【大学物理实验数据处理】刚体的转动惯量(优化版)
测量刚体的转动惯量实验报告及数据处理
欢迎阅读
欢迎阅读
实验讲义补充:
1. 刚体概念:刚体是指在运动中和受力作用后,形状和大小不变,而且内部各点的相对位置不变的物体。
2. 转动惯量概念:转动惯量是刚体转动中惯性大小的量度。
它取决于刚体的总质量,质量分布、形状大小和转轴位置
3. 转动定律:合外力矩=转动惯量×角加速度
4. 转动惯量叠加:
空盘:(1)阻力矩(2)阻力矩+砝码外力→J1
空盘+被测物体:(1)阻力矩(2)阻力矩+砝码外力→J2
被测物体:J3=J2-J1
5.
6. 3组
7.
8.
9.
10. 11.
12. 1. 2. 3. 误差(1)(注意:直接测量的是直径),x1,x2,x3,x4,x5,x6,i=6,计算x 平均值,
取n=6时的1.05
,我们处理为0 C=1.05,仪器允差0.02mm,δB=0.01905mm
总误差:,ux=0.01905m m
欢迎阅读
欢迎阅读
,u rx=0.01905/11.99=0.1589%
R=11.99mm±0.01905mm
urx=0.1589%
计算转动惯量的结果表示:
,总误差:uJ=,相对不确定=uJ/J 圆环:,同上.
(2)
实验测量计算的误差:。
刚体转动惯量的测定的实验数据处理
量
测
定
实验原理
刚
体
转
•
物体装在一螺旋弹簧上,当物体在
水平面内转过θ角后弹簧产生恢复力矩M。
动
(1)
惯
M KK为弹簧的扭转系数
量
• 在此力矩作用下物体转动,由转动定律
测
M J
(2)
定
实验原理
刚
体
令 2 K
J
有
d 2
dt 2
2
转
动
此方程的解 Acos(t )
惯
式中A为振幅 , φ为初位相 ,ω为角频率
注意事项
刚
体
转
1.扭摆静止时,挡光杆要处于光电门间隙,
发射管和接收管之间,即正好处于挡光状态。
动
2.称木球、细杆质量时必须将支架夹具取下,
惯
不可一同称。
量
3.转角60º即可,不要太大。
测
4.圆柱、圆筒放置时要放正不可斜放。
定
实验介绍
刚
体
转
动
惯
量
测
定
刚
体
转
动
结束放映
惯
谢谢观看
量
测
定
表示该物体以A为角振幅作简谐角振动。
量
测
T 2 2 J
K
定
实验原理
刚
体
转
弹簧的扭转常数:
动
K 4 2 J1'
惯
T12 T02
量
平行轴定理:
测
J Jc md 2
定
实验仪器
刚
体
金属
待测物体
托盘
转
动
垂直轴
测量刚体的转动惯量实验报告及数据处理
测量刚体的转动惯量实验报告及数据处理Company number:【0089WT-8898YT-W8CCB-BUUT-202108】实验讲义补充:1.刚体概念:刚体是指在运动中和受力作用后,形状和大小不变,而且内部各点的相对位置不变的物体。
2.转动惯量概念:转动惯量是刚体转动中惯性大小的量度。
它取决于刚体的总质量,质量分布、形状大小和转轴位置3.转动定律:合外力矩=转动惯量×角加速度4.转动惯量叠加:空盘:(1)阻力矩(2)阻力矩+砝码外力→J1空盘+被测物体:(1)阻力矩(2)阻力矩+砝码外力→J2被测物体:J3=J2-J15.转动惯量理论公式:圆盘&圆环J=0.5mr2,J=0.5m(r12+r12)6.转动惯量实验仪器:水准仪;线水平;线与孔不产生摩擦;塔轮选小的半径;至少3个塔轮半径,3组砝码质量7.计数器:遮光板半圈π;单电门,多脉冲;空盘15圈,20个值;加上被测物体,8个值;8.泡沫垫板9.重力加速度:s^210.质量:1次读数,包括砝码,圆盘,圆环,以及两圆柱体;11.游标卡尺:6次读数,包括圆盘半径,圆环内外半径,塔轮半径,转盘上孔的内外半径(求平均值)12.实验目的:测量值与理论值对比实验计算补充说明:1.有效数字:质量,故有效数字为3位2.游标卡尺:,读数最后一位肯定为偶数;3.误差&不确定度:(1)理论公式计算的误差:圆盘:J=0.5mR2(注意:直接测量的是直径)质量m=±;(保留4位有效数字)um=*100%=%半径R=±若测6次,x1,x2,x3,x4,x5,x6,i=6,计算x平均值,取n=6时的,我们处理为0C=,仪器允差,δB=总误差:,ux= m,u rx==%R=±urx=%计算转动惯量的结果表示:J=0.5mR2,总误差:uJ=√[(0.5R2u m)2+(mRu R)2],相对不确定=uJ/J 圆环:J=0.5m(R12+R22),同上.(2)实验测量计算的误差:J=mR(g−Rβ2)β2−β1根据,,对R(塔轮半径),m(砝码质量),β2和β1求导,J m=R(g−Rβ2)β2−β1J R=mg−2Rβ2β2−β1J β2=−mR2(β2−β1)−mR(g−Rβ2)(β2−β1)^2J β1=mR(g−Rβ2)(β2−β1)^2。
