maximum B:minimax C:local maximaD:minimum答案:minimax2.In the artificial neural network, the quality of modeling will directly affect theperformance of the generative model, but a small amount of prior knowledge is needed for the actual case modeling.()A:对 B:错答案:错3. A GAN mainly includes a generator G and a discriminator D. ()A:对 B:错答案:对4.Because the generative adversarial network does not need to distinguish thelower bound and approximate inference, it avoids the partition functioncalculation problem caused by the traditional repeated application of Markov chain learning mechanism, and improves the network efficiency. ()A:对 B:错答案:对5.From the perspective of artificial intelligence, GAN uses neural network toguide neural network, and the idea is very strange. ()A:对 B:错答案:对第十一章测试1.The characteristic of Elman neural network is that the output of the hiddenlayer is delayed and stored by the feedback layer, and the feedback isconnected to the input of the hidden layer, which has the function ofinformation storage. ()A:对 B:错答案:对2.In Elman network, the transfer function of feedback layer is nonlinearfunction, and the transfer function of output layer islinear function.()A:对 B:错答案:对3.The feedback layer is used to memorize the output value of the previous timeof the hidden layer unit and return it to the input. Therefore, Elman neuralnetwork has dynamic memory function.()A:对 B:错答案:对4.The neurons in the hidden layer of Elman network adopt the tangent S-typetransfer function, while the output layer adopts the linear transfer function. If there are enough neurons in the feedback layer, the combination of thesetransfer functions can make Elman neural network approach any functionwith arbitrary precision in finite time.()A:对 B:错答案:对5.Elman neural network is a kind of dynamic recurrent network, which can bedivided into full feedback and partial feedback. In the partial recurrentnetwork, the feedforward connection weight can be modified, and thefeedback connection is composed of a group of feedback units, and theconnection weight cannot be modified. ()A:错 B:对答案:对第十二章测试1.The loss function of AdaBoost algorithm is().A:exponential functionB:nonlinear function C:linear functionD:logarithmic function答案:exponential function2.Boosting algorithm is the general name of a class of algorithms. Theircommon ground is to construct a strong classifier by using a group of weakclassifiers. Weak classifier mainly refers to the classifier whose predictionaccuracy is not high and far below the ideal classification effect. Strongclassifier mainly refers to the classifier with high prediction accuracy. ()A:错 B:对答案:对3.Among the many improved boosting algorithms, the most successful one isthe AdaBoost (adaptive boosting) algorithm proposed by Yoav Freund ofUniversity of California San Diego and Robert Schapire of PrincetonUniversity in 1996. ()A:错 B:对答案:对4.The most basic property of AdaBoost is that it reduces the training errorcontinuously in the learning process, that is, the classification error rate onthe training data set until each weak classifier is combined into the final ideal classifier. ()A:错 B:对答案:对5.The main purpose of adding regularization term into the formula ofcalculating strong classifier is to prevent the over fitting of AdaBoostalgorithm, which is usually called step size in algorithm. ()A:错 B:对答案:对第十三章测试1.The core layer of SOFM neural network is().A:input layer B:hidden layerC:output layer D:competition layer答案:competition layer2.In order to divide the input patterns into several classes, the distancebetween input pattern vectors should be measured according to thesimilarity. ()are usually used.A:Euclidean distance method B:Cosine methodC:Sine method D:Euclidean distance method and cosine method答案:Euclidean distance method and cosine method3.SOFM neural networks are different from other artificial neural networks inthat they adopt competitive learning rather than backward propagationerror correction learning method similar to gradient descent, and in a sense, they use neighborhood functions to preserve topological properties of input space. ()A:对 B:错答案:对4.For SOFM neural network, the competitive transfer function (CTF) responseis 0 for the winning neurons, and 1 for other neurons.()A:错 B:对答案:错5.When the input pattern to the network does not belong to any pattern in thenetwork training samples, SOFM neural network can only classify it into the closest mode. ()A:对 B:错答案:对第十四章测试1.The neural network toolbox contains()module libraries.A:three B:sixC:five D:four答案:five2.The "netprod" in the network input module can be used for().A:dot multiplication B:dot divisionC:addition or subtractionD:dot multiplication or dot division答案:dot multiplication or dot division3.The "dotrod" in the weight setting module is a normal dot product weightfunction.()A:错 B:对答案:错4.The mathematical model of single neuron is y=f(wx+b).()A:错 B:对答案:对5.The neuron model can be divided into three parts: input module, transferfunction and output module. ()A:对 B:错答案:对第十五章测试1.In large-scale system software design, we need to consider the logicalstructure and physical structure of software architecture. ()A:对 B:错答案:对2.The menu property bar has "label" and "tag". The label is equivalent to thetag value of the menu item, and the tag is the name of the menu display.()A:对 B:错答案:错3.It is necessary to determine the structure and parameters of the neuralnetwork, including the number of hidden layers, the number of neurons inthe hidden layer and the training function.()A:对 B:错答案:对4.The description of the property "tooltipstring" is the prompt that appearswhen the mouse is over the object. ()A:对 B:错答案:对5.The description of the property "string" is: the text displayed on the object.()A:错 B:对答案:对第十六章测试1.The description of the parameter "validator" of the wx.TextCtrl class is: the().A:size of controlB:style of control C:validator of controlD:position of control答案:validator of control2.The description of the parameter "defaultDir" of class wx.FileDialog is: ().A:open the file B:default file nameC:default path D:save the file答案:default path3.In the design of artificial neural network software based on wxPython,creating GUI means building a framework in which various controls can beadded to complete the design of software functions. ()A:对 B:错答案:对4.When the window event occurs, the main event loop will respond and assignthe appropriate event handler to the window event. ()A:对 B:错答案:对5.From the user's point of view, the wxPython program is idle for a large partof the time, but when the user or the internal action of the system causes the event, and then the event will drive the wxPython program to produce the corresponding action.()A:对 B:错答案:对。

