小学奥数等差数列资料讲解

合集下载

小学奥数等差数列(新颖)

小学奥数等差数列(新颖)

小学奥数等差数列(新颖)
简介
本文档将介绍小学奥数中的等差数列,并提供一些新颖的思路和方法来解决相关问题。

等差数列的定义
等差数列是指一个数列中的任意两个相邻项之差相等的数列。

通常用字母a表示首项,d表示公差,n表示项数,第n项表示为an,等差数列的通项公式为:
an = a + (n - 1)d
求等差数列的和
常见的等差数列求和方法包括以下几种:
- 公式法:根据等差数列的求和公式,直接计算出和的值。

- 递归法:通过不断累加前面的项来求和。

- 等差数列性质法:利用等差数列的性质和规律,简化求和运算。

等差数列的特殊性质
等差数列具有一些特殊的性质,可以帮助我们更好地理解和解题:
- 首项和末项之和等于中间任意两项之和。

- 等差数列的前n项和等于首项与最后一项的和乘以项数的一半。

等差数列的应用举例
以下是一些新颖的等差数列应用示例:
1. 题目:某个等差数列的首项是3,公差是5,项数是10,请
问这个数列的前10项和是多少?
解析:根据等差数列求和公式,代入a=3,d=5,n=10,可以
得出该数列的和。

2. 题目:某个等差数列的前n项和是125,首项是2,公差是6,请问这个数列的项数是多少?
解析:利用等差数列的性质,可以得出项数n满足条件125 = (2 + an) * n / 2,通过简单的计算可以得到n的值。

总结
等差数列在小学奥数中是一个重要的概念,掌握等差数列的定义、求和方法和特殊性质,能够更好地解决相关问题。

该文档介绍了等差数列的基本知识和应用举例,希望对您有所帮助。

小学奥数_等差数列

小学奥数_等差数列

四年级奥数课程部分第八讲:等差数列一,数列有关知识点:⒈ 数列的定义:按一定次序排列的一列数叫做数列.注意:⑴数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;⒉ 数列的项:数列中的每一个数都叫做这个数列的项. 各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,….例如,上述例子均是数列,其中①中,“4”是这个数列的第1项(或首项),“9”是这个数列中的第6项.⒊数列的一般形式: ,,,,,321n a a a a ,或简记为{}n a ,其中n a 是数列的第n项结合上述例子,帮助学生理解数列及项的定义. ②中,这是一个数列,它的首项是“1”,“31”是这个数列的第“3”项,等等 4.等差数列的定义: n a -1-n a =d ,(n ≥2,n ∈N +)后一项减前一项为一定值,我们把这个定值叫公差,用d 表示5.等差数列的通项公式:(每一项都可用通项公式来表示)d n a a n )1(1-+=6.数列的前n 项和:数列{}n a 中,n a a a a ++++ 321称为数列{}n a 的前n 项和,记为n S .求和公式:总和=(首项+末项)×项数÷2=等差中项×项数等差数列的前n 项和公式1:2)(1n n a a n S +=等差数列的前n 项和公式2:2)1(1d n n na S n -+=二.例题精讲例1,认识数列:等差数列:3、6、9、 (96)这是一个首项为3,末项为96,项数为32,公差为3的数列。

例2,有一个数列:4、7、10、13、…、25,这个数列共有多少项提示仔细观察可以发现,后项与其相邻的前项之差都是3,所以这是一个以4为首项,以公差为3的等差数列,根据等差数列的项数公式即可解答。

解:由等差数列的项数公式:项数=(末项-首项)÷公差+1,可得,项数=(25-4)÷3+1=8,所以这个数列共有8项。

小学四年级奥数第二讲__等差数列

小学四年级奥数第二讲__等差数列

等差数列像1,2,3,…,99,100这样的一串数我们称为“等差数列”,下面介绍有关等差数列的概念。

的概念。

若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后后项与前项之差后项与前项之差都相等的数称为等差数列,后项与前项之差一项称为末项。

从第一项开始,后项与前项之差都相等的数称为等差数列,称为公差,数列中数的个数称为项数。

称为公差,数列中数的个数称为项数。

等差数列的求和公式为:等差数列的求和公式为:数列和=(首项+末项)×项数÷2 项数=(末项-首项)÷公差+1 末项=首项+公差×(项数-1)[例1]计算1+2+3+ (1999)[例2]求首项是5,公差是3的等差数列的前1999项的和。

项的和。

[例3]计算3+7+11+ (99)[例4]计算(1)2000-3-6-9-…-51-54 (2)(2+4+6+…+96+98+100)-(1+3+5+…+95+97+99)[例5]2000×1999-1999×1998+1998×1997-1997×1996+…+4×3-3×2+2×1 [例6]在数列3、6、9……,201中,共有多少数?如果继续写下去,第201个数是多少?练习:1.计算:.计算:(1)1+2+3+…+76+77+78 (2)1+3+5+…+95+97+99 (3)2+6+10+14+…+202+206+210 (4)4+7+10+…+292+295+298 2.求首项是5,末项是93,公差是4的等差数列的和。

的等差数列的和。

3.求首项是13,公差是5的等差数列的前30项的和。

项的和。

4.计算:.计算:(1)4000-1-2-3-…-76-77-78 (2)560-557+554-551+…+500-497 (3)204-198+192-186+…+24-18+12-6 *5.计算:.计算:(1)(1+3+5+...+1999)-(2+4+6+ (1998)(2)1+2+3-4+5+6+7-8+9+10+11-12+…+25+26+27-28 6. 在等差数列中4、10、16、22、……中,第48项是多少?508是这个数列的第几项?是这个数列的第几项?7.一个剧院共有25排座位,从第一排起,以后每排都比前一排多2个座位,第25排有70个座位,这个剧院共有个座位,这个剧院共有 个座位。

