2009年常德市中考数学试题及答案
【真题】湖南省常德市中考数学试卷含答案解析()
湖南省常德市中考数学试卷一、选择题(本大题8个小题,每小题3分,满分24分)1.(3分)﹣2的相反数是()A.2 B.﹣2 C.2﹣1D.﹣【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣2的相反数是:2.故选:A.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3分)已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.1 B.2 C.8 D.11【分析】根据三角形的三边关系可得7﹣3<x<7+3,再解即可.【解答】解:设三角形第三边的长为x,由题意得:7﹣3<x<7+3,4<x<10,故选:C.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边.三角形的两边差小于第三边.3.(3分)已知实数a,b在数轴上的位置如图所示,下列结论中正确的是()A.a>b B.|a|<|b|C.ab>0 D.﹣a>b【分析】根据数轴可以判断a、b的正负,从而可以判断各个选项中的结论是否正确,从而可以解答本题.【解答】解:由数轴可得,﹣2<a<﹣1<0<b<1,∴a<b,故选项A错误,|a|>|b|,故选项B错误,ab<0,故选项C错误,﹣a>b,故选项D正确,故选:D.【点评】本题考查实数与数轴、绝对值,解答本题的关键是明确题意,利用数形结合的思想解答.4.(3分)若一次函数y=(k﹣2)x+1的函数值y随x的增大而增大,则()A.k<2 B.k>2 C.k>0 D.k<0【分析】根据一次函数的性质,可得答案.【解答】解:由题意,得k﹣2>0,解得k>2,故选:B.【点评】本题考查了一次函数的性质,y=kx+b,当k>0时,函数值y随x的增大而增大.5.(3分)从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,他们的平均成绩都是86.5分,方差分别是S甲你认为派谁去参赛更合适()A.甲B.乙C.丙D.丁【分析】根据方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好可得答案.【解答】解:∵1.5<2.6<3.5<3.68,∴甲的成绩最稳定,∴派甲去参赛更好,故选:A.【点评】此题主要考查了方差,关键是掌握方差越小,稳定性越大.6.(3分)如图,已知BD是△ABC的角平分线,ED是BC的垂直平分线,∠BAC=90°,AD=3,则CE的长为()A.6 B.5 C.4 D.3【分析】根据线段垂直平分线的性质得到DB=DC,根据角平分线的定义、三角形内角和定理求出∠C=∠DBC=∠ABD=30°,根据直角三角形的性质解答.【解答】解:∵ED是BC的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CE=CD×cos∠C=3,故选:D.【点评】本题考查的是线段垂直平分线的性质、直角三角形的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.7.(3分)把图1中的正方体的一角切下后摆在图2所示的位置,则图2中的几何体的主视图为()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看是一个等腰三角形,高线是虚线,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.8.(3分)阅读理解:a,b,c,d是实数,我们把符号称为2×2阶行列式,并且规定:=a×d﹣b×c,例如:=3×(﹣2)﹣2×(﹣1)=﹣6+2=﹣4.二元一次方程组的解可以利用2×2阶行列式表示为:;其中D=,D x=,D y=.问题:对于用上面的方法解二元一次方程组时,下面说法错误的是()A.D==﹣7 B.D x=﹣14C.D y=27 D.方程组的解为【分析】分别根据行列式的定义计算可得结论.【解答】解:A、D==﹣7,正确;B、D x==﹣2﹣1×12=﹣14,正确;C、D y==2×12﹣1×3=21,不正确;D、方程组的解:x===2,y===﹣3,正确;故选:C.【点评】本题是阅读理解问题,考查了2×2阶行列式和方程组的解的关系,理解题意,直接运用公式计算是本题的关键.二、填空题(本大题8个小题,每小题3分,满分24分)9.(3分)﹣8的立方根是﹣2.【分析】利用立方根的定义即可求解.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案为:﹣2.【点评】本题主要考查了平方根和立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.10.(3分)分式方程﹣=0的解为x=﹣1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x﹣2﹣3x=0,解得:x=﹣1,经检验x=1是分式方程的解.故答案为:﹣1【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.11.(3分)已知太阳与地球之间的平均距离约为150000000千米,用科学记数法表示为 1.5×108千米.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:1 5000 0000=1.5×108,故答案为:1.5×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)一组数据3,﹣3,2,4,1,0,﹣1的中位数是1.【分析】将数据按照从小到大重新排列,根据中位数的定义即可得出答案.【解答】解:将数据重新排列为﹣3、﹣1、0、1、2、3、4,所以这组数据的中位数为1,故答案为:1.【点评】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.13.(3分)若关于x的一元二次方程2x2+bx+3=0有两个不相等的实数根,则b 的值可能是6(只写一个).【分析】根据方程的系数结合根的判别式△>0,即可得出关于b的一元二次不等式,解之即可得出b的取值范围,取其内的任意一值即可得出结论.【解答】解:∵关于x的一元二次方程2x2+bx+3=0有两个不相等的实数根,∴△=b2﹣4×2×3>0,解得:b<﹣2或b>2.故答案可以为:6.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.14.(3分)某校对初一全体学生进行了一次视力普查,得到如下统计表,则视力在4.9≤x<5.5这个范围的频率为0.35.视力x频数4.0≤x<4.3204.3≤x<4.6404.6≤x<4.9704.9≤x≤5.2605.2≤x<5.510【分析】直接利用频数÷总数=频率进而得出答案.【解答】解:视力在4.9≤x<5.5这个范围的频数为:60+10=70,则视力在4.9≤x<5.5这个范围的频率为:=0.35.故答案为:0.35.【点评】此题主要考查了频率求法,正确把握频率的定义是解题关键.15.(3分)如图,将矩形ABCD沿EF折叠,使点B落在AD边上的点G处,点C 落在点H处,已知∠DGH=30°,连接BG,则∠AGB=75°.【分析】由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,从而可证明∠EBG=∠EGB.,然后再根据∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH,由平行线的性质可知∠AGB=∠GBC,从而易证∠AGB=∠BGH,据此可得答案.【解答】解:由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,∴∠EBG=∠EGB.∴∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH.又∵AD∥BC,∴∠AGB=∠GBC.∴∠AGB=∠BGH.∵∠DGH=30°,∴∠AGH=150°,∴∠AGB=∠AGH=75°,故答案为:75°.【点评】本题主要考查翻折变换,解题的关键是熟练掌握翻折变换的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.16.(3分)5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报4的人心里想的数是9.【分析】设报4的人心想的数是x,则可以分别表示报1,3,5,2的人心想的数,最后通过平均数列出方程,解方程即可.【解答】解:设报4的人心想的数是x,报1的人心想的数是10﹣x,报3的人心想的数是x﹣6,报5的人心想的数是14﹣x,报2的人心想的数是x﹣12,所以有x﹣12+x=2×3,解得x=9.故答案为9.【点评】本题属于阅读理解和探索规律题,考查的知识点有平均数的相关计算及方程思想的运用.规律与趋势:这道题的解决方法有点奥数题的思维,题意理解起来比较容易,但从哪下手却不容易想到,一般地,当数字比较多时,方程是首选的方法,而且,多设几个未知数,把题中的等量关系全部展示出来,再结合题意进行整合,问题即可解决.本题还可以根据报2的人心想的数可以是6﹣x,从而列出方程x﹣12=6﹣x求解.三、(本大题2个小题,每小题5分,满分10分)17.(5分)计算:(﹣π)0﹣|1﹣2|+﹣()﹣2.【分析】本题涉及零指数幂、负指数幂、二次根式化简和绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1﹣(2﹣1)+2﹣4,=1﹣2+1+2﹣4,=﹣2.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(5分)求不等式组的正整数解.【分析】根据不等式组解集的表示方法:大小小大中间找,可得答案.【解答】解:,解不等式①,得x>﹣2,解不等式②,得x≤,不等式组的解集是﹣2<x≤,不等式组的正整数解是1,2,3,4.【点评】本题考查了解一元一次不等式组,利用解一元一次不等式组的解集的表示方法是解题关键.四、(本大题2个小题,每小题6分,满分12分)19.(6分)先化简,再求值:(+)÷,其中x=.【分析】直接将括号里面通分运算,再利用分式混合运算法则计算得出答案.【解答】解:原式=[+]×(x﹣3)2=×(x﹣3)2=x﹣3,把x=代入得:原式=﹣3=﹣.【点评】此题主要考查了分式的化简求值,正确掌握分式的混合运算法则是解题关键.20.(6分)如图,已知一次函数y1=k1x+b(k1≠0)与反比例函数y2=(k2≠0)的图象交于A(4,1),B(n,﹣2)两点.(1)求一次函数与反比例函数的解析式;(2)请根据图象直接写出y1<y2时x的取值范围.【分析】(1)由点A的坐标利用反比例函数图象上点的坐标特征可求出k2的值,进而可得出反比例函数的解析式,由点B的纵坐标结合反比例函数图象上点的坐标特征可求出点B的坐标,再由点A、B的坐标利用待定系数法,即可求出一次函数的解析式;(2)根据两函数图象的上下位置关系,找出y1<y2时x的取值范围.【解答】解:(1)∵反比例函数y2=(k2≠0)的图象过点A(4,1),∴k2=4×1=4,∴反比例函数的解析式为y2=.∵点B(n,﹣2)在反比例函数y2=的图象上,∴n=4÷(﹣2)=﹣2,∴点B的坐标为(﹣2,﹣2).将A(4,1)、B(﹣2,﹣2)代入y1=k1x+b,,解得:,∴一次函数的解析式为y=x﹣1.(2)观察函数图象,可知:当x<﹣2和0<x<4时,一次函数图象在反比例函数图象下方,∴y1<y2时x的取值范围为x<﹣2或0<x<4.【点评】本题考查了待定系数法求一次函数解析式以及反比例函数图象上点的坐标特征,解题的关键是:(1)利用反比例函数图象上点的坐标特征求出点B的坐标;(2)根据两函数图象的上下位置关系,找出不等式y1<y2的解集.五、(本大题2个小题,每小题7分,满分14分)21.(7分)某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?【分析】(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据总价=单价×购进数量,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120﹣a)千克,根据总价=单价×购进数量,即可得出w关于a的函数关系式,由甲种水果不超过乙种水果的3倍,即可得出关于a的一元一次不等式,解之即可得出a的取值范围,再利用一次函数的性质即可解决最值问题.【解答】解:(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据题意得:,解得:.答:该店5月份购进甲种水果190千克,购进乙种水果10千克.(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120﹣a)千克,根据题意得:w=10a+20(120﹣a)=﹣10a+2400.∵甲种水果不超过乙种水果的3倍,∴a≤3(120﹣a),解得:a≤90.∵k=﹣10<0,∴w随a值的增大而减小,∴当a=90时,w取最小值,最小值﹣10×90+2400=1500.∴月份该店需要支付这两种水果的货款最少应是1500元.【点评】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w关于a的函数关系式.22.(7分)图1是一商场的推拉门,已知门的宽度AD=2米,且两扇门的大小相同(即AB=CD),将左边的门ABB1A1绕门轴AA1向里面旋转37°,将右边的门CDD1C1绕门轴DD1向外面旋转45°,其示意图如图2,求此时B与C之间的距离(结果保留一位小数).(参考数据:sin37°≈0.6,cos37°≈0.8,≈1.4)【分析】作BE⊥AD于点E,作CF⊥AD于点F,延长FC到点M,使得BE=CM,则EM=BC,在Rt△ABE、Rt△CDF中可求出AE、BE、DF、FC的长度,进而可得出EF的长度,再在Rt△MEF中利用勾股定理即可求出EM的长,此题得解.【解答】解:作BE⊥AD于点E,作CF⊥AD于点F,延长FC到点M,使得BE=CM,如图所示.∵AB=CD,AB+CD=AD=2,∴AB=CD=1.在Rt△ABE中,AB=1,∠A=37°,∴BE=AB•sin∠A≈0.6,AE=AB•cos∠A≈0.8.在Rt△CDF中,CD=1,∠D=45°,∴CF=CD•sin∠D≈0.7,DF=CD•cos∠D≈0.7.∵BE⊥AD,CF⊥AD,∴BE∥CM,又∵BE=CM,∴四边形BEMC为平行四边形,∴BC=EM,CM=BE.在Rt△MEF中,EF=AD﹣AE﹣DF=0.5,FM=CF+CM=1.3,∴EM=≈1.4,∴B与C之间的距离约为1.4米.【点评】本题考查了解直角三角形的应用、勾股定理以及平行四边形的判定与性质,构造直角三角形,利用勾股定理求出BC的长度是解题的关键.六、(本大题2个小题,每小题8分,满分16分)23.(8分)某校体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图.请你根据统计图回答下列问题:(1)喜欢乒乓球的学生所占的百分比是多少?并请补全条形统计图(图2);(2)请你估计全校500名学生中最喜欢“排球”项目的有多少名?(3)在扇形统计图中,“篮球”部分所对应的圆心角是多少度?(4)篮球教练在制定训练计划前,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两人进行个别座谈,请用列表法或树状图法求抽取的两人恰好是甲和乙的概率.【分析】(1)先利用喜欢足球的人数和它所占的百分比计算出调查的总人数,再计算出喜欢乒乓球的人数,然后补全条形统计图;(2)用500乘以样本中喜欢排球的百分比可根据估计全校500名学生中最喜欢“排球”项目的写生数;(3)用360°乘以喜欢篮球人数所占的百分比即可;(4)画树状图展示所有12种等可能的结果数,再找出抽取的两人恰好是甲和乙的结果数,然后根据概率公式求解.【解答】解:(1)调查的总人数为8÷16%=50(人),喜欢乒乓球的人数为50﹣8﹣20﹣6﹣2=14(人),所以喜欢乒乓球的学生所占的百分比=×100%=28%,补全条形统计图如下:(2)500×12%=60,所以估计全校500名学生中最喜欢“排球”项目的有60名;(3),篮球”部分所对应的圆心角=360×40%=144°;(4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好是甲和乙的结果数为2,所以抽取的两人恰好是甲和乙的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.24.(8分)如图,已知⊙O是等边三角形ABC的外接圆,点D在圆上,在CD的延长线上有一点F,使DF=DA,AE∥BC交CF于E.(1)求证:EA是⊙O的切线;(2)求证:BD=CF.【分析】(1)根据等边三角形的性质可得:∠OAC=30°,∠BCA=60°,证明∠OAE=90°,可得:AE是⊙O的切线;(2)先根据等边三角形性质得:AB=AC,∠BAC=∠ABC=60°,由四点共圆的性质得:∠ADF=∠ABC=60°,得△ADF是等边三角形,证明△BAD≌△CAF,可得结论.【解答】证明:(1)连接OD,∵⊙O是等边三角形ABC的外接圆,∴∠OAC=30°,∠BCA=60°,∵AE∥BC,∴∠EAC=∠BCA=60°,∴∠OAE=∠OAC+∠EAC=30°+60°=90°,∴AE是⊙O的切线;(2)∵△ABC是等边三角形,∴AB=AC,∠BAC=∠ABC=60°,∵A、B、C、D四点共圆,∴∠ADF=∠ABC=60°,∵AD=DF,∴△ADF是等边三角形,∴AD=AF,∠DAF=60°,∴∠BAC+∠CAD=∠DAF+∠CAD,即∠BAF=∠CAF,在△BAD和△CAF中,∵,∴△BAD≌△CAF,∴BD=CF.【点评】本题考查了全等三角形的性质和判定,等边三角形及外接圆,四点共圆等知识点的综合运用,属于基础题,熟练掌握等边三角形的性质是关键.七、(本大题2个小题,每小题10分,满分20分)25.(10分)如图,已知二次函数的图象过点O(0,0).A(8,4),与x轴交于另一点B,且对称轴是直线x=3.(1)求该二次函数的解析式;(2)若M是OB上的一点,作MN∥AB交OA于N,当△ANM面积最大时,求M的坐标;(3)P是x轴上的点,过P作PQ⊥x轴与抛物线交于Q.过A作AC⊥x轴于C,当以O,P,Q为顶点的三角形与以O,A,C为顶点的三角形相似时,求P点的坐标.