计算机初学者必读的人工智能基础教程

计算机初学者必读的人工智能基础教程

计算机初学者必读的人工智能基础教程第一章:人工智能概述人工智能(Artificial Intelligence,简称AI)是研究和开发用于模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的新型信息技术。

本章将介绍人工智能的定义、发展历程、应用领域等基础知识,帮助读者对人工智能有一个整体的了解。

第二章:机器学习机器学习(Machine Learning)是人工智能的一个重要分支,通过让机器从数据中学习并改善性能,实现对未知数据的准确预测。

本章将介绍机器学习的基本概念、分类、算法和应用实例,包括监督学习、无监督学习和强化学习等内容,帮助读者理解机器学习的基本原理和应用方法。

第三章:神经网络神经网络(Neural Network)是一种模仿人类神经系统结构和功能的数学模型,是实现人工智能的核心技术之一。

本章将介绍神经网络的基本原理、结构和训练方法,包括前馈神经网络、卷积神经网络和循环神经网络等类型,以及深度学习在图像识别、自然语言处理等领域的应用案例。

第四章:自然语言处理自然语言处理(Natural Language Processing,简称NLP)是人工智能与语言学、计算机科学交叉的领域,研究如何使机器能够理解、处理和生成人类自然语言。

本章将介绍自然语言处理的基本概念、技术和应用,包括词法分析、句法分析、信息抽取、机器翻译等,以及近年来在智能客服、智能翻译等领域的研究进展。

第五章:计算机视觉计算机视觉(Computer Vision)是研究如何使计算机具有类似人类视觉系统的功能,能够理解和解释图像和视频。

本章将介绍计算机视觉的基本概念、算法和应用,包括图像特征提取、目标检测与识别、图像分割与理解等内容,以及在无人驾驶、智能监控等领域的具体应用案例。

第六章:推荐系统推荐系统(Recommendation System)是一种通过分析用户历史行为和兴趣,向用户推荐相关信息、产品或服务的技术系统。

本章将介绍推荐系统的基本原理、算法和应用,包括基于内容的推荐、协同过滤、深度学习推荐等,以及在电商、社交媒体等领域的实际应用案例。

《神经网络控制》课件

《神经网络控制》课件
1 神经网络控制的局限性
神经网络控制需要大量的数据和计算资源,对模型的训练和调整要求较高。
2 神经网络控制的挑战
在复杂系统的实时控制和稳定性问题上,神经网络控制仍然面临挑战。
3 神经网络控制未来发展的方向
未来,神经网络控制将更加注重与其他控制技术的结合,如模糊控制、强化学习等。
总结
神经网络控制的优势 和局限性
《神经网络控制》PPT课 件
# 神经网络控制PPT课件
介绍神经网络控制
定义神经网络控制
神经网络控制是利用神经网络模型来设计控制器,实现对系统的控制和优化。
神经网络控制的作用和优势
神经网络控制具有非线性建模能力和适应性,可以处理复杂系统和非线性控制问题。
神经网络控制的发展历程
神经网络控制起源于20世纪80年代,经历了多个阶段的发展,如BP神经网络、RBF神经网络 等。
神经网络控制具有非线性建模 能力和适应性,但对数据和计 算资源要求较高。
神经网络控制的发展 前景
神经网络控制在自动化控制领 域有着广阔的应用前景,将与 其他技术相结合。
未来研究方向
进一步研究神经网络控制与其 他控制技术的融合,提高控制 系统的稳定性和性能。
神经网络的基本单元是神经元,其模型
前馈神经网络和反馈神经网络
2
和激活函数决定了神经网络的行为和表 达能力。
前馈神经网络是一种信息传递方向单一
的网络结构,而反馈神经网络具有循环
连接,在动态系统的控制中应用广泛。
3
训练神经网络的方法
常见的神经网络训练方法包括反向传播 算法、遗传算法、粒子群优化等,用于 调整网络参数以实现优化和学习。
神经网络控制实例
倒立摆控制
自适应神经网络PID

