新人教版《余角与补角》教案

合集下载

人教版初中七年级数学上册《余角和补角》教案

人教版初中七年级数学上册《余角和补角》教案

人教版初中七年级数学上册《余角和补角》教案一、教学内容本节课选自人教版初中七年级数学上册,涉及《余角和补角》章节。

详细内容包括:余角的定义、性质及求解方法;补角的定义、性质及求解方法;运用余角和补角解决实际问题。

二、教学目标1. 理解并掌握余角和补角的概念,能正确区分和运用。

2. 学会求解余角和补角的方法,提高运算能力。

3. 能够运用余角和补角解决实际问题,增强学以致用的能力。

三、教学难点与重点重点:余角和补角的定义、性质及求解方法。

难点:如何运用余角和补角解决实际问题。

四、教具与学具准备1. 教具:三角板、量角器、教学PPT。

2. 学具:三角板、量角器、练习本。

五、教学过程1. 导入:通过生活中的实例,如剪刀、三角板等,引导学生观察并思考其中所包含的角的性质。

2. 新课导入:讲解余角和补角的定义,通过例题进行讲解,让学生掌握求解方法。

(1)余角的定义:两个角的和为90度的两个角互为余角。

(2)补角的定义:两个角的和为180度的两个角互为补角。

3. 实践操作:让学生使用三角板和量角器,观察并求解余角和补角。

4. 例题讲解:讲解余角和补角的性质,通过例题巩固知识点。

5. 随堂练习:布置一些有关余角和补角的练习题,让学生独立完成,并及时给予反馈。

6. 知识拓展:介绍余角和补角在实际问题中的应用,如建筑设计、剪裁等。

六、板书设计1. 定义:余角:两个角的和为90度。

补角:两个角的和为180度。

2. 性质:余角的和为90度,补角的和为180度。

3. 求解方法:(1)直接求解:通过观察和计算,直接得出余角和补角。

(2)互余/互补关系:已知一个角,求解与其互余/互补的角。

七、作业设计1. 作业题目:(1)求下列各角的余角和补角:a. 30°b. 45°c. 60°(2)已知一个角的度数,求解与其互余/互补的角的度数。

2. 答案:(1)a. 余角:60°,补角:150°b. 余角:45°,补角:135°c. 余角:30°,补角:120°(2)见学生解题过程。

2024年人教版初中七年级数学上册《余角和补角》精彩教案

2024年人教版初中七年级数学上册《余角和补角》精彩教案

2024年人教版初中七年级数学上册《余角和补角》精彩教案一、教学内容本节课选自2024年人教版初中七年级数学上册第四章《角的性质与分类》中的第4.3节“余角和补角”。

详细内容包括:1. 理解余角的定义及性质;2. 理解补角的定义及性质;3. 学会计算余角和补角;4. 掌握余角和补角的应用。

二、教学目标1. 知识与技能:让学生掌握余角和补角的定义,能够熟练计算余角和补角;2. 过程与方法:培养学生运用余角和补角的性质解决问题的能力;3. 情感态度与价值观:激发学生对数学学习的兴趣,培养学生的团队协作精神。

三、教学难点与重点1. 教学重点:余角和补角的定义及其性质;2. 教学难点:余角和补角的计算及应用。

四、教具与学具准备1. 教具:三角板、量角器;2. 学具:练习本、铅笔、直尺。

五、教学过程1. 实践情景引入(1)请两名同学到讲台前演示:用三角板拼出两个互补的角;(2)引导学生观察并思考:什么是余角?什么是补角?2. 新知讲解(1)余角的定义:如果两个角的和等于90°,则这两个角互为余角;(2)补角的定义:如果两个角的和等于180°,则这两个角互为补角;(3)余角和补角的性质:互为余角的两个角的和为90°,互为补角的两个角的和为180°。

3. 例题讲解(1)找出互为余角和互为补角的例子;(2)计算给定角度的余角和补角。

4. 随堂练习(1)判断题:找出互为余角和互为补角的角;(2)计算题:计算给定角度的余角和补角。

5. 小组讨论(1)讨论余角和补角的性质;(2)讨论如何运用余角和补角解决实际问题。

六、板书设计1. 余角和补角2. 定义:余角:两个角的和等于90°;补角:两个角的和等于180°。

3. 性质:互为余角的两个角的和为90°;互为补角的两个角的和为180°。

4. 例题及解答。

七、作业设计1. 作业题目(1)找出下列角的余角和补角:a. 30°b. 60°c. 120°(2)已知一个角的补角是80°,求这个角的度数。

人教版初中七年级数学上册《余角和补角》教案

人教版初中七年级数学上册《余角和补角》教案

人教版初中七年级数学上册《余角和补角》教案一、教学内容本节课选自人教版初中七年级数学上册《余角和补角》章节,主要内容包括:余角的定义及性质、补角的定义及性质、运用余角和补角解决实际问题。