【分析】(1)先利用抛物线的对称性确定B(6,0),然后设交点式求抛物线解析式;(2)设M(t,0),先其求出直线OA的解析式为y=x,直线AB的解析式为y=2x ﹣12,直线MN的解析式为y=2x﹣2t,再通过解方程组得N(t,t),接着利用三角形面积公式,利用S △AMN =S △AOM ﹣S △NOM 得到S △AMN =•4•t ﹣•t•t ,然后根据二次函数的性质解决问题;(3)设Q (m ,m 2﹣m ),根据相似三角形的判定方法,当=时,△PQO ∽△COA ,则|m 2﹣m |=2|m |;当=时,△PQO ∽△CAO ,则|m 2﹣m |=|m |,然后分别解关于m 的绝对值方程可得到对应的P 点坐标.【解答】解:(1)∵抛物线过原点,对称轴是直线x=3,∴B 点坐标为(6,0),设抛物线解析式为y=ax (x ﹣6),把A (8,4)代入得a•8•2=4,解得a=,∴抛物线解析式为y=x (x ﹣6),即y=x 2﹣x ;(2)设M (t ,0),易得直线OA 的解析式为y=x ,设直线AB 的解析式为y=kx +b ,把B (6,0),A (8,4)代入得,解得,∴直线AB 的解析式为y=2x ﹣12,∵MN ∥AB ,∴设直线MN 的解析式为y=2x +n ,把M (t ,0)代入得2t +n=0,解得n=﹣2t ,∴直线MN 的解析式为y=2x ﹣2t , 解方程组得,则N (t ,t ),∴S △AMN =S △AOM ﹣S △NOM =•4•t ﹣•t•t=﹣t 2+2t=﹣(t ﹣3)2+3,当t=3时,S有最大值3,此时M点坐标为(3,0);△AMN(3)设Q(m,m2﹣m),∵∠OPQ=∠ACO,∴当=时,△PQO∽△COA,即=,∴PQ=2PO,即|m2﹣m|=2|m|,解方程m2﹣m=2m得m1=0(舍去),m2=14,此时P点坐标为(14,28);解方程m2﹣m=﹣2m得m1=0(舍去),m2=﹣2,此时P点坐标为(﹣2,4);∴当=时,△PQO∽△CAO,即=,∴PQ=PO,即|m2﹣m|=|m|,解方程m2﹣m=m得m1=0(舍去),m2=8(舍去),解方程m2﹣m=﹣m得m1=0(舍去),m2=2,此时P点坐标为(2,﹣1);综上所述,P点坐标为(14,28)或(﹣2,4)或(2,﹣1).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;灵活运用相似比表示线段之间的关系;会运用分类讨论的思想解决数学问题.26.(10分)已知正方形ABCD中AC与BD交于O点,点M在线段BD上,作直线AM交直线DC于E,过D作DH⊥AE于H,设直线DH交AC于N.(1)如图1,当M在线段BO上时,求证:MO=NO;(2)如图2,当M在线段OD上,连接NE,当EN∥BD时,求证:BM=AB;(3)在图3,当M在线段OD上,连接NE,当NE⊥EC时,求证:AN2=NC•AC.【分析】(1)先判断出OD=OA,∠AOM=∠DON,再利用同角的余角相等判断出∠ODN=∠OAM,判断出△DON≌△AOM即可得出结论;(2)先判断出四边形DENM是菱形,进而判断出∠BDN=22.5°,即可判断出∠AMB=67.5°,即可得出结论;(3)设CE=a,进而表示出EN=CE=a,CN=a,设DE=b,进而表示AD=a+b,根据勾股定理得,AC=(a+b),同(1)的方法得,∠OAM=∠ODN,得出∠EDN=∠DAE,进而判断出△DEN∽△ADE,得出,进而得出a=b,即可表示出CN=b,AC=b,AN=AC﹣CN=b,即可得出结论.【解答】解:(1)∵正方形ABCD的对角线AC,BD相交于O,∴OD=OA,∠AOM=∠DON=90°,∴∠OND+∠ODN=90°,∵∠ANH=∠OND,∴∠ANH+∠ODN=90°,∵DH⊥AE,∴∠DHM=90°,∴∠ANH+∠OAM=90°,∴∠ODN=∠OAM,∴△DON≌△AOM,∴OM=ON;(2)连接MN,∵EN∥BD,∴∠ENC=∠DOC=90°,∠NEC=∠BDC=45°=∠ACD,∴EN=CN,同(1)的方法得,OM=ON,∵OD=OD,∴DM=CN=EN,∵EN∥DM,∴四边形DENM是平行四边形,∵DN⊥AE,∴▱DENM是菱形,∴DE=EN,∴∠EDN=∠END,∵EN∥BD,∴∠END=∠BDN,∴∠EDN=∠BDN,∵∠BDC=45°,∴∠BDN=22.5°,∵∠AHD=90°,∴∠AMB=∠DME=90°﹣∠BDN=67.5°,∵∠ABM=45°,∴∠BAM=67.5°=∠AMB,∴BM=AB;(3)设CE=a(a>0)∵EN⊥CD,∴∠CEN=90°,∵∠ACD=45°,∴∠CNE=45°=∠ACD,∴EN=CE=a,∴CN=a,设DE=b(b>0),∴AD=CD=DE+CE=a+b,根据勾股定理得,AC=AD=(a+b),同(1)的方法得,∠OAM=∠ODN,∵∠OAD=∠ODC=45°,∴∠EDN=∠DAE,∵∠DEN=∠ADE=90°,∴△DEN∽△ADE,∴,∴,∴a=b(已舍去不符合题意的)∴CN=a=b,AC=(a+b)=b,∴AN=AC﹣CN=b,∴AN2=2b2,AC•CN=b•b=2b2∴AN2=AC•CN.【点评】此题是相似形综合题,主要考查了正方形的性质,平行四边形,菱形的判定,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,判断出四边形DENM是菱形是解(2)的关键,判断出△DEN∽△ADE是解(3)的关键.21 / 21。
2009年中考数学试题汇编之三角形与全等三角形试题及答案[1]
2009年中考试题专题之16-三角形与全等三角形试题及答案一、选择题 1.(2009年江苏省)如图,给出下列四组条件: ①AB DE BC EF AC DF ===,,; ②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,; ④AB DE AC DF B E ==∠=∠,,.其中,能使ABC DEF △≌△的条件共有( ) A .1组 B .2组 C .3组 D .4组2.(2009年浙江省绍兴市)如图,D E ,分别为ABC △的AC ,BC 边的中点,将此三角形沿DE 折叠,使点C 落在AB 边上的点P 处.若48CDE ∠=°,则APD ∠等于( ) A .42° B .48° C .52° D .58°3. (2009年义乌)如图,在ABC 中,90C ∠=。
,EF//AB,150∠=。
,则B ∠的度数为A .50。
B. 60。
C.30。
D. 40。
【关键词】三角形内角度数【答案】D4.(2009年济宁市)如图,△ABC 中,∠A =70°,∠B =60°,点D 在BC 的延长线上,则∠ACD 等于A. 100°B. 120°C. 130°D. 150°A BD5、(2009年衡阳市)如图2所示,A 、B 、C 分别表示三个村庄,AB=1000米,BC=600米,AC=800米,在社会主义新农村建设中,为了丰富群众生活,拟建一个 文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P 的位置应在( ) A .AB 中点 B .BC 中点 C .AC 中点 D .∠C 的平分线与AB 的交点6、(2009年海南省中考卷第5题)已知图2中的两个三角形全等,则∠α度数是( )A.72°B.60°C.58°D.50° 7、(2009 黑龙江大兴安岭)如图,为估计池塘岸边A 、B 两点的距离,小方在池塘的一侧选取一点O ,测得15=OA 米,10=OB 米,A 、B 间的距离不可能是 ( ) A .5米 B .10米 C . 15米 D .20米8、(2009年崇左)一个等腰三角形的两边长分别为2和5,则它的周长为( ) A .7 B .9 C .12 D .9或12 9、(2009年湖北十堰市)下列命题中,错误的是( ). A .三角形两边之和大于第三边 B .三角形的外角和等于360° C .三角形的一条中线能将三角形面积分成相等的两部分 D .等边三角形既是轴对称图形,又是中心对称图形10、(09湖南怀化)如图,在Rt ABC △中,90=∠B ,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .已知10=∠BAE ,则C ∠的度数为( )A .30 B .40 C .50 D .6011、(2009年清远)如图,AB CD ∥,EF AB ⊥于E EF ,交CD 于F ,已知160∠=°,则2∠=( )A .20°B .60°C .30°D .45°A DB12、(2009年广西钦州)如图,在等腰梯形ABCD 中,AB =DC ,AC 、BD 交于点O ,则图中全等三角形共有( ) A .2对 B .3对C .4对D .5对【形ADO13、(2009年甘肃定西)如图4,四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°,BE ⊥AD于点E ,且四边形ABCD 的面积为8,则BE =( )A .2B .3C.D.14、(2009年广西钦州)如图,AC =AD ,BC =BD ,则有( ) A .AB 垂直平分CD B .CD 垂直平分AB C .AB 与CD 互相垂直平分D .CD 平分∠ACBABCD15、(2009肇庆)如图,Rt ABC △中, 90ACB ∠=°,DE 过点C ,且DE AB ∥,若 55ACD ∠=°,则∠B 的度数是( ) A .35° B .45° C .55° D .65°CDB AEF12A B E21CDBA16、(2009年邵阳市)如图,将Rt △ABC(其中∠B =340,∠C =900)绕A 点按顺时针方向旋转到△AB 1 C 1的位置,使得点C 、A 、B 1 在同一条直线上,那么旋转角最小等于( ) A.560B.680C.1240D.180017、(2009年湘西自治州)一个角是80°,它的余角是( )A .10°B .100°C .80°D .120°18、(2009河池)如图,在Rt △ABC 中,90∠=A ,AB =AC= E 为AC 的中点,点F 在底边BC 上,且⊥FE BE ,则△CEF 的面积是( )A . 16B . 18C .D .19、(2009柳州)如图所示,图中三角形的个数共有( ) A .1个 B .2个 C .3 个 D .4个20、(2009年牡丹江)如图, ABC △中,CD AB ⊥于D ,一定能确定ABC △为直角三角形的条件的个数是( ) ①1A ∠=∠,②CD DBAD CD=,③290B ∠+∠=°,④345BC AC AB =∶∶∶∶,⑤ACBD AC CD =·· A .1 B .2 C .3 D .4 【21、(2009桂林百色)如图所示,在方格纸上建立的平面直角坐标系中, 将△ABO 绕点O 按顺时针方向旋转90°, 得A B O ''△ ,则点A '的坐标为( ).A .(3,1)B .(3,2)C .(2,3)D .(1,3)22、(2009年长沙)已知三角形的两边长分别为3cm 和8cm ,则此三角形的第三边的长可能是( )A .4cmB .5cmC .6cmD .13cm 23、(2009年湖南长沙)已知三角形的两边长分别为3cm 和8cm ,则此三角形的第三边的长1C ACFAEC D BA可能是( ) A .4cm B .5cm C .6cm D .13cm24、(2009陕西省太原市)如图,ACB A C B '''△≌△,BCB ∠'=30°,则ACA '∠的度数为( ) A .20° B .30° C .35°D .40°25、 (2009陕西省太原市)如果三角形的两边分别为3和5,那么连接这个三角形三边中点,所得的三角形的周长可能是( )A .4B .4.5C .5D .5.526、(2009年牡丹江)尺规作图作AOB ∠的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得OCP ODP △≌△的根据是( ) A .SAS B .ASA C .AAS D .SSS27、(2009年新疆)如图,将三角尺的直角顶点放在直尺的一边上,130250∠=∠=°,°,则3∠的度数等于( ) A .50° B .30° C .20° D .15°28、(2009年牡丹江市)尺规作图作AOB ∠的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得OCP ODP △≌△的根据是( ) A .SAS B .ASA C .AAS D .SSS123C AB B 'A '【29、(2009年包头)已知在Rt ABC △中,390sin 5C A ∠==°,,则tan B 的值为( ) A .43B .45C .54D .34【30、(2009年齐齐哈尔市)如图,为估计池塘岸边A B 、的距离,小方在池塘的一侧选取一点O ,测得15OA =米,OB =10米,A B 、间的距离不可能是( ) A .20米 B .15米 C .10米 D .5米31、(2009年台湾)图(三)、图(四)、图(五)分别表示甲、乙、丙三人由A 地到B 地的路线图。
历年湖南省常德市中考数学试题(含答案)
历年湖南省常德市中考数学试题(含答案)2016年湖南省常德市中考数学试卷一、选择题(本大题8个小题,每小题3分,满分24分)1.(3分)(2016?常德)4的平方根是()A.2 B.﹣2 C.±D.±22.(3分)(2016?常德)下面实数比较大小正确的是()A.3>7 B. C.0<﹣2 D.22<33.(3分)(2016?常德)如图,已知直线a∥b,∠1=100°,则∠2等于()A.80°B.60°C.100°D.70°4.(3分)(2016?常德)如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A.B.C.D.5.(3分)(2016?常德)下列说法正确的是()A.袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机抽出一个球,一定是红球B.天气预报“明天降水概率10%”,是指明天有10%的时间会下雨C.某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1000张,一定会中奖D.连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上6.(3分)(2016?常德)若﹣x3y a与x b y是同类项,则a+b 的值为()A.2 B.3 C.4 D.57.(3分)(2016?常德)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②c>0;③a+c<b;④b2﹣4ac>0,其中正确的个数是()A.1 B.2 C.3 D.48.(3分)(2016?常德)某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有()A.9天B.11天C.13天D.22天二、填空题(本大题8个小题,每小题3分,满分24分)9.(3分)(2016?常德)使代数式有意义的x的取值范围是.10.(3分)(2016?常德)计算:a2?a3=.11.(3分)(2016?常德)如图,OP为∠AOB的平分线,PC⊥OB于点C,且PC=3,点P 到OA的距离为.12.(3分)(2016?常德)已知反比例函数y=的图象在每一个象限内y随x的增大而增大,请写一个符合条件的反比例函数解析式.13.(3分)(2016?常德)张朋将连续10天引体向上的测试成绩(单位:个)记录如下:16,18,18,16,19,19,18,21,18,21.则这组数据的中位数是.14.(3分)(2016?常德)如图,△ABC是⊙O的内接正三角形,⊙O的半径为3,则图中阴影部分的面积是.15.(3分)(2016?常德)如图,把平行四边形ABCD折叠,使点C与点A重合,这时点D 落在D1,折痕为EF,若∠BAE=55°,则∠D1AD=.16.(3分)(2016?常德)平面直角坐标系中有两点M(a,b),N(c,d),规定(a,b)⊕(c,d)=(a+c,b+d),则称点Q(a+c,b+d)为M,N的“和点”.若以坐标原点O与任意两点及它们的“和点”为顶点能构成四边形,则称这个四边形为“和点四边形”,现有点A(2,5),B(﹣1,3),若以O,A,B,C四点为顶点的四边形是“和点四边形”,则点C的坐标是.三、(本大题2个小题,每小题5分,满分10分)17.(5分)(2016?常德)计算:﹣14+sin60°+()﹣2﹣()0.18.(5分)(2016?常德)解不等式组,并把解集在是数轴上表示出来..四、(本大题2个小题,每小题6分,满分12分)19.(6分)(2016?常德)先化简,再求值:(),其中x=2.20.(6分)(2016?常德)如图,直线AB与坐标轴分别交于A (﹣2,0),B(0,1)两点,与反比例函数的图象在第一象限交于点C(4,n),求一次函数和反比例函数的解析式.五、(本大题2个小题,每小题7分,满分14分)21.(7分)(2016?常德)某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.(1)这两次各购进这种衬衫多少件?(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于1950元,则第二批衬衫每件至少要售多少元?22.(7分)(2016?常德)南海是我国的南大门,如图所示,某天我国一艘海监执法船在南海海域正在进行常态化巡航,在A处测得北偏东30°方向上,距离为20海里的B处有一艘不明身份的船只正在向正东方向航行,便迅速沿北偏东75°的方向前往监视巡查,经过一段时间后,在C处成功拦截不明船只,问我海监执法船在前往监视巡查的过程中行驶了多少海里(最后结果保留整数)?(参考数据:cos75°=0.2588,sin75°=0.9659,tan75°=3.732,=1.732,=1.414)六、(本大题2个小题,每小题8分,满分16分)23.(8分)(2016?常德)今年元月,国内一家网络诈骗举报平台发布了《2015年网络诈骗趋势研究报告》,根据报告提供的数据绘制了如下的两幅统计图:(1)该平台2015年共收到网络诈骗举报多少例?(2)2015年通过该平台举报的诈骗总金额大约是多少亿元?(3)2015年每例诈骗的损失年增长率是多少?(4)为提高学生的防患意识,现准备从甲、乙、丙、丁四人中随机抽取两人作为受骗演练对象,请用树状图或列表法求恰好选中甲、乙两人的概率是多少?24.(8分)(2016?常德)如图,已知⊙O是△ABC的外接圆,AD是⊙O的直径,且BD=BC,延长AD到E,且有∠EBD=∠CAB.(1)求证:BE是⊙O的切线;(2)若BC=,AC=5,求圆的直径AD及切线BE的长.