单片机-数码管-时分秒显示
单片机制作的6位数字钟
单片机制作的6位数字钟常见的电子钟程序由显示部分,计算部分,时钟调整部分构成。
时钟的基本显示原理:时钟开始显示为0时0分0秒,也就是数码管显示000000,然后每秒秒位加1 ,到9后,10秒位加1,秒位回0。
10秒位到5后,即59秒,分钟加1,10秒位回0。
依次类推,时钟最大的显示值为23小时59分59秒。
这里只要确定了1秒的定时时间,其他位均以此为基准往上累加。
开始程序定义了秒,十秒,分,十分,小时,十小时,共6位的寄存器,分别存在30h,31h,32h,33h,34h,35h单元,便于程序以后调用和理解。
6个数码管分别显示时、分、秒,一个功能键,可以切换调整时分秒、增加数值、熄灭节电等功能全部集一键。
以下是部分汇编源程序,购买我们产品后我们用光盘将完整的单片机汇编源程序和烧写文件送给客户。
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 中断入口程序;; (仅供参考);;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;ORG 0000H ;程序执行开始地址LJMP START ;跳到标号START执行ORG 0003H ;外中断0中断程序入口RETI ;外中断0中断返回ORG 000BH ;定时器T0中断程序入口LJMP INTT0 ;跳至INTTO执行ORG 0013H ;外中断1中断程序入口RETI ;外中断1中断返回ORG 001BH ;定时器T1中断程序入口LJMP INTT1 ;跳至INTT1执行ORG 0023H ;串行中断程序入口地址RETI ;串行中断程序返回;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 主程序;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;START: MOV R0,#70H ;清70H-7AH共11个内存单元MOV R7,#0BH;clr P3.7 ;CLEARDISP: MOV @R0,#00H ;INC R0 ;DJNZ R7,CLEARDISP ;MOV 20H,#00H ;清20H(标志用)MOV 7AH,#0AH ;放入"熄灭符"数据MOV TMOD,#11H ;设T0、T1为16位定时器MOV TL0,#0B0H ;50MS定时初值(T0计时用)MOV TH0,#3CH ;50MS定时初值MOV TL1,#0B0H ;50MS定时初值(T1闪烁定时用)MOV TH1,#3CH ;50MS定时初值SETB EA ;总中断开放SETB ET0 ;允许T0中断SETB TR0 ;开启T0定时器MOV R4,#14H ;1秒定时用初值(50MS×20)START1: LCALL DISPLAY ;调用显示子程序JNB P3.7,SETMM1 ;P3.7口为0时转时间调整程序SJMP START1 ;P3.7口为1时跳回START1 SETMM1: LJMP SETMM ;转到时间调整程序SETMM;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 1秒计时程序;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;T0中断服务程序INTT0: PUSH ACC ;累加器入栈保护PUSH PSW ;状态字入栈保护CLR ET0 ;关T0中断允许CLR TR0 ;关闭定时器T0MOV A,#0B7H ;中断响应时间同步修正ADD A,TL0 ;低8位初值修正MOV TL0,A ;重装初值(低8位修正值)MOV A,#3CH ;高8位初值修正ADDC A,TH0 ;MOV TH0,A ;重装初值(高8位修正值)SETB TR0 ;开启定时器T0DJNZ R4, OUTT0 ;20次中断未到中断退出ADDSS: MOV R4,#14H ;20次中断到(1秒)重赋初值MOV R0,#71H ;指向秒计时单元(71H-72H)ACALL ADD1 ;调用加1程序(加1秒操作)MOV A,R3 ;秒数据放入A(R3为2位十进制数组合)CLR C ;清进位标志CJNE A,#60H,ADDMM ;ADDMM: JC OUTT0 ;小于60秒时中断退出ACALL CLR0 ;大于或等于60秒时对秒计时单元清0 MOV R0,#77H ;指向分计时单元(76H-77H)ACALL ADD1 ;分计时单元加1分钟MOV A,R3 ;分数据放入ACLR C ;清进位标志CJNE A,#60H,ADDHH ;ADDHH: JC OUTT0 ;小于60分时中断退出ACALL CLR0 ;大于或等于60分时分计时单元清0 MOV R0,#79H ;指向小时计时单(78H-79H)ACALL ADD1 ;小时计时单元加1小时MOV A,R3 ;时数据放入ACLR C ;清进位标志CJNE A,#24H,HOUR ;HOUR: JC OUTT0 ;小于24小时中断退出ACALL CLR0 ;大于或等于24小时小时计时单元清0 OUTT0: MOV 72H,76H ;中断退出时将分、时计时单元数据移MOV 73H,77H ;入对应显示单元MOV 74H,78H ;MOV 75H,79H ;POP PSW ;恢复状态字(出栈)POP ACC ;恢复累加器SETB ET0 ;开放T0中断RETI ;中断返回;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 闪动调时程序;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;T1中断服务程序,用作时间调整时调整单元闪烁指示INTT1: PUSH ACC ;中断现场保护PUSH PSW ;MOV TL1, #0B0H ;装定时器T1定时初值MOV TH1, #3CH ;DJNZ R2,INTT1OUT ;0.3秒未到退出中断(50MS中断6次)MOV R2,#06H ;重装0.3秒定时用初值CPL 02H ;0.3秒定时到对闪烁标志取反JB 02H,FLASH1 ;02H位为1时显示单元"熄灭"MOV 72H,76H ;02H位为0时正常显示MOV 73H,77H ;MOV 74H,78H ;MOV 75H,79H ;INTT1OUT: POP PSW ;恢复现场POP ACC ;RETI ;中断退出FLASH1: JB 01H,FLASH2 ;01H位为1时,转小时熄灭控制MOV 72H,7AH ;01H位为0时,"熄灭符"数据放入分MOV 73H,7AH ;显示单元(72H-73H),将不显示分数据MOV 74H,78H ;MOV 75H,79H ;AJMP INTT1OUT ;转中断退出FLASH2: MOV 72H,76H ;01H位为1时,"熄灭符"数据放入小时MOV 73H,77H ;显示单元(74H-75H),小时数据将不显示MOV 74H,7AH ;MOV 75H,7AH ;AJMP INTT1OUT ;转中断退出;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 加1子程序;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;ADD1: MOV A,@R0 ;取当前计时单元数据到ADEC R0 ;指向前一地址SWAP A ;A中数据高四位与低四位交换ORL A,@R0 ;前一地址中数据放入A中低四位ADD A,#01H ;A加1操作DA A ;十进制调整MOV R3,A ;移入R3寄存器ANL A,#0FH ;高四位变0MOV @R0,A ;放回前一地址单元MOV A,R3 ;取回R3中暂存数据INC R0 ;指向当前地址单元SWAP A ;A中数据高四位与低四位交换ANL A,#0FH ;高四位变0MOV @R0,A ;数据放入当削地址单元中RET ;子程序返回;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 清零程序;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;.............;; 时钟调整程序;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;当调时按键按下时进入此程序SETMM: cLR ET0 ;关定时器T0中断CLR TR0 ;关闭定时器T0LCALL DL1S ;调用1秒延时程序JB P3.7,CLOSEDIS ;键按下时间小于1秒,关闭显示(省电)MOV R2,#06H ;进入调时状态,赋闪烁定时初值SETB ET1 ;允许T1中断SETB TR1 ;开启定时器T1SET2: JNB P3.7,SET1 ;P3.7口为0(键未释放),等待SETB 00H ;键释放,分调整闪烁标志置1SET4: JB P3.7,SET3 ;等待键按下LCALL DL05S ;有键按下,延时0.5秒JNB P3.7,SETHH ;按下时间大于0.5秒转调小时状态MOV R0,#77H ;按下时间小于0.5秒加1分钟操作LCALL ADD1 ;调用加1子程序MOV A,R3 ;取调整单元数据CLR C ;清进位标志CJNE A,#60H,HHH ;调整单元数据与60比较HHH: JC SET4 ;调整单元数据小于60转SET4循环LCALL CLR0 ;调整单元数据大于或等于60时清0CLR C ;清进位标志AJMP SET4 ;跳转到SET4循环CLOSEDIS: SETB ET0 ;省电(LED不显示)状态。