二、教学目标1. 知识与技能:使学生掌握余角和补角的概念,理解并掌握余角和补角的性质,能运用余角和补角知识解决实际问题。

2. 过程与方法:培养学生运用数学知识解决实际问题的能力,提高学生的逻辑思维和推理能力。

3. 情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识和团队精神。

三、教学难点与重点教学难点:余角和补角的性质。

教学重点:余角和补角的定义,运用余角和补角解决实际问题。

四、教具与学具准备1. 教具:三角板、直尺、量角器、多媒体设备。

2. 学具:练习本、三角板、直尺、量角器。

五、教学过程1. 导入新课通过生活实例(如剪刀、墙角等)引出余角和补角的概念。

2. 讲解新课(1)余角的定义及性质a. 定义:两个角的和等于90°,则这两个角互为余角。

b. 性质:互为余角的两个角之和为90°。

c. 例题讲解:找出互为余角的两个角。

d. 随堂练习:判断下列角是否互为余角。

(2)补角的定义及性质a. 定义:两个角的和等于180°,则这两个角互为补角。

b. 性质:互为补角的两个角之和为180°。

c. 例题讲解:找出互为补角的两个角。

d. 随堂练习:判断下列角是否互为补角。

3. 实践情景引入通过实际操作,让学生体会余角和补角的应用。

4. 知识巩固(1)讲解例题:计算下列各角的余角和补角。

(2)随堂练习:计算下列各角的余角和补角。

六、板书设计1. 余角和补角2. 定义及性质3. 例题及解答4. 课堂练习七、作业设计1. 作业题目(1)找出互为余角的两个角。

(2)找出互为补角的两个角。

(3)计算下列各角的余角和补角。

2. 答案(1)答案见练习题。

(2)答案见练习题。

(3)答案见练习题。

数学教案-余角和补角

数学教案-余角和补角

数学教案-余角和补角一、教学目标1.理解余角和补角的概念。

2.掌握余角和补角的性质。

3.学会应用余角和补角的知识解决实际问题。

二、教学内容1.余角和补角的定义。

2.余角和补角的性质。

3.余角和补角的应用。

三、教学重点与难点1.重点:理解余角和补角的概念及性质。

2.难点:灵活运用余角和补角的知识解决问题。

四、教学过程第一环节:导入新课1.利用多媒体展示一张图片,图片中有两个相交的直线和一个角。

2.引导学生观察这个角,提问:“这个角有什么特点?”第二环节:探究新知1.余角的定义(1)讲解余角的定义,即一个角的余角等于90°减去这个角的度数。

(2)举例说明,如:30°的余角是60°,60°的余角是30°。

(3)让学生尝试找出几个角的余角。

2.补角的定义(1)讲解补角的定义,即一个角的补角等于180°减去这个角的度数。

(2)举例说明,如:45°的补角是135°,135°的补角是45°。

(3)让学生尝试找出几个角的补角。

3.余角和补角的性质(1)讲解余角和补角的性质,如:互为余角的两个角的和等于90°,互为补角的两个角的和等于180°。

(2)让学生通过举例验证这些性质。

第三环节:巩固练习1.让学生独立完成课本上的练习题,巩固余角和补角的概念及性质。

2.对学生的作业进行点评,指出错误和不足之处。

第四环节:拓展提高1.提问:“在日常生活中,你们能找到哪些与余角和补角有关的现象?”2.学生分享自己的发现,教师给予点评和指导。

第五环节:课堂小结2.强调余角和补角在实际生活中的重要性。

五、作业布置1.完成课后习题,巩固所学知识。

2.收集生活中的余角和补角现象,下节课分享。

六、教学反思本节课通过讲解、举例、练习等形式,让学生掌握了余角和补角的概念、性质及运用。

在教学过程中,注意引导学生主动参与,培养学生的观察能力和思维能力。

《余角和补角》教案精品

《余角和补角》教案精品

《余角和补角》教案精品一、教学内容本节课的教学内容来自于人教版初中数学九年级下册第26章《余角和补角》。

本章节主要内容包括余角和补角的定义、性质及其运用。

具体教学内容如下:1. 余角的定义:如果两个角的和等于90度,那么这两个角互为余角。

2. 补角的定义:如果两个角的和等于180度,那么这两个角互为补角。

3. 余角和补角的性质:(1)互为余角的两个角,其中一个角增大或减小,另一个角也会相应地增大或减小。

(2)互为补角的两个角,其中一个角增大或减小,另一个角会相应地减小或增大。

4. 余角和补角在实际问题中的应用。

二、教学目标1. 让学生掌握余角和补角的定义及其性质。

2. 培养学生运用余角和补角解决实际问题的能力。

3. 培养学生积极参与课堂,主动探索数学规律的良好学习习惯。

三、教学难点与重点1. 教学难点:余角和补角的性质的理解与应用。

2. 教学重点:余角和补角的定义及其性质的掌握。

四、教具与学具准备1. 教具:黑板、粉笔、直尺、三角板。

2. 学具:每人一本教材,一本笔记本,一支笔。

五、教学过程1. 实践情景引入:教师展示一幅平面图,图中包含两个角,询问学生这两个角的关系。

引导学生发现这两个角的和等于90度,从而引入余角的概念。

2. 余角的定义与性质:(1)教师讲解余角的定义,并通过示例让学生理解余角的含义。

3. 补角的定义与性质:(1)教师讲解补角的定义,并通过示例让学生理解补角的含义。

4. 余角和补角的应用:教师出示一些实际问题,让学生运用余角和补角的知识解决问题,巩固所学内容。

5. 随堂练习:教师布置一些有关余角和补角的练习题,让学生独立完成,及时巩固所学知识。

六、板书设计1. 余角的定义与性质定义:两个角的和等于90度,互为余角。

性质:互为余角的两个角,其中一个角增大或减小,另一个角也会相应地增大或减小。

2. 补角的定义与性质定义:两个角的和等于180度,互为补角。

性质:互为补角的两个角,其中一个角增大或减小,另一个角会相应地减小或增大。

余角和补角教学设计3篇

余角和补角教学设计3篇

余角和补角教学设计3篇余角和补角教学设计3篇作为一名优秀的教育工作者,常常需要准备教学设计,借助教学设计可以提高教学效率和教学质量。

我们该怎么去写教学设计呢?下面是小编收集整理的余角和补角教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

余角和补角教学设计1教学目标1、知识目标:结合具体图形认识一个角的余角和补角,掌握余角和补角的性质2、能力目标:通过观察、猜想、推理、归纳、交流等活动,发展学生空间观念,提高学生的抽象概括能力,培养学生简单的逻辑推理能力和知识运用能力。

3、情感目标:体会观察、归纳、推理对数学知识获取的重要作用,并通过看一看,想一想,猜一猜,说一说,画一画等活动发挥学生的主动作用。

重点、难点、关键1、重点:认识角的互余、互补关系及其性质。

2、难点:通过简单的推理,归纳出余角、补角的性质。

3、关键:了解推理的意义和推理过程,是掌握性质的关键。

数学准备量角器、三角板、多媒体设备。

教学过程一、设情引入(1)(2)提问:怎样把角铁(1)变成角架(2)?教师展开模型角架(2),学生观察发现:要把角铁(1)变成角架(2),需在角架(1)上截出一个缺口。

如果要把角铁(1)弯成120°的角,你知道截去的缺口是多少度吗?要求截去的缺口是多少度,实质上是求什么呢?通过今天的学习,你将会解决这些问题。

二、探究新知 1、余角和补角的概念猜一猜,量一量,图中哪两个角的和是多少?1(答:∠1+∠2=90°,∠4+∠5=90°)象这样,如果两个角的和等于90°,那么这两个角就称为互为余角,其中一个角就叫做另一个角的余角。

类似地,如下图,∠α+∠β=180°。

象这样,如果两个角的和等于180°,那么这两个就叫做互为补角,其中一个角就叫做另一个角的补角。

想一想:(1)锐角的余角是什么角?锐角的补角是什么角?直角和余角吗?钝角呢?(2)如果∠1+∠2+∠3=90°,那么∠1、∠2、∠3互余,对吗?如果∠3+∠4=180°,那么∠3与∠4互余吗?(3)说说图中哪两个角互为余角?哪两个角互为补角(多媒体出示)2、余角和补角的性质思考:(1)如果∠1与∠2互余,∠2与∠3互余,那么∠1与∠3有什么关系?由此你可得到什么结论?(2)如果∠1与∠2互余,∠3与∠4互余,且∠1=∠3,那么∠2与∠4有什么关系?由此你可得到什么结论?学生分组讨论、交流,然后共同归纳出:由(1)可得:同角的余角相等;由(2)可得:等角的余角相等。