七、(本大题2个小题,每小题10分,满分20分)25.(10分)(2016?常德)已知四边形ABCD中,AB=AD,AB⊥AD,连接AC,过点A作AE⊥AC,且使AE=AC,连接BE,过A作AH⊥CD于H交BE于F.(1)如图1,当E在CD的延长线上时,求证:①△ABC≌△ADE;②BF=EF;(2)如图2,当E不在CD的延长线上时,BF=EF还成立吗?请证明你的结论.26.(10分)(2016?常德)如图,已知抛物线与x轴交于A (﹣1,0),B(4,0),与y轴交于C(0,﹣2).(1)求抛物线的解析式;(2)H是C关于x轴的对称点,P是抛物线上的一点,当△PBH 与△AOC相似时,求符合条件的P点的坐标(求出两点即可);(3)过点C作CD∥AB,CD交抛物线于点D,点M是线段CD 上的一动点,作直线MN 与线段AC交于点N,与x轴交于点E,且∠BME=∠BDC,当CN的值最大时,求点E的坐标.2016年湖南省常德市中考数学试卷参考答案与试题解析一、选择题(本大题8个小题,每小题3分,满分24分)1.(3分)(2016?常德)4的平方根是()A.2 B.﹣2 C.±D.±2【分析】直接利用平方根的定义分析得出答案.【解答】解:4的平方根是:±=±2.故选:D.【点评】此题主要考查了平方根的定义,正确掌握相关定义是解题关键.2.(3分)(2016?常德)下面实数比较大小正确的是()A.3>7 B. C.0<﹣2 D.22<3【分析】根据实数比较大小的法则对各选项进行逐一分析即可.【解答】解:A、3<7,故本选项错误;B、∵≈1.7,≈1.4,∴>,故本选项正确;C、0>﹣2,故本选项错误;D、22>3,故本选项错误.故选B.【点评】本题考查的是实数的大小比较,熟知实数比较大小的法则是解答此题的关键.3.(3分)(2016?常德)如图,已知直线a∥b,∠1=100°,则∠2等于()A.80°B.60°C.100°D.70°【分析】先根据对顶角相等求出∠3,再根据两直线平行,同旁内角互补列式计算即可得解.【解答】解:如图,∵∠1与∠3是对顶角,∴∠3=∠1=100°,∵a∥b,∴∠2=180°﹣∠3=180°﹣100°=80°.故选A.【点评】本题考查了平行线的性质,对顶角相等的性质,是基础题,熟记性质是解题的关键.4.(3分)(2016?常德)如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得上面第一层中间有1个正方形,第二层有3个正方形.下面一层左边有1个正方形,故选A.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.5.(3分)(2016?常德)下列说法正确的是()A.袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机抽出一个球,一定是红球B.天气预报“明天降水概率10%”,是指明天有10%的时间会下雨C.某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1000张,一定会中奖D.连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上【分析】根据概率的意义对各选项进行逐一分析即可.【解答】解:A、袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机抽出一个球,一定是红球的概率是,故本选项错误;B、天气预报“明天降水概率10%”,是指明天有10%的概率会下雨,故本选项错误;C、某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1000张,可能会中奖,故本选项错误;D、连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上,故本选项正确.故选D.【点评】本题考查的是概率的意义,熟知一般地,在大量重复实验中,如果事件A发生的频率mn会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率是解答此题的关键.6.(3分)(2016?常德)若﹣x3y a与x b y是同类项,则a+b 的值为()A.2 B.3 C.4 D.5【分析】根据同类项中相同字母的指数相同的概念求解.【解答】解:∵﹣x3y a与x b y是同类项,∴a=1,b=3,则a+b=1+3=4.故选C.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项中相同字母指数相同的概念.7.(3分)(2016?常德)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②c>0;③a+c<b;④b2﹣4ac>0,其中正确的个数是()A.1 B.2 C.3 D.4【分析】由二次函数的开口方向,对称轴0<x<1,以及二次函数与y的交点在x轴的上方,与x轴有两个交点等条件来判断各结论的正误即可.【解答】解:∵二次函数的开口向下,与y轴的交点在y轴的正半轴,∴a<0,c>0,故②正确;∵0<﹣<1,∴b>0,故①错误;当x=﹣1时,y=a﹣b+c<0,∴a+c<b,故③正确;∵二次函数与x轴有两个交点,∴△=b2﹣4ac>0,故④正确正确的有3个,故选:C.【点评】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a <0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a 与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab <0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).8.(3分)(2016?常德)某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有()A.9天B.11天C.13天D.22天【分析】根据题意设有x天早晨下雨,这一段时间有y天;有9天下雨,即早上下雨或晚上下雨都可称之为当天下雨,①总天数﹣早晨下雨=早晨晴天;②总天数﹣晚上下雨=晚上晴天;列方程组解出即可.【解答】解:设有x天早晨下雨,这一段时间有y天,根据题意得:①+②得:2y=22y=11所以一共有11天,故选B.【点评】本题以天气为背景,考查了学生生活实际问题,恰当准确设未知数是本题的关键;根据生活实际可知,早晨和晚上要么下雨,要么晴天;本题也可以用算术方法求解:(9+6+7)÷2=11.二、填空题(本大题8个小题,每小题3分,满分24分)9.(3分)(2016?常德)使代数式有意义的x的取值范围是x≥3.【分析】根据二次根式有意义的条件:被开方数为非负数求解即可.【解答】解:∵代数式有意义,∴2x﹣6≥0,解得:x≥3.故答案为:x≥3.【点评】本题考查了二次根式有意义的条件,解答本题的关键是掌握被开方数为非负数.10.(3分)(2016?常德)计算:a2?a3=a5.【分析】根据同底数的幂的乘法,底数不变,指数相加,计算即可.【解答】解:a2?a3=a2+3=a5.故答案为:a5.【点评】熟练掌握同底数的幂的乘法的运算法则是解题的关键.11.(3分)(2016?常德)如图,OP为∠AOB的平分线,PC⊥OB于点C,且PC=3,点P 到OA的距离为3.【分析】过P作PD⊥OA于D,根据角平分线上的点到角的两边的距离相等可得PD=PC,从而得解.【解答】解:如图,过P作PD⊥OA于D,∵OP为∠AOB的平分线,PC⊥OB,∴PD=PC,∵PC=3,∴PD=3.故答案为:3.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.12.(3分)(2016?常德)已知反比例函数y=的图象在每一个象限内y随x的增大而增大,请写一个符合条件的反比例函数解析式y=﹣.【分析】由反比例函数的图象在每一个象限内y随x的增大而增大,结合反比例函数的性质即可得出k<0,随便写出一个小于0的k 值即可得出结论.【解答】解:∵反比例函数y=的图象在每一个象限内y随x的增大而增大,∴k<0.故答案为:y=﹣.【点评】本题考查了反比例函数的性质,解题的关键是找出k<0.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数的单调性结合反比例函数的性质得出k的取值范围是关键.13.(3分)(2016?常德)张朋将连续10天引体向上的测试成绩(单位:个)记录如下:16,18,18,16,19,19,18,21,18,21.则这组数据的中位数是18.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:先对这组数据按从小到大的顺序重新排序:16,16,18,18,18,18,19,19,21,21.位于最中间的两个数都是18,所以这组数据的中位数是18.故答案为:18.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.14.(3分)(2016?常德)如图,△ABC是⊙O的内接正三角形,⊙O的半径为3,则图中阴影部分的面积是3π.【分析】根据等边三角形性质及圆周角定理可得扇形对应的圆心角度数,再根据扇形面积公式计算可得.【解答】解:∵△ABC是等边三角形,∴∠C=60°,根据圆周角定理可得∠AOB=2∠C=120°,∴阴影部分的面积是=3π,故答案为:3π.【点评】本题主要考查扇形面积的计算和圆周角定理,根据等边三角形性质和圆周角定理求得圆心角度数是解题的关键.15.(3分)(2016?常德)如图,把平行四边形ABCD折叠,使点C与点A重合,这时点D 落在D1,折痕为EF,若∠BAE=55°,则∠D1AD=55°.【分析】由平行四边形的性质和折叠的性质得出∠D1AE=∠BAD,得出∠D1AD=∠BAE=55°即可.【解答】解:∵四边形ABCD是平行四边形,∴∠BAD=∠C,由折叠的性质得:∠D1AE=∠C,∴∠D1AE=∠BAD,∴∠D1AD=∠BAE=55°;故答案为:55°.【点评】本题考查了平行四边形的性质、折叠的性质;由平行四边形和折叠的性质得出∠D1AE=∠BAD是解决问题的关键.16.(3分)(2016?常德)平面直角坐标系中有两点M(a,b),N(c,d),规定(a,b)⊕(c,d)=(a+c,b+d),则称点Q(a+c,b+d)为M,N的“和点”.若以坐标原点O与任意两点及它们的“和点”为顶点能构成四边形,则称这个四边形为“和点四边形”,现有点A(2,5),B(﹣1,3),若以O,A,B,C四点为顶点的四边形是“和点四边形”,则点C的坐标是(1,8)或(﹣3,﹣2)或(3,2).【分析】以O,A,B,C四点为顶点的四边形是“和点四边形”,分3种情况讨论:①C为点A、B的“和点”;②B为A、C的“和点”;③A为B、C的“和点”,再根据点A、B的坐标求得点C的坐标.【解答】解:∵以O,A,B,C四点为顶点的四边形是“和点四边形”,①当C为A、B的“和点”时,C点的坐标为(2﹣1,5+3),即C(1,8);②当B为A、C的“和点”时,设C点的坐标为(x1,y1),则,解得C(﹣3,﹣2);③当A为B、C的“和点”时,设C点的坐标为(x2,y2),则,解得C(3,2);∴点C的坐标为(1,8)或(﹣3,﹣2)或(3,2).故答案为:(1,8)或(﹣3,﹣2)或(3,2).【点评】本题主要考查了点的坐标,解决问题的关键是掌握“和点”的定义和“和点四边形”的定义.坐标平面内的点与有序实数对是一一对应的关系.三、(本大题2个小题,每小题5分,满分10分)17.(5分)(2016?常德)计算:﹣14+sin60°+()﹣2﹣()0.【分析】根据实数的运算顺序,首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式﹣14+sin60°+()﹣2﹣()0的值是多少即可.【解答】解:﹣14+sin60°+()﹣2﹣()0=﹣1+2×+4﹣1=﹣1+3+3=5【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a ≠0);②00≠1.(3)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.(4)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.18.(5分)(2016?常德)解不等式组,并把解集在是数轴上表示出来..【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,表示在数轴上即可.【解答】解:,由①得:x≥﹣,由②得:x<4,∴不等式组的解集为﹣≤x<4,【点评】此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.四、(本大题2个小题,每小题6分,满分12分)19.(6分)(2016?常德)先化简,再求值:(),其中x=2.【分析】先算括号里面的,再算除法,最后把x的值代入进行计算即可.【解答】解:原式=[+]÷[﹣]=÷=÷=?=,当x=2时,原式==.【点评】本题考查的是分式的化简求值,在解答此类问题时要注意把分式化为最简形式,再代入求值.20.(6分)(2016?常德)如图,直线AB与坐标轴分别交于A (﹣2,0),B(0,1)两点,与反比例函数的图象在第一象限交于点C(4,n),求一次函数和反比例函数的解析式.【分析】设一次函数的解析式为y=kx+b,把A(﹣2,0),B (0,1)代入得出方程组,解方程组即可;求出点C的坐标,设反比例函数的解析式为y=,把C(4,3)代入y=求出m即可.【解答】解:设一次函数的解析式为y=kx+b,把A(﹣2,0),B(0,1)代入得:,解得:,∴一次函数的解析式为y=x+1;设反比例函数的解析式为y=,把C(4,n)代入得:n=3,∴C(4,3),把C(4,3)代入y=得:m=3×4=12,∴反比例函数的解析式为y=.【点评】本题考查了用待定系数法求出函数的解析式,一次函数和和反比例函数的交点问题,函数的图象的应用,主要考查学生的观察图形的能力和计算能力.五、(本大题2个小题,每小题7分,满分14分)21.(7分)(2016?常德)某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.(1)这两次各购进这种衬衫多少件?(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于1950元,则第二批衬衫每件至少要售多少元?【分析】(1)设第一批T恤衫每件进价是x元,则第二批每件进价是(x﹣10)元,再根据等量关系:第二批进的件数=×第一批进的件数可得方程;(2)设第二批衬衫每件售价y元,由利润=售价﹣进价,根据这两批衬衫售完后的总利润不低于1950元,可列不等式求解.【解答】解:(1)设第一批T恤衫每件进价是x元,则第二批每件进价是(x﹣10)元,根据题意可得:,解得:x=150,经检验x=150是原方程的解,答:第一批T恤衫每件进价是150元,第二批每件进价是140元,(件),(件),答:第一批T恤衫进了30件,第二批进了15件;(2)设第二批衬衫每件售价y元,根据题意可得:30×(200﹣150)+15(y﹣140)≥1950,解得:y≥170,答:第二批衬衫每件至少要售170元.【点评】本题考查分式方程、一元一次不等式的应用,关键是根据数量作为等量关系列出方程,根据利润作为不等关系列出不等式求解.22.(7分)(2016?常德)南海是我国的南大门,如图所示,某天我国一艘海监执法船在南海海域正在进行常态化巡航,在A处测得北偏东30°方向上,距离为20海里的B处有一艘不明身份的船只正在向正东方向航行,便迅速沿北偏东75°的方向前往监视巡查,经过一段时间后,在C处成功拦截不明船只,问我海监执法船在前往监视巡查的过程中行驶了多少海里(最后结果保留整数)?(参考数据:cos75°=0.2588,sin75°=0.9659,tan75°=3.732,=1.732,=1.414)【分析】过B作BD⊥AC,在直角三角形ABD中,利用勾股定理求出BD与AD的长,在直角三角形BCD中,求出CD的长,由AD+DC求出AC的长即可.【解答】解:过B作BD⊥AC,∵∠BAC=75°﹣30°=45°,∴在Rt△ABD中,∠BAD=∠ABD=45°,∠ADB=90°,由勾股定理得:BD=AD=×20=10(海里),在Rt△BCD中,∠C=15°,∠CBD=75°,∴tan∠CBD=,即CD=10×3.732=52.77048,则AC=AD+DC=10+10×3.732=66.91048≈67(海里),即我海监执法船在前往监视巡查的过程中行驶了67海里.【点评】此题考查了解直角三角形的应用﹣方向角问题,熟练掌握直角三角形的性质是解本题的关键.六、(本大题2个小题,每小题8分,满分16分)23.(8分)(2016?常德)今年元月,国内一家网络诈骗举报平台发布了《2015年网络诈骗趋势研究报告》,根据报告提供的数据绘制了如下的两幅统计图:(1)该平台2015年共收到网络诈骗举报多少例?(2)2015年通过该平台举报的诈骗总金额大约是多少亿元?(保留三个有效数字)(3)2015年每例诈骗的损失年增长率是多少?(4)为提高学生的防患意识,现准备从甲、乙、丙、丁四人中随机抽取两人作为受骗演练对象,请用树状图或列表法求恰好选中甲、乙两人的概率是多少?【分析】(1)利用条形统计图求解;(2)利用2015年每例诈骗的损失乘以2015年收到网络诈骗举报的数量即可;(3)用2015年每例诈骗的损失减去2014年每例诈骗的损失,然后用其差除以2014年每例诈骗的损失即可;(4)画树状图(用A、B、C、D分别表示甲乙丙丁)展示所有12种等可能的结果数,再找出选中甲、乙两人的结果数,然后根据概率公式求解.【解答】解:(1)该平台2015年共收到网络诈骗举报24886例;(2)2015年通过该平台举报的诈骗总金额大约是24886×5.106≈1.27亿元;(3)2015年每例诈骗的损失年增长率=(5106﹣2070)÷2070=147%;(4)画树状图为:(用A、B、C、D分别表示甲乙丙丁)共有12种等可能的结果数,其中选中甲、乙两人的结果数为2,所以恰好选中甲、乙两人的概率==.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了统计图.24.(8分)(2016?常德)如图,已知⊙O是△ABC的外接圆,AD是⊙O的直径,且BD=BC,延长AD到E,且有∠EBD=∠CAB.(1)求证:BE是⊙O的切线;(2)若BC=,AC=5,求圆的直径AD及切线BE的长.【分析】(1)先根据等弦所对的劣弧相等,再结合∠EBD=∠CAB 从而得到∠BAD=∠EBD,最后用直径所对的圆周角为直角即可;(2)利用三角形的中位线先求出OF,再用平行线分线段成比例定理求出半径R,最后根据相似求出BE即可.【解答】解:如图,连接OB,∵BD=BC,∴∠CAB=∠BAD,∵∠EBD=∠CAB,∴∠BAD=∠EBD,∵AD是⊙O的直径,∴∠ABD=90°,OA=BO,∴∠BAD=∠ABO,∴∠EBD=∠ABO,∴∠OBE=∠EBD+∠OBD=∠ABD+∠OBD=∠ABD=90°,∵点B在⊙O上,∴BE是⊙O的切线,(2)如图2,设圆的半径为R,连接CD,∵AD为⊙O的直径,∴∠ACCD=90°,∵BC=BD,∴OB⊥CD,∴OB∥AC,∵OA=OD,∴OF=AC=,∵四边形ACBD是圆内接四边形,∴∠BDE=∠ACB,∵∠DBE=∠ACB,∴△DBE∽△CAB,∴,∴,∴DE=,∵∠OBE=∠OFD=90°,∴DF∥BE,∴,∴,∵R>0,∴R=3,∴AB==∵=,∴BE=.【点评】此题是切线的判定,主要考查了圆周角的性质,切线的判定,平行线分线段成比例定理,相似三角形的判定和相似,圆内接四边形的性质,解本题的关键是作出辅助线.七、(本大题2个小题,每小题10分,满分20分)25.(10分)(2016?常德)已知四边形ABCD中,AB=AD,AB⊥AD,连接AC,过点A作AE⊥AC,且使AE=AC,连接BE,过A作AH⊥CD于H交BE于F.(1)如图1,当E在CD的延长线上时,求证:①△ABC≌△ADE;②BF=EF;(2)如图2,当E不在CD的延长线上时,BF=EF还成立吗?请证明你的结论.【分析】(1)①利用SAS证全等;②易证得:BC∥FH和CH=HE,根据平行线分线段成比例定理得BF=EF,也可由三角形中位线定理的推论得出结论.(2)作辅助线构建平行线和全等三角形,首先证明△MAE≌△DAC,得AD=AM,根据等量代换得AB=AM,根据②同理得出结论.【解答】证明:(1)①如图1,∵AB⊥AD,AE⊥AC,∴∠BAD=90°,∠CAE=90°,∴∠1=∠2,在△ABC和△ADE中,∵∴△ABC≌△ADE(SAS);②如图1,∵△ABC≌△ADE,∴∠AEC=∠3,在Rt△ACE中,∠ACE+∠AEC=90°,∴∠BCE=90°,∵AH⊥CD,AE=AC,∴CH=HE,∵∠AHE=∠BCE=90°,∴BC∥FH,∴==1,∴BF=EF;(2)结论仍然成立,理由是:如图2所示,过E作MN∥AH,交BA、CD延长线于M、N,∵∠CAE=90°,∠BAD=90°,∴∠1+∠2=90°,∠1+∠CAD=90°,∴∠2=∠CAD,∵MN∥AH,∴∠3=∠HAE,∵∠ACH+∠CAH=90°,∠CAH+∠HAE=90°,。