小学奥数知识讲解-等差数列求和

小学奥数知识讲解-等差数列求和

第六讲等差数列求和(一)小朋友们,还记得我们第一讲的内容吗一一数中的规律。

那么对于一列有规律的数列我们怎么来求和呢?上一讲我们利用配对求和的方法能够很快解决一部分求和的问题,但是,当算式再复杂点又该怎样来解决呢?我们这一讲来介绍一种更快捷简单易懂的方法!我们先来认识什么是等差数列,如:1+2 + 3+……+ 49+ 50; 2 + 4 + 6+……+ 98+ 100。

这两列数都有共同的规律:每一列数从第二项开始,后一个数减去前一项的差都相等(相等差又叫公差)。

像这样的数列我们将它称之为等差数列。

我们再来掌握两个公式,对于等差数列,如果用字母S代表没一列数的和,字母a代表首项(即第1项),字母b代表末项,字母n 代表项数(加数的个数),那么S=(a+ b)x n —2。

如果n不容易直接看出,那么可用公式来计算出来:n =(b- a)宁d+ 1例【1】求1 + 2 + 3+……+ 1998+ 1999的和。

分析首项a= 1,末项b= 1999,项数n= 1999。

解S=( a+ b)x n —2=(1 + 1999)X 1999^ 2=2000X 1999^ 2=1000X 1999=1999000例【2】求111 + 112 + 113+……+ 288+ 289的和。

分析首项a= 111,末项b = 289,公差d= 1,项数n=(289—111)- 1 + 1 = 178+ 1 = 179。

解S=( a+ b)x n- 2=(111 + 289)X 179- 2=400X 179- 2=200X 179=35800例【3】求2+4 + 6+……+ 196+ 198的和。

分析首项a= 2,末项b= 198,公差d= 2,项数n= (198-2) -2+ 1 = 98+ 1 = 99。

解S=(a+ b)x n-2=(2+ 198)X 99-2=200X 99-2=100X 99=9900例【4】求297+ 294+ 291+……+ 9+6+ 3的和。

等差数列(小数数学 五年级奥数)

等差数列(小数数学 五年级奥数)

等差数列知识与方法:像(1)1,2,3,4,5,…;(2)10,20,30,40,50,…从第2项起,每一项与它前一项的差等于同一个常数的数列,叫做等差数列。

这个常数叫做等差数列的公差,通常用字母d表示。

在等差数列a1,a2,a3,…a n中,它的公差是d,那么a2=a1+da3=a2+d=(a1+d)+d=a1+2da4=a3+d=(a1+2d)+d=a1+3d…a n=a1+(n-1)×d(等差数列的通项公式)由此可见,等差数列从第2项起,每一项都等于第一项加上公差的若干倍,这个倍数等于这项的项数减1的差,利用它可以求出等差数列的任何一项。

例题1:求等差数列3,8,13,18......的第38项和第69项。

练习1:求等差数列1,4,7,10,13.....的第20项和第80项.练习2:超市工作人员在商品上依次编号,分别为4,8,12,16......,请问第34个商品上标注的是什么数字?第58个标注的是什么数字?例题2:36个小学生排成一排玩报数游戏,后一个同学报的数总比前一个同学多报8,已知最后一个同学报的数是286,第一个同学报的数是几?练习1:仓库里有一叠被编上号的书,共40本,已知每下面一本书比上面一本书的号码多5,最后一本书的编号是225,请问第一本书的编号是多少?练习2:幼儿园给小朋友们发玩具,共32个小朋友,每人一个,每个玩具上都有编号,已知最后一个小朋友玩具编号是98,每一个玩具的编号比后一个玩具的编号少3,问第一个小朋友上玩具编号是多少?例题3:等差数列4,12,20......,中的580是第几项?练习1:等差数列3,9,15,21.....中381是第几项?练习2:糖果生产商为机器编号,依次为7,13,19,25......。

问编号为433的机器是第几个?例题4:一批货箱上面的标号是按等差数列排列的。

第1项是3.6,第5项是12,求它的第2项.练习1:有一个等差数列的第1项是2.4,第7项是26.4,求它的第5项.练习2:有一排用等差数列编码的彩色小旗,第1面小旗上的号码为3.7,第8面小旗上的号码为38.7。

小学奥数等差数列基础知识(精编文档).doc

小学奥数等差数列基础知识(精编文档).doc

【最新整理,下载后即可编辑】等差数列基础知识等差数列是小升初奥数的重点考点1、数列定义:(1)1,2,3,4,5,6,7,8,…(等差)(2)2,4,6,8,10,12,14,16,…(等差)(3)1,4,9,16,25,36,49,…(非等差)若干个数排成一列,像这样一串数,称为数列。

数列中的每一个数称为一项,其中第一个数称为首项,第二个数叫做第二项以此类推,最后一个数叫做这个数列的末项,数列中数的个数称为项数,如:2,4,6,8, ,1002、等差数列:从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列。

我们将这个差称为公差例如:等差数列:3、6、9……96,这是一个首项为3,末项为96,项数为32,公差为3的数列。

3、计算等差数列的相关公式:(1)末项公式:第几项(末项)=首项+(项数-1)×公差(2)项数公式:项数=(末项-首项)÷公差+1(3)求和公式:总和=(首项+末项)×项数÷2在等差数列中,如果已知首项、末项、公差。