2024年余角和补角人教版七年级数学上教案

2024年余角和补角人教版七年级数学上教案

2024年余角和补角人教版七年级数学上教案一、教学内容本节课选自人教版七年级数学上册,具体内容包括第四章《角的度量》中的4.4节“余角和补角”。

详细内容为:余角的定义、性质及其应用;补角的定义、性质及其应用。

二、教学目标1. 知识与技能:使学生掌握余角和补角的概念,能熟练运用余角和补角的性质进行相关计算。

2. 过程与方法:通过实践情景引入、例题讲解、随堂练习,培养学生观察、分析、解决问题的能力。

3. 情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队协作意识。

三、教学难点与重点教学难点:余角和补角的性质及其应用。

教学重点:余角和补角的定义及其在实际问题中的应用。

四、教具与学具准备教具:三角板、直尺、圆规。

学具:三角板、直尺、圆规、练习本。

五、教学过程1. 实践情景引入(1)请同学们观察三角板,找出其中互为余角和补角的角。

(2)引导学生思考:在实际生活中,余角和补角有哪些应用?2. 新课导入(1)讲解余角的定义、性质。

(2)讲解补角的定义、性质。

3. 例题讲解(1)求出两个角的余角和补角。

(2)已知一个角的度数,求其余角和补角。

4. 随堂练习(1)完成课本P65的练习题。

(2)小组讨论:如何利用余角和补角的性质解决实际问题?5. 小结六、板书设计1. 定义:余角:两个角的和为90°的两个角。

补角:两个角的和为180°的两个角。

2. 性质:(1)互为余角的两个角之和为90°。

(2)互为补角的两个角之和为180°。

3. 应用:(1)求角的余角和补角。

(2)解决实际问题。

七、作业设计1. 作业题目:(1)求出下列各角的余角和补角:① 30° ② 45° ③ 60°(2)已知一个角的度数,求其余角和补角,并说明实际应用。

2. 答案:(1)① 余角:60°,补角:150°;② 余角:45°,补角:135°;③ 余角:30°,补角:120°。

余角和补角教案

余角和补角教案

余角和补角教案余角和补角教案余角和补角教案1教学目标:1、知识与技能:⑴、在具体的现实情境中,认识一个角的余角和补角,掌握余角和补角的性质。

⑵、了解方位角,能确定具体物体的方位。

2、过程与方法:进一步提高学生的抽象概括能力,发展空间观念和知识运用能力,学会简单的逻辑推理,并能对问题的结论进行合理的猜想。

3、情感态度与价值观:体会观察、归纳、推理对数学知识中获取数学猜想和论证的重要作用,初步数学中推理的严谨性和结论的确定性,能在独立思考和小组交流中获益。

重、难点及关键:1、重点:认识角的互余、互补关系及其性质,确定方位是本节课的重点。

2、难点:通过简单的推理,归纳出余角、补角的性质,并能用规范的语言描述性质是难点。

3、关键:了解推理的意义和推理过程是掌握性质的关键。

教学过程:一、引入新课:让学生观察意大利著名建筑比萨斜塔。

比萨斜塔建于1173年,工程曾间断了两次很长的时间,历经约二百年才完工。

设计为垂直建造,但是在工程开始后不久便由于地基不均匀和土层松软而倾斜。

二、新课讲解:1、探究互为余角的定义:如果两个角的和是90(直角),那么这两个角叫做互为余角,其中一个角是另一个角的余角。

即:1是2的余角或2是1的余角。

2、练习⑴:图中给出的各角,那些互为余角?3、探究互为补角的定义:如果两个角的和是180(平角),那么这两个角叫做互为补角,其中一个角是另一个角的补角。

即:3是4的补角或4是3的补角。

4、练习⑵:(1)图中给出的各角,那些互为补角?(2)填下列表:a的余角 a的补角53245776223x结论:同一个锐角的补角比它的余角大90。

(3)填空:①70的余角是,补角是。

②a(90)的它的余角是,它的补角是。

重要提醒:ⅰ(如何表示一个角的余角和补角)锐角a的余角是(90a )a的补角是(180a )ⅱ互余和互补是两个角的数量关系,与它们的位置无关。

5、讲解例题:例1:若一个角的补角等于它的余角4倍,求这个角的度数。

人教版七年级上册4.3.3余角和补角教案

人教版七年级上册4.3.3余角和补角教案
五、教学反思
在今天的课堂中,我发现学生们对余角和补角的概念和性质的理解程度有所不同。有的学生能够迅速抓住定义和性质的核心,而有的学生在这些方面显得有些吃力。这让我意识到,在教学过程中,需要针对不同水平的学生进行分层教学,以确保每个学生都能跟上课程的进度。
在讲授新课的过程中,我尝试通过生动的例子和实际操作,让学生们更直观地理解余角和补角的概念。从学生的反馈来看,这种方法效果不错,他们能够将抽象的几何知识具体化,更好地理解和记忆。但在讲解性质的部分,我感觉自己可能讲得有些快,没有给学生们足够的时间消化吸收。在以后的课堂中,我会注意放慢讲解速度,让学生有更多的时间去思考和提问。
二、核心素养目标
1.培养学生几何直观和空间想象能力,通过观察和画图,理解余角和补角的概念及其相互关系。
2.提升学生逻辑推理和问题解决能力,运用余角和补角的性质进行推理和计算,解决实际问题。
3.培养学生数学抽象和数学建模素养,从具体实例中抽象出余角和补角的规律,形成数学模型,并能应用于解决类似问题。
4.强化学生数学运算和数据分析能力,灵活运用公式和性质进行余角和补角的计算,分析数据,得出结论。
人教版七年级上册4.3.3余角和补角教案
一、教学内容
人教版七年级上册4.3.3余角和补角:本节课主要围绕余角和补角的概念、性质及计算方法展开。内容包括:
1.余角的定义:两个角的和等于90°时,这两个角互为余角。
2.补角的定义:两个角的和等于180°时,这两个角互为补角。
3.余角和补角的性质:
a.互为余角的两个角的和为90°;
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“余角和补角在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。