第三章 多层感知器神经网络(1)

第三章 多层感知器神经网络(1)

络来实现“异或”运算。
10
神经网络的发展历程
神经网络的发展历性的热潮,
分别是1943年的神经网络的诞生、1983年的神经网络的复兴及2006年的深度学习
的崛起。
➢ 神经网络的诞生(1943—1969年)
➢ 在1943年,心理学家Warren McCulloch和数学家Walter Pitts和最早
➢ 我们主要关注采用误差反向传播进行学习的神经网络,神经元之间的连接权重就是 需要学习的参数,可以在机器学习的框架下通过梯度下降法来进行学习。作为对人 工神经网络的初步认识,本章主要介绍感知器神经网络和反向传播网络。
2
第一节
感知器及其发展过程
3.1
感知器及其发展过程
感知器及其发展过程
➢ 1943年,McCulloch和Pitts发表了他们关于人工神经网络的第一个系统研究。 ➢ 1947年,他们又开发出了一个用于模式识别的网络模型——感知器,通常就叫作
➢ Rosenblatt [1958]最早提出可以模拟人类感知能力的神经网络模型,
并称之为感知器(Perceptron),并提出了一种接近于人类学习过程
(迭代、试错)的学习算法。
11
神经网络的发展历程
神经网络的发展历程(二)
神经网络之后经历了长达10年的冷落期,主要由于当时基本感知机无法处理异或 回路,并且计算机处理能力还非常有限。1974年,哈佛大学的Paul Webos发明反向 传播算法,但当时没有收到重视。随后几年,反向传播算法引起了新的复兴。
描述了一种理想化的人工神经网络,并构建了一种基于简单逻辑运算的
计算机制。他们提出的神经网络模型称为MP模型。
➢ 阿兰·图灵在1948年的论文中描述了一种“B型图灵机”。(赫布型学习)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章神经网络控制及应 用(基础)
人工神经网络定义
神经网络是由多个非常简单的处理单元彼此按 某种方式相互连接而形成的计算系统,该系统是靠 其状态对外部输入信息的动态响应来处理信息的。
人工神经网络是一个由许多简单的并行工作的 处理单元组成的系统,其功能取决于网络的结构、 连接强度以及各单元的处理方式。
经 元 的
0 f(x)= cx
1
x≤0 0x<c<x≤x xc
f (x)

(3-9)

1.0


x
0
xc
2021/2/4
26
3.1.3.2 人工神经网络模型



○○○





○○



○○




层次型结构
2021/2/4
27
3.1.3.2 人工神经网络模型



○○ ○ ○ ○


○○○○



○ ○ ○○ ○


输出层到输入层有连接
2021/2/4
28
3.1.3.2 人工神经网络模型
i1
(3-1) (3-2)
2021/2/4
21
3.1.3.1 人工神经元模型
n

netj (t) wijxi (t)