求总和时,应先求出项数,然后再利用等差数列求和公式求和。

例:求等差数列3,5,7, 的第10项,第100项,并求出前100项的和。

解:我们观察这个一个等差数列,已知:首项=3,公差=2,所以由通项公式,得到第10项:第几项=首项+(项数-1)×公差第10项=3+(10-1)×2=21第100项:第几项=首项+(项数-1)×公差第100项=3+(100-1)×2=201前100项的和:总和=(首项+末项)×项数÷2前100项的和=3+5+7+ 201=(3+201)⨯100÷2=10200.练习1:1、6+7+8+9+……+74+75=(2835)2、2+6+10+14+……+122+126=(2112)3、已知数列2、5、8、11、14……,47应该是其中的第几项?(16)项数=(末项-首项)÷公差+116=(47-2)÷3+14、有一个数列:6、10、14、18、22……,这个数列前100项的和是多少?(20400)第几项(末项)=首项+(项数-1)×公差总和=(首项+末项)×项数÷25、在等差数列1、5、9、13、17……401中,401是第几项(101)?第50项是多少?(197)项数=(末项-首项)÷公差+1第几项(末项)=首项+(项数-1)×公差6、1+2+3+4+……+2007+2008=总和=(首项+末项)×项数÷2(1+2008)×2008÷2=20170367、(2+4+6+……+2000)-(1+3+5+……+1999)=总和=(首项+末项)×项数÷2【(2+2000)×1000÷2】-【(1+1999)×1000÷2】=1001000-1000000=1000方法二:(2-1)+(4-3)+……+(2000-1999)=10008、1+2-3+4+5-6+7+8-9+……+58+59-60=总和=(首项+末项)×项数÷2(1+2+……+60)-(3+6+……+60)=5709、有从小到大排列的一列数,共有100项,末项为2003,公差为3,求这个数列的和。

四年级奥数等差数列和等比数列

四年级奥数等差数列和等比数列

四年级奥数等差数列和等比数列
简介
本文将介绍四年级奥数中的等差数列和等比数列概念及其求和公式。

等差数列
等差数列是指一个数列中的每一项与它的前一项之差都相等。

例如,2、4、6、8、10 就是一个等差数列,其中公差为2。

公式
对于等差数列,可以使用以下公式来求前n项和:
$$S_n = \frac{n}{2} (a_1 + a_n)$$
其中,$S_n$表示前n项的和,$a_1$表示数列的首项,
$a_n$表示数列的第n项。

等比数列
等比数列是指一个数列中的每一项与它的前一项之比都相等。

例如,2、6、18、54、162 就是一个等比数列,其中公比为3。

公式
对于等比数列,可以使用以下公式来求前n项和:
$$S_n = \frac{a_1(1-q^n)}{1-q}$$
其中,$S_n$表示前n项的和,$a_1$表示数列的首项,$q$表示公比,$n$表示项数。

总结
等差数列和等比数列是四年级奥数中常见的数列类型。

通过掌握它们的概念和求和公式,可以帮助学生更好地理解数列的特点和规律,并能应用到实际问题中。

以上是对四年级奥数中的等差数列和等比数列的简要介绍。

希望本文能够对大家有所帮助。

小学奥数等差数列公式

小学奥数等差数列公式

小学奥数等差数列公式公式1:求和公式:等差数列求和=(首项+末项)×项数÷2,即:Sn=(a1+an)×n÷2;公式2:通项公式:第n项=首项+(n-1)×公差,即:an=a1+(n-1)×d;公式3:项数公式:项数=(末项-首项)÷公差+1,即n=(an-a1)÷d+1。

上述三个公式必须掌握此外,还有一个中项定理,也掌握:中项定理:对于作意一个项数为奇数的等差数列来说,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数。

例1:建筑工地有一批砖,码成如右图形状,最上层两块砖,第2层6块砖,第3层10块砖…,依次每层都比其上面一层多4块砖,已知最下层2106块砖,问中间一层多少块砖?这堆砖共有多少块?解:如果我们把每层砖的块数依次记下来,2,6,10,14,…容易知道,这是一个等差数列.方法1:a1=2,d=4,利用公式求出an=2106,则:n=(an-a1)÷d+1=527这堆砖共有则中间一项为a264=a1+(264-1)×4=1054.方法2:(a1+an)×n÷2=(2+2106)×527÷2=555458(块).则中间一项为(a1+an)÷2=1054a1=2,d=4,an=2106,这堆砖共有1054×527=555458(块).此题利用中项定理和等差数列公式均可解!例2:求从1到2000的自然数中,所有偶数之和与所有奇数之和的差.解:根据题意可列出算式:(2+4+6+8+...+2000)-(1+3+5+ (1999)解法1:能够看出,2,4,6,…,2000是一个公差为2的等差数列,1,3,5,…,1999也是一个公差为2的等差数列,且项数均为1000,所以:原式=(2+2000)×1000÷2-(1+1999)×1000÷2=1000.解法2:注意到这两个等差数列的项数相等,公差相等,且对应项差1,所以1000项就差了1000个1,即原式=1000×1=1000.例3:100个连续自然数(按从小到大的顺序排列)的和是8450,取出其中第1个,第3个…第99个,再把剩下的50个数相加,得多少?解:方法1:要求和,我们能够先把这50个数算出来.100个连续自然数构成等差数列,且和为8450,则:由题可知:(首项+末项)×100÷2=8450,求出:(首项+末项)=169。

(完整版)小学奥数--等差数列

(完整版)小学奥数--等差数列

等差数列专题解析典型例题例1、求等差数列3,8,13,18,…的第38项和第69项。

例2、36个小学生排成一排玩报数游戏,后一个同学报的数部比前一个同学多报8,已知最后一个同学报的数是286,则第一个同学报的数是几?像(1)1,2,3,4,5,…(2)10,20,30,40,50,… (3)4111432141,,,,,…这种从第二项起,每一项与它前一项的差等于同一个常数的数列,叫做等差数列.这个常数叫做等差数列的公差,通常用字母d 表示。

在等差数列1a ,n a a a ...,32,它的公差是d ,那么d a a 12d a d d a d a a 2)(1123da d d a d a a 3)2(1234…由此可见,等差数列从第二项起,每一项等于第一项加上公差的若干倍,这个倍数等于这项的项数减1的差,所以:d n a a n )1(1。