最新人教版七年级数学上册《余角和补角》优质教案

最新人教版七年级数学上册《余角和补角》优质教案

4.3.3 余角和补角一、新课导入1.导入课题:在5.12大地震中,都江堰大坝受到严重损害,需要修复加固.施工前要求先测量大坝的倾斜角(即图中的∠1),但坝底是由石块堆积而成,量角器无法伸入大坝底部测量,聪明的你有什么简单的方法吗?要解决这问题,我们先来学习4.3.3余角和补角(板书设计).2.三维目标:(1)知识与技能①在具体的现实情境中,认识一个角的余角与补角,掌握余角和补角的性质.②了解方位角,能确定具体物体的方位.(2)过程与方法进一步提高学生的抽象概括能力,空间观念的认识和知识运用的能力,学会简单的逻辑推理,并能对问题的结论进行合理的猜想.(3)情感态度体会观察、归纳、推理对数学知识中获取数学猜想和论证的重要作用,初步理解数学中推理的严谨性和结论的确定性,能在独立思考和小组交流中获益.3.学习重、难点:重点:余角、补角的意义和性质;方位角及其应用.难点:余角、补角及其性质的应用;画方位角确定物体的具体位置.二、分层学习1.自学指导:(1)自学范围:教材第137页例3之前的容.(2)自学时间:8分钟.(3)自学要求:认真阅读课文,弄清楚两个角互余,两个角互补的意义的性质,并能用几何语言描述它们.(4)自学参考提纲:①如果两个角的和等于90°(直角),就说这两个角互为余角,即其中一个角是另一个的余角,用几何语言表示:如果∠α+∠β=90°,那么∠α与∠β互为余角,反过来也成立.②如果两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个的补角,用几何语言表示:如果∠α+∠β=180°,那么∠α与∠β互为补角,反过来也成立.③a.已知∠α是锐角,则∠α的余角可表示为90°-∠α,∠α的补角可表示为180°-∠α.若∠α的补角是它的3倍,则∠α=45°.b.仿①用几何语言说理的方式说明“等角的补角相等”.∠1与∠3互为补角,∠2与∠4互为补角,∠1=∠2,那么∠3=180°-∠1,∠4=180°-∠2,所以∠3=∠4,这说明∠1的补角与∠2的补角相等,即等角的补角相等.c.对于余角也有类似性质:同角(等角)的余角相等.④∠1与∠2、∠3都互为补角,那么∠2=180°-∠1,∠3=180°-∠1,所以∠2=∠3,这说明∠1的补角∠2、∠3相等,即同角的补角相等.2.自学:同学们可结合自学指导进行学习.3.助学:(1)师助生:①明了学情:教师巡视课堂,了解学生的自学情况.②差异指导:根据学情进行相应指导.(2)生助生:小组内同学间相互交流、纠错.4.强化:(1)余角、补角的意义.(2)余角、补角的性质.(3)练习:①教材第138页练习第1题.互为余角:第1个角与第4个角,第2个角与第3个角.互为补角:第1个角与第8个角,第2个角与第7个角,第3个角与第6个角,第4个角与第5个角.②已知一个角是70°39′,则它的余角为19°21′,补角为109°21′.③学习以上知识,你能解决“导入课题”中的问题吗?你能想出哪些办法?测量其补角.1.自学指导:(1)自学内容:教材第137页例3和第138页例4.(2)自学时间:8分钟.(3)自学指导:认真阅读课文,体会如何用几何语言进行表述说理,结合图形,进一步理解余角、补角的概念.学会画方位图.(4)自学参考提纲:①例3中要找图中互余的角,就是要找和为90°度的两个角.a.因为点A、O、B在同一直线上,所以∠AOB=180°,即∠AOC+∠BOC=180°.b.又因为OD、OE分别平分∠AOC和∠BOC,所以∠COD=12∠AOC,∠COE=12∠BOC,所以∠COD+∠COE=12∠AOC+12∠BOC=12∠AOB=90°,所以∠COD与∠COE互为余角.c.因为∠AOD=∠COD,∠BOE=∠COE,所以互为余角的角还有∠AOD和∠COE,∠COD和∠BOE,∠AOD和∠BOE.d.观察本例的图形,除了∠AOC与∠BOC互补外,还有哪些角互为补角?∠AOD和∠DOB∠AOE和∠EOB②a.在课本上完成例4中未完成的画图.b.例4中,灯塔A在货轮O的南偏东60°方向上,反过来,货轮O在灯塔A的什么方向上?北偏西60°c.如图,射线OA表示的方向是北偏西30°,射线OB表示的方向是南偏西45°或西南方向,射线OC表示的方向是南偏东70°.2.自学:同学们可结合自学指导进行学习.3.助学:(1)师助生:①明了学情:教师巡视课堂,了解学生的自学情况.②差异指导:根据学情进行相应指导.(2)生助生:小组内同学间相互交流,纠错.4.强化:(1)理解余角、补角的概念,体会如何用几何语言表述说理.(2)方位角在航行、测绘等工作中经常用到,常以正北,正南方向为基准.三、评价1.学生自我评价:让学生交流学习目标的达成情况及学习的感受等.2.教师对学生的评价:(1)表现性评价:教师对学生在本节课学习中的整体表现进行总结和点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时教学关键在引领学生抓住两角之间特殊关系的要求:涉及角的个数只能是两个,角与角间数量关系是固定的,且与角的位置无关.指导学生解应用题时要认识到:由互余、互补的关系转化为方程计算;实现等角的寻找或角的位置改变.而在方位角的学习中,让学生在自己探索和交流的同时掌握方位角的判断与应用,从而进一步加深对余角和补角的认识.本课时内容很好地体现了数形结合的数学思想,要引导学生形成图形与数式间灵活转化以合理解题的能力.一、基础巩固1.(10分)一个角等于63°29′,则它的余角等于26°31′,它的补角等于116°31′.2.(10分)一个角的补角是余角的3倍,则这个角的度数是45°.3.(10分)射线OA是东北方向,射线OB是北偏西60°方向,则∠AOB的度数是105°.4.(10分)下列说法不正确的是(B)A.任意两直角互补B.任意两锐角互余C.同角或等角的补角相等D.同角或等角的余角相等5.(10分)下列结论正确的个数为(C)①互余且相等的两个角都是45°②锐角的补角一定是钝角③一个角的补角一定大于这个角④一个锐角的补角比这个角的余角大90°A.1个B.2个C.3个D.4个6.(20分)按照上北下南,左西右东的规定,画出表示东南西北的十字线,然后在图上画出来表示下列方向的射线.(1)北偏西30°;(2)南偏东60°;(3)北偏东15°;(4)西南方向.二、综合应用7.(20分)如图,将一副三角尺按不同位置摆放,在哪种摆放方式中∠α与∠β互余?在哪种摆放方式中∠α与∠β互补?在哪种摆放方式中∠α与∠β相等?(1) (2) (3) (4)解:(1)互余;(2)(3)相等;(4)互补.三、拓展延伸8.(10分)如右图,E、D、F在同一条直线上,∠CDE=90°,∠1=∠2.(1)哪些角互为余角?哪些角互为补角?(2)∠ADC与∠BDC有什么关系?为什么?(3)∠ADF与∠BDE有什么关系?为什么?解:(1)互余:∠EDA和∠ADC,∠FDB和∠BDC,∠ADE和∠BDC,∠ADC和∠BDF;互补:∠EDA和∠ADF,∠EDC和∠CDF,∠EDB和∠BDF.(2)∠ADC=∠BDC,∵∠CDE=∠CDF=90°,∠1=∠2,∴∠CDE-∠1=∠CDF-∠2,∠ADC=∠BDC.(3)∠ADF=∠BDE.∵∠1=∠2,∴∠1+∠ADB=∠2+∠ADB,即∠BDE=∠ADF.学习小提示同学们,通过这节课的学习,你们学到了哪些知识?明白什么道理?时间就像日历一样,撕掉一张就不会再回来。