51单片机数码管显示时钟(C语言)
* 输出
:无
*******************************************************************************
/
void main() {
Ds1302Init(); Timer0Configuration(); while(1) {
Ds1302ReadTime(); disp[7] = DIG_CODE[TIME[0]&0x0f]; disp[6] = DIG_CODE[TIME[0]>>4]; disp[5] = 0X40; disp[4] = DIG_CODE[TIME[1]&0x0f]; disp[3] = DIG_CODE[TIME[1]>>4]; disp[2] = 0X40; disp[1] = DIG_CODE[TIME[2]&0x0f]; disp[0] = DIG_CODE[TIME[2]>>4]; }
/
void DigDisplay() interrupt 1 { //定时器在工作方式二会自动重装初,所以不用在赋值。 // TH0=0X9c;//给定时器赋初值,定时 1ms // TL0=0X00;
DIG=0; //消隐 switch(Num) //位选,选择点亮的数码管, {
case(7): LSA=0;LSB=0;LSC=0; break;
uchar n;
EA = 0; RST = 0; _nop_();
SCLK = 0;//先将 SCLK 置低电平。 _nop_(); RST = 1; //然后将 RST(CE)置高电平。 _nop_();
for (n=0; n<8; n++)//开始传送八位地址命令 {
实验四--单片机驱动数码管显示
实验四单片机驱动数码管显示一实验目的1 学习单片机驱动数码管动态显示的电路设计和编程方法二实验原理1、单片机系统中常用的显示器有:发光二极管LED(Light Emitting Diode)显示器、液晶LCD(Liquid Crystal Display)显示器、CRT显示器等。
LED、LCD显示器有两种显示结构:段显示和点阵显示。
七段数码管显示为了显示数字或字符,必须对数字或字符进行编码。
七段数码管加上一个小数点,共计8段。
因此为LED显示器提供的编码正好是一个字节。
字母一般用米字型。
编码表:0x3f 0x06 0x5b 0x4f 0x66 0x6d0 1 2 3 4 50x7d 0x07 0x7f 0x6f 0x77 0x7c6 7 8 9 A B0x39 0x5e 0x79 0x71 0x00C D E F 无显示七段数码管对应八位由低到高:a,b,c,d,e,f,g,dp例:数码管显示2则要点亮a,b,g,e,d段,对应的八位是01011011数码管动态显示方式是将所有显示位的段选择线并联在一起,有统一的I/O资源来控制。
各个数码管公共端也有I/O资源来控制,分时的选通各个数码管进行动态显示。
每个瞬间只能选通一个数码管,人眼的暂留时间为,每个数码管的选通时间必须在以内,通常选择15ms~20ms。
电路图见实验附图。
三实验内容理解动态显示电路图,参考驱动程序,单片机P0口作段码输出控制,P1口作位码控制,使单片机驱动6个7段数码管输出实验当天年、月、日六位数字。
四、实验步骤(1)单片机最小应用系统1的P0口接段码口a~h,P1口接位码口S1~S6。
(2)在KEIL软件下编写程序并调试,完成实验内容要求。
(3)下载程序,通过实验箱验证设计电路和编写的程序是否达到实验要求。
下载程序,通过实验箱验证设计电路和编写的程序是否达到实验要求。