2009年中考数学试题分类汇编之26 相似试题及答案
2009年中考试题专题之26-相似试题及答案一、选择题1.(2009年滨州)如图所示,给出下列条件: ①B ACD ∠=∠;②ADC ACB ∠=∠;③AC AB CD BC=;④2AC AD AB = . 其中单独能够判定ABC ACD △∽△的个数为( ) A .1 B .2 C .3 D .4【关键词】三角形相似的判定. 【答案】C2.(2009年上海市)如图,已知AB CD EF ∥∥,那么下列结论正确的是( ) A .AD BCDF CE= B .BC DFCE AD= C .CD BCEF BE= D .CD ADEF AF=【关键词】平行线分线段成比例 【答案】A3.(2009成都)已知△ABC∽△DEF,且AB :DE=1:2,则△ABC 的面积与△DEF 的面积之比为 (A)1:2 (B)1:4 (C)2:1 (D)4:1 【关键词】 【答案】B4. (2009年安顺)如图,已知等边三角形ABC 的边长为2,DE 是它的中位线,则下面四个结论:(1)DE=1,(2)△CDE ∽△CAB ,(3)△CDE 的面积与△CAB 的面积之比为1:4.其中正确的有: A .0个 B .1个 C .2个 D .3个【关键词】等边三角形,三角形中位线,相似三角形 【答案】D5.(2009重庆綦江)若△ABC ∽△DEF, △ABC 与△DEF 的相似比为1∶2,则△ABC 与△DEF 的周长比为( ) A .1∶4B .1∶2C .2∶1D 2【关键词】 【答案】B6.(2009年杭州市)如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x ,那么x 的值( ) A .只有1个 B .可以有2个 C .有2个以上但有限 D .有无数个 【关键词】相似三角形有关的计算和证明 【答案】B7.2009年宁波市)如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,M 、N 分别是边AB 、AD 的中点,连接OM 、ON 、MN ,则下列叙述正确的是( ) A .△AOM 和△AON 都是等边三角形B .四边形MBON 和四边形MODN 都是菱形C .四边形AMON 与四边形ABCD 是位似图形 D .四边形MBCO 和四边形NDCO 都是等腰梯形【关键词】位似 【答案】C8.(2009年江苏省)如图,在55 方格纸中,将图①中的三角形甲平移到图② 中所示的位置,与三角形乙拼成一个矩形,那么,下面的平 移方法中,正确的是( )A .先向下平移3格,再向右平移1格B .先向下平移2格,再向右平移1格C .先向下平移2格,再向右平移2格D .先向下平移3格,再向右平移2格【关键词】平移 【答案】DDBCA NM O9.(2009年义乌)在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比。
全国中考数学试题分类汇编
2009年全国中考数学试题分类汇编 24正多边形与圆试题及答案一、选择1.( 2009年哈尔滨)圆锥的底面半径为 8,母线长为9,则该圆锥的侧面积为().A . 36 nB . 48 nC . 72 nD . 144 n2. (2009年台州市)如图,O O 的内接多边形周长为 3 , O O 的外切多边形周长为3.4, 则下列各数中与此圆的周长最接近的是()3. (2009年郴州市)如图已知扇形 AOB 的半径为6cm ,圆心角的度数为120°若将此扇形 围成一个圆锥,则围成的圆锥的侧面积为( )6.( 2009东营)将直径为60cm的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材 料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为 ()(A ) 10cm(B ) 30cm(C ) 40cm(D ) 300cmB . 6 n cm 2 2C . 9 n cm2D . 124(2009成都)若一个圆锥的底面圆的周长是 圆心角的度数是(A )40 °(B )80 °(C )4 n cm 母线长是6cm ,则该圆锥的侧面展开图的(D )150 °5. (2009年广西钦州)如图,有一长为 翻滚(顺时针方向),木板上的顶点 4cm ,宽为3cm 的面上一小木块挡住,使木板边沿的路径长为( )A . 10cm A 2C 与桌面成30。
角,则点A 翻滚到A 2位置时,共走过 C . 4.5 n cmB . 3. 5 n cm D . 2. 5 n cm7. (2009丽水市)下述美妙的图案中,是由正三角形.正方形.正六边形.正八边形中的三种镶嵌而成的为()8 (2009烟台市)现有四种地面砖,它们的形状分别是:正三角形•正方形•正六边形•正八边形,且它们的边长都相等•同时选择其中两种地面砖密铺地面,选择的方式有()A • 2种B • 3种C. 4种D • 5种9. (2009年淄博市)如果一个圆锥的主视图是正三角形,则其侧面展开图的圆心角为()A • 120o C. 180oB.约1560 D .约208010.若用半径为9, 圆心角为120。
2009年中考数学试题分类汇编梯形
梯形一、选择题1. (2009 年鄂州)已知直角梯形 ABCD 中,AD // BC, AB 丄 BC, AD=2, BC=DC=5, 点P 在BC 上移动,则当PA+PD 取最小值时,△ APD 中边AP 上的高为( )A 、B 、上鶯后C 、A v 'i7D 、317' 17 17 BC =13,且CD 之中垂线L 交BC 于P 点,连接PD 。
A 求四边形ABPD 的周长为何?A. 24B.25C. 26 (2009年重庆市江津区)在厶 ABC 中,BC=10B右1 、G 分别p AC 的中点,在图②中,B 1、B 2、C 、C 2分别是AB,AC 的三等分点十)在图③中 Bp By ……B 9;G、C2……C 9分别是AB 、AC 的10等分点,则如图,梯形ABCD 中, 形中位线EF 上的一点P ,若EF=3,则梯形 2. ( 2009年淄博市) / ABC 和/ DCB 的平分线相交于梯A .9 B . 10.5C . 12D . 153.( 2009年齐齐哈尔市)梯形ABCD 中,AD -B =40° ,则AB 的长为( )A . 4.B . 3C . 4 (2009年台湾)如图(十),等腰梯形ABCD 中,AD =5, AB = CD =7, D.275. D . 5// ABCD 的周长为(C )= 70。
DL B 1C 1 B 2C 2 * B 9C 9 的值是 ( D.60B C6. (2009 武汉)在直角梯形 ABCD 中,AD // BC ,乂 ABC = 90° AB=BC , E 为 AB 边上一点,Z BCE =15° ,且AE=AD •连接DE 交对角线AC 于H ,连接 BH .下列结论:7. (2009威海)在梯形 ABCD 中,AB / CD ,/ A=60°,Z B=30°, AD=CD=6, 则AB 的长度为( )A . 9B . 12C . 18D . 6 3、38.. (2009湖北省荆门市)等腰梯形 ABCD 中,E 、F 、G 、H 分别是各边的中点, 则四边形EFGH 的形状是( )A .平行四边形B .矩形C .菱形D .正方形9.. ( 2009年广西钦州)如图,在等腰梯形 ABCD 中,AB = DC ,AC 、BD 交于 点O ,则图中全等三角形共有()B A . 2对B . 3对C . 4对D . 5对10. (2009临沂)如图,在等腰梯形 ABCD 中,AD // BC ,对角线AC _ BD 于 点0, AE_BC , DF _ BC ,垂足分别为E 、F ,设AD=a, BC=b,则四边形AEFD 的周长是()A . 3a bB . 2(a b )①厶 ACD ACE ②MDE 为等边三角形;③詈2 ; ④'EDCS A EHCAH CH 其中结论正确的是(A .只有①②) B .只有①②④ C .只有③④ D .①②③④C . 2b aD . 4a b A EB14. (2009年达州)如图1,在等腰梯形ABCD 中,AD // BC ,对角线 AC 、BD 相交于点0,以下四个结论:①.ABC - DCB ,②OA=OD , ③.BCD - BDC ,④S-AOB =S DOC ,其中正确的是A. ①②B. ①④C. ②③④D. ①②④二、填空题11.(2009年哈尔滨)如图,梯形 ABCD 中,AD // BC , DC 丄BC ,将梯形沿对 角线BD 折叠,点A恰好落在DC 边上的点A '处,若/A'BC = 20°,则/A'BD 的度数为(). 如图,在梯形 ABCD 中,AB// DC , / D=90°, AD=DC=4, AB=1, F 为AD 的中点,则点F 到BC 的距离是A.2B.4C.8 13.(2009年茂名市)(2009年茂名)6.杨伯家小院子的四棵小树 ABCD 各边的中点上,若在四边形 EFGH 种上小草,则这块 )B .矩形D .菱形刚好在其梯形院子 草地的形状是( A .平行四边形 C .正方形D.1DAC12. (2009年遂宁) E 、F 、G 、H1.( 2009黑龙江大兴安岭)梯形 ABCD 中,AD//BC , AD = 1 , BC = 4 , .C = 70 , B = 40 ,贝U AB 的长为 ___________________ .【关键词】梯形、等腰梯形、直角梯形等概念【答案】34.. (2009年南充)如图,等腰梯形 ABCD 中,AD // BC ,NB=60°, AD =4, BC=7,则梯形 ABCD的周长是 ________ .5. (2009年日照)如图,在四边形ABCD 中,已知AB 与CD 不平行,/ ABD 二/ ACD ,请你添加一个条件: ______________ ,使得加上这个条件后能够推出 AD /BC 且 AB =CD.6. (2009年泸州)如图4,在直角梯形 ABCD 中,AD // BC ,AB 丄BC ,AD=2,AB=3,BC=4,则梯形 ABCD 的面积是 __________________7. (2009年四川省内江市)如图,梯形 ABCD 中,AD//BC ,两腰BA 与 CD 的延长线相交于 P ,PE 丄BC ,AD=2,BC=5,EF=3,贝UPF= ___________。
2009年中考数学试题分类之二次根式
一、选择题1.(2009年绵阳市)已知n -12是正整数,则实数n 的最大值为( ) A .12 B .11 C .8 D .3 【答案】B2.(2009年黄石市)下列根式中,不是..最简二次根式的是( )ABCD 【答案】C3.(2009年邵阳市)3最接近的整数是( )A .0B .2C .4D .5 【答案】B 4.(2009年广东省)4的算术平方根是( )A .2±B .2C .D 【答案】B5.(2009贺州)下列根式中不是最简二次根式的是( ).A .2B .6C .8D . 10【答案】C6.(2009年贵州黔东南州)下列运算正确的是( C ) A 、39±= B 、33-=- C 、39-=- D 、932=-【答案】B7.(2009年淄博市) D )A .B -CD .8.(2009年湖北省荆门市)2()x y =+,则x -y 的值为( )A .-1B .1C .2D .3解析:本题考查二次根式的意义,由题意可知1x =,1y =-,∴x -y =2,故选C . 【答案】C 9.(2009年湖北省荆门市)|-9|的平方根是( ) A .81 B .±3 C .3 D .-3解析:本题考查绝对值与平方根的运算,|-9|=9,9的平方根是±3,故选B . 【答案】B10.(2009年内蒙古包头)函数y =x 的取值范围是( )A .2x >-B .2x -≥C .2x ≠-D .2x -≤【答案】B【解析】本题考查含二次根式的函数中中自变量的取值范围,a 的范围是0a ≥;∴y =x 的范围由20x +≥得2x ≥-。
11.(2009威海)实数a,b 在数轴上的位置如图所示,则下列结论正确的是( ) A. 0a b +> B. 0a b ->C. 0a b >D .0ab>【答案】 A12.(2009的绝对值是( ) A .3B .3-C .13D .13-【答案】A13.(2009年安顺)下列计算正确的是:A=B1= C=D.=【答案】A14.(2009年武汉)的值是( )A .3-B .3或3-C .9D .3【答案】D15.(2009年武汉)函数y x 的取值范围是( ) A .12x -≥B .12x ≥C .12x -≤D .12x ≤【答案】B16.(2009年眉山)2的值( )A .在1到2之间B .在2到3之间C .在3到4之间D .在4到5之间【答案】C17.(2009年常德市)28-的结果是( ) A .6B .22C .2D .2【答案】C18.(2009年肇庆市)实数2-,0.3,17π-中,无理数的个数是( ) A .2 B .3 C .4 D .51b【答案】A 19.(2009 黑龙江大兴安岭)下列运算正确的是( )A .623a a a =⋅ B .1)14.3(0=-π C .2)21(1-=- D .39±=【答案】B20.(2009年黄石市)下列根式中,不是..最简二次根式的是( )ABCD 【答案】C21.(2009年邵阳市)3最接近的整数是( )A .0B .2C .4D .5 【答案】B 22.(2009年广东省)4的算术平方根是( )A .2±B .2C .D 【答案】B23.(2009 ( )A.2 B. C .- D .± 【答案】B 24.(2009年湖北十堰市)下列运算正确的是( ). A .523=+ B .623=⨯C .13)13(2-=-D .353522-=- 【答案】B 25.(2009年茂名市)下列四个数中,其中最小..的数是( )A .0B .4-C .π-D【答案】26.(2009 ) A .0 B .2 C .4 D .5 【答案】B27.(2009年河北)在实数范围内,x 有意义,则x 的取值范围是( ) A .x ≥0 B .x ≤0C .x >0D .x <0【答案】A28.(2009年株洲市)...,则x 的取值范围是 A . 2x ≥ B .2x >C .2x <D .2x ≤【答案】A29.(2009年台湾)若a =1.071⨯106,则a 是下列哪一数的倍数? (A) 48 (B) 64 (C) 72 (D) 81。
2009年部分省市中考数学试题分类汇编 选择题(含答案)
.如图所示,一个斜插吸管的盒装饮料从正面看的图形是()
.如图,已知 是四边形 内一点, , ,则 的大小是()
.°.°
.°.°
.如图,已知 的半径为,锐角 内接于 ,
于点 , 于点 ,则
的值等于()
. 的长. 的长
. 的长. 的长
.近几年来,国民经济和社会发展取得了新的成就,农村经济快速发展,农民收入不断提高.下图统计的是某地区年—年农村居民人均年纯收入.根据图中信息,下列判断:①与上一年相比,年的人均年纯收入增加的数量高于年人均年纯收入增加的数量;②与上一年相比,年人均年纯收入的增长率为 ;③若按年人均年纯收入的增长率计算,年人均年纯收入将达到 元.
..
. .
.已知圆的半径为,是圆的直径,是延长线上一点,是圆的切线,是切点,连结,若 ,则的长为()
. . . .
.如图,已知 中, ,将 绕顶点顺时针旋转至 的位置,且 三点在同一条直线上,则点经过的最短路线的长度是().
..
. .
.如图,在 中, ,分别以 为圆心,以 的长为半径作圆,将 截去两个扇形,则剩余(阴影)部分的面积为().
.若随机访问一位游客,则该游客表示满意的概率约为
.到景区的所有游客中,只有名游客表示满意
.若随机访问位游客,则一定有位游客表示满意
.本次调查采用的方式是普查
.如图,直线与⊙相切于点,⊙的半径为,若∠ °,则的长为()
. .. .
.图()表示一个正五棱柱形状的高大建筑物,图()是它的俯视图.小健站在地面观察该建筑物,当他在图()中的阴影部分所表示的区域活动时,能同时看到建筑物的三个侧面,图中∠的度数为()
. . . .