大学物理实验报告测量刚体的转动惯量
大学物理实验报告测量刚体的转动惯量.doc“大学物理实验报告测量刚体的转动惯量.doc”是一份关于大学物理实验,它的目的是测量刚体的转动惯量。
本文将详细介绍这次实验的基本步骤、原理以及实验的结果。
一、实验的基本步骤1.准备实验仪器:本次实验使用的仪器包括:示波器、图形表、旋转惯量测试仪、调速装置、力传感器及其他部件。
2.组装实验装置:将准备好的实验仪器组装成实验装置,并将刚体放入实验装置内,使之受到示波器的旋转作用。
3.调整调速装置:调整调速装置,使得刚体开始旋转,并注意刚体的旋转方向,调节调速装置的转速,使得刚体的转速保持在恒定的水平。
4.记录数据:用示波器记录旋转角度随时间的变化,并同时记录力传感器所测量的旋转惯量。
5.分析实验结果:根据记录下来的数据,分析实验结果,计算出刚体的转动惯量。
二、实验原理转动惯量(Moment of Inertia)是指物体在旋转运动中,对外力的惯性反应能力,是物体的质量和形状的函数,可以表示物体的转动惯性。
转动惯量可以用符号I表示,它的单位是公斤·米²/秒²。
根据牛顿的第二定律,可以知道,物体受到外力的作用时,它的转动惯量会发生变化。
即:F=ma= dI/dt (F 为外力,m为物体的质量,a为物体的转动加速度,I为物体的转动惯量)。
因此,可以通过测量刚体受到外力作用时,它的转动惯量的变化来获得刚体的转动惯量。
三、实验结果本次实验结果显示,所测量刚体的转动惯量为I=3.7 kg·m²/s²。
因此,我们可以得出结论:当刚体受到外力作用时,它的转动惯量会发生变化,且转动惯量的变化量与外力的大小成正比。
总结本次实验的目的是测量刚体的转动惯量。
实验中,我们使用了示波器、图形表、旋转惯量测试仪、调速装置、力传感器等仪器,并将它们组装成实验装置,调节调速装置使得刚体开始旋转,然后用示波器记录旋转角度随时间的变化,同时也记录力传感器所测量的旋转惯量,根据记录下来的数据分析实验结果,最终计算出刚体的转动惯量:I=3.7 kg·m²/s²。
大学物理实验之刚体转动惯量
大学物理实验之刚体转动惯量本实验主要是研究刚体的转动惯量,刚体转动惯量是刚体绕轴线旋转时的惯性大小,类比质点的质量。
对于一个刚体,其转动惯量与其质量的分布、形状、大小、绕轴线位置有关,因此在研究转动惯量的过程中需要关注这些因素。
实验目的:1. 理解并测量几种常见刚体的转动惯量。
2. 熟悉刚体转动实验的操作方法和数据处理方法。
实验原理:1. 转动惯量的定义I = ∫ r^2 dm其中,I 为刚体的转动惯量,r为该质量微元距离轴线的距离,dm为该质量微元的质量。
2. 旋转惯量的测量方法(1)转子法转子法是通过测量两个转动刚体的角加速度和已知两个刚体参数的关系,计算出另一刚体的转动惯量。
(2)撞击法撞击法是将一个未知转动惯量的刚体与已知的基准刚体作用在同一轴线上作匀加速的运动,测量两者所用时间,就可以通过角动量守恒原理求出未知刚体的转动惯量。
(3)摆线法摆线法是通过测量刚体绕轴线作周期性的摆动,结合周期、摆长等参数,计算出刚体的转动惯量。
实验环境:该实验包含三个部分,分别是旋转木盘法测定转动惯量、撞击法测定转动惯量、薄环法测定转动惯量。
实验过程:(1)实验仪器:旋转木盘、各种形状的物体、尺子。
(2)实验步骤:a. 将旋转木盘放在平整的水平台面上,旋转木盘电机连接电源。
b. 按钮控制旋转盘速度,手动测量转速并记录。
c. 在旋转木盘上放置不同形状、不同大小的刚体,并使之绕轴线旋转。
d. 测量转动惯量与旋转角速度的关系。
(3)实验注意事项:a. 在旋转木盘运动时,注意安全并遵守实验室规定。
b. 在加盟物体前,需确保木盘速度不会因加减物体而发生大的变化,以保证实验数据的准确性。
c. 通过测量旋转角度的速度和物体大小、轴线位置计算刚体转动惯量。
a. 在支架上安装一根直线导轨。
b. 准备物体磨损滑轮,将其装在直线导轨上并拉直。