五参考程序与电路汇编语言参考程序:ORG 0000HLJMP STARTORG 0030HSTART: MOV R0,#30HMOV R1,#40HMOV 30H,#1MOV 31H,#2MOV 32H,#1MOV 33H,#1MOV 34H,#2MOV 35H,#0START1: MOV DPTR,#TABMOV R3,#6LOOP: MOV A,@R0MOVC A,@A+DPTRMOV @R1,AINC R0INC R1DJNZ R3,LOOPMOV R3,#6MOV R1,#40HMOV A,#20HLOOP1: MOV P1,@R1MOV P2,AACALL DELAYMOV P2,#00HRR AINC R1DJNZ R3,LOOP1LJMP START1TAB:DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07H,7FH,6FH,77H,7CH,58H,5EH,7BH,71H,00H,40H DELAY: MOV R4,#100LOOP2: DJNZ R4,LOOP2RETENDC语言参考程序:#include <reg51.h>#include <intrins.h>unsigned char code table[]={0x3f,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F};unsigned char date[]={1,2,1,1,2,0};void delay(){unsigned char j;for(j=0;j<=100;j++);}void main(){unsigned char i,a;while(1){a=0x40;for(i=0;i<6;i++){P1=table[date[i]];a=_cror_(a,1);P2=a;delay();P2=0x00;}}}数码管动态显示电路图(位选信号为高电平,段选信号为高电平):。
单片机简易秒表正计时时间可设置
单片机简易秒表正计时时间可设置单片机简易秒表的正计时时间可设置为2000字,可以按照以下步骤进行实现:1. 硬件设计:选择一款适合需求的单片机,比如常见的8051、AVR、STM32等。
并根据需求连接必要的外设,如按键开关、数码管等。
2. 软件设计:a) 定义相关变量:- 秒变量:存储当前的秒数- 分变量:存储当前的分钟数- 时变量:存储当前的小时数- 控制变量:用于控制秒表的开始和暂停- 设置变量:用于设置需要计时的时间,初始值为2000(字)- 数码管显示变量:存储需要在数码管上显示的数据b) 初始化:- 设置定时器中断,每秒触发一次中断,用于更新秒、分、时的变量- 设置外部中断,用于处理开始/暂停的按键事件- 设置外部中断,用于处理设置事件,每按一次按键设置加1,最大为2000(字),显示设置数值。
c) 中断服务程序:- 更新秒、分、时的变量- 如果控制变量为1,将秒、分、时的变量更新到数码管显示变量中,实现数码管显示d) 控制程序:- 根据按键事件切换控制变量的状态,实现秒表的开始、暂停功能e) 设置程序:- 根据按键事件对设置变量进行更新,实现设置时间的功能。
同时将设置变量的值显示在数码管上3. 调试与优化:通过调试和优化程序,确保秒表的正计时时间可设置为2000字。
4. 扩展功能:在基本功能实现的基础上,可以添加更多的功能,如显示毫秒、添加报警功能等,以提升秒表的实用性。
5. 完善界面设计:为了方便用户操作和观察计时结果,可以设计一个简洁美观的界面。
可以利用数码管显示计时结果,同时增加LED指示灯来辅助显示状态(如运行、暂停)。
可以设计一个独立的按键用于开始/暂停功能,一个按键用于增加设置时间。
可以在界面上打印一些提示信息,如"Press Start to begin timing"等。
6. 用户交互优化:为了方便用户操作,可以添加一些交互优化功能。
例如,可以实现按住增加设置时间按键连续加速增加时间的功能,以快速设置需要计时的时间。
基于单片机的时钟设计6位LED
基于单片机的时钟设计6位LED1. 引言时钟是我们日常生活中必不可少的工具之一。
设计一个基于单片机的6位LED时钟,不仅可以提供时间显示功能,还能够增加一些附加功能,如闹钟、计时器等。
本文将介绍基于单片机的时钟设计方案,并提供详细的电路原理图和源代码。
2. 设计思路基于单片机的时钟设计通常采用时分秒的显示方式,并通过按键进行时间的调整和功能的切换。
考虑到使用方便和成本等因素,我们选择采用6位LED数码管作为显示屏,并使用74HC595芯片进行驱动。
2.1 电路设计电路的主要部分包括单片机、时钟模块、数码管及驱动芯片。
单片机的核心是时钟芯片,用于计时和存储时间数据。
时钟模块提供了精确的时间信号,可以与单片机进行通信。
数码管通过74HC595芯片进行驱动,以实现数字的显示。
2.2 软件设计软件设计是基于单片机的时钟设计中非常重要的一环。
主要包括以下功能:•时间显示:将时、分、秒的数据转换为数码管的显示信息,并实现动态显示效果。