4.3.3余角和补角教案 2022-2023学年人教版七年级上册数学

4.3.3余角和补角教案 2022-2023学年人教版七年级上册数学

4.3.3 余角和补角教案一、教学目标1.掌握余角和补角的概念;2.熟练计算给定角度的余角和补角;3.能够灵活运用余角和补角的概念解决实际问题。

二、教学内容1.余角的定义和性质;2.补角的定义和性质;3.余角和补角的计算方法;4.余角和补角在实际问题中的应用。

三、教学重点和难点1.掌握余角和补角的概念和计算方法;2.能够将余角和补角的概念应用到实际问题中解决问题。

四、教学准备1.教师准备:教案、黑板、粉笔、练习题等;2.学生准备:课本、笔记本、作业本等。

五、教学过程1. 导入教师可以先引入角的概念,并复习角的度量单位和计算方法。

2. 角的余角和补角1.引入余角和补角的概念。

余角是指与某个角度相加等于90°的角度,补角是指与某个角度相加等于180°的角度。

2.指导学生计算一些具体角度的余角和补角,如30°的余角和补角分别是60°和150°。

3.引导学生总结余角和补角的计算方法,并进行相关练习。

3. 余角和补角的性质1.引导学生发现余角和补角的性质:余角相等,补角相等。

2.通过具体的角度进行演示和练习,加深学生对余角和补角性质的理解。

4. 应用题解析1.引导学生运用余角和补角的概念解决实际问题,如通过已知的角度计算其余角和补角。

2.给学生提供一些应用题,并进行讲解和分析。

5. 总结和拓展1.教师对本节课的内容进行总结,强调余角和补角的重要性和应用价值。

2.引导学生思考其他角度相关的概念和性质。

六、课堂练习1.计算下列角度的余角和补角:a)40°b)75°c)125°d)170°2.解决实际问题:小明站在地面上观察一棵树,他所站的位置与树的底部所连线与水平方向的夹角为30°,那么小明与树顶所连线与水平方向的夹角是多少度?七、作业布置1.完成课堂练习中的题目;2.按照教师要求完成相关课后习题。

八、教学反思通过本节课的教学,学生对余角和补角的概念和计算方法有了更深入的理解,并能够将其应用到实际问题中解决问题。

余角和补角人教版七年级数学上教案

余角和补角人教版七年级数学上教案

余角和补角人教版七年级数学上教案一、教学内容本节课选自人教版七年级数学上册第四章第四节“余角和补角”。

详细内容包括:1. 余角的定义及性质;2. 补角的定义及性质;3. 求一个角的余角和补角;4. 判断两个角是否互为余角或补角;5. 应用余角和补角解决实际问题。

二、教学目标1. 知识与技能:理解并掌握余角和补角的定义、性质,能够准确求出一个角的余角和补角,以及判断两个角是否互为余角或补角;2. 过程与方法:通过实践情景引入、例题讲解、随堂练习,培养学生运用余角和补角知识解决问题的能力;3. 情感态度与价值观:激发学生学习数学的兴趣,提高学生的合作意识和探究精神。

三、教学难点与重点1. 教学重点:余角和补角的定义及性质,求一个角的余角和补角;2. 教学难点:判断两个角是否互为余角或补角,应用余角和补角解决实际问题。

四、教具与学具准备1. 教具:三角板、量角器、多媒体课件;2. 学具:三角板、量角器、练习本。

五、教学过程1. 导入新课:通过实际情景引入,让学生观察三角板上的角度关系,引出余角和补角的概念;2. 讲解新课:(1)余角的定义及性质:引导学生观察三角板,发现一个角与其余角的和为90度,进而得出余角的定义及性质;(2)补角的定义及性质:让学生观察三角板上的补角关系,发现一个角与其补角的和为180度,进而得出补角的定义及性质;(3)求一个角的余角和补角:讲解如何利用三角板和量角器求一个角的余角和补角;(4)判断两个角是否互为余角或补角:通过例题讲解,让学生掌握判断方法;3. 随堂练习:让学生运用所学知识进行练习,巩固余角和补角的性质;4. 小组讨论:分组讨论如何应用余角和补角解决实际问题,培养学生的合作意识和探究精神;六、板书设计1. 余角和补角2. 内容:(1)余角的定义及性质;(2)补角的定义及性质;(3)求一个角的余角和补角;(4)判断两个角是否互为余角或补角。

七、作业设计1. 作业题目:(1)求角的余角和补角:给出5个角度,让学生求出它们的余角和补角;(2)判断互为余角或补角:给出5组角度,让学生判断它们是否互为余角或补角;(3)应用题:设计23道应用题,让学生运用余角和补角知识解决问题。