c. 在物体与总体之间放置细线,并连接每一部分。
d. 在物体新加入之前需要测量它的质量和长度,记录在数据表中。
刚体的转动惯量(实验报告数据处理)
刚体的转动惯量(实验报告数据处理)一、实验目的1.测量不同形状物体的转动惯量;2.了解刚体的转动惯量的概念和意义;3.掌握利用转动惯量公式计算转动惯量的方法。
二、实验原理刚体在绕固定轴线上做匀速转动时,其转动惯量的大小决定了它所受的转动惯量矩的大小,转动惯量定理表明,在恒定力矩作用下,物体的角加速度与物体的转动惯量成反比。
对于一个刚体,既可以沿着它的轴线旋转,也可以沿着一个平行于轴线的过质心的轴线旋转,而它的转动惯量则与这两个轴之间的距离有关。
三、实验内容3.比较计算值与实验值之间的误差并讨论原因。
四、实验过程1.实验器材:转速表,万能电机,测量尺子,各种不同形状的物体(如实验室提供的铁球,铝棒等)。
2.实验步骤:(1)将铝棒的一端用万能电机固定在转动轴上;(2)用测量尺子测定铝棒的长度和直径;(3)打开电源,开启电机,让铝棒匀速旋转起来,并测量转速;(4)利用转速表测量铝棒旋转的周期时间,再根据转速和周期时间计算角速度;(5)停止电机后,用测量尺子逐个测量铝棒各个位置的距离,并记录下来;(6)利用测量结果以及铝棒的密度和尺寸数据,计算其转动惯量。
(7)重复上述步骤,测量其他形状的物体。
五、实验数据处理以一个球状物体为例,测量数据如下:1.球的质量m=0.6kg;3.球的转动周期T=0.536s;4.转速表读数n=114rpm;根据公式I=1/4 * m * d2 ,可以计算出该球的转动惯量为:I=1/4 * m * d2 =1/4 * 0.6kg * (0.1m)2 =0.003kg*m2另外,根据转速和周期时间可以计算出球的角速度ω:ω=2π/T = 2π/0.536s = 11.704rad/sr(m) I(kg*m2)0.05 0.0015上述数据是计算出球的转动惯量的过程中所得到的。
通过以上的数据可以看出,当距离球心较远时,转动惯量较大;当距离球心较近时,转动惯量较小。
同时,也可以验证公式I=1/4 * m * d2 的正确性。
测量刚体的转动惯量实验报告及数据处理
urx=0.1589%
计算转动惯量的结果表示:
,总误差:uJ= ,相对不确定=uJ/J
圆环: ,同上.
(2)实验测量计算的误差:
根据, ,对R(塔轮半径),m(砝码质量),β2和β1求导,
测量刚体的转动惯量实验报告及数据处理
———————————————————————————————— 作者:
———————————————————————————————— 日期:
实验讲义补充:
1.刚体概念:刚体是指在运动中和受力作用后,形状和大小不变,而且内部各点的相对位置不变的物体。
2.转动惯量概念:转动惯量是刚体转动中惯性大小的量度。它取决于刚体的总质量,质量分布、形状大小和转轴位置
半径R=11.99mm±0.02000/1.05mm
若测6次,x1,x2,x3,x4,x5,x6,i=6,计算x平均值
,
取n=6时的1.05
,我们处理为0
C=1.05,仪器允差0.02mm,δB=0.01905mm
总误差: ,ux=0.01905mm
,urx=0.01905/11.99=0.1589%
实验计算补充说明:
1.有效数字:质量16.6g,故有效数字为3位
2.游标卡尺:0.02mm,读数最后一位肯定为偶数;
3.误差&不确定度:
(1)理论公式计算的误差:
圆盘: (注意:直接测量的是直径)
质量m=485.9g±0.1000g;(保留4位有效数字)
um=0.1000/485.9*100%=0.02058%
7.计数器:遮光板半圈π;单电门,多脉冲;空盘15圈,20个值;加上被测物体,8个值;
8.泡沫垫板
测量刚体的转动惯量实验报告及数据处理
欢迎阅读
欢迎阅读
实验讲义补充:
1. 刚体概念:刚体是指在运动中和受力作用后,形状和大小不变,而且内部各点的相对位置不变的物体。
2. 转动惯量概念:转动惯量是刚体转动中惯性大小的量度。
它取决于刚体的总质量,质量分布、形状大小和转轴位置
3. 转动定律:合外力矩=转动惯量×角加速度
4. 转动惯量叠加:
空盘:(1)阻力矩(2)阻力矩+砝码外力→J1
空盘+被测物体:(1)阻力矩(2)阻力矩+砝码外力→J2
被测物体:J3=J2-J1
5.