•时间调整:通过按键对时钟进行时间的调整,包括调整小时、分钟、秒钟。
•附加功能:实现闹钟、计时器等附加功能,可以通过按键进行设置和开关。
3. 电路原理图电路的原理图如下:+--------------+| 数码管 |+--------------+|+--------------------------+| 74HC595驱动芯片 |+--------------------------+|+--------------+| 单片机 |+--------------+|+---------------------+| 时钟模块 |+---------------------+4. 源代码以下是基于单片机的时钟设计的部分源代码示例:#include <reg52.h>sbit SCLK=P1^0; // 74HC595芯片时钟输入sbit RCLK=P1^1; // 74HC595芯片锁存输出sbit DIO=P1^2; // 74HC595芯片串行数据输入// 数字码表unsigned char code number[10]={0x3F, // 00x06, // 10x5B, // 20x4F, // 30x66, // 40x6D, // 50x7D, // 60x07, // 70x7F, // 80x6F// 9};void delay(unsigned int t){unsigned int i, j;for(i=0; i<t; i++)for(j=0; j<123; j++);}void display(unsigned char *num){unsigned char i;for(i=0; i<8; i++){DIO = num[i];SCLK = 0;SCLK = 1;}RCLK = 0;RCLK = 1;}void main(){unsigned char time[8] = {0, 0, 0, 0, 0, 0, 0, 0};unsigned char i, j;while(1){// 获取当前时间// 进行时间调整// 显示时间display(time);// 延时0.5秒delay(500);}}5. 结语基于单片机的6位LED时钟设计,通过硬件和软件的设计实现了时间的显示和调整功能,并可以扩展其他附加功能。
51单片机4位数码管秒表代码
主题:51单片机4位数码管秒表代码内容:1. 介绍51单片机51单片机是一种通用的单片机系列,广泛应用于各种电子设备中。
它具有稳定性好、成本低、易于编程等优点,因此备受电子爱好者和专业工程师的青睐。
2. 4位数码管秒表4位数码管秒表是一种常见的电子计时器,通过LED数码管显示出当前的时间,可以用于各种计时应用,比如比赛计时、实验计时等。
3. 代码编写以下是一段简单的51单片机4位数码管秒表代码:```c#include <reg52.h>#include <intrins.h>// 数码管位选端口sbit wei1 = P2^2;sbit wei2 = P2^3;sbit wei3 = P2^4;sbit wei4 = P2^5;// 数码管显示段选端口sbit se2 = P0^2;sbit se1 = P0^3;sbit se4 = P0^4;sbit se3 = P0^5;unsigned char code smgduan[17] = {0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F,0x77,0x7C,0x39,0x5E,0x79,0x71,0x00}; // 显示0~9,A,b,C,d,E,F,无的值void delay(unsigned int i) { // 延时while(i--);}void display(unsigned char *tab) { // 数码管显示 unsigned char i;for(i=0; i<7; i++) {P0=0; // 清除段选,以选中所显示的数码管 switch(i) { //确定位选case(0):wei1=0;wei2=wei3=wei4=1;break;case(1):wei2=0;wei1=wei3=wei4=1;break;case(2):wei3=0;wei1=wei2=wei4=1;break;case(3):wei4=0;wei1=wei2=wei3=1;break;default:break;}P0=tab[i]; //段码输出delay(5); // 数码管微秒级延迟}}void m本人n() {unsigned