这个公式我们称它为等差数列的通项公式,利用它可以求出等差数列中的任何一项。

例3、等差数列4,12,20,…中,580是第几项?例4,一批货箱,上面标的号是按等差数列排列的,第一项是 3.6,第五项是12,求它的第二项.例5、游戏园的智慧梯最高一级宽60厘米,最低一级宽150厘米,中间还有13级,各级的宽度成等差数列,求正中一级的宽。

随堂巩固1、求3+10+17+24+31+…+94的和2、求100至200之间被7除余2的所有三位数的和是多少?3、一个有30项的等差数列,公差是5,末项为154,这个数的首项是多少?4、有12个数组成等差数列,第六项与第七项的和是12,求这12个数的和。

5、在19和91之间插入5个数,使这7个数构成一个等差数列。

写出插入的五个数.6、从广州到北京的某次快车中途要依靠8个大站,铁路局要为这次快车准备多少种不同的车票?这些车票中有多少种不同的票价?7、学校举行乒乓球选拔赛,每个参赛选手都要和其他所有选手各赛一场,一共进行91场比赛,有多少人参加了选拔赛?8、7个小队共种树100棵,各小队种的棵数都不相同,其中种树最多的小队种了18棵树,种树最少的小队至少种了多少棵树?。

小学奥数等差数列

小学奥数等差数列

小学奥数等差数列等差数列是数学中重要的概念之一,也是小学奥数中的常见考点。

本文将介绍等差数列的定义、性质以及解题方法。

1. 等差数列的定义等差数列是指一个数列中的每个数都与它的前一个数之差相等。

通常用字母 a 表示数列的首项,d 表示公差,那么数列中的第 n 项可以表示为:a + (n - 1) * d。

2. 等差数列的性质等差数列具有以下性质:- 公差相等:数列中任意两项之间的差值都相等。

- 递推公式:数列中每一项可以通过前一项加上公差得到。

- 首项与末项:数列中的首项为 a,末项为 a + (n - 1) * d。

- 数列长度:数列中的项数为 n = (末项 - 首项) / 公差 + 1。

3. 等差数列的解题方法解决等差数列的问题通常可采用以下方法:- 求某一项:使用递推公式即可求得数列中任意一项的值。

- 求和:等差数列的前n 项和可以通过求平均数乘以项数得到,即和 = (首项 + 末项) * 项数 / 2。

4. 解题示例假设有一个等差数列,其中首项为 2,公差为 3,求该等差数列的第 5 项和前 5 项的和。

根据等差数列的递推公式,第 5 项可以通过前一项加上公差得到:a5 = a4 + d = 2 + 3 = 5。

根据等差数列的求和公式,前 5 项的和可以计算如下:和 = (首项 + 末项) * 项数 / 2 = (2 + 5) * 5 / 2 = 35。

综上所述,该等差数列的第 5 项为 5,前 5 项的和为 35。

5. 总结等差数列是一个重要的数学概念,在小学奥数中常见。

通过掌握等差数列的定义、性质和解题方法,可以更好地应对相关的考试题目。

三年级上奥数精品讲义等差数列

三年级上奥数精品讲义等差数列

蒙娜丽莎的微笑(等差数列)知识图谱蒙娜丽莎的微笑知识精讲一.等差数列初步1.等差数列相关概念(1)等差数列:任何相邻两项的差都相等的数列.特别要注意,类似于1,2,3,2,1,2,3,2,1,……和1,0,1,0,1,0……的数列,虽然相邻两个数的差都相等,但这样的数列不是等差数列.(2)等差数列中,第1项称为首项,最后1项称为末项,数列中所有数的个数称为项数,而相邻两项的差则被称为公差.(3)在等差数列中,第n 项与第m 项之间相隔m n -个公差. 2.等差数列公式首项:1a ,公差:d ,末项:n a ,项数:n(1)()1=+-⨯末项首项项数公差,()11n a a n d =+-⨯ (2)()1=--⨯首项末项项数公差,()11n a a n d =--⨯ (3)()()1=-÷公差末项首项项数-,()()11n d a a n =-÷- (4)()1=÷+项数末项-首项公差,()11n n a a d =-÷+三点剖析本讲主要培养学生的运算能力,其次注重学生的观察推理能力.本讲内容是在整数计算与找规律的基础上,进一步学习等差数列.主要学习等差数列中首项、末项以及公差等的计算方法.后续课程还会继续学习等差数列求和等内容.课堂引入例题1、 高斯先生带来了这样一组数:1,5,9,13,17,21,25……五分钟后,大家还是一筹莫展……高斯先生给出了这样一张图.同学们,你们学会了“蒙娜丽莎的微笑”吗?请你来帮大家算一算高斯先生的第2个问题吧~例题2、 现有一列数:149,146,143,140,137,……,请问第35个数是多少?(利用课堂引入中的方法来解决)求数列首项和末项例题1、 (1)一个等差数列共有10项.每一项都比它的前一项大2,末项为75,那么首项是________. (2)一个等差数列共有10项.每一项都比它的前一项小2,末项为75,那么首项是________. (3)已知等差数列第4项等于31,第10项等于73,那么首项是________.请大家写出这组数中的第12个数,大家试一试吧~高斯先生,是45,对吗?对的,小南能跟大家分享一下,你是怎么做出来的吗?25是这组数中的第7个数,那我就接着往下写,是29,33,37,41,45.刚刚好45是25之后的第5个数.那如果是让你们写出这列数中第97个数呢?还能用小南的方法吗?高斯先生,这图好像一张笑脸呀!那我们就叫它“蒙娜丽莎的微笑”吧!5①25⑥454 20=×例题2、(1)一个等差数列有13项.每一项都比它的前一项大2,且首项为33,那么末项是几?(2)一个等差数列有13项.每一项都比它的前一项小2,并且首项为33,那么末项是多少?(3)一个等差数列,每一项都比它的前一项大3,第2项为10,那么第12项是多少?(4)一个等差数列首项为4,第10项为49,那么第19项是多少?刚刚求首项了,现在求末项,方法有什么不同呢?例题3、(1)某露天剧场有30排座位,第一排有28个座位,后面每排比前排多2个座位,最后一排有座位多少个?