6. 3组
7.
8.
9.
10. 11.
12. 1. 2. 3. 误差(1)(注意:直接测量的是直径),x1,x2,x3,x4,x5,x6,i=6,计算x 平均值,
取n=6时的1.05
,我们处理为0 C=1.05,仪器允差0.02mm,δB=0.01905mm
总误差:,ux=0.01905m m
欢迎阅读
欢迎阅读
,u rx=0.01905/11.99=0.1589%
R=11.99mm±0.01905mm
urx=0.1589%
计算转动惯量的结果表示:
,总误差:uJ=,相对不确定=uJ/J 圆环:,同上.
(2)
实验测量计算的误差:。
转动惯量实验报告数据处理
转动惯量实验报告数据处理(文章一):转动惯量的实验分析报告转动惯量的测量实验分析报告(一)、数据处理(1)用游标卡尺、米尺、天平分别测出待测物体的质量和必要的几何尺寸。
如塑料圆柱的直径,金属圆筒的内、外径,木球的直径以及金属细杆的长度等。
(2)计算扭摆弹簧的扭转常数K,计算公式为:I1; K?4?2?0.0411*******N?M 2 T1?T2 2 (3)测定塑料圆柱、金属圆筒、木球与金属细杆的转动周期,计算转动惯量的实验值,并与理论值相比较,求出百分比误差。
百分比误差= 理论值-实验值?100 理论值以上各测量值均记录在表3-2-1中,具体计算公式也包含在表格中。
表3-2-1 刚体转动惯量的测定(4)验证平行轴定理。
改变滑块在金属细杆上的位置,测定转动周期,测量数据记录在表3-2-2中。
计算滑块在不同位置出系统的转动惯量,并与理论值比较,计算百分比误差。
其中测得m滑块=0.2397kg。
表3-2-2 平行轴定理的验证从以上实验结果可知,实验结果与理论计算结果百分比误差在百分之十以内,理论值与实验值的拟合较为合理,可有效地验证测定刚体的转动惯量并验证平行轴定理。
其中,误差来源主要有以下几点:(1)圆盘转动的角度大于90度,致使弹簧的形变系数发生改变。
(2)没有对仪器进行水平调节。
(3)圆盘的固定螺丝没有拧紧。
(4)摆上圆台的物体有一定的倾斜角度。
(三)、思考题(一)预习思考题(1)、如何测量扭摆弹簧的扭转系数K? 答:先测出小塑料圆柱的几何尺寸及质量,得到小塑料圆柱的转动惯量理21 论值为I1;?m1D1,再测量出金属载物盘的转动周期T0及小塑料圆柱的转动周8 I1; 期为T1,利用计算公式K?4?2代入数据即可求出K。
2 T1?T2 22.如何测定任意形状的物体绕特定轴转动的转动惯量?答:利用题1中测得的I1;、T1和T0得到金属载物盘的转动惯量为I1;T1 I0?2,将待测物体放在金属载物盘上,测出其转动惯量周期为T2,再利 2 T1?T0 2 KT2 用计算公式I2=?I0即可得到该物体的转动惯量。
测量刚体的转动惯量实验报告及数据处理
实验讲义补充:1.刚体概念:刚体就是指在运动中与受力作用后,形状与大小不变,而且内部各点的相对位置不变的物体。
2.转动惯量概念:转动惯量就是刚体转动中惯性大小的量度。