i1


net’j=WjTX

学 Wj=(w1 w2 … wn)T
模 型
X=(x1 x2 … xn)T
(3-3) (3-4)
令x0=-1,w0=Tj,则有-Tj=x0w0
2021/2/4
输入样本
神经网络
自动提取 非线性映射规则
输出样本
非线性映射功能
2021/2/4
5
3.1.1 神经网络的基本特征与功能
2021/2/4
传统分类能力
ANN 分类能力
分类与识别功能
6
3.1.1 神经网络的基本特征与功能
2021/2/4
优化计算功能
7
2021/2/4
2021/2/4
17
3.1.2.3 生物神经网络
• 由多个生物神经元以确定方式和拓扑结构
相互连接即形成生物神经网络。
• 生物神经网络的功能不是单个神经元信息
处理功能的简单叠加。
• 神经元之间的突触连接方式和连接强度不
同并且具有可塑性,这使神经网络在宏观 呈现出千变万化的复杂的信息处理能力。
2021/2/4
3.1.1 神经网络的基本特征与功能
问题解答
知识分布式表示 知识获取、知识库
平行推理
输入数据
变量变换
求解的问题
由同一 神经网 络实现
神经网络专家系统的构成
知识处理功能
8
3.1.2 生物神经元及其信息处理
•生物神经元 •人工神经元模型
2021/2/4
9
3.1.2 生物神经元及其信息处理
人类大脑大约包含有1.41011个神经元, 每 个 神 经 元 与 大 约 103 ~ 105 个 其 它 神 经 元相连接,构成一个极为庞大而复杂的 网络,即生物神经网络。
18
3.1.3人工神经元模型及人工神经网络模型
神经元及其突触是神经网络的基本器件。因此, 模拟生物神经网络应首先模拟生物神经元。在人 工神经网络中,神经元常被称为“处理单元”。 有时从网络的观点出发常把它称为“节点”。人 工神经元是对生物神经元的一种形式化描述。
2021/2/4
19
神 经 元 模 型 示 意 图
22
3.1.3.1 人工神经元模型
神 经 元
n
ne tj Tj nejt wijxi WT j X (3-5)

i0


模 型
oj=f(netj)=f (WjTX)
(3-6)
2021/2/4
23
3.1.3.1 人工神经元模型
神 (1)阈值型转移函数
经 元
1 x≥0
f(x)=

0 x<0

f (x)


1 .0

0
(3-7)
x
2021/2/4
24
1 人工神经元模型
神 (2)非线性转移函数

元 的
f (x) 11ex (3-8)
f
( x)
1ex 1ex

f (x)
f (x)


1.0

0.5
x
0
1.0
0
x
-1.0
2021/2/4
25
3.1.3.1 人工神经元模型
神 (3)分段线性转移函数
2021/2/4
10
3.1.2 生物神经元及其信息处理
神经生理学和神经解剖学的研究 结果表明,神经元(Neuron)是脑组织 的基本单元,是人脑信息处理系统的 最小单元。
2021/2/4
11
3.1.2 生物神经元及其信息处理
3.1.2.1生物神经元的结构
生物神经元在结构上由
细胞体(Cell body) 树突(Dendrite) 轴突(Axon) 突触(Synapse)
人工神经网络是一种旨在模仿人脑结构及其功能 的信息处理系统。
2021/2/4
2
3.1.1神经网络的基本特征与功能
结构特征: 并行式处理 分布式存储 容错性
能力特征: 自学习 自组织 自适应性
2021/2/4
3
3.1.1 神经网络的基本特征与功能
联 想 记 忆 功 能
2021/2/4
4
3.1.1 神经网络的基本特征与功能
四部分组成。用来完成神经元间信息的接收、 传递和处理。
2021/2/4
12
2021/2/4
13
2021/2/4
14
3.1.2.2 生物神经元的信息处理机理
信息的产生
神经元间信息的产生、传递和处理是一 种电化学活动。
神经元状态:
静息
膜电位:
极化
兴奋
去极化
抑制
超极化
2021/2/4
15
3.1.2.2 生物神经元的信息处理机理
xn
(d)输 入 -输 出 函 数
20
3.1.3.1 人工神经元模型
n

oj(t)f{[ wijxi(tij)]Tj}

i1
元 的 数
τij—— 输入输出间的突触时延; Tj —— 神经元j的阈值; wij—— 神经元i到 j 的突触连接系数或称

权重值;
模 f ()——神经元转移函数。

n
oj(t1)f{[ wijxi(t)]Tj}


轴突




突触前

突触后

突触间隙 树突或胞体
2021/2/4
16
3.1.2.2 生物神经元的信息处理机理
信息的整合
空间整合:同一时刻产生的刺激所引起的膜电 位变化,大致等于各单独刺激引起的膜电位变 化的代数和。
时间整合:各输入脉冲抵达神经元的时间先后 不一样。总的突触后膜电位为一段时间内的累 积。
2021/2/4
3.1.3.1 人工神经元模型
x1

oj
xi ┆
xn
(a)多 输 入 单 输 出
x1 w 1j ┆ w ij xI
┆ w nj xn
oj ∑
(c)输 入 加 权 求 和
x1 w 1j
┆ w ij
oj
xi ┆ wnj
xn
(b)输 入 加 权
x1 w 1j
┆ w ij xI
oj ∑f
┆ w nj
相关文档
最新文档