(2)唐小虎做仰卧起坐,第一天做了10个,第七天做了76个,每天做仰卧起坐的数量成等差数列,那么唐小虎第八天做了多少个仰卧起坐?(3)如图所示,有一堆按规律摆放的砖.从上往下数,第1层有1块砖,第2层有3块砖,第3层有5块砖,…….按照这个规律,第101层有多少块砖?这些是应用题哎~跟等差数列有什么关系呢?随练1、一个等差数列首项为13,第9项为29,这个等差数列的第20项为________.随练2、(1)一个等差数列共有13项.每一项都比它的前一项大2,且首项为23,求末项是多少?(2)一个等差数列共有13项.每一项都比它的前一项小7,并且末项为125,求首项是多少?求数列公差例题1、(1)一个等差数列首项为7,第10项为61,那么这个等差数列的公差等于多少?(2)一个等差数列第4项项为7,第10项为61,那么这个等差数列的公差等于多少?公差,第1项和第2项差1个公差;第1项和第3项差2个公差;那么第1项和第5项差几个公差呢?例题2、柯小南先在黑板上写了一个等差数列,刚写完唐小虎就冲上讲台,擦去了其中的大部分数,只留下第四个数31和第十个数73.这个等差数列的公差是________,首项是________.还是先找差几个公差吧?例题3、 一个等差数列的首项为11,第10项为200,这个等差数列的公差等于多少?第19项等于多少? 随练1、 一个等差数列第5项为25,第16项为91,那么这个等差数列的公差等于多少? 随练2、 一个等差数列第4项为25,第15项为113,那么这个等差数列的公差是________.求数列项数例题1、 一个等差数列首项为20,末项为116,公差为6,首项和末项间相隔了________个公差.例题2、 一个等差数列的首项为11,第7项为65,146是第________项.例题3、 一个等差数列首项为5,末项为93,公差为8,那么这个等差数列一共有________项. 例题4、 一个等差数列第3项为50,公差为8,那么130是这个等差数列的第________项.随练1、 一个等差数列首项为5,末项为101,公差为8,那么首项和末项间相隔了________个公差.易错纠改例题1、 学完等差数列后,唐小虎觉得自己掌握的很不错,于是姐姐就给他出了这样的一道题目:图中的方框是小虎的计算过程,你觉得小虎做的对吗?如果不对,请你写出正确的计算过程.是不是要先找出首项和末项差多少呢?求第几项和求项数一样吗?一个等差数列有22项.每一项都比它的前一项小2,并且末项为98,那么首项是多少?难不倒我的,姐姐等我一下哦~姐姐,首项是56,对吧?小虎,你这让我说点什么好呢?唉……拓展1、一个等差数列有12项.每一项都比它的前一项小4,并且末项为56,那么首项是多少?2、一个等差数列共有15项.每一项都比它的前一项大2,并且首项为30,那么末项是__________.3、已知一个等差数列第9项等于131,第10项等于137,这个数列的第1项是_________,第19项是_________.4、等差数列:1,5,9,13,……,那么第101项是________.5、数列2,4,6,8,10,……中,50是第_________个数.6、(1)一个等差数列首项为5,末项为93,公差为8,那么这个等差数列一共有多少项?(2)一个等差数列第3项为50,末项为130,公差为8,那么这个等差数列一共有多少项?7、一个等差数列首项为7,第10项为61,那么这个等差数列的公差是__________.8、一个等差数列第7项为50,第12项为75,那么这个等差数列的公差是__________.9、一个等差数列第2项为24,第10项为64,那么第18项是__________.10、一个等差数列第3项为18,第9项为60,那么第15项是__________.11、分析并口述题目的做题思路及方法.一个等差数列首项为11,第10项为200,这个等差数列的公差等于多少?第19项等于多少?305是第几项?。

小学奥数等差数列

小学奥数等差数列

小学奥数等差数列等差数列是数学中的一种基本数列类型。

它由若干个数排成一列,其中每个数称为一项。

数列中的第一个数称为首项(用a1表示),最后一个数称为末项(用an表示),数列中数的个数称为项数(用n表示)。

如果从第二项开始,后项与其相邻的前项之差都相等,那么这个数列就是等差数列。

这个差值称为公差(用d表示)。

例如,3,6,9,12,15就是一个公差为3的等差数列。

等差数列有三个重要的公式。

第一个是通项公式,它可以用来计算等差数列中任意一项的值。

通项公式为:ana1n-1)×d。

其中,n表示要求的项数。

第二个公式是项数公式,它可以用来计算等差数列中项数的值。

项数公式为:n=(ana1d+1.最后一个公式是求和公式,它可以用来计算等差数列中前n项的和。

求和公式为:a1a2ana1ann÷2.举个例子,如果我们要求等差数列3,5,7,9,11的第10项和第100项,以及前100项的和,我们可以先确定首项a 13和公差d=2,然后代入通项公式计算得到a1021和a100201.再利用求和公式计算前100项的和,得到.总之,等差数列是数学中非常基础的数列类型,掌握其定义和相关公式对于研究数学和物理等科目都非常重要。

1、有一个数列,4、10、16、22……52,这个数列共有13项。

2、一个等差数列,首项是3,公差是2,项数是10.它的末项是21.3、等差数列1、4、7、10……的第30项是88.4、在1、2两数之间插入一个数,使其成为一个等差数列,插入的数为2,等差数列为1、2、3.拓展:1、在12与60之间插入3个数,使这5个数成为一个等差数列,插入的数为24、36、48,等差数列为12、24、36、48、60.2、在6和38之间插入7个数,使他们成为等差数列,这9个数的和为267.例3:有10个朋友聚会,见面时如果每人都要和其余的人握一次手,那么共握了45次手。