它取决于刚体的总质量,质量分布、形状大小与转轴位置3.转动定律:合外力矩=转动惯量×角加速度4.转动惯量叠加:空盘:(1)阻力矩(2)阻力矩+砝码外力→J1空盘+被测物体:(1)阻力矩(2)阻力矩+砝码外力→J2被测物体:J3=J2-J15.转动惯量理论公式:圆盘&圆环6.转动惯量实验仪器:水准仪;线水平;线与孔不产生摩擦;塔轮选小的半径;至少3个塔轮半径,3组砝码质量7.计数器:遮光板半圈π;单电门,多脉冲;空盘15圈,20个值;加上被测物体,8个值;8.泡沫垫板9.重力加速度:9、794m/s^210.质量:1次读数,包括砝码,圆盘,圆环,以及两圆柱体;11.游标卡尺:6次读数,包括圆盘半径,圆环内外半径,塔轮半径,转盘上孔的内外半径(求平均值)12.实验目的:测量值与理论值对比实验计算补充说明:1.有效数字:质量16、6g,故有效数字为3位2.游标卡尺:0、02mm,读数最后一位肯定为偶数;3.误差&不确定度:(1)理论公式计算的误差:圆盘:(注意:直接测量的就是直径)质量m=485、9g±0、1000g;(保留4位有效数字)um=0、1000/485、9*100%=0、02058%半径R=11、99mm±0、02000/1、05mm若测6次,x1,x2,x3,x4,x5,x6,i=6,计算x平均值,取n=6时的1、05,我们处理为0C=1、05,仪器允差0、02mm,δB=0、01905mm 总误差:,ux=0、01905m m,u rx=0、01905/11、99=0、1589%R=11、99mm±0、01905mmurx=0、1589%计算转动惯量的结果表示:,总误差:uJ=,相对不确定=uJ/J 圆环:,同上、(2)实验测量计算的误差:根据,,对R(塔轮半径),m(砝码质量),β2与β1求导,。
大物仿真实验实验报告刚体的转动惯量
⼤物仿真实验实验报告刚体的转动惯量实验名称:刚体的转动惯量⼀实验简介:在研究摆的中⼼升降问题时,惠更斯发现了物体系的重⼼与后来欧勒称之为转动惯量的量。
转动惯量是表征刚体转动惯性⼤⼩的物理量,它与刚体的质量、质量相对于转轴的分布有关。
⼆实验⽬的:1.⽤实验⽅法验证转动惯量,并求转动惯量。
2.观察转动惯量与质量的分布关系。
3.学习作图的曲线改直法,并由作图法处理实验数据。
三实验原理:1. 刚体的转动定律具有确定转轴的刚体,在外⼒矩作⽤下,将获得较加速度β,其值与外⼒矩成正⽐,与刚体的转动惯量成反⽐即有刚体的转动定律:M=Iβ利⽤转动定律,通过实验的⽅法,可求得难以⽤计算⽅法得到的转动惯量。
2.应⽤转动定律求转动惯量如图所⽰,待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动设细线不可伸长,砝码受到重⼒和细线的张⼒作⽤,从静⽌开始以加速度a下落,其运动⽅程为mg-t=ma,在t时间内下落的⾼度为h=at2/2。
刚体收到张⼒的⼒矩为T r和轴摩擦⼒⼒矩M f。
由转动定律可得到刚体的转动运动⽅程:T r--M f=I β。
绳与塔轮间⽆相对滑动时有a = rβ,上述四个⽅程得到:m(g - a)r - Mf = 2hI/rt2 (2)M f与张⼒矩相⽐可以忽略,砝码质量m⽐刚体的质量⼩的多时有a<mgr = 2hI/ rt2 (3)式中r、h、t可直接测量到,m是试验中任意选定的。
因此可根据(3)⽤实验的⽅法求得转动惯量I。
3.验证转动定律,求转动惯量从(3)出发,考虑⽤以下两种⽅法:A.作m – 1/t2图法:伸杆上配重物位置不变,即选定⼀个刚体,取固定⼒臂r和砝码下落⾼度h,(3)式变为:M = K1/ t2 (4)式中K1 =2hI/ gr2为常量。
上式表明:所⽤砝码的质量与下落时间t的平⽅成反⽐。
实验中选⽤⼀系列的砝码质量,可测得⼀组m与1/t2的数据,将其在直⾓坐标系上作图,应是直线。
测量刚体的转动惯量实验报告及数据处理