人教版七年级上数学《余角和补角》教案

人教版七年级上数学《余角和补角》教案

《余角和补角》教案
一、教学目标
1.理解余角和补角的概念,掌握它们的性质和应用。

2.通过观察、比较、归纳、演绎等活动,培养数学思维能力和解决问题的能力。

3.感受数学与现实生活的联系,激发学习数学的兴趣和热情。

二、教学内容与过程
1.导入新课
通过展示一些常见的几何图形,引导学生观察并思考:这些图形有什么特点?它们之间有什么联系?引入余角和补角的概念。

1.学习余角和补角的概念
(1)余角:如果两个角的和等于90度,那么这两个角互为余角。

(2)补角:如果两个角的和等于180度,那么这两个角互为补角。

通过讲解和示范,帮助学生理解余角和补角的概念及特征。

1.余角和补角的性质
(1)余角的性质:等角的余角相等。

(2)补角的性质:等角的补角相等。

(3)对顶角相等。

通过实例和练习,让学生掌握余角和补角的性质,并能利用它们解决实际问题。

1.余角和补角的计算
(1)利用余角和补角的性质进行计算。

(2)利用对顶角相等进行计算。

通过实例和练习,让学生掌握余角和补角的计算方法,提高他们的计算能力和应用能力。

1.课堂小结与布置作业
总结本节课学习的内容,强调余角和补角的重要性及其应用。

布置相关练习题和思考题,要求学生掌握基本概念和知识,培养其数学思维能力和解决问题的能力。

余角和补角的教案

余角和补角的教案

余角和补角的教案一、教学目标1. 知识目标:理解余角的概念;掌握求余角的方法;了解补角的概念;掌握求补角的方法。

2. 能力目标:能够熟练求解余角和补角的问题;能够运用余角和补角概念解决实际问题。

3. 情感目标:培养学生对数学的兴趣和爱好;培养学生对求解问题的思考能力。

二、教学重难点1. 教学重点:求解余角和补角的方法;运用余角和补角概念解决实际问题。

2. 教学难点:能够熟练运用余角和补角概念解决实际问题。

三、教学过程Step 1 引入新知识1. 引导学生回顾角度的概念和度量方法。

2. 提问:在角度的度量中,我们还有哪些相关的概念需要了解?3. 引入余角的概念,并通过图例解释余角的含义,引导学生理解余角的概念。

Step 2 讲解求同一角的余角1. 提问:如何求同一角的余角?2. 让学生通过观察图例来总结求同一角余角的方法,并进行讲解。

3. 练习:求解给定角的余角。

Step 3 引入补角的概念1. 提问:在角度的度量中,我们还有哪些相关的概念需要了解?2. 引入补角的概念,并通过图例解释补角的含义,引导学生理解补角的概念。

Step 4 讲解求同一角的补角1. 提问:如何求同一角的补角?2. 让学生通过观察图例来总结求同一角补角的方法,并进行讲解。

3. 练习:求解给定角的补角。

Step 5 综合运用1. 让学生通过实际问题来综合运用余角和补角的概念进行解题。

2. 分组讨论,并展示解题过程和答案。

Step 6 总结归纳1. 让学生总结余角和补角的概念和求解方法。

2. 引导学生将所学的知识归纳总结。

四、课堂练习1. 求解下列各角的余角和补角:(1) 30°;(2) 45°;(3) 60°;(4) 90°;(5) 150°。

2. 应用题:小明在做一道数学题时,发现一角的度数是40°,他想知道这个角的余角和补角各是多少度?五、作业布置1. 完成课堂练习中的题目。

人教版七年级数学上册4.3.3余角和补角教学设计

人教版七年级数学上册4.3.3余角和补角教学设计
(五)总结归纳
1.教师引导学生回顾本节课所学内容,总结余角和补角的定义、性质和求解方法。
2.学生分享自己在学习过程中的收获和感悟,提出学习中遇到的问题。
3.教师针对学生的问题进行解答,强调重点和难点。
4.布置课后作业,要求学生在课后巩固所学知识,并预习下一节课的内容。
五、作业布置
为了巩固本节课所学的余角和补角知识,特布置以下作业:
(三)情感态度与价值观
1.培养学生对待数学问题的积极态度,使他们认识到数学在生活中的重要性。
2.激作意识,使他们学会与他人共同解决问题,相互学习,共同进步。
4.培养学生严谨、踏实的学术作风,使他们认识到学习数学需要勤奋和思考。
二、学情分析
例如:一个等腰三角形的底角为50度,求顶角的度数。
4.创新思维题:探讨余角和补角在几何图形中的巧妙应用,设计一道有趣的几何题目,并给出解答。
5.课后阅读:阅读教材相关内容,预习下一节课将要学习的知识,了解直角三角形的性质。
作业要求:
1.请同学们认真完成作业,保持字迹工整,以便于教师批改和反馈。
2.遇到问题及时与同学或老师沟通交流,共同解决,提高自己的解题能力。
2.自主探究,理解概念:
给学生提供丰富的学习资源,如教材、教辅、网络资料等,让他们在自主学习的基础上,通过小组讨论、师生互动等方式,掌握余角和补角的定义及其性质。
3.实践操作,巩固知识:
设计不同难度的练习题,让学生在实践中巩固所学知识。注重分层教学,针对不同学生的需求,提供适当的指导,帮助他们突破难点。
a.基础练习:求给定角的余角和补角;
b.提高练习:运用余角和补角的性质解决实际问题;
c.拓展练习:探讨余角和补角在几何图形中的应用。