.如图,已知直线 且 则 等于()
湖南省常德市中考数学真题试卷(含解析)
湖南省常德市中考数学真题试卷一、选择题(共8小题).1.4的倒数为()A.B.2 C.1 D.﹣4 2.下面几种中式窗户图形既是轴对称又是中心对称的是()A.B.C.D.3.如图,已知AB∥DE,∠1=30°,∠2=35°,则∠BCE的度数为()A.70°B.65°C.35°D.5°4.下列计算正确的是()A.a2+b2=(a+b)2B.a2+a4=a6C.a10÷a5=a2D.a2•a3=a55.下列说法正确的是()A.明天的降水概率为80%,则明天80%的时间下雨,20%的时间不下雨B.抛掷一枚质地均匀的硬币两次,必有一次正面朝上C.了解一批花炮的燃放质量,应采用抽样调查方式D.一组数据的众数一定只有一个6.一个圆锥的底面半径r=10,高h=20,则这个圆锥的侧面积是()A.100πB.200πC.100πD.200π7.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b2﹣4ac>0;②abc<0;③4a+b=0;④4a﹣2b+c>0.其中正确结论的个数是()A.4 B.3 C.2 D.18.如图,将一枚跳棋放在七边形ABCDEFG的顶点A处,按顺时针方向移动这枚跳棋次.移动规则是:第k次移动k个顶点(如第一次移动1个顶点,跳棋停留在B处,第二次移动2个顶点,跳棋停留在D处),按这样的规则,在这次移动中,跳棋不可能停留的顶点是()A.C、E B.E、F C.G、C、E D.E、C、F二、填空题(本大题8个小题,每小题3分,满分24分)9.分解因式:xy2﹣4x=.10.若代数式在实数范围内有意义,则x的取值范围是.11.计算:﹣+=.12.如图,若反比例函数y=(x<0)的图象经过点A,AB⊥x轴于B,且△AOB的面积为6,则k=.13.4月23日是世界读书日,这天某校为了解学生课外阅读情况,随机收集了30名学生每周课外阅读的时间,统计如表:阅读时间(x小时)x≤3.5 3.5<x≤5 5<x≤6.5 x>6.5 人数12 8 6 4 若该校共有1200名学生,试估计全校每周课外阅读时间在5小时以上的学生人数为.14.今年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是次.15.如图1,已知四边形ABCD是正方形,将△DAE,△DCF分别沿DE,DF向内折叠得到图2,此时DA与DC重合(A、C都落在G点),若GF=4,EG=6,则DG的长为.16.阅读理解:对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx﹣1).理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.解决问题:求方程x3﹣5x+2=0的解为.三、(本大题2个小题,每小题5分,满分10分)17.计算:20+()﹣1•﹣4tan45°.18.解不等式组.四、(本大题2个小题,每小题6分,满分12分)19.先化简,再选一个合适的数代入求值:(x+1﹣)÷.20.第5代移动通信技术简称5G,某地已开通5G业务,经测试5G下载速度是4G下载速度的15倍,小明和小强分别用5G与4G下载一部600兆的公益片,小明比小强所用的时间快140秒,求该地4G与5G的下载速度分别是每秒多少兆?五、(本大题2个小题,每小题7分,满分14分)21.已知一次函数y=kx+b(k≠0)的图象经过A(3,18)和B(﹣2,8)两点.(1)求一次函数的解析式;(2)若一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象只有一个交点,求交点坐标.22.如图1是自动卸货汽车卸货时的状态图,图2是其示意图.汽车的车厢采用液压机构、车厢的支撑顶杆BC的底部支撑点B在水平线AD的下方,AB与水平线AD之间的夹角是5°,卸货时,车厢与水平线AD成60°,此时AB与支撑顶杆BC的夹角为45°,若AC=2米,求BC的长度.(结果保留一位小数)(参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,≈1.41)六、(本大题2个小题,每小题8分,满分16分)23.今年2﹣4月某市出现了200名新冠肺炎患者,市委根据的决定,对患者进行了免费治疗.图1是该市轻症、重症、危重症三类患者的人数分布统计图(不完整),图2是这三类患者的人均治疗费用统计图.请回答下列问题.(1)轻症患者的人数是多少?(2)该市为治疗危重症患者共花费多少万元?(3)所有患者的平均治疗费用是多少万元?(4)由于部分轻症患者康复出院,为减少病房拥挤,拟对某病房中的A、B、C、D、E五位患者任选两位转入另一病房,请用树状图法或列表法求出恰好选中B、D两位患者的概率.24.如图,已知AB是⊙O的直径,C是⊙O上的一点,D是AB上的一点,DE⊥AB于D,DE 交BC于F,且EF=EC.(1)求证:EC是⊙O的切线;(2)若BD=4,BC=8,圆的半径OB=5,求切线EC的长.七、(本大题2个小题,每小题10分,满分20分)25.如图,已知抛物线y=ax2过点A(﹣3,).(1)求抛物线的解析式;(2)已知直线l过点A,M(,0)且与抛物线交于另一点B,与y轴交于点C,求证:MC2=MA•MB;(3)若点P,D分别是抛物线与直线l上的动点,以OC为一边且顶点为O,C,P,D的四边形是平行四边形,求所有符合条件的P点坐标.26.已知D是Rt△ABC斜边AB的中点,∠ACB=90°,∠ABC=30°,过点D作Rt△DEF使∠DEF=90°,∠DFE=30°,连接CE并延长CE到P,使EP=CE,连接BE,FP,BP,设BC与DE交于M,PB与EF交于N.(1)如图1,当D,B,F共线时,求证:①EB=EP;②∠EFP=30°;(2)如图2,当D,B,F不共线时,连接BF,求证:∠BFD+∠EFP=30°.参考答案一、选择题(本大题8个小题,每小题3分,满分24分)1.4的倒数为()A.B.2 C.1 D.﹣4【分析】根据倒数的意义,乘积是1的两个数叫做互为倒数,求倒数的方法,是把一个数的分子和分母互换位置即可,是带分数的化成假分数,再把分子分母互换位置,据此解答.解:4的倒数为.故选:A.2.下面几种中式窗户图形既是轴对称又是中心对称的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.解:A、不是轴对称图形,也不是中心对称图形,故本选项不合题意;B、不是轴对称图形,也不是中心对称图形,故本选项不合题意;C、既是轴对称图形,又是中心对称图形,故此选项正确;D、不是轴对称图形,是中心对称图形,故本选项不合题意;故选:C.3.如图,已知AB∥DE,∠1=30°,∠2=35°,则∠BCE的度数为()A.70°B.65°C.35°D.5°【分析】根据平行线的性质和∠1=30°,∠2=35°,可以得到∠BCE的度数,本题得以解决.解:作CF∥AB,∵AB∥DE,∴CF∥DE,∴AB∥DE∥DE,∴∠1=∠BCF,∠FCE=∠2,∵∠1=30°,∠2=35°,∴∠BCF=30°,∠FCE=35°,∴∠BCE=65°,故选:B.4.下列计算正确的是()A.a2+b2=(a+b)2B.a2+a4=a6C.a10÷a5=a2D.a2•a3=a5【分析】根据完全平方公式、合并同类项法则、同底数幂的乘除法计算得到结果,即可作出判断.解:A、a2+2ab+b2=(a+b)2,原计算错误,故此选项不符合题意;B、a2与a4不是同类项不能合并,原计算错误,故此选项不符合题意;C、a10÷a5=a5,原计算错误,故此选项不符合题意;D、a2•a3=a5,原计算正确,故此选项符合题意;故选:D.5.下列说法正确的是()A.明天的降水概率为80%,则明天80%的时间下雨,20%的时间不下雨B.抛掷一枚质地均匀的硬币两次,必有一次正面朝上C.了解一批花炮的燃放质量,应采用抽样调查方式D.一组数据的众数一定只有一个【分析】根据必然事件的概念、众数的定义、随机事件的概率逐项分析即可得出答案.解:A、明天的降水概率为80%,则明天下雨可能性较大,故本选项错误;B、抛掷一枚质地均匀的硬币两次,正面朝上的概率是,故本选项错误;C、了解一批花炮的燃放质量,应采用抽样调查方式,故本选项正确;D、一组数据的众数不一定只有一个,故本选项错误;故选:C.6.一个圆锥的底面半径r=10,高h=20,则这个圆锥的侧面积是()A.100πB.200πC.100πD.200π【分析】先利用勾股定理计算出母线长,然后利用扇形的面积公式计算这个圆锥的侧面积.解:这个圆锥的母线长==10,这个圆锥的侧面积=×2π×10×10=100π.故选:C.7.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b2﹣4ac>0;②abc<0;③4a+b=0;④4a﹣2b+c>0.其中正确结论的个数是()A.4 B.3 C.2 D.1【分析】先由抛物线与x周董交点个数判断出结论①,利用抛物线的对称轴为x=2,判断出结论②,先由抛物线的开口方向判断出a<0,进而判断出b>0,再用抛物线与y轴的交点的位置判断出c>0,判断出结论③,最后用x=﹣2时,抛物线在x轴下方,判断出结论④,即可得出结论.解:由图象知,抛物线与x轴有两个交点,∴方程ax2+bx+c=0有两个不相等的实数根,∴b2﹣4ac>0,故①正确,由图象知,抛物线的对称轴直线为x=2,∴﹣=2,∴4a+b=0,故②正确,由图象知,抛物线开口方向向下,∴a<0,∵4a+b=0,∴b>0,而抛物线与y轴的交点在y轴的正半轴上,∴c>0,∴abc<0,故③正确,由图象知,当x=﹣2时,y<0,∴4a﹣2b+c<0,故④错误,即正确的结论有3个,故选:B.8.如图,将一枚跳棋放在七边形ABCDEFG的顶点A处,按顺时针方向移动这枚跳棋次.移动规则是:第k次移动k个顶点(如第一次移动1个顶点,跳棋停留在B处,第二次移动2个顶点,跳棋停留在D处),按这样的规则,在这次移动中,跳棋不可能停留的顶点是()A.C、E B.E、F C.G、C、E D.E、C、F【分析】设顶点A,B,C,D,E,F,G分别是第0,1,2,3,4,5,6格,因棋子移动了k次后走过的总格数是1+2+3+…+k=k(k+1),然后根据题目中所给的第k次依次移动k个顶点的规则,可得到不等式最后求得解.解:经实验或按下方法可求得顶点C,E和F棋子不可能停到.设顶点A,B,C,D,E,F,G分别是第0,1,2,3,4,5,6格,因棋子移动了k次后走过的总格数是1+2+3+…+k=k(k+1),应停在第k(k+1)﹣7p格,这时P是整数,且使0≤k(k+1)﹣7p≤6,分别取k=1,2,3,4,5,6,7时,k(k+1)﹣7p=1,3,6,3,1,0,0,发现第2,4,5格没有停棋,若7<k≤,设k=7+t(t=1,2,3)代入可得,k(k+1)﹣7p=7m+t(t+1),由此可知,停棋的情形与k=t时相同,故第2,4,5格没有停棋,即顶点C,E和F棋子不可能停到.故选:D.二、填空题(本大题8个小题,每小题3分,满分24分)9.分解因式:xy2﹣4x=x(y+2)(y﹣2).【分析】原式提取x,再利用平方差公式分解即可.解:原式=x(y2﹣4)=x(y+2)(y﹣2),故答案为:x(y+2)(y﹣2)10.若代数式在实数范围内有意义,则x的取值范围是x>3 .【分析】根据二次根式有意义的条件可得2x﹣6>0,再解即可.解:由题意得:2x﹣6>0,解得:x>3,故答案为:x>3.11.计算:﹣+=3.【分析】直接化简二次根式进而合并得出答案.解:原式=﹣+2=3.故答案为:3.12.如图,若反比例函数y=(x<0)的图象经过点A,AB⊥x轴于B,且△AOB的面积为6,则k=﹣12 .【分析】根据反比例函数比例系数的几何意义即可解决问题.解:∵AB⊥OB,∴S△AOB==6,∴k=±12,∵反比例函数的图象在二四象限,∴k<0,∴k=﹣12,故答案为﹣12.13.4月23日是世界读书日,这天某校为了解学生课外阅读情况,随机收集了30名学生每周课外阅读的时间,统计如表:阅读时间(x小时)x≤3.5 3.5<x≤5 5<x≤6.5 x>6.5 人数12 8 6 4 若该校共有1200名学生,试估计全校每周课外阅读时间在5小时以上的学生人数为400人.【分析】用总人数×每周课外阅读时间在5小时以上的学生人数所占的百分比即可得到结论.解:1200×=400(人),答:估计全校每周课外阅读时间在5小时以上的学生人数为400人.14.今年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是 4 次.【分析】设李红出门没有买到口罩的次数是x,买到口罩的次数是y,根据买口罩的次数是10次和家里现有口罩35只,可列出关于x和y的二元一次方程组,求解即可.解:设李红出门没有买到口罩的次数是x,买到口罩的次数是y,由题意得:,整理得:,解得:.故答案为:4.15.如图1,已知四边形ABCD是正方形,将△DAE,△DCF分别沿DE,DF向内折叠得到图2,此时DA与DC重合(A、C都落在G点),若GF=4,EG=6,则DG的长为12 .【分析】设正方形ABCD的边长为x,由翻折及已知线段的长,可用含x的式子分别表示出BE、BF及EF的长;在Rt△BEF中,由勾股定理得关于x的方程,解得x的值,即为DG的长.解:设正方形ABCD的边长为x,由翻折可得:DG=DA=DC=x,∵GF=4,EG=6,∴AE=EG=6,CF=GF=4,∴BE=x﹣6,BF=x﹣6,EF=6+4=10,如图1所示:在Rt△BEF中,由勾股定理得:BE2+BF2=EF2,∴(x﹣6)2+(x﹣4)2=102,∴x2﹣12x+36+x2﹣8x+16=100,∴x2﹣10x﹣24=0,∴(x+2)(x﹣12)=0,∴x1=﹣2(舍),x2=12.∴DG=12.故答案为:12.16.阅读理解:对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx﹣1).理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.解决问题:求方程x3﹣5x+2=0的解为x=2或x=﹣1+或x=﹣1﹣.【分析】将原方程左边变形为x3﹣4x﹣x+2=0,再进一步因式分解得(x﹣2)[x(x+2)﹣1]=0,据此得到两个关于x的方程求解可得.解:∵x3﹣5x+2=0,∴x3﹣4x﹣x+2=0,∴x(x2﹣4)﹣(x﹣2)=0,∴x(x+2)(x﹣2)﹣(x﹣2)=0,则(x﹣2)[x(x+2)﹣1]=0,即(x﹣2)(x2+2x﹣1)=0,∴x﹣2=0或x2+2x﹣1=0,解得x=2或x=﹣1,故答案为:x=2或x=﹣1+或x=﹣1﹣.三、(本大题2个小题,每小题5分,满分10分)17.计算:20+()﹣1•﹣4tan45°.【分析】先计算20、、()﹣1、tan45°,再按运算顺序求值即可.解:原式=1+3×2﹣4×1=1+6﹣4=3.18.解不等式组.【分析】首先分别解出两个不等式的解集,再根据解集的规律确定不等式组的解集.解:,由①得:x<5,由②得:x≥﹣1,不等式组的解集为:﹣1≤x<5.四、(本大题2个小题,每小题6分,满分12分)19.先化简,再选一个合适的数代入求值:(x+1﹣)÷.【分析】根据分式的减法和除法可以化简题目中的式子,然后选取一个使得原分式有意义的值代入化简后的式子即可解答本题.解:(x+1﹣)÷====,当x=2时,原式==﹣.20.第5代移动通信技术简称5G,某地已开通5G业务,经测试5G下载速度是4G下载速度的15倍,小明和小强分别用5G与4G下载一部600兆的公益片,小明比小强所用的时间快140秒,求该地4G与5G的下载速度分别是每秒多少兆?【分析】首先设该地4G的下载速度是每秒x兆,则该地5G的下载速度是每秒15x兆,根据题意可得等量关系:4G下载600兆所用时间﹣5G下载600兆所用时间=140秒.然后根据等量关系,列出分式方程,再解即可.解:设该地4G的下载速度是每秒x兆,则该地5G的下载速度是每秒15x兆,由题意得:﹣=140,解得:x=4,经检验:x=4是原分式方程的解,且符合题意,15×4=60,答:该地4G的下载速度是每秒4兆,则该地5G的下载速度是每秒60兆.五、(本大题2个小题,每小题7分,满分14分)21.已知一次函数y=kx+b(k≠0)的图象经过A(3,18)和B(﹣2,8)两点.(1)求一次函数的解析式;(2)若一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象只有一个交点,求交点坐标.【分析】(1)直接把(3,18),(﹣2,8)代入一次函数y=kx+b中可得关于k、b的方程组,再解方程组可得k、b的值,进而求出一次函数的解析式;(2)联立一次函数解析式和反比例函数解析式,根据题意得到△=0,解方程即可得到结论.解:(1)把(3,18),(﹣2,8)代入一次函数y=kx+b(k≠0),得,解得,∴一次函数的解析式为y=2x+12;(2)∵一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象只有一个交点,∴只有一组解,即2x2+12x﹣m=0有两个相等的实数根,∴△=122﹣4×2×(﹣m)=0,∴m=﹣18.把m=﹣18代入求得该方程的解为:x=﹣3,把x=﹣3代入y=2x+12得:y=6,即所求的交点坐标为(﹣3,6).22.如图1是自动卸货汽车卸货时的状态图,图2是其示意图.汽车的车厢采用液压机构、车厢的支撑顶杆BC的底部支撑点B在水平线AD的下方,AB与水平线AD之间的夹角是5°,卸货时,车厢与水平线AD成60°,此时AB与支撑顶杆BC的夹角为45°,若AC=2米,求BC的长度.(结果保留一位小数)(参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,≈1.41)【分析】直接过点C作CF⊥AB于点F,利用锐角三角函数关系得出CF的长,进而得出BC的长.【解答】方法一:解:如图1,过点C作CF⊥AB于点F,在Rt△ACF中,∵sin∠CAB=sin(60°+5°)=sin65°=,∴CF=AC•sin65°≈2×0.91=1.82,在Rt△BCF中,∵∠ABC=45°,∴CF=BF,∴BC=CF=1.41×1.82=2.5662≈2.6,答:所求BC的长度约为2.6米.方法二:解:如图2,过点A作AE⊥BC于点E,在Rt△ACE中,∵∠C=180°﹣65°﹣45°=70°,∴cos C=cos70°=,即CE=AC×cos70°≈2×0.34=0.68,sin C=sin70°=,即AE=AC×sin70°≈2×0.94=1.88,又∵在Rt△AEB中,∠ABC=45°,∴AE=BE,∴BC=BE+CE=0.68+1.88=2.56≈2.6,答:所求BC的长度约为2.6米.六、(本大题2个小题,每小题8分,满分16分)23.今年2﹣4月某市出现了200名新冠肺炎患者,市委根据的决定,对患者进行了免费治疗.图1是该市轻症、重症、危重症三类患者的人数分布统计图(不完整),图2是这三类患者的人均治疗费用统计图.请回答下列问题.(1)轻症患者的人数是多少?(2)该市为治疗危重症患者共花费多少万元?(3)所有患者的平均治疗费用是多少万元?(4)由于部分轻症患者康复出院,为减少病房拥挤,拟对某病房中的A、B、C、D、E五位患者任选两位转入另一病房,请用树状图法或列表法求出恰好选中B、D两位患者的概率.【分析】(1)因为总人数已知,由轻症患者所占的百分比即可求出其的人数;(2)求出该市危重症患者所占的百分比,即可求出其共花费的钱数;(3)用加权平均数公式求出各种患者的平均费用即可;(4)首先根据题意列出表格,然后由表格求得所有等可能的结果与恰好选中B、D两位同学的情况,再利用概率公式即可求得答案.解:(1)轻症患者的人数=200×80%=160(人);(2)该市为治疗危重症患者共花费钱数=200×(1﹣80%﹣15%)×10=100(万元);(3)所有患者的平均治疗费用==2.15(万元);(4)列表得:A B C D EA(B,A)(C,A)(D,A)(E,A)B(A,B)(C,B)(D,B)(E,B)C(A,C)(B,C)(D,C)(E,C)D(A,D)(B,D)(C,D)(E,D)E(A,E)(B,E)(C,E)(D,E)由列表格,可知:共有20种等可能的结果,恰好选中B、D两位同学的有2种情况,∴P(恰好选中B、D)==.24.