测量刚体的转动惯量实验报告及数据处理实验目的:本实验旨在通过测量刚体在不同条件下的转动惯量,探究刚体的转动惯量与其质量和形状的关系,并通过数据处理方式验证实验结果的准确性。
实验原理:转动惯量是描述刚体转动惯性的物理量,定义为刚体绕轴旋转时受到的转动力矩与角加速度的比值。
对于一个质量为m、距离旋转轴距离为r的点质量,其转动惯量可表示为I=mr^2实验装置:1.转动惯量测定装置:包括一根水平固定的轴杆以及在轴杆两端可以旋转的转轮和转动测量仪。
2.垂直测量尺:用于测量刚体高度和半径。
3.游标卡尺:用于测量刚体直径和转轮直径。
实验步骤:1.使用游标卡尺分别测量刚体直径和转轮直径,记录数据。
2.使用垂直测量尺测量刚体高度和半径,记录数据。
3.将刚体放置在转轮上,并用转动测量仪测量刚体从静止转动到一定速度时所花的时间,重复5次取平均值并记录数据。
4.将转动测量仪上的转轮锁死,然后用手使转动测量仪以不同角速度旋转,并记录转动测量仪的角加速度、转动惯量和距离旋转轴的平均距离,重复3次并记录数据。
5.将刚体放置在转轮上,使其绕垂直于水平方向的轴旋转,测量角度、时间和转动惯量,重复3次并记录数据。
6.根据实验数据计算刚体的转动惯量。
实验数据处理:1.对于多次重复实验的平均值计算:-计算刚体从静止转动到一定速度所花的平均时间,代入转动惯量公式,计算相应的转动惯量。
-计算手动转动时转动测量仪的平均角加速度,代入转动惯量公式,计算相应的转动惯量。
-计算垂直旋转时转动测量仪的平均角度、时间和转动惯量。
2.计算刚体的转动惯量:-根据转动测量仪的平均角加速度和平均距离,代入转动惯量公式,计算刚体的转动惯量。
-根据垂直旋转时的平均角度、时间和转动惯量,代入转动惯量公式,计算刚体的转动惯量。
-将以上两种情况下计算得到的转动惯量进行平均值计算,得到最终的转动惯量。
实验结果及讨论:1.根据实验数据计算得到的刚体转动惯量与其质量、形状的关系进行对比分析,验证是否符合理论预期。
刚体转动惯量的测定的实验数据处理
进行实验操作
01
将刚体转动惯量测试仪放置在支架上,调整转动轴的位置,确 保刚体平衡。
02
在砝码盘上添加不同质量的砝码,测量并记录砝码的质量和对
应的转动周期。
重复实验,至少进行5组测量,以减小误差。
03
数据记录与整理
01
将实验数据记录在数据采集器中,包括砝码质量、转动周期 等。
02
数据误差分析
系统误差
由于实验设备、测量方法等因素导致的误差,具有重复性和规律 性。
随机误差
由于环境、温度、湿度等随机因素导致的误差,具有随机性和不 确定性。
过失误差
由于人为操作失误、读数错误等原因导致的误差,具有可避免性。
结果分析
对比分析
将实验结果与理论值进行对比,分析误差来源和影响 程度。
误差传递
实验中需要注意控制误差来源,如测量角度、转速等参数的准确性,以提 高实验结果的可靠性。
结果与理论值的比较
实验测量得到的刚体转动惯量值与理 论值存在一定的偏差,这可能是由于 实验操作误差、测量仪器误差等因素 所致。
通过对比分析,我们发现实验值与理 论值之间的偏差在可接受的范围内, 进一步证明了实验方法的可行性和准 确性。
感谢您的观看
[1] 刚体转动惯量测定的实验研究. 物理实验教程, 2019(3): 1-10.
02
[2] 刚体转动惯量测定的实验数据处理方法. 物理实验, 2020(6): 34-40.
03
[3] 基于MATLAB的刚体转动惯量测定实验数据处理. 物理实 验, 2018(9): 27-33.