练:1、某班有51个同学,毕业时每人都要和其他同学握一次手,那么这个班共握了1275次手。

小学奥数等差数列精讲

小学奥数等差数列精讲

第二章等差数列1. 等差数列的认识(★)(1)知识点速记:若从第二项起,每一项和前一项的差是固定的数,那么该数列就是等差数列。

如:1、5、9、14.......数列的第一项叫首项,数列的最后一项叫末项,数列的个数叫项数,数列后一项和前一项的差叫公差。

2. 等差数列公式(★★)(1)知识点速记:若一个数列是等差数列,那么:末项=首项+(项数-1)×公差项数=(末项-首项)÷公差+1总和=(首项+末项)×项数÷2(2)例二:数列4、7、10、13、16、19........求数列第100项是多少?求数列前100项的和是多少?(3)课堂练习:①已知数列6、14、22、30......求数列第50项是多少?求数列前50项的和是多少?②已知数列16、21、26、31.......、101、106求该数列一共有几个数,该数列的总和是多少3.等差数列应用题(★★)(1)例三:丽丽学英语单词,第一天学会了6个,以后每天都比前一天多学会1个,最后一天学会了16个。

丽丽在这些天中共学会了多少个单词?例四:有10个朋友聚会,见面时如果每人都要和其余的人握一次手,那么共握了多少次手?(2)课堂练习:①有一家电影院,共有30排座位,后一排都比前一排多两个位置,已知第一排有28个座位,那么这家电影院共可以容纳多少名观众②一个家具厂生产书桌,从第二个月起,每个月增加10件,一年共生产了1920件,那么这一年的12月份共生产了多少书桌?家庭作业:1、6+7+8+9+……+74+75=()2、2+6+10+14+……+122+126=()3、已知数列2、5、8、11、14……,47应该是其中的第几项4、有一个数列:6、10、14、18、22……,这个数列前100项的和是多少5、有从小到大排列的一列数,共有100项,末项为2003,公差为3,求这个数列的和。

6、在等差数列6、13、20、27……中,第几个数是1994?7、一个剧场设置了22排座位,第一排有36个座位,往后没排都比前一排多2个座位,这个剧场共有多少个座位?8、省工人体育馆的12区共有20排座位,呈梯形,第1排有10个座位,第2排有11个座位,第3排有12个座位……这个体育馆的12区共有多少个座位?。

小学奥数模块教程等差数列(2016)

小学奥数模块教程等差数列(2016)

一、等差数列的定义(1)先介绍一下一些定义和表示方法定义:从第二项起,每一项都比前一项大(或小)一个常数(固定不变的数),这样的数列我们称它为等差数列.譬如:2、5、8、11、14、从第二项起,每一项比前一项大3 ,递增数列 100、95、90、85、从第二项起,每一项比前一项小5 ,递减数列(2)首项:一个数列的第一项,通常用1a 表示末项:一个数列的最后一项,通常用n a 表示,它也可表示数列的第n 项。

项数:一个数列全部项的个数,通常用n 来表示;公差:等差数列每两项之间固定不变的差,通常用d 来表示; 和 :一个数列的前n 项的和,常用n S 来表示 .二、等差数列的相关公式(1)三个重要的公式① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯() 递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯() 回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白:末项其实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:n m a a n m d -=-⨯(),n m >()② 项数公式:项数=(末项-首项)÷公差+1由通项公式可以得到:11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >). 找项数还有一种配组的方法,其中运用的思想我们是常常用到的. 譬如:找找下面数列的项数:4、7、10、13、、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有484145-+=项,每组3个数,所以共45315÷=组,原数列有15组. 当然还可以有其他的配组方法.知识框架等差数列 发现不同③ 求和公式:和=(首项+末项)⨯项数÷2 对于这个公式的得到可以从两个方面入手: (思路1) 1239899100++++++11002993985051=++++++++共50个101()()()()101505050=⨯=(思路2)这道题目,还可以这样理解: 23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即,和(1001)1002101505050=+⨯÷=⨯=(2) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:① 48123236436922091800+++++=+⨯÷=⨯=(),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯;② 65636153116533233331089++++++=+⨯÷=⨯=(),题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯.一、基础篇:等差数列基本概念及公式的简单应用【例 1】 下面的数列中,哪些是等差数列?若是,请指明公差,若不是,则说明理由.(1)6,10,14,18,22,…,98; (2)1,2,1,2,3,4,5,6; (3)1,2,4,8,16,32,64; (4)9,8,7,6,5,4,3,2; (5)3,3,3,3,3,3,3,3;【例 2】 小朋友们,你知道每一行数列各有多少个数字吗?(1)3、4、5、6、……、76、77、78例题精讲(2)1、3、5、7、……、87、89、91【巩固】4、7、10、13、……、40、43、46【例 3】把比100大的奇数从小到大排成一列,其中第21个是多少?【巩固】从1开始的奇数:1,3,5,7,……其中第100个奇数是_____.【例 4】观察右面的五个数:19、37、55、a、91排列的规律,推知a =________.【巩固】在下面12个方框中各填入一个数,使这12个数从左到右构成等差数列,其中10、16已经填好,这12个数的和为.‍‍‍‍ ‍‍‍‍ ‍‍‍‍16 ‍‍‍‍‍‍‍‍ ‍‍‍‍10 ‍‍‍‍ ‍‍‍‍ ‍‍‍‍ ‍‍‍‍ 【例 5】在等差数列6,13,20,27,…中,从左向右数,第 _______个数是1994.【巩固】5、8、11、14、17、20、,这个数列有多少项?它的第201项是多少?65是其中的第几项?【例 6】(1)如果一个等差数列的第4项为21,第6项为33,求它的第8项.(2)如果一个等差数列的第3项为16,第11项为72,求它的第6项.【巩固】已知一个等差数列第8项等于50,第15项等于71.请问这个数列的第1项是多少?【巩固】如果一等差数列的第4项为21,第10项为57,求它的第16项.【例 7】一个等差数列2,4,6,8,10,12,14,这个数列各项的和是多少?【巩固】有20个数,第1个数是9,以后每个数都比前一个数大3.这20个数相加,和是多少?【例 8】2、4、6、8、10、12、是个连续偶数列,如果其中五个连续偶数的和是320,求它们中最小的一个.【巩固】1、3、5、7、9、11、是个奇数列,如果其中8个连续奇数的和是256,那么这8个奇数中最大的数是多少?【巩固】1、4、7、10、13、…这个数列中,有6个连续数字的和是159,那么这6个数中最小的是几?【例 9】15个连续奇数的和是1995,其中最大的奇数是多少?【巩固】把210拆成7个自然数的和,使这7个数从小到大排成一行后,相邻两个数的差都是5,那么,第1个数与第6个数分别是多少?【例 10】有一个等差数列的平均数为50,第一个数是12,公差是4,求这个数列的和.【巩固】有一个等差数列的平均数为68,第一个数是5,公差是7,求这个数列的和.【例 11】小马虎计算1到2006这2006个连续整数的平均数。