如图,已知AB是⊙O的直径,C是⊙O上的一点,D是AB上的一点,DE⊥AB于D,DE 交BC于F,且EF=EC.(1)求证:EC是⊙O的切线;(2)若BD=4,BC=8,圆的半径OB=5,求切线EC的长.【分析】(1)连接OC,由等腰三角形的性质和直角三角形的性质可得∠OCB+∠ECF=90°,可证EC是⊙O的切线;(2)由勾股定理可求AC=6,由锐角三角函数可求BF=5,可求CF=3,通过证明△OAC ∽△ECF,可得,可求解.解:(1)连接OC,∵OC=OB,∴∠OBC=∠OCB,∵DE⊥AB,∴∠OBC+∠DFB=90°,∵EF=EC,∴∠ECF=∠EFC=∠DFB,∴∠OCB+∠ECF=90°,∴OC⊥CE,∴EC是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ACB=90°,∵OB=5,∴AB=10,∴AC===6,∵cos∠ABC=,∴,∴BF=5,∴CF=BC﹣BF=3,∵∠ABC+∠A=90°,∠ABC+∠BFD=90°,∴∠BFD=∠A,∴∠A=∠BFD=∠ECF=∠EFC,∵OA=OC,∴∠OCA=∠A=∠BFD=∠ECF=∠EFC,∴△OAC∽△ECF,∴,∴EC===.七、(本大题2个小题,每小题10分,满分20分)25.如图,已知抛物线y=ax2过点A(﹣3,).(1)求抛物线的解析式;(2)已知直线l过点A,M(,0)且与抛物线交于另一点B,与y轴交于点C,求证:MC2=MA•MB;(3)若点P,D分别是抛物线与直线l上的动点,以OC为一边且顶点为O,C,P,D的四边形是平行四边形,求所有符合条件的P点坐标.【分析】(1)利用待定系数法即可解决问题.(2)构建方程组确定点B的坐标,再利用平行线分线段成比例定理解决问题即可.(3)如图2中,设P(t,t2),根据PD=CD构建方程求出t即可解决问题.解:(1)把点A(﹣3,)代入y=ax2,得到=9a,∴a=,∴抛物线的解析式为y=x2.(2)设直线l的解析式为y=kx+b,则有,解得,∴直线l的解析式为y=﹣x+,令x=0,得到y=,∴C(0,),由,解得或,∴B(1,),如图1中,过点A作AA1⊥x轴于A1,过B作BB1⊥x轴于B1,则BB1∥OC∥AA1,∴===,===,∴=,即MC2=MA•MB.(3)如图2中,设P(t,t2)∵OC为一边且顶点为O,C,P,D的四边形是平行四边形,∴PD∥OC,PD=OC,∴D(t,﹣t+),∴|t2﹣(﹣t+)|=,整理得:t2+2t﹣6=0或t2+2t=0,解得t=﹣1﹣或﹣1=或﹣2或0(舍弃),∴P(﹣1﹣,2+)或(﹣1+,2﹣)或(﹣2,1).26.已知D是Rt△ABC斜边AB的中点,∠ACB=90°,∠ABC=30°,过点D作Rt△DEF使∠DEF=90°,∠DFE=30°,连接CE并延长CE到P,使EP=CE,连接BE,FP,BP,设BC与DE交于M,PB与EF交于N.(1)如图1,当D,B,F共线时,求证:①EB=EP;②∠EFP=30°;(2)如图2,当D,B,F不共线时,连接BF,求证:∠BFD+∠EFP=30°.【分析】(1)①证明△CBP是直角三角形,根据直角三角形斜边中线可得结论;②根据同位角相等可得BC∥EF,由平行线的性质得BP⊥EF,可得EF是线段BP的垂直平分线,根据等腰三角形三线合一的性质可得∠PFE=∠BFE=30°;(2)如图2,延长DE到Q,使EQ=DE,连接CD,PQ,FQ,证明△QEP≌△DEC(SAS),则PQ=DC=DB,由QE=DE,∠DEF=90°,知EF是DQ的垂直平分线,证明△FQP≌△FDB (SAS),再由EF是DQ的垂直平分线,可得结论.【解答】证明(1)①∵∠ACB=90°,∠ABC=30°,∴∠A=90°﹣30°=60°,同理∠EDF=60°,∴∠A=∠EDF=60°,∴AC∥DE,∴∠DMB=∠ACB=90°,∵D是Rt△ABC斜边AB的中点,AC∥DM,∴,即M是BC的中点,∵EP=CE,即E是PC的中点,∴ED∥BP,∴∠CBP=∠DMB=90°,∴△CBP是直角三角形,∴BE=PC=EP;②∵∠ABC=∠DFE=30°,∴BC∥EF,由①知:∠CBP=90°,∴BP⊥EF,∵EB=EP,∴EF是线段BP的垂直平分线,∴PF=BF,∴∠PFE=∠BFE=30°;(2)如图2,延长DE到Q,使EQ=DE,连接CD,PQ,FQ,∵EC=EP,∠DEC=∠QEP,∴△QEP≌△DEC(SAS),则PQ=DC=DB,∵QE=DE,∠DEF=90°∴EF是DQ的垂直平分线,∴QF=DF,∵CD=AD,∴∠CDA=∠A=60°,∴∠CDB=120°,∴∠FDB=120°﹣∠FDC=120°﹣(60°+∠EDC)=60°﹣∠EDC=60°﹣∠EQP=∠FQP,∴△FQP≌△FDB(SAS),∴∠QFP=∠BFD,∵EF是DQ的垂直平分线,∴∠QFE=∠EFD=30°,∴∠QFP+∠EFP=30°,∴∠BFD+∠EFP=30°.。
2009年常德市初中毕业学业考试模拟试卷
2010年常德市初中毕业学业考试模拟试卷参 考 答 案1、14.3-π2、a (2a —1)23、46108.⨯4、y=2x5、8π6、65°7、72cm 28、27199、D 10、D 11、C 12、B 13、C 14、B 15、A 16、C 17、解:原式= 2-14+14-1 (4分) =1. (5分)18、解:原式=()()112112222-⨯⎪⎪⎭⎫ ⎝⎛-+--x x x x x =121222--+-x xx x ()12-⨯x =12+x (3分) 所以当2009-=x 或2009=x 时原式都等于2010. (5分)19、解:方程两边同乘以x -2,得1-x +2(x -2)=1,( 2分)即1-x +2x -4=1, ( 4分)解得x =4. ( 5分)经检验, x =4是原方程的根. (6分) 20、解:(1)画出树状图来说明评委给出A 选手的所有可能结果:(3分)(2)由上可知评委给出A 选手所有可能的结果有8种。
对于 A 选手,“只有甲、乙两位评委给出相同结论”有2种,即“通过-通过-待定”、“待定-待定-通过”,所以对于A 选手“只有甲、乙两位评委给出相同结论”的概率是14。
通过通过待定待定 通过 通过 待定 通过 待定 通过待定通过待定 甲乙 丙(6分)21、(1)证明略(3分)(2)添加AB∥CD,或添加AD=BC或BE=BC或∠A=∠ADC或∠ADC=90°或∠A=∠C或∠C=90°或∠ABD=∠BDC或∠A=∠ABC或∠ADB=∠DBC或∠ABC=90°等(5分).证明略(7分)22、解:(1)众数为15,平均数为2015101540205++++=.(4分)(2)1050.(6分)(3)加强对11~12点时段的交通管理。
(1分)(加强对中青年人(或未成年人)的交通安全教育,其它合理建议,酌情给分)(7分)24、(1)证明:连接MN (1分)则∠BMN=90°=∠ACB∴△ACB∽△NMB (3分)∴BC AB BM BN=∴AB·BM=BC·BN (4分)(2)解:连接OM,则∠OMC=90°(5分)∵N为OC中点,∴MN=ON=OM∴∠MON=60°∵OM=OB∴∠B=12∠MON=30°(7分)∵∠ACB=90°∴AB=2AC=2×3=6 (8分)25、解:BM+CN=MN证明:如图,延长AC至M1,使CM1=BM,连结DM1由已知条件知:∠ABC=∠ACB=60°,∠DBC=∠DCB=30°∴∠ABD=∠ACD=90°∵BD=CD∴Rt△BDM≌Rt△CDM1(2分)∴∠MDB=∠M1DC DM=DM1∴∠MDM1=(120°-∠MDB)+∠M1DC=120°又∵∠MDN=60°∴∠M1DN=∠MDN=60°∴△MDN≌△M1DN (4分)∴MN=NM1=NC+CM1=NC+MB (5分)解决:CN-BM=MN证明:如图,在CN上截取,使CM1=BM,连结DM1∵∠ABC=∠ACB=60°,∠DBC=∠DCB=30°∴∠DBM=∠DCM1=90°∵BD=CD第26题M1NMDCBA附加题AB CDMNM1∴Rt △BDM ≌Rt △CDM 1 (7分) ∴∠MDB =∠M 1DC DM =DM 1 ∵∠BDM +∠BDN =60° ∴∠CDM 1+∠BDN =60°∴∠NDM 1=∠BDC -(∠M 1DC +∠BDN )=120°-60°=60° ∴∠M 1DN =∠MDN ∵AD =AD∴△MDN ≌△M 1DN (9分) ∴MN =NM 1=NC -CM 1=NC -MB (10分)26、(1)解方程2650,x x -+=得125,1x x ==(1分)由m n <,有1,5m n ==所以点A 、B 的坐标分别为A (1,0),B (0,5). (2分) 将A (1,0),B (0,5)的坐标分别代入2y x bx c =-++.得105b c c -++=⎧⎨=⎩解这个方程组,得45b c =-⎧⎨=⎩所以,抛物线的解析式为245y x x =--+(3分) (2)由245y x x =--+,令0y =,得2450x x --+= 解这个方程,得125,1x x =-=所以C 点的坐标为(-5,0).由顶点坐标公式计算,得点D (-2,9). (4分) 过D 作x 轴的垂线交x 轴于M.则1279(52)22DMC S ∆=⨯⨯-=12(95)142MDBO S =⨯⨯+=梯形,1255522BOC S ∆=⨯⨯=(5分)所以,2725141522BCD DMC BOC MDBO S S S S ∆∆∆=+-=+-=梯形.(6分)(3)设P 点的坐标为(,0a )因为线段BC 过B 、C 两点,所以BC 所在的值线方程为5y x =+. 那么,PH 与直线BC 的交点坐标为(,5)E a a +,(7分)PH 与抛物线245y x x =--+的交点坐标为2(,45)H a a a --+.(8分) 由题意,得①32EH EP =,即23(45)(5)(5)2a a a a --+-+=+解这个方程,得32a=-或5a=-(舍去)(9分)②23EH EP=,即22(45)(5)(5)3a a a a--+-+=+解这个方程,得23a=-或5a=-(舍去)P点的坐标为3(,0)2-或2(,0)3-.(10分)。
2009年湖南省常德市中考数学试卷
2009年湖南省常德市中考数学试卷一、填空题(共8小题,每小题3分,满分24分)1.(3分)3的倒数是.2.(3分)因式分解:zn2—mn+mx—nx=.3.(3分)己知AABC中,BC=6cm,E、F分别是仙、AC的中点,那么EF长是cm.4.(3分)若一个圆锥的母线长是5c“z,底面半径是3c沮,则它的侧面展开图的面积是cm2.5.(3分)如图,已知点C为反比例函数y=--±的一点,过点。
向坐标轴引垂线,垂足X分别为A、B,那么四边形AOBC的面积为.6.(3分)如图,AA5C向右平移4个单位后得到△A'B'C,则川点的坐标是7.(3分)如图,已知AE//BD,Zl=130°,匕2=30。
,则ZC=度.AE1C8.(3分)一个函数的图象关于y轴成轴对称图形时,称该函数为偶函数.那么在下列四个函数①y=2x;②y=-3x-1;(3)y=—;④y=x2 +1中,偶函数是(填出所有偶函X数的序号,答案格式如:“1234”).二、选择题(共8小题,每小题3分,满分24分)9.(3分)计算卷-姻的结果是()B.^6A.6 C.2 D.a/210.(3分)要使分式工有意义,则X应满足的条件是()X+1A.x^lB.x^-1C.x。
0D.x>111.(3分)为了响应中央号召,今年我市加大财政支农力度,全市农业支出累计达到234760000元,其中234760000元用科学记数法可表示为()(保留三位有效数字)A. 2.34xlO8元B. 2.35xl08元C. 2.35X109元D. 2.34xlO9元b—(—3)2,c=\/—9,12.(3分)设a=2°,d=(―尸,贝\\a,b,c,d按由小到大的顺序排列正确的是()A.c<a<d<bB.b<d<a<cC.a<c<d<bD.b<c<a<d13.(3分)下面事件:①掷一枚硬币,着地时正面向上;②在标准大气压下,水加热到100°C会沸腾;③买一张福利彩票,开奖后会中奖;④明天会下雨.其中,必然事件有()A.1个B.2个C.3个D.4个两个同心圆的半径分别为3cm和5cm,弦AB与小圆相切于点C,则AB 如图,14.(3分)B.5cmC.6c mD.8cm15.(3分)下列命题中错误的是()A.两组对边分别相等的四边形是平行四边形B.对角线相等的平行四边形是矩形C.一组邻边相等的平行四边形是菱形D.一组对边平行的四边形是梯形16.(3分)甲,乙,丙三人进行乒乓球比赛,规则是:两人比赛,另一人当裁判,输者将在下一局中担任裁判,每一局比赛没有平局.已知甲,乙各比赛了4局,丙当了3次裁判.问第2局的输者是()A.甲B.乙C.丙D.不能确定三、解答题(共10小题,满分72分)1917.(5分)解方程:土=工x x—13x+5...—1(1)18.(5分)解不等式组:13-x>-x(2)v-3519.(6分)化简:工^+3+2—-).4y—8y—220.(6分)“六一”儿童节期间,某儿童用品商店设置了如下促销活动:如果购买该店100元以上的商品,就能参加一次游戏,即在现场抛掷一个正方体两次(这个正方体相对的两个面上分别画有相同图案),如果两次都出现相同的图案,即可获得价值20元的礼品一份,否则没有奖励.求游戏中获得礼品的概率是多少?21.(7分)如图,某人在。
2009年中考数学试题参考答案
2009年中考数学试题参考答案一、 选择题(每题3分,共30分)ADCBA BADCD二、 填空题(每题3分,共18分)11、1 12、A B ⊥CD 或AD=BD 或AC =CB 等 13、y=2x 14、20 15、10+33 16、19 三、解答题(每小题8分,共16分)17、解:由(1)得 x >-2 ………………………… 2分 由(2)得3x -1《2x -2 得x ≤-1 ………………………… 4分 所以,不等式组的解集为-2〈x ≤-1……6分在数轴上表示为 ……………………… 8分 18.解:原式=()()2111x x x x x -+÷+ ……………………………… 2分 =()()1112-+∙+x x xxx …………………………… 4分=1-x x ………………………………………………… 6分当x=2时,1-x x =2122=- …………………………… 8分四、解答题(每小题9分,共18分)19、解:(1)作业完成时间在1.5 ~2小时时间段内的学生有6人 …… 2分 (2)该班共有学生:40%4518=名 ………… 4分(3)(略) ………………………………………………… 6分 (4)作业完成时间在0.5~1小时的部分对应的扇形圆心角的度数是: 360°×30% = 108° ………………………………………9分20、解:(1)用列表法或数状图表示为: 列表法…………………………5分树状图法(2)P(恰好选中女生甲和男生A)=61 ………………………………………………8分∴恰好选中女生甲和男生A 的概率为61……………………………………… 9分21、证明:(1)在□ABCD 中,AD=CB,AB=CD,∠D=∠B …………………………… 1分 ∵EF 分别是AB 、CD 的中点 ∴DF=21CD,BE=21AB , DF=BE ………………………………………3分∴△AFD ≌△CEB ………………………………………………4分 (2)在□ABCD 中,AB=CD,AB ∥CD ……………………………………6分 由(1)得BE=DF ,∴AE=CF ………………………………………………7分 ∴四边形AECF 是平行四边形 ………………………………………8分22、解:∵点A(-3,1),B(2,n)是一次函和反比例函数的交点 ∴把x=-3,y=1代入y=xm ,得:m=-3∴反比例函数的解析式是y=- x3 …………………………………………3分把x=-3,y=n 代入y=-x3 得:n=-23把x=-3,y=1,x=2,y=-23分别代入y=kx+b得:⎪⎩⎪⎨⎧-=+=+-23213b k b k ,解得 ⎪⎩⎪⎨⎧-=-=2121b k ……………………………………4分 ∴一次函数的解析式为y=- 2121-x ……………………………………5分(3)过点A 作AE ⊥x 轴于点E ∴A 点的纵坐标为1,∴AE=1 由一次函数的解析式为y=- 2121-x得C 点的坐标为(0,-21), ……………………………………6分∴OC=21在Rt △OCD 和Rt △EAD 中,∠COD=∠AED=90°,∠CDO=∠ADE∴Rt △OCD ∽Rt △EAD ……………………………………7分 ∴==COAE CDAD 2 ……………………………………8分23、(1)证明:连接OD, ∵OD=OA, ∴∠ODA=OAD ………………………………1分又∵DE 是⊙O 的切线,∴∠ODE=90°,OD ⊥DE ……………………………2分 又∵DE ⊥EF, ∴OD ∥EF ……………………………………3分 ∴∠ODA=∠DAE, ∠DAE=∠OAD, ∴AD 平分∠CAE …………………………5分 (2)解:∵AC 是⊙O 的直径,∴∠ADC=90°………………………………6分 由(1)知:∠ODA=∠DAE, ∠AED=∠ADC, ∴△ADC ∽△AED, ∴ADAC AEAD = ………………………………7分在Rt △ADE 中,DE=4,AE=2, ∴AD=25 ………………………………7分∴52252AC =,∴AC=10 ……………………………………8分∴⊙O 的半径为5 ……………………………………9分 24、解(1)∵抛物线与x 轴交于A(1,0),B(70)∴y=a (x-1)(x-7) ……………………………………1分 又∴抛物线与y 轴交于C,且OA=7,则C 点的坐标为(7,0) ∴7=a (0-1)(0-7),7a=7, a=1 ……………2分∴抛物线的解析式为y=(x-1)(x-7)=782+-x x …………………………3分 (2)∵E 点在抛物线上∴m=25-40+7,m=-8 …………4分 ∵直线y=kx+b 经过点C(0,7),E(5,-8)∴⎩⎨⎧-===8757k b 解得:k=-3,b=7 …………………………5分∴直线CE 的表达式是y=-3x+7 ……………………………………6分 (3)设直线CE 于x 轴的交点为D 当y=0时,-3x+7=0,x=37∴D 点的坐标为(37,0) ……………………………………7分∴S=3531008)377(217)377(21==⨯-⨯+⨯-⨯=+∆∆BDE BDC S S …………8分(4)在抛物线上存在点P 使得△ABP 为等腰三角形 ………………………9分 ∵抛物线的顶点是满足条件的一个点除此之外,还有六个点理由如下: ∵AP=BP=103909322==+>6分别以A 、B 为圆心,半径长为6画圆,分别与抛物线交于点B 、1P 、2P 、A 、3P 、4P 、5P 、6P ,除去A 、B 两点外,其余六个点为满足条件的点,…………11分∴一共有七个满足条件的点P ……………………………………12分。
常德市中考数学试题及答案-中考数学试题、初中数学中考试卷、模拟题-初中数学试卷
常德市中考数学试题及答案-中考数学试题、初中数学中考试卷、模拟题、复习资料-初中数学试卷-试卷下载2005年常德市中考数学试题及答案一、选择题1.2的相反数是()A.2B.-2C.D.2.y=(x-1)2+2的对称轴是直线()A.x=-1B.x=1C.y=-1D.y=13.如图1,DE是ΔABC的中位线,则ΔADE与ΔABC的面积之比是()日一二三四五六12345 678910111213141516171819202122232425262728293031A.1:1B.1:2C.1:3D.1:4(1)(2)(3)4.如图2是一块手表,早上8时的时针、分针的位置如图所示,那么分针与时针所成的角的度数是()A.60°B.80°C.120°D.150°5.函数中自变量x的取值范围是()A.x≠-1B.x>-1C.x≠1D.x≠06.下列计算正确的是()A.a2·a3=a6B.a3÷a=a3C.(a2)3=a6D.(3a2)4=9a47.在下列图形中,既是中心对称图形又是轴对称图形的是()A.等腰三角形B.圆C.梯形D.平行四边形8.如图3是2004年3月份的日历表,任意圈出一竖列上相邻的三个数,请你运用方程思想来研究,发现这三个数的和不可能是()A.69B.54C.27D.409.相交两圆的公共弦长为16cm,若两圆的半径长分别为10cm和17cm,则这两圆的圆心距为()A.7cm B.16cm C.21cm D.27cm10.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车。