THANKS FOR WATCHING
刚体转动惯量的测定的实验数据处 理
测量刚体的转动惯量实验报告及数据处理
实验讲义补充:1.刚体概念:刚体是指在运动中和受力作用后,形状和大小不变,而且内部各点的相对位置不变的物体。
2.转动惯量概念:转动惯量是刚体转动中惯性大小的量度。
它取决于刚体的总质量,质量分布、形状大小和转轴位置3.转动定律:合外力矩=转动惯量×角加速度4.转动惯量叠加:空盘:(1)阻力矩(2)阻力矩+砝码外力→J1空盘+被测物体:(1)阻力矩(2)阻力矩+砝码外力→J2被测物体:J3=J2-J15.转动惯量理论公式:圆盘&圆环J=0.5mr2,J=0.5m(r12+r12)6.转动惯量实验仪器:水准仪;线水平;线与孔不产生摩擦;塔轮选小的半径;至少3个塔轮半径,3组砝码质量7.计数器:遮光板半圈π;单电门,多脉冲;空盘15圈,20个值;加上被测物体,8个值;8.泡沫垫板9.重力加速度:9.794m/s^210.质量:1次读数,包括砝码,圆盘,圆环,以及两圆柱体;11.游标卡尺:6次读数,包括圆盘半径,圆环内外半径,塔轮半径,转盘上孔的内外半径(求平均值)12.实验目的:测量值与理论值对比实验计算补充说明:1.有效数字:质量16.6g,故有效数字为3位2.游标卡尺:0.02mm,读数最后一位肯定为偶数;3.误差&不确定度:(1)理论公式计算的误差:圆盘:J=0.5mR2(注意:直接测量的是直径)质量m=485.9g±0.1000g;(保留4位有效数字)um=0.1000/485.9*100%=0.02058%半径R=11.99mm±0.02000/1.05mm若测6次,x1,x2,x3,x4,x5,x6,i=6,计算x平均值,取n=6时的1.05,我们处理为0C=1.05,仪器允差0.02mm,δB=0.01905mm总误差:,ux=0.01905m m,u rx=0.01905/11.99=0.1589% R=11.99mm±0.01905mmurx=0.1589%计算转动惯量的结果表示:J=0.5mR2,总误差:uJ=√[(0.5R2u m)2+(mRu R)2],相对不确定=uJ/J 圆环:J=0.5m(R12+R22),同上.(2)实验测量计算的误差:J=mR(g−Rβ2)β2−β1根据,,对R(塔轮半径),m(砝码质量),β2和β1求导,?J ?m=R(g−Rβ2)β2−β1?J ?R=mg−2Rβ2β2−β1?J ?β2=−mR2(β2−β1)−mR(g−Rβ2)(β2−β1)^2?J?β1=mR(g−Rβ2)(β2−β1)^2。
测量刚体的转动惯量实验报告及数据处理
测量刚体的转动惯量实验报告及数据处理Company number:【0089WT-8898YT-W8CCB-BUUT-202108】实验讲义补充:1.刚体概念:刚体是指在运动中和受力作用后,形状和大小不变,而且内部各点的相对位置不变的物体。
2.转动惯量概念:转动惯量是刚体转动中惯性大小的量度。
它取决于刚体的总质量,质量分布、形状大小和转轴位置3.转动定律:合外力矩=转动惯量×角加速度4.转动惯量叠加:空盘:(1)阻力矩(2)阻力矩+砝码外力→J1空盘+被测物体:(1)阻力矩(2)阻力矩+砝码外力→J2被测物体:J3=J2-J15.转动惯量理论公式:圆盘&圆环J=0.5mr2,J=0.5m(r12+r12)6.转动惯量实验仪器:水准仪;线水平;线与孔不产生摩擦;塔轮选小的半径;至少3个塔轮半径,3组砝码质量7.计数器:遮光板半圈π;单电门,多脉冲;空盘15圈,20个值;加上被测物体,8个值;8.泡沫垫板9.重力加速度:s^210.质量:1次读数,包括砝码,圆盘,圆环,以及两圆柱体;11.游标卡尺:6次读数,包括圆盘半径,圆环内外半径,塔轮半径,转盘上孔的内外半径(求平均值)12.实验目的:测量值与理论值对比实验计算补充说明:1.有效数字:质量,故有效数字为3位2.游标卡尺:,读数最后一位肯定为偶数;3.误差&不确定度:(1)理论公式计算的误差:圆盘:J=0.5mR2(注意:直接测量的是直径)质量m=±;(保留4位有效数字)um=*100%=%半径R=±若测6次,x1,x2,x3,x4,x5,x6,i=6,计算x平均值,取n=6时的,我们处理为0C=,仪器允差,δB=总误差:,ux= m,u rx==%R=±urx=%计算转动惯量的结果表示:J=0.5mR2,总误差:uJ=√[(0.5R2u m)2+(mRu R)2],相对不确定=uJ/J 圆环:J=0.5m(R12+R22),同上.(2)实验测量计算的误差:J=mR(g−Rβ2)β2−β1根据,,对R(塔轮半径),m(砝码质量),β2和β1求导,?J ?m=R(g−Rβ2)β2−β1?J ?R=mg−2Rβ2β2−β1?J ?β2=−mR2(β2−β1)−mR(g−Rβ2)(β2−β1)^2?J?β1=mR(g−Rβ2)(β2−β1)^2。
测量刚体的转动惯量实验报告及数据处理,DOC
仅供个人学习参考
实验讲义补充:
1. 刚体概念:刚体是指在运动中和受力作用后,形状和大小不变,而且内部各点的相对位置不变的物体。
2. 转动惯量概念:转动惯量是刚体转动中惯性大小的量度。
它取决于刚体的总质量,质量分布、形状大小和转轴位置
3. 转动定律:合外力矩=转动惯量×角加速度
4. 转动惯量叠加:
空盘:(1)阻力矩(2)阻力矩+砝码外力→J1
空盘+被测物体:(1)阻力矩(2)阻力矩+砝码外力→J2
被测物体:J3=J2-J1
5. 圆环
6. ;线水平;线与孔不产生摩擦;塔轮选小的半径;至少3组
7.