小学奥数-等差数列

小学奥数-等差数列

=125000
求 公 差 :
在19和91之间插入5个数,使这7个数构成一个
等差数列。写出插入的5个数。
(91-19) ÷(7-1)=12 依次为31、43、55、67、79
• 下面这组数是按一定规律排列的,你能求 出这组数列的第48个数是几吗? • 54、58、62、66、70、74、78、82、 86…
=(1+99)×99÷2
= 9900÷2
= 4950
求下列方阵中所有各数的和:
1、2、3、4、……49、50; 2、3、4、5、……50、51; 3、4、5、6、……51、52; ……
解:
每一横行数列之和: 第一行:(1+50) ×50 ÷ 2=1275 第二行:(2+51) × 50 ÷ 2=1325 第三行:(3+51) × 50 ÷ 2=1375
), 16, 19, … ),13,…
(3) 1, 3, 5, 7, 9, (
等差数列:一个数列,从第
个2数开始,依次与前一个
数的差相同,这样的数列叫 等差数列
一套书有5本,每隔5年出版一本,第三本是1998年 出版的。其他几本书分别是哪年出版的?
1986 1992 1998 2004 2010
这个数列有几个数
……
第四十九行:(49+98) × 50 ÷ 2=36
第五十行:(50+99) × 50 ÷ 2=3725 方阵所有数之和: 1275+1325+1375+……+3675+3725 =(1275+3725) × 50 ÷ 2
49、50、51、52、……97、98; 50、51、52、53、……98、99。

(小学奥数)等差数列的认识与公式运用

(小学奥数)等差数列的认识与公式运用

本講知識點屬於計算板塊的部分,難度較三年級學到的該內容稍大,最突出一點就是把公式用字母表示。

要求學生熟記等差數列三個公式,並在公式中找出對應的各個量進行計算。

一、等差數列的定義 ⑴ 先介紹一下一些定義和表示方法定義:從第二項起,每一項都比前一項大(或小)一個常數(固定不變的數),這樣的數列我們稱它為等差數列.譬如:2、5、8、11、14、17、20、 從第二項起,每一項比前一項大3 ,遞增數列100、95、90、85、80、 從第二項起,每一項比前一項小5 ,遞減數列⑵ 首項:一個數列的第一項,通常用1a 表示末項:一個數列的最後一項,通常用n a 表示,它也可表示數列的第n 項。

項數:一個數列全部項的個數,通常用n 來表示;公差:等差數列每兩項之間固定不變的差,通常用d 來表示;和 :一個數列的前n 項的和,常用n S 來表示 .二、等差數列的相關公式知識點撥教學目標等差數列的認識與公式運用(1)三個重要的公式① 通項公式:遞增數列:末項=首項+(項數1-)⨯公差,11n a a n d =+-⨯()遞減數列:末項=首項-(項數1-)⨯公差,11n a a n d =--⨯()回憶講解這個公式的時候可以結合具體數列或者原來學的植樹問題的思想,讓學生明白 末項其實就是首項加上(末項與首項的)間隔個公差個數,或者從找規律的情況入手.同時還可延伸出來這樣一個有用的公式:n m a a n m d -=-⨯(),n m >()② 項數公式:項數=(末項-首項)÷公差+1由通項公式可以得到:11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >). 找項數還有一種配組的方法,其中運用的思想我們是常常用到的.譬如:找找下麵數列的項數:4、7、10、13、、40、43、46 ,分析:配組:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、、(46、47、48),注意等差是3 ,那麼每組有3個數,我們數列中的數都在每組的第1位,所以46應在最後一組第1位,4到48有484145-+=項,每組3個數,所以共45315÷=組,原數列有15組. 當然還可以有其他的配組方法.③ 求和公式:和=(首項+末項)⨯項數÷2對於這個公式的得到可以從兩個方面入手:(思路1) 1239899100++++++ 11002993985051=++++++++共50个101()()()()101505050=⨯=(思路2)這道題目,還可以這樣理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即, 和 (1001)1002101505050=+⨯÷=⨯=有項的平均數,也等於首項與末項和的一半;或者換句話說,各項和等於中間項乘以項數.譬如:①48123236436922091800+++++=+⨯÷=⨯=(),題中的等差數列有9項,中間一項即第5項的值是20,而和恰等於209⨯;②65636153116533233331089(),++++++=+⨯÷=⨯=題中的等差數列有33項,中間一項即第17項的值是33,而和恰等於3333⨯.例題精講模組一、等差數列基本概念及公式的簡單應用等差數列的基本認識【例 1】下麵的數列中,哪些是等差數列?若是,請指明公差,若不是,則說明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、 等差数列的定义
定义:从第二项起,每一项都比前一项大(或小)一个常数(固定不变的数),这样的数列我们称它为等
差数列.
譬如: 2、5、8、11、14、17、20、L 从第二项起,每一项比前一项大3 ,递增数列
100、95、90、85、80、L 从第二项起,每一项比前一项小5 ,递减数列
关键词:
首项:一个数列的第一项,通常用1a 表示
末项:一个数列的最后一项,通常用n a 表示,它也可表示数列的第n 项。