车修好后,因怕耽误上课,他比修车前加快了骑车速度匀速行驶。
下面是行驶路程s(米)关于时间t(分)的函数图像,那么符合这个同学行驶情况的图像大致是()ABCD(A)(B)(C)(D)11.已知方程x2+(2k+1)x+k2-2=0的两实根的平方和等于11,k的取值是()A.-3或1B.-3C.1D.312.某超级市场失窃,大量的商品在夜间被罪犯用汽车运走。
【真题】湖南省常德市中考数学试卷含答案解析(2)
湖南省常德市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.下列各数中无理数为( )A .2B .0C .12017D .﹣1 【答案】A .考点:无理数.2.若一个角为75°,则它的余角的度数为( )A .285°B .105°C .75°D .15° 【答案】D . 【解析】试题分析:它的余角=90°﹣75°=15°,故选D . 考点:余角和补角.3.一元二次方程23410x x -+=的根的情况为( ) A .没有实数根 B .只有一个实数根 C .两个相等的实数根 D .两个不相等的实数根 【答案】D . 【解析】试题分析:∵△=(﹣4)2﹣4×3×1=4>0,∴方程有两个不相等的实数根.故选D . 考点:根的判别式.4.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是( )A .30,28B .26,26C .31,30D .26,22 【答案】B .考点:中位数;加权平均数.5.下列各式由左到右的变形中,属于分解因式的是( )A .a (m +n )=am +anB .2222()()a b c a b a b c --=-+- C .21055(21)x x x x -=- D .2166(4)(4)6x x x x x -++=+-+ 【答案】C . 【解析】试题分析:A .该变形为去括号,故A 不是因式分解;B .该等式右边没有化为几个整式的乘积形式,故B 不是因式分解; D .该等式右边没有化为几个整式的乘积形式,故D 不是因式分解; 故选C .考点:因式分解的意义.6.如图是一个几何体的三视图,则这个几何体是( )A .B .C .D .【答案】B . 【解析】试题分析:结合三个视图发现,应该是由一个正方体在一个角上挖去一个小正方体,且小正方体的位置应该在右上角,故选B . 考点:由三视图判断几何体.7.将抛物线22x y =向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为( ) A.5)3(22--=x y B .5)3(22++=x y C .5)3(22+-=x y D .5)3(22-+=x y 【答案】A .考点:二次函数图象与几何变换;几何变换.8.如表是一个4×4(4行4列共16个“数”组成)的奇妙方阵,从这个方阵中选四个“数”,而且这四个“数”中的任何两个不在同一行,也不在同一列,有很多选法,把每次选出的四个“数”相加,其和是定值,则方阵中第三行三列的“数”是( )302sin60° 22 ﹣3 ﹣2 ﹣sin45° 0 |﹣5| 6 23()﹣14()﹣1A .5B .6C .7D .8 【答案】C .【解析】试题分析:∵第一行为1,2,3,4;第二行为﹣3,﹣2,﹣1,0;第四行为3,4,5,6,∴第三行为5,6,7,8,∴方阵中第三行三列的“数”是7,故选C .考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.二、填空题(本小题共8小题,每小题3分,共24分)9.计算:328-- = . 【答案】0. 【解析】试题分析:原式=2﹣2=0.故答案为:0. 考点:实数的运算;推理填空题. 10.分式方程xx 412=+的解为 . 【答案】x =2.考点:解分式方程.11.据统计:我国微信用户数量已突破887000000人,将887000000用科学记数法表示为 .【答案】8.87×108. 【解析】试题分析:887000000=8.87×108.故答案为:8.87×108. 考点:科学记数法—表示较大的数.12.命题:“如果m 是整数,那么它是有理数”,则它的逆命题为: . 【答案】“如果m 是有理数,那么它是整数”.【解析】试题分析:命题:“如果m 是整数,那么它是有理数”的逆命题为“如果m 是有理数,那么它是整数”. 故答案为:“如果m 是有理数,那么它是整数”.考点:命题与定理.13.彭山的枇杷大又甜,在今年5月18日“彭山枇杷节”期间,从山上5棵枇杷树上采摘到了200千克枇杷,请估计彭山近600棵枇杷树今年一共收获了枇杷 千克. 【答案】24000. 【解析】试题分析:根据题意得:200÷5×600=24000(千克).故答案为:24000. 考点:用样本估计总体.14.如图,已知Rt △ABE 中∠A =90°,∠B =60°,BE =10,D 是线段AE 上的一动点,过D 作CD 交BE 于C ,并使得∠CDE =30°,则CD 长度的取值范围是 .【答案】0≤CD ≤5.考点:含30度角的直角三角形;直角三角形斜边上的中线.15.如图,正方形EFGH 的顶点在边长为2的正方形的边上.若设AE =x ,正方形EFGH 的面积为y ,则y 与x 的函数关系为 .【答案】2244y x x =-+(0<x <2).考点:根据实际问题列二次函数关系式;正方形的性质.16.如图,有一条折线A1B1A2B2A3B3A4B4…,它是由过A1(0,0),B1(2,2),A2(4,0)组成的折线依次平移4,8,12,…个单位得到的,直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,则k的值为.【答案】12n -.【解析】试题分析:∵A1(0,0),A2(4,0),A3(8,0),A4(12,0),…,∴A n(4n﹣4,0).∵直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,∴点A n+1(4n,0)在直线y=kx+2上,∴0=4nk+2,解得:k=12n-.故答案为:12n-.考点:一次函数图象上点的坐标特征;坐标与图形变化﹣平移;规律型;综合题.三、解答题(本题共2小题,每小题5分,共10分.)17.甲、乙、丙三个同学站成一排进行毕业合影留念,请用列表法或树状图列出所有可能的情形,并求出甲、乙两人相邻的概率是多少? 【答案】23. 【解析】试题分析:用树状图表示出所有情况,再根据概率公式求解可得. 试题解析:用树状图分析如下:∴一共有6种情况,甲、乙两人恰好相邻有4种情况,∴甲、乙两人相邻的概率是46=23. 考点:列表法与树状图法.18.求不等式组⎪⎩⎪⎨⎧⋯-≤-⋯+≤-+②①)23(2352513)1(4x x x x 的整数解. 【答案】0,1,2.考点:一元一次不等式组的整数解.四、解答题:本大题共2小题,每小题6分,共12分.19.先化简,再求值:⎪⎪⎭⎫⎝⎛--+-+-⎪⎪⎭⎫ ⎝⎛---+-22231231334222x x x x x x x x x ,其中x =4. 【答案】x ﹣2,2.考点:分式的化简求值.20.在“一带一路”倡议下,我国已成为设施联通,贸易畅通的促进者,同时也带动了我国与沿线国家的货物交换的增速发展,如图是湘成物流园通过“海、陆(汽车)、空、铁”四种模式运输货物的统计图.请根据统计图解决下面的问题:(1)该物流园货运总量是多少万吨?(2)该物流园空运货物的总量是多少万吨?并补全条形统计图;(3)求条形统计图中陆运货物量对应的扇形圆心角的度数?【答案】(1)240;(2)36;(3)18°.(2)空运货物的总量是240×15%=36吨,条形统计图如下:(3)陆运货物量对应的扇形圆心角的度数为12240×360°=18°. 考点:条形统计图;扇形统计图.五、解答题:本大题共2小题,每小题7分,共14分.21.如图,已知反比例函数xky =的图象经过点A (4,m ),AB ⊥x 轴,且△AOB 的面积为2. (1)求k 和m 的值;(2)若点C (x ,y )也在反比例函数xky =的图象上,当﹣3≤x ≤﹣1时,求函数值y 的取值范围.【答案】(1)k =4,m =1;(2)﹣4≤y ≤﹣43. 【解析】试题分析:(1)根据反比例函数系数k 的几何意义先得到k 的值,然后把点A 的坐标代入反比例函数解析式,可求出k 的值;(2)先分别求出x =﹣3和﹣1时y 的值,再根据反比例函数的性质求解.考点:反比例函数系数k 的几何意义;反比例函数图象上点的坐标特征. 22.如图,已知AB 是⊙O 的直径,CD 与⊙O 相切于C ,BE ∥CO . (1)求证:BC 是∠ABE 的平分线;(2)若DC =8,⊙O 的半径OA =6,求CE 的长.【答案】(1)证明见解析;(2)4.8. 【解析】试题分析:(1)由BE ∥CO ,推出∠OCB =∠CBE ,由OC =OB ,推出∠OCB =∠OBC ,可得∠CBE =∠CBO ; (2)在Rt △CDO 中,求出OD ,由OC ∥BE ,可得DC DOCE OB=,由此即可解决问题;试题解析:(1)证明:∵DE 是切线,∴OC ⊥DE ,∵BE ∥CO ,∴∠OCB =∠CBE ,∵OC =OB ,∴∠OCB =∠OBC ,∴∠CBE =∠CBO ,∴BC 平分∠ABE .(2)在Rt △CDO 中,∵DC =8,OC =0A =6,∴OD =22CD OC +=10,∵OC ∥BE ,∴DC DO CE OB =,∴8106CE =,∴EC =4.8.考点:切线的性质.六、解答题:本大题共2小题,每小题8分,共16分.23.收发微信红包已成为各类人群进行交流联系,增强感情的一部分,下面是甜甜和她的双胞胎妹妹在六一儿童节期间的对话.请问:(1)到甜甜和她妹妹在六一收到红包的年增长率是多少?(2)六一甜甜和她妹妹各收到了多少钱的微信红包?【答案】(1)10%;(2)甜甜在六一收到微信红包为150元,则她妹妹收到微信红包为334元.试题解析:(1)设到甜甜和她妹妹在六一收到红包的年增长率是x,依题意得:400(1+x)2=484,解得x1=0.1=10%,x2=﹣2.1(舍去).答:到甜甜和她妹妹在六一收到红包的年增长率是10%;(2)设甜甜在六一收到微信红包为y元,依题意得:2y+34+y=484,解得y=150,所以484﹣150=334(元).答:甜甜在六一收到微信红包为150元,则她妹妹收到微信红包为334元.考点:一元一次方程的应用;一元二次方程的应用;增长率问题.24.如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角∠FHE=60°,求篮框D到地面的距离(精确到0.01米)(参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,3≈1.732,2≈1.414)【答案】3.05.答:篮框D到地面的距离是3.05米.考点:解直角三角形的应用.七、解答题:每小题10分,共20分.25.如图,已知抛物线的对称轴是y轴,且点(2,2),(1,54)在抛物线上,点P是抛物线上不与顶点N重合的一动点,过P作P A⊥x轴于A,PC⊥y轴于C,延长PC交抛物线于E,设M是O关于抛物线顶点N 的对称点,D是C点关于N的对称点.(1)求抛物线的解析式及顶点N的坐标;(2)求证:四边形PMDA是平行四边形;(3)求证:△DPE∽△P AM3P的坐标.【答案】(1)2114y x =+, N (0,1);(2)证明见解析;(3)证明见解析,P (23,4)或(﹣23,4). 试题解析:(1)解:∵抛物线的对称轴是y 轴,∴可设抛物线解析式为2y ax c =+ ,∵点(2,2),(1,54)在抛物线上,∴4254a c a c +=⎧⎪⎨+=⎪⎩,解得:141a c ⎧=⎪⎨⎪=⎩,∴抛物线解析式为2114y x =+,∴N 点坐标为(0,1); (2)证明:设P (t ,2114t +),则C (0,2114t +),P A =2114t +,∵M 是O 关于抛物线顶点N 的对称点,D 是C 点关于N 的对称点,且N (0,1),∴M (0,2),∵OC =2114t +,ON =1,∴DM =CN =2114t +﹣1=214t ,∴OD =2114t -,∴D (0,2114t -+),∴DM =2﹣(2114t -+)=2114t +=P A ,且PM ∥DM ,∴四边形PMDA 为平行四边形;(3)解:同(2)设P (t ,2114t +),则C (0,2114t +),P A =2114t +,PC =|t |,∵M (0,2),∴CM =2114t +﹣2=2114t -,在Rt △PMC 中,由勾股定理可得PM =22PC CM +2221(1)4t t +- =221(1)4t +=2114t +=P A ,且四边形PMDA 为平行四边形,∴四边形PMDA 为菱形,∴∠APM =∠ADM =2∠PDM ,∵PE ⊥y 轴,且抛物线对称轴为y 轴,∴DP =DE ,且∠PDE =2∠PDM ,∴∠PDE =∠APM ,且PD DE PA PM=,∴△DPE ∽△P AM ;∵OA =|t |,OM =2,∴AM =24t +,且PE =2PC =2|t |,当相似比为3时,则AM PE =3,即224tt + =3,解得t =23或t =﹣23,∴P 点坐标为(23,4)或(﹣23,4).考点:二次函数综合题;压轴题.26.如图,直角△ABC 中,∠BAC =90°,D 在BC 上,连接AD ,作BF ⊥AD 分别交AD 于E ,AC 于F .(1)如图1,若BD =BA ,求证:△ABE ≌△DBE ;(2)如图2,若BD =4DC ,取AB 的中点G ,连接CG 交AD 于M ,求证:①GM =2MC ;②AG 2=AF •AC .【答案】(1)证明见解析;(2)①证明见解析;②证明见解析.试题解析:(1)在Rt △ABE 和Rt △DBE 中,∵BA =BD ,BE =BE ,∴△ABE ≌△DBE ;(2)①过G 作GH ∥AD 交BC 于H ,∵AG =BG ,∴BH =DH ,∵BD =4DC ,设DC =1,BD =4,∴BH =DH =2,∵GH ∥AD ,∴21GM HD MC DC ==,∴GM =2MC ;考点:相似三角形的判定与性质;全等三角形的判定与性质;和差倍分.。
数学中考分类试题(含答案)
1有理数一、选择题1.(2009年福建省泉州市)计算:=-0)5(( ).A .1B .0C .-1D .-5【答案】A2.(2009年梅州市)12-的倒数为( ) A .12B .2C .2-D .1-【答案】C3.(2009年抚顺市)某市在一次扶贫助残活动中,共捐款2580000元.将2580000元用科学记数法表示为( )A .72.5810⨯元 B .70.25810⨯元 C .62.5810⨯元 D .625.810⨯元 【答案】C4.(2009年抚顺市)2-的相反数是( ) A .2 B .12-C .2-D .12【答案】A5.(2009年绵阳市)2009年初甲型H1N1流感在墨西哥暴发并在全球蔓延,我们应通过注意个人卫生加强防范.研究表明,甲型H1N1流感球形病毒细胞的直径约为0.00000156 m ,用科学记数法表示这个数是 A .0.156×10-5 B .0.156×105 C .1.56×10-6 D .1.56×106 【答案】C 6.(2009年绵阳市)如果向东走80 m 记为80 m ,那么向西走60 m 记为 A .-60 m B .︱-60︱m C .-(-60)m D .601m 【答案】A 7.(2009呼和浩特)2-的倒数是( ) A .12-B .12C .2D .2-答案:A8.(2009年龙岩)-2的相反数是( )A .-2B .2C .21D .-21 【答案】B 9.(2009年铁岭市)目前国内规划中的第一高楼上海中心大厦,总投入约14 800 000 000元.14 800 000 000元用科学记数法表示为( ) A .111.4810⨯元 B .90.14810⨯元C .101.4810⨯元D .914.810⨯元【答案】C10.(2009年黄石市)12-的倒数是( ) A .2 B .12 C .12- D .2-【答案】D11.(2009年广东省)《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( )A .107.2610⨯ 元B .972.610⨯ 元C .110.72610⨯ 元 D .117.2610⨯元 【答案】A 12.(2009年枣庄市)实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是( ) A .0ab > B .0a b +< C .1ab <D .0a b -< 【答案】C13.(2009年枣庄市)-12的相反数是( ) A .2 B .2- C .12 D .12-【答案】C14.(2009年赤峰市)景色秀美的宁城县打虎石水库,总库容量为119600000立方米,用科学计数法表示为 ( ) A 、1.196×108立方米 B 、1.196×107立方米 C 、11.96×107立方米 D 、0.1196×109立方米 【答案】A15.(2009年赤峰市)3(3)-等于( ) A 、-9 B 、9 C 、-27 D 、2716.(2009贺州)计算2)3(-的结果是( ).A .-6B .9C .-9D .6 【答案】B 17.(2009年浙江省绍兴市)甲型H1N1流感病毒的直径大约是0.000 000 081米,用科学记数法可表示为( )A .8.1×190-米 B .8.1×180-米 C .81×190-米 D .0.81×170-米 【答案】B 18.(2009年江苏省)2-的相反数是( ) A .2 B .2-C .12D .12-【答案】A 19.(2009贵州黔东南州)下列运算正确的是( C ) A 、39±= B 、33-=- C 、39-=- D 、932=-【答案】B20.(2009年淄博市)如果2()13⨯-=,则“”内应填的实数是( D )A . 32B . 23C .23-D .32-21.(2009襄樊市)通过世界各国卫生组织的协作和努力,甲型H1N1流感疫情得到了有效的控制,到目前为止,全球感染人数约为20000人左右,占全球人口的百分比约为0.0000031,将数字0.0000031用科学记数法表示为( B ) A .53.110-⨯ B .63.110-⨯ C .73.110-⨯ D .83.110-⨯ 解析:本题考查科学记数法,0.0000031=63.110-⨯,故选B 。
2009年中考数学试题分类汇编之04 分式试题及答案
2009年中考试题专题之4-分式试题及答案一、填空题1.(2009年滨州)化简:2222444m mn nm n-+-= .2. (2009年内江市)已知25350x x --=,则22152525x x x x ----=__________.。
3.(2009年成都)化简:22221369x y x yx yx xy y+--÷--+=_______4.(2009年成都)分式方程2131x x =+的解是_________5(2009年安顺)已知分式11x x +-的值为0,那么x 的值为______________。