8.
9.
10. 11.
12. 1. 2. 3. 误差&(1)圆盘:(注意:直接测量的是直径),x1,x2,x3,x4,x5,x6,i=6,计算,
取n=6时的1.05
,我们处理为0 C=1.05,仪器允差0.02mm,δB=0.01905mm
总误差:,ux=0.01905mm
仅供个人学习参考
,u rx =0.01905/11.99=0.1589% R=11.99mm ±0.01905mm
urx=0.1589%
计算转动惯量的结果表示:
,总误差:uJ=,相对不确定=uJ/J
圆环:
,同上. (2)
实验测量计算的误差:。
转动惯量测量实验报告(共7篇)
转动惯量测量实验报告(共7篇)篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。
二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。
2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动。
设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg –t=ma,在t时间内下落的高度为h=at/2。
刚体受到张力的力矩为tr和轴摩擦力力矩mf。
由转动定律可得到刚体的转动运动方程:tr - mf = iβ。
绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。
因此可根据(3)用实验的方法求得转动惯量i。
3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m –1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。
上式表明:所用砝码的质量与下落时间t 的平方成反比。
实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。
即若所作的图是直线,便验证了转动定律。
刚体转动惯量测定实验报告
刚体转动惯量测定实验报告(三线摆法)一、目的要求1、学会并掌握用三线摆法测定圆环、圆盘等的转动惯量;2、巩固用累计放大法测量物体转动的周期;3、学习运用表格法处理原始测量数据,并研究物体转动惯量的影响因素;4学会定量分析误差和有效数据的处理与计算。
二、原理简述原理1:通过三线摆法,利用机械能守恒定律:mgh=Jω2/2来测定某一标准物体的转动惯量:J=2*mgh/ω2m0T02,然后测圆环和圆盘这原理2:先测出底盘的转动惯量J0=gRr4∗π∗π∗h(m+m0) T2,通过长度、质量和时间的测量,便可求整体的转动惯量J1=gRr4∗π∗π∗h[(m+m0) T2- m0T02]出圆环的转动惯量:J= J1- J0=gRr4∗π∗π∗h三、仪器三线摆转动惯量测定仪、匀质圆环米尺、游标卡尺水准仪、停表四、数据表格及数据处理1、实验数据记录对摆长l,l=45.00cm,带入相关数据∆l =(li −l )ni =1n ∗(n −1)=(li −l )5i=15∗(5−1)=0.01cm则l=l ±∆l =45.00±0.01cm同理,可得出,D ,D ’,t 0,t ,R ,r下圆盘系点间的距离D=D±∆D =11.29±0.01cm 上系点间的距离D ’=D′±∆D′=4.35±0.01cm 盘摆动50个周期所用时间t 0t 0= t0±∆t0=82.61±0. 14s 圆盘与圆环这整体摆动50个周期所用时间tt= t ±∆t =87.08±0.07s 圆环内径r 0=9.518±0.004cm 圆环外径R 0=11.461±0.008cm同时,由系点组成的上下圆半径:r =33D′,R = 33D周期,T0 =t050=1.67s ,T =t50=1.74s则圆环的转动惯量:J = J 1- J 0=gRr4∗π∗π∗h[(m+m 0) T 2- m 0T 02]=gDD ’12∗π∗π∗h[(m+m 0) T 2- m 0 T02]=0.203*103 g*cm 2∆J = ∆ll∗ ∆l l+ ∆D D∗ ∆D D+∆D′D′∗∆D′D′+4∆t0t0∗∆t0t0*J=0.085*103 g*cm 2J=J ±∆J =(0.203±0.085)*103 g*cm 2五、分析和讨论实验结果1、在实验过程中,多个数据的测量使用了游标卡尺,因此应该注意测量杆与被测量物体刚好碰到时,尽量准确读数,以减小误差;2、是用水准仪时,要使气泡居于圈内,尽量保证下盘水平,当使用水准仪后,测量了一些数据,即使下盘微偏,也不要再使用水准仪去调节,因为这样会改变摆线长,导致实验失败;3、测量周期时,应该在下盘通过平衡位置时才开始计数,尽量判断准确,减小误差;4、在处理盘摆动上升的H时,再该计算过程中作了近似处理,此时对实验的结果也有一定的影响。