项数:一个数列全部项的个数,通常用n 来表示;
公差:等差数列每两项之间固定不变的差,通常用d 来表示; 和 :一个数列的前n 项的和,常用n S 来表示 .
二、 三个重要的公式
① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯()
递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯()
拓展公式:n m a a n m d -=-⨯(),n m >()
② 项数公式:项数=(末项-首项)÷公差+1 等差数列的基本概念及公式
11n n a a d =-÷+() (若1n a a >);
11n n a a d =-÷+() (若1n a a >).
③ 求和公式:和=(首项+末项)⨯项数÷2 (思路1) 1239899100++++++L
11002993985051=++++++++L 1444444442444444443
共50个101
()()()()101505050=⨯= (思路2)这道题目,还可以这样理解:
2349899100
1009998973212101101101101101101101
+++++++=+++++++=+++++++L
L L
和=1+和倍和即,和 (1001)1002101505050=+⨯÷=⨯=
三、 一个重要定理:中项定理
1、项数为奇数的等差数列,和=中间项×项数.
譬如:①4+8+12+…+32+36=(4+36)×9÷2=20×9=180,
题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯; ② 65636153116533233331089++++++=+⨯÷=⨯=L (),
题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯.
2、项数是偶数的等差数列,中间一项等于中间两项的平均数。

和=中间项×项数.
(1) 找出题目中首项、末项、公差、项数。

(2) 必要时调整数列顺序。

板块一:等差数列的基本认识
【例 1】 下面的数列中,哪些是等差数列?若是,请指明公差,若不是,则说明理由。

①6,10,14,18,22,…,98; ②1,2,1,2,3,4,5,6; ③ 1,2,4,8,16,32,64; ④ 9,8,7,6,5,4,3,2; ⑤3,3,3,3,3,3,3,3; ⑥1,0,1,0,l ,0,1,0;
【练习1】312+、610+、128+、246+、484+、……是按一定规律排列的一串算式,其中第六个算式的计算结果是 。

板块二:求项数
【例 2】小朋友们,你知道每一行数列各有多少个数字吗?
(1)3、4、5、6、……、76、77、78
(2)2、4、6、8、……、96、98、100
(3)1、3、5、7、……、87、89、91
(4)4、7、10、13、……、40、43、46
【练习2】
2-1 在等差数列6,13,20,27,…中,从左向右数,第_______个数是1994.2-2 5、8、11、14、17、20、L,65是其中的第几项?
2-3 已知等差数列2、5、8、11、14 …… ,问47是其中第几项?
2-4 已知等差数列9、13、17、21、25、…… ,问93是其中第几项?
板块三:求通项
【例 3】已知数列0、4、8、12、16、20、…… ,它的第43项是多少?
【练习3】
3-1 5、8、11、14、17、20、L,它的第201项是多少?
3-2 3、5、7、9、11、13、15、…… ,它的第102项是多少?
3-3 1,3,5,7,……是从1开始的奇数,其中第2005个奇数是________。

板块三:中项定理
【例 4】2、4、6、8、10、12、L是个连续偶数列,如果其中五个连续偶数的和是320,求它们中最小的一个.
【练习4】
4-1 1、3、5、7、9、11、L是个奇数列,如果其中8个连续奇数的和是256,那么这8个奇数中最大的数是多少?
4-2 15个连续奇数的和是1995,其中最大的奇数是多少?
4-3 把210拆成7个自然数的和,使这7个数从小到大排成一行后,相邻两个数的差都是5,那么,第1个数与第6个数分别是多少?
板块四:等差数列求和
【例 5】用等差数列的求和公式会计算下面各题吗?
⑴3456767778
L
+++++++=
⑵13578799++++++=L
⑶471013404346+++++++=L
【练习5】
5-1 1+2+……+8+9+10+9+8+……+2+1=_____。

5-2 500024698100-----L
5-3 1357199519971999+++++++L
5-4 (123200720082007321)2008+++⋯++++⋯+++÷=
【例 6】计算:
⑴1351997199924619961998
()-()
++++++++++
L L
⑵40005101595100
L
------
⑶99198297396495594693792891990
+++++++++
【练习6】计算246198419861988135198319851987()()++++++-++++++
L L
【作业1】1966、1976、1986、1996、2006这五个数的总和是多少?
【作业2】计算:110+111+112+ (126)
【作业3】 计算下列一组数的和:105,110,115,120,…,195,200
【作业4】 聪明的小朋友们,PK 一下吧.
⑴4812163236++++++L
⑵656361531++++++L
【作业5】 计算: ⑴ 2469698100135959799++++++-++++++L L ()()
(2)1000999998997996995106105104103102101
L.
+-++-+++-++-
【作业6】计算:13520092462008
L L
()()
++++-++++
【作业7】13467910121366676970
L;(难)
+++++++++++++
【作业8】20072006200520042003200254321
L
-+-+-++-+-+
【进门考】
1、在数列2,5,8,……,329中,一共有多少项?
2、在数列7,11,15,19,……中,203是第几项?
3、已知等差数列1,6,11,16,……,请问:第31项是多少?
4、 1+11+21+31+……+201
5、 7+11+15+……+207。

相关文档
最新文档