最新2024人教版七年级数学上册6.3.3 余角和补角-教案

最新2024人教版七年级数学上册6.3.3 余角和补角-教案

6.3 角6.3.3 余角和补角教学内容 6.3.3 余角和补角课时1核心素养目标1. 了解余角、补角的概念,掌握余角和补角的性质,并能利用余角、补角的知识解决相关问题.2. 了解方位角的概念,并能用方位角知识解决一些简单的实际问题.教学重点了解余角、补角的概念及性质,了解方位角的概念和表达方式.教学难点运用余角、补角和方位角的相关知识解题.教学准备课件、纸片教学过程主要师生活动设计意图一、复习导入二、探究新知一、复习导入如图,∠1 +∠2 =师生活动:教师提问,引导学生回忆上节课关于角的运算的知识,学生积极发言回答,预测学生能够答出∠1 +∠2 =∠AOB.教师追问:当∠AOB = 90°时,∠3 +∠4 等于多少度?当∠AOB= 180°时,∠3 +∠4 等于多少度?学生独立思考,再由学生代表发言,教师给予评价并引导出今日所学的知识.二、探究新知知识点一:余角定义总结:如果两个角的和等于90°(直角),就说这两个角互为余角,即其中每一个角是另一个角的余角.师生活动:教师讲解,学生集体朗读知识.教师强调:余角是两个角之间的关系,可以说∠3与∠4互余;∠3 是∠4 的余角;∠4 是∠3 的余角.设计意图:通过回忆上节课的内容,承上启下引出本节课的内容.设计意图:教师讲解知识,保证知识的有效传达,让学生心中有数.讨论1:此时∠3 与∠4 还互余吗?师生活动:小组讨论,由小组代表发言,教师给予适当的评价与引导,得出结果:∠3与∠4依然互余,并且共同总结:角的数量关系与位置无关.讨论2:钝角有余角吗?师生活动:小组讨论,由小组代表发言,教师引导学生讲述原因,并给予适当的评价,得出结果:钝角没有余角.最后师生共同归纳出结论:只有锐角有余角.几何语言:师生活动:小组讨论,由小组代表发言,教师给予适当的评价与引导,得出结果:钝角没有余角,并且共同总结出结论:只有锐角有余角.知识点二:补角探究1:你能猜猜∠1 与∠2 的数量关系吗?师生活动:通过PPT动画的展示,预测学生可以答出∠1和∠2的和为180°.教师以此引出补角的定义:如果两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角.教师可引导学生将补角和余角进行类比帮助记忆.几何语言:设计意图:通过动画的直观展示帮助学生理解互余是数量关系,与位置无关.设计意图:通过小组讨论,加强学生的自主学习能力与团队合作意识,通过计算或者画图等方法验证,加深对知识的印象与理解,培养学生探索精神.设计意图:规范学生几何语言的书写,为后期几何题目的解答规范做铺垫,养成良好的书写习惯.设计意图:通过动画的直观展示再次让学生明白角的数量关系与位置无关.用类比的方式帮助学生理解补角的知识点,学会举一反三,发展学生自主学习的能力和应用能力.师生活动:教师提示学生类比余角的几何语言,思考补角的定义在题目中应该如何书写运用.学生代表上台板书,教师予以适当的评价与指导,共同得到规范的关于补角的几何语言.判断:下列论述是否正确?①∠1 +∠2 +∠3 = 90°,则∠1、∠2、∠3互余;②∠1 = 20°,∠2 = 100°,∠3 = 180°,则∠1、∠2、∠3 互补;③∠1 +∠2 = 90°,则∠1是余角;∠3 +∠4 = 180°,则∠3是∠4的补角;④如图,∠A不是∠B的余角;⑤如图,∠C是∠A的补角.师生活动:学生独立思考,请学生代表发言,教师引导学生说出判断依据,并给予适当的评价.比一比:看看谁计算得又快又好!师生活动:学生独立思考,教师让先全部算完的小组举手示意,予以适当的表扬奖励.再由小组代表发言,最终计算全部正确的同学举手示意,教师对这些同学予以表扬,并奖励举手最多的小组.知识点三:余角与补角的性质探究2:∠1 与∠2,∠3 都互为补角,∠2 与∠3 的大小有什么关系?师生活动:学生独立思考,由学生代表发言,教师与学生共同完成板书:因为∠1 与∠2,∠3 都互为补角,设计意图:通过判断的方式巩固余角和补角的知识,起到查漏补缺的作用.设计意图:通过比赛的方式提高学生的积极性,提高学生的计算能力,并且帮助学生在解决几何问题中初步形成方程思想.设计意图:让学生通过题目学会补角的性质,脱离图片,让学生体会性质的普遍适用性,帮助学生发展抽象思维.所以∠2 = 180°-∠1,∠3 = 180°-∠1.所以∠2 =∠3.教师引导学生总结出补角的性质:同角(等角)的补角相等.探究3:类比探究2,∠1 与∠2,∠3 都互为余角,∠2 与∠3 的大小有什么关系?师生活动:教师提示学生类比补角的性质完成题目,学生先独立思考,由学生代表板书(预测如下):因为∠1 与∠2,∠3 都互为余角,所以∠2 = 90°-∠1,∠3 = 90°-∠1所以∠2 =∠3.教师及其余同学给出适当评价与鼓励,再由教师引导学生得出余角的性质:同角(等角)的余角相等.例题精析:例1 如图,点A,O,B在同一条直线上,射线OD和射线OE分别平分∠AOC和∠BOC,图中哪些角互为余角?师生活动:学生独立思考,由学生代表发言,教师整理完成板书(如下),并适时提问学生两步转换的原因是什么,引导学生思考其中的原理.练一练:1. 已知∠1与∠2互余,∠2与∠3互补,∠1 = 65°,则∠3 =.2. 一个角是它的余角的1.5倍,则这个角的补角是.师生活动:学生独立思考,由学生代表发言,教师引导学生讲述分析思路并整理板书(如下),并得设计意图:通过类比的形式,帮助学生学习余角的意义,再次练习几何语言的书写,以及这类题目的思考方式.设计意图:让学生熟悉几何语言的书写,并明确每一步的理由,加深对知识的理解与综合运用,强化学生的分析能力和语言规范意识.设计意图:通过练习提高学生的计算能力与应用能力,让学生体会方程思想在几何中的应用,做到数形结合融汇贯通.三、当堂练习到结果.三、当堂练习1. 如果∠AOB +∠BOC = 90°,∠BOC +∠COD = 90°,那么∠AOB与∠COD的关系是() A. 互余 B. 互补 C. 相等 D. 不能确定2. 如图,下列说法中错误的是()A. OA的方向是北偏东30°B. OB的方向是北偏西20°C. OC的方向是西南方向D. OD的方向是南偏东50°设计意图:通过练习巩固余角和补角的知识.设计意图:通过练习检测方位角的知识的掌握情况.板书设计余角和补角一、余角→和为90°二、补角→和为180°三、余角与补角的性质教师与学生一起回顾本节课所学的主要内容,梳理并完善表格.1.培养抽象意识和空间观念。

人教版初中七年级数学上册《余角和补角》教案

人教版初中七年级数学上册《余角和补角》教案

人教版初中七年级数学上册《余角和补角》教案一、教学内容1. 余角的定义与性质2. 补角的定义与性质3. 余角和补角的应用二、教学目标1. 理解并掌握余角和补角的概念及其性质。

2. 能够运用余角和补角的性质解决实际问题。

3. 培养学生的逻辑思维能力和空间想象能力。

三、教学难点与重点1. 教学难点:余角和补角的性质及应用。

2. 教学重点:余角和补角的定义及其相互关系。

四、教具与学具准备1. 教具:三角板、量角器、多媒体设备。

2. 学具:练习本、三角板、量角器。

五、教学过程1. 导入:通过生活中的实例(如剪刀、壁虎爬行等),引导学生发现余角和补角的存在,激发学生学习兴趣。

2. 新课导入:介绍余角和补角的定义,讲解其性质,让学生通过实际操作加深理解。

(1)余角的定义与性质(2)补角的定义与性质(3)余角和补角的相互关系3. 例题讲解:讲解典型例题,让学生学会运用余角和补角的性质解题。

4. 随堂练习:设计有针对性的练习题,巩固所学知识。

六、板书设计1. 《余角和补角》2. 定义:(1)余角的定义(2)补角的定义3. 性质:(1)余角的性质(2)补角的性质4. 应用:(1)余角的应用(2)补角的应用七、作业设计1. 作业题目:(1)求下列角的余角和补角:40°、70°、135°(2)已知一个角的补角是它的2倍,求这个角。