6.(2009重庆綦江)在函数13y x =-中,自变量x 的取值范围是 .7.(2009年黔东南州)当x______时,11+x 有意义.【关键词】分式有无意义 【答案】1-≠ 8 .(2009年义乌)化简22a a a+的结果是样【关键词】化简分式 【答案】2a +9.(2009丽水市)当x ▲ 时,分式x1没有意义.【关键词】分式的概念 【答案】x =010.(2009烟台市)设0a b >>,2260a b ab +-=,则a b b a+-的值等于 .【关键词】分式计算【答案】11.(2009年天津市)若分式22221x x x x --++的值为0,则x 的值等于 .【关键词】分式的值为0 【答案】212.(2009年衢州)化简:2111x x x x -+=++ .【关键词】约分与通分,分式运算 【答案】113.(2009年舟山)化简:2111x x x x -+=++ .【关键词】约分与通分,分式运算 【答案】114.(2009年清远)当x = 时,分式12x -无意义.【关键词】分式 【答案】215.(2009年温州)某单位全体员工在植树节义务植树240棵.原计划每小时植树口棵。
实际每小时植树的棵数是原计划的1.2倍,那么实际比原计划提前了 小时完成任务(用含口的代数式表示). 【关键词】分式 【答案】a40162009年漳州)若分式12x -无意义,则实数x 的值是____________.【关键词】分式的概念 【答案】217.(2009年潍坊)方程3123xx =+的解是 .【关键词】分式方程的运算 【答案】9x =-18(09湖北宜昌)当x = 时,分式23x -没有意义.【关键词】分式 【答案】319(2009年)13.若实数x y 、满足0xy ≠,则y x m xy=+的最大值是 .【关键词】分式化简 【答案】20.(2009年新疆乌鲁木齐市)化简:224442x x x x x ++-=-- .【关键词】约分与通分,分式运算 【答案】22x -21(2009年枣庄市)15.a 、b 为实数,且ab =1,设P =11a b a b +++,Q =1111a b +++,则P Q (填“>”、“<”或“=”). 【关键词】分式的比较大小 【答案】=22.(2009年佳木斯)计算21111a a a ⎛⎫+÷ ⎪--⎝⎭= 二、选择题1(2009年常德市)要使分式11x +有意义,则x 应满足的条件是( )A .1x ≠B .1x ≠-C .0x ≠D .1x >【关键词】有意义 【答案】B2(2009年陕西省)8.化简ba a aba -⋅-)(2的结果是 【 】A .ba- B .ba+ C .ba -1D .ba +1【关键词】分式运算【答案】B3(2009年黄冈市)4.化简a a a a a a2422-⋅⎪⎭⎫ ⎝⎛+--的结果是( )A .-4B .4C .2aD .-2a【关键词】分式运算 【答案】A 4(2009威海)化简11y x x y ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭的结果是( ) A .y x- B . x y-C .x yD .y x【关键词】分式的运算 【答案】D5(2009年湖南长沙)分式111(1)a a a +++的计算结果是( )A .11a + B .1a a + C .1aD .1a a+【答案】C【解析】本题考查了分式的加减运算。
湖南省常德市中考数学试题及答案
2008年常德市初中毕业学业考试数学试题准考证号姓名________________________ 考生注意:1、请考生在试题卷首填写好准考证号及姓名. 2、请将答案填写在答题卡上,填写在试题卷上的无效.3、本学科试题卷共 页,七 道大题,满分120 分,考试时量 120 分钟.4、考生可带科学计算器参加考试.一、填空题(本大题8个小题,每小题3分,满分24分)1.计算:4-(-2)= 6 . 2.分解因式:22mb ma -= ))((b a b a m -+ .3.如图1,已知AD//BC, ∠EAD=50 O,∠ACB=40 O,则∠BAC= 90 O.4.“凤凰号”火星探测器于去年从美国佛罗里达州卡纳维拉尔角发射,经过近10个月的时间,飞行了近680 000 000千米后到达火星。
其中680 000 000千米用科学记数法可表示为 6.80×108 千米(保留三个有效数字). 5.函数31-=x y 的自变量x 的取值范围是 3>x .6.已知⊙O 的半径为5㎝,弦AB 的长为8㎝,则圆心O 到AB 的距离为 3 ㎝.7.小红量得一个圆锥的母线长为15㎝,底面圆的直径是6㎝,它的侧面积为 45π㎝2(结果保留π).8. 下面是一个三角形数阵:12 4 23 6 9 6 34 8 12 16 12 8 4……根据该数阵的规律,猜想第十行所有数的和是 103 .二、选择题(本大题8个小题,每小题只有一个正确的选项,每小题3分,共24分) 9.图2中的几何体的俯视图是 ( B )2( C ) 11( B ) A . 360OB .540OC .720OD .900O12.下列说法正确的是 ( C )B A D CE图150 O40 OB C D A 图2A .检查地震灾区的食品质量应采取普查的方法B .地震一周后,埋在废墟下的人员幸存的可能性很小,我们应放弃搜救行动C .唐家山堰塞湖出现溃坝的概率是93%,说明该堰塞湖溃坝的可能性很大D .我市发生地震的概率很小,则我市一定不会发生地震,我们不必学习相关知识 13.下面的函数是反比例函数的是 ( D ) A . 13+=x y B .x x y 22+= C . 2x y =D .xy 2= 14.如图3,已知等边三角形ABC 的边长为2,DE 是它的中位线,则下面四个结论:(1)DE=1,(2)AB 边上的高为3,(3)△CDE ∽△CAB ,(4)△CDE 的面积与 △CAB 面积之比为1:4.其中正确的有 (DA .1个B .2个C .3个D .4个 15.北京奥组委为了更好地传播奥运匹克知识,倡导奥林匹克精神,鼓励广大民众到现场A .50, 50B .67.5, 50C .40, 30D .50, 3016.把抛物线221x y =向右平移2个单位,再向上平移1个单位,所得的抛物线的解析式为 (A)A.()+-=2221x y 1B. ()--=2221x y 1C. ()++=2221x y 1D. ()21212-+=x y三、 (本大题2个小题,每小题5分,满分10分)17.计算:()0160sin 23312+--⎪⎭⎫⎝⎛---解:原式232331⨯+--==-2 注:上面的计算每错一处扣1分.18.化简:211112x x x x -÷⎪⎭⎫⎝⎛--+ 解:原式=()()x x x x x x x -+⨯⎪⎭⎫ ⎝⎛----+1111112…………………………2分 图3=()()xx x x x -+⨯-1113=()x +13=33+x ………………5分 四、(本大题2个小题,每小题6分,满分12分)19.解不等式组 ()⎪⎩⎪⎨⎧->+≤-.214,121x x x 解:解不等式①,得 3≤x .………………………………………2分 解不等式②,得 244->+x x , 即 2->x . …4分 ∴原不等式组的解集为32≤<-x . …………………………6分20.在社会主义新农村建设中,县交通局决定对某乡的村级公路进行改造,由甲工程队单独施工,预计180天能完成。
(完整word版)中考数学压轴题旋转问题带答案
旋转问题考查三角形全等、相似、勾股定理、特殊三角形和四边形的性质与判定等。
旋转性质-—-—对应线段、对应角的大小不变,对应线段的夹角等于旋转角。
注意旋转过程中三角形与整个图形的特殊位置. 一、直线的旋转1、(2009年浙江省嘉兴市)如图,已知A 、B 是线段MN 上的两点,4=MN ,1=MA ,1>MB .以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成△ABC ,设x AB =. (1)求x 的取值范围;(2)若△ABC 为直角三角形,求x 的值; (3)探究:△ABC 的最大面积?2、(2009年河南)如图,在Rt △ABC 中,∠ACB =90°, ∠B =60°,BC =2.点0是AC 的中点,过点0的直线l 从与AC 重合的位置开始,绕点0作逆时针旋转,交AB 边于点D 。
过点C 作CE ∥AB 交直线l 于点E ,设直线l 的旋转角为α.(1)①当α=________度时,四边形EDBC 是等腰梯形,此时AD 的长为_________; ②当α=________度时,四边形EDBC 是直角梯形,此时AD 的长为_________; (2)当α=90°时,判断四边形EDBC 是否为菱形,并说明理由.C(第1题)解:(1)①当四边形EDBC是等腰梯形时,∠EDB=∠B=60°,而∠A=30°,根据三角形的外角性质,得α=∠EDB—∠A=30,此时,AD=1;②当四边形EDBC是直角梯形时,∠ODA=90°,而∠A=30°,根据三角形的内角和定理,得α=90°-∠A=60,此时,AD=1.5.(2)当∠α=90°时,四边形EDBC是菱形.∵∠α=∠ACB=90°,∴BC‖ED,∵CE‖AB,∴四边形EDBC是平行四边形.在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∴∠A=30度,∴AB=4,AC=2 ,∴AO= = .在Rt△AOD中,∠A=30°,∴AD=2,∴BD=2,∴BD=BC.又∵四边形EDBC是平行四边形,∴四边形EDBC是菱形.3、(2009年北京市)在ABCD中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转90得到线段EF(如图1)(1)在图1中画图探究:①当P为射线CD上任意一点(P1不与C重合)时,连结EP1绕点E逆时针旋转90得到线段EC1.判断直线FC1与直线CD的位置关系,并加以证明;②当P2为线段DC的延长线上任意一点时,连结EP2,将线段EP2绕点E逆时针旋转90得到线段EC2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
我们只说喜欢,就算喜欢也是偷偷摸摸的。
”6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。
”7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。
8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。
9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。
1.“噢,居然有土龙肉,给我一块!”2009年常德市初中毕业学业考试数学试题卷准考证号 姓 名_______________ 考生注意:1、请考生在试题卷首填写好准考证号及姓名.2、请将答案填写在答题卡上,填写在试题卷上的无效.3、本学科试题卷共 4页,七道大题,满分120 分,考试时量 120 分钟.4、考生可带科学计算器参加考试.一、填空题(本大题8个小题,每小题3分,满分24分) 1.3的倒数等于 .2.因式分解:2m mn mx nx -+-= .3.已知△ABC 中,BC =6cm ,E 、F 分别是AB 、AC 的中点,那么EF 长是 cm . 4.一个圆锥的母线长为5cm ,底面圆半径为3 cm ,则这个圆锥的侧面积是 cm 2(结果保留π).5.如图1,已知点C 为反比例函数6y x=-上的一点,过点C 向坐标轴引垂线,垂足分别为A 、B ,那么四边形AOBC 的面积为 . 6.如图2,△ABC 向右平移4个单位后得到△A ′B ′C ′,则A ′点的坐标是 .7.如图3,已知//AE BD ,∠1=130o ,∠2=30o ,则∠C = .8.一个函数的图象关于y 轴成轴对称图形时,称该函数为偶函数. 那么在下列四个函数①图1图3 图25.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
我们只说喜欢,就算喜欢也是偷偷摸摸的。
”6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。
”7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。
8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。
9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。
1.“噢,居然有土龙肉,给我一块!”2y x =;②31y x =--;③6y x=;④21y x =+中,偶函数是 (填出所有偶函数的序号).二、选择题(本大题8个小题,每小题3分,满分24分) 9.28-的结果是( )A .6B .22C .2D .210.要使分式11x +有意义,则x 应满足的条件是( ) A .1x ≠ B .1x ≠- C .0x ≠D .1x >11.为了响应中央号召,今年我市加大财政支农力度,全市农业支出累计达到234 760 000元,其中234 760 000元用科学记数法可表示为( )(保留三位有效数字). A .2.34×108元 B .2.35×108元 C .2.35×109 元D .2.34×109元12.设02a =,2(3)b =-,39c =-,11()2d -=,则a b c d ,,,按由小到大的顺序排列正确的是( ) A .c a d b <<< B .b d a c <<<C .a c d b <<<D .b c a d <<<13.下面事件:①掷一枚硬币,着地时正面向上;②在标准大气压下,水加热到100℃会沸腾;③买一张福利彩票,开奖后会中奖;④明天会下雨.其中,必然事件有( )A .1个B .2个C .3个D .4个14.如图4,两个同心圆的半径分别为3cm 和5cm ,弦AB 与小圆相切于点C ,则AB 的长为( ) A .4cm B .5cmC .6cmD .8cm15.下列命题中错误的是( )A .两组对边分别相等的四边形是平行四边形B .对角线相等的平行四边形是矩形C .一组邻边相等的平行四边形是菱形D .一组对边平行的四边形是梯形16.甲、乙、丙三人进行乒乓球比赛,规则是:两人比赛,另一人当裁判,输者将在下一局中担任裁判,每一局比赛没有平局.已知甲、乙各比赛了4局,丙当了3次裁判.问第2局的输者是( )图 4ABO· C5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
我们只说喜欢,就算喜欢也是偷偷摸摸的。
”6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。
”7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。
8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。
9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。
1.“噢,居然有土龙肉,给我一块!”A . 甲B . 乙C . 丙D .不能确定三、(本大题2个小题,每小题5分,满分10分)17.解方程:121-=x x18.解不等式组:351(1)13(2)2x x x +-⎧⎪⎨->⎪⎩≥四、(本大题2个小题,每小题6分,满分12分) 19. 化简:35(2)482y y y y -÷+---20.“六一”儿童节期间,某儿童用品商店设置了如下促销活动:如果购买该店100元以上的商品,就能参加一次游戏,即在现场抛掷一个正方体两次(这个正方体相对的两个面上分别画有相同图案),如果两次都出现相同的图案,即可获得价值20元的礼品一份,否则没有奖励.求游戏中获得礼品的概率是多少?五、(本大题2个小题,每小题7分,满分14分)21.如图5,某人在D 处测得山顶C 的仰角为30o ,向前走200米来到山脚A 处,测得山坡AC 的坡度为i=1∶0.5,求山的高度(不计测角仪的高度,3 1.73≈,结果保留整数).图55.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
我们只说喜欢,就算喜欢也是偷偷摸摸的。
”6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。
”7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。
8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。
9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。
1.“噢,居然有土龙肉,给我一块!”22.某品牌A 、B 两种不同型号的电视机是“家电下乡”活动的指定产品.利民家电超市该品牌A 型电视机的售价为2400元/台,B 型电视机的售价为2000元/台,如果农户到该家电超市购买这两种电视机,将获得20%的政府补贴.下面的图表是这家超市该品牌A 、B 两种不同型号的电视机近5周的每周销量统计图表.(1)农民购买一台A 、B 型号的电视机各需多少元?(2)从统计图表中你获得了什么信息?(写2条)(3)通过计算说明哪种型号的电视机销量较稳定?六、(本大题2个小题,每小题8分,满分16分)23.如图7,△ABC 内接于⊙O ,AD 是△ABC 的边BC 上的高,AE 是⊙O 的直径,连接BE ,△ABE 与△ADC 相似吗?请证明你的结论.A 型电视机销量统计表时间(周) 1 2 3 4 5数量(台) 19 18 20 22 21 B 型电视机销量折线图图6图75.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
我们只说喜欢,就算喜欢也是偷偷摸摸的。
”6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。
”7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。
8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。
9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。
1.“噢,居然有土龙肉,给我一块!”24.常德市工业走廊南起汉寿县太子庙镇,北至桃源县盘塘镇创元工业园.在这一走廊内的工业企业2008年完成工业总产值440亿元,如果要在2010年达到743.6亿元,那么2008年到2010年的工业总产值年平均增长率是多少?《常德工业走廊建设发展规划纲要(草案)》确定2012年走廊内工业总产值要达到1200亿元,若继续保持上面的增长率,该目标是否可以完成?七、(本大题2个小题,每小题10分,满分20分)25.已知二次函数过点A (0,2-),B (1-,0),C (5948,). (1)求此二次函数的解析式; (2)判断点M (1,12)是否在直线AC 上? (3)过点M (1,12)作一条直线l 与二次函数的图象交于E 、F 两点(不同于A ,B ,C 三点),请自已给出E 点的坐标,并证明△BEF 是直角三角形.26.如图9,若△ABC 和△ADE 为等边三角形,M ,N 分别EB ,CD 的中点,易证:CD=BE ,△AMN 是等边三角形.图85.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
我们只说喜欢,就算喜欢也是偷偷摸摸的。
”6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。
”7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。
8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。
9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。
1.“噢,居然有土龙肉,给我一块!”(1)当把△ADE 绕A 点旋转到图10的位置时,CD=BE 是否仍然成立?若成立请证明,若不成立请说明理由;(4分)(2)当△ADE 绕A 点旋转到图11的位置时,△AMN 是否还是等边三角形?若是,请给出证明,并求出当AB =2AD 时,△ADE 与△ABC 及△AMN 的面积之比;若不是,请说明理由.(6分)图9 图10 图115.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。