2. 答案:(1)40°的余角是50°,补角是140°;70°的余角是20°,补角是110°;135°的余角是45°,补角是45°。

(2)设这个角为x,则它的补角为180°x。

根据题意得:180°x=2x解得:x=60°八、课后反思及拓展延伸1. 反思:本节课学生对余角和补角的概念及其性质掌握程度,以及解题方法的运用。

2. 拓展延伸:引导学生思考余角和补角在生活中的应用,如建筑设计、工艺品制作等,激发学生学习兴趣,提高学生的创新能力。

数学人教版(2024版)七年级初一上册 6.3.3 余角和补角 教学教案 教学设计02

数学人教版(2024版)七年级初一上册 6.3.3 余角和补角 教学教案 教学设计02

第六章几何图形初步6.3.3 余角和补角【课标要求】理解余角、补角的概念,探索并掌握同角(或等角)的余角相等、同角(或等角)的补角相等的性质.【教学目标】1.在具体情境中认识余角和补角,会利用互余、互补关系求出角的度数.2.探索并掌握余角和补角的性质.3.通过互余与互补关系的应用,进一步提高学生的抽象概括能力和逻辑推理能力.【教学重难点】重点:理解余角、补角的概念及性质.难点:运用余角、补角的相关知识解题.【教学策略】1.通过动态课件演示引出概念,充分调动学生的学习兴趣,把学生吸引到课堂上来,使数学知识充满新鲜感,增强学生对几何图形的敏感性.2.在具体的教学过程中坚持“数形结合”,从学生熟悉的知识着手,讲解余角和补角的性质时,先以代数的形式出现,然后在练习中再强化从图形上形象地理解性质,激发学生的学习兴趣,促成好的学习方法,养成良好的学习习惯.【教学过程】(一)情境导入如图所示,坝底是由石块堆积而成,要测出∠1的度数,你有什么简单的方法吗?要解决这问题,我们先来学习余角和补角.(二)新知初探探究一余角和补角的概念1.如图所示,将一张长方形纸片,沿一个角折叠后,折痕与长方形的边形成了4个角.思考1.∠1与∠2有什么数量关系?解:∠1+∠2=90°.2.∠3与∠4有什么数量关系?解:∠3+∠4=180°.小结:(1)如果两个角的和等于90°(直角),就说这两个角互为余角(简称这两个角互余).(2)如果两个角的和等于180°(平角),就说这两个角互为补角(简称这两个角互补).练习(1)图中给出的各角,哪些互为余角?(2)图中给出的各角,哪些互为补角?解:(1)10°和80°,25°和65°,44°和45°互为余角.(2)10°和170°,30°和150°,60°和120°,80°和100°互为补角.任务一意图说明1.让学生从直观的角度去感受互为余(补)角的概念.并用语言去表达这个概念,培养学生的归纳总结能力和口头表达能力.2.学生回答后教师再进行说明,强调互为余角反映的是角的数量关系,而不是角的位置关系.探究二余角和补角的性质思考如图所示,∠1与∠2,∠3都互为补角,∠2与∠3的大小有什么关系?请说明理由.解:∠2=∠3.理由如下:因为∠1与∠2,∠3都互为补角,所以∠1+∠2=180°,∠1+∠3=180°.所以∠2=180°-∠1,∠3=180°-∠1.所以∠2=∠3.追问你能将这个结论用数学语言进行叙述吗?小结:同角(等角)的补角相等.类似地,可以得到同角(等角)的余角相等.任务二意图说明1.让学生先通过观察得到结论,再对结论进行推理说明,最后用数学语言归纳总结出性质,培养学生的推理能力与归纳总结能力.2.充分放手给学生,让学生自己得出结论,体验到探究的乐趣.探究三例题讲解1.若一个角的补角等于它的余角的4倍,求这个角的度数.解:设这个角为x°,则它的补角是(180-x)°,余角是(90-x)°.根据题意,得180-x=4(90-x).解得x=60.答:这个角的度数是60°.2.如图所示,点A,O,B在同一条直线上,射线OD和射线OE分别平分∠AOC和∠BOC,图中哪些角互为余角?解:因为点A,O,B 在同一条直线上, 所以∠AOC 和∠BOC 互为补角.又因为射线OD 和射线OE 分别平分∠AOC 和∠BOC, 所以∠COD+∠COE=12∠AOC+12∠BOC=12(∠AOC+∠BOC)=90°.所以∠COD 和∠COE 互为余角.同理∠AOD 和∠BOE,∠AOD 和∠COE,∠COD 和∠BOE 也互为余角. 3.如图所示,点O 是直线AB 上一点,∠BOC=∠DOE=90°,请说明: (1)∠1=∠2; (2)∠COF=∠AOE.解:(1)因为∠BOC=∠DOE=90°, 所以∠COE+∠1=90°,∠COE+∠2=90°. 所以∠1=∠2.(2)因为∠1+∠COF=180°,∠2+∠AOE=180°,∠1=∠2, 所以∠COF=∠AOE. 任务三 意图说明1.通过例题的讲解使学生巩固互余和互补的概念,初步体会由定义求一个锐角的余角和一个角的补角的过程.2.通过应用余角和补角的性质解决问题,进一步培养学生的逻辑推理能力. (三)当堂达标 具体内容见同步课件 (四)课堂小结1.余角和补角的概念.2.余角和补角的性质.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3
1
ቤተ መጻሕፍቲ ባይዱ
4
2
余角性质:等角的
相等
3.方位角: (1)认识方位:正东、正南、正西、正北、东南、 北 西南、西北、东北。 (2)找方位角: 乙地对甲地的方位角 ;
西北 东北
西 甲地对乙地的方位角

例 4: 如图.货轮 O 在航行过程中,发现灯塔 A 在它南偏东 60°的方向 东南
西南 南 上,同时,在它北偏东 40°,南偏西 10°,西北(即北偏西 45°)方向上又分别
10 钟

D
C E O B
三、合作探究,落实目标:
1. 探究补角的性质:
A 例 3、如图, ∠1 与∠2 互补,∠3 与∠4 互 补, ∠1= ∠3,那么∠2 与∠4 相等吗?为什么?
2
1
3
4
上面的结论,用文字怎么叙述? 补角的性质:等角的 2.探究余角的性质: 如图∠1 与∠2 互余,∠3 与∠4互余 ,如果∠1=∠3,那么∠2 与∠4相等吗?为什么? 相等。



程 时间 学习要求
学习内容及预见性问题
一、巩固旧知,激趣导入:

5 。 分钟
导入 :在一副三角板中同一块三角板的两个锐角和等于多少度?
(1) 如图 1,已知∠1=61°,∠2=29°,那么∠1+∠2= (2) 如 图 2,已知点 A、O、B 在一直线上 ,∠COD=90°,那么∠1+ ∠2= 。

备课时间 课 题 月 日
年级 数学科备课
月 日 第 星期 课时
设计 第 累计 节 课时
上课时间
余角、补角、方位角
2、掌握余角和补角的性质。 3、了解方位角,能确定具体物体的方位。
1、在具体的现实情境中,认识一个角的余角和补角; 教学目标
教学重点 教学难点
正确求出一个角的余角和补角 从图形中观察角的和差关系

发现了客轮 B,货轮 C 和海岛 D.仿照表示灯塔方位的方法画出表示客轮 B,西 货轮 C 和海岛 D 方向的射线。
O 60 A

四、交流展示,总结提升:

【要点归纳】 1、余角与补角的概念 2、补角的性质:余角的性质:
五、课堂练习、基础达标
1、一个角的余角比它的补角的
1 还少 20 ,求这个角的度数。 3
图 4
∠1+∠2 +∠3 =180° ,那么∠1、∠2、∠3 互为补角吗?
例 1:若一个角的补角等于它的余角 4 倍,求这个角的度数。 例 2:如图∠AOC=∠COB=90°,∠DOE=90°,A、O、B 三点在一直线上 (1)写出∠COE 的余角,∠AOE 的补角; (2)找出图中一对相等的角,并说明理由;
C
1 2 1
D 90° O
2
二、探索新知,初达目标 :
1.互为余角的定义:
图1
图2
思考:如图 3,已知∠1=62°,∠2=118°,那么 ∠1+∠2= (1) 如图 4,A、O、B 在同一直线上,∠1+∠2=
1
2 A
1 O
2 B
图 3 2.互为补角的定义: 问题 1:以上定义中的“互为”是什么意思? 问题 2:若
2、若 和 互余,且 : =7:2,求 、 的度数
课后发展 :1、A 完成课后 P
B、C
2、预习
*选做作业
相关文档
最新文档