char a=0,b=0,c=0,d=0; //时钟的4位数据 unsigned int i=0;wei1=wei2=wei3=wei4=1; //段选、位选初始化while(1) {a++; // 微秒级的计数if(a==100) { //达到100a=0; b++; //b加1if(b==60) { //当b=60时b=0; c++; //c加1if(c==60) { //当c=60时c=0; d++; //d加1if(d==24) { //当d=24时d=0; //归零}}}}display(smgduan+d10); //显示个秒wei1=1;wei2=wei3=wei4=0; //位选delay(500); //延时display(smgduan+c/10+10); //显示十秒wei2=1;wei1=wei3=wei4=0; //位选delay(500); //延时display(smgduan+b10); //显示个分wei3=1;wei1=wei2=wei4=0; //位选delay(500); //延时display(smgduan+b/10+10); //显示十分wei4=1;wei1=wei2=wei3=0; //位选delay(500); //延时if(i++==200) { //当i=200时i=0;}}}```4. 代码分析该代码通过对51单片机的引脚进行控制,实现了4位数码管秒表的计时功能。
用单片机AT89C51设计一个2位的LED数码显示作为“秒表”—单片机课程设计
目录一、设计题目和要求: (2)二、设计目的: (2)三、设计内容: (3)四、课程设计心得体会 (25)五、参考文献 (26)六、课程设计指导教师评审标准及成绩评定 (27)附件1:秒表原理图(实际接线图) (28)附件2:仿真图1 (30)附件3:仿真图2 (31)一、设计题目和要求:题目三:秒表应用AT89C51的定时器设计一个2位的LED数码显示作为“秒表”:显示时间为00~99s,每秒自动加1,设计一个“开始”键,按下“开始”键秒表开始计时。
设计一个“复位”键,按下“复位”键后,秒表从0开始计时。
任务安排:李座负责绘制电路原理图;梁宗林负责收集资料及电子版整理;付忠林负责程序和仿真。
二、设计目的:1.进一步掌握AT89C51单片机的结构和工作原理;2.掌握单片机的接口技术及外围芯片的工作原理及控制方法;3.进一步掌握单片机程序编写及程序调试过程,掌握模块化程序设计方法;4.掌握PROTEUS仿真软件的使用方法;5.掌握LED数码管原理及使用方法。
6.掌握定时器、外部中断的设置和编程原理。
7.通过此次课程设计能够将单片机软硬件结合起来,对程序进行编辑,校验。
8.该课程设计通过单片机的定时器/计数器定时和计数原理,设计简单的计时器系统,拥有正确的计时、暂停、清零、复位功能,并同时可以用数码管显示。
三、设计内容:了解8051芯片的的工作原理和工作方式,使用该芯片对LED数码管进行显示控制,实现用单片机的端口控制数码管,显示分、秒,并能用按钮实现秒表起动、停止、清零功能,精确到1秒。
AT89C51单片机的主要工作特性:·内含4KB的FLASH存储器,擦写次数1000次;·内含28字节的RAM;·具有32根可编程I/O线;·具有2个16位可编程定时器;·具有6个中断源、5个中断矢量、2级优先权的中断结构;·具有1个全双工的可编程串行通信接口;·具有一个数据指针DPTR;·两种低功耗工作模式,即空闲模式和掉电模式;·具有可编程的3级程序锁定定位;AT89C51的工作电源电压为5(1±0.2)V且典型值为5V,最高工作频率为24MHz.AT89C51各部分的组成及功能:振荡器和时钟电路数据存储器128字节程序存储器14KBCPU 两个16位定时器计数器中断控制总线扩展控制器并行可编程I/O口可编程串行口内部总线外部中断扩展控制P0 P1 P2 P3 RXD TXD1.单片机的中央处理器(CPU )是单片机的核心,完成运算和操作控制,主要包括运算器和控制器两部分。
单片机指令编程实例数码管显示程序设计
单片机指令编程实例数码管显示程序设计在单片机的开发中,数码管是一种常见的输出设备。
通过编程控制数码管的显示,我们可以实现各种功能,如计时、计数、温度显示等。
本文将介绍一个简单的单片机指令编程实例,用于设计一个数码管显示程序。
一、概述数码管是一种由七段LED组成的显示器件,每个数码管可以显示0-9的数字。
通过合理的控制,可以将多个数码管连接起来并显示多位数值。
在这个实例中,我们将使用AT89C51单片机和共阳数码管进行程序设计。
二、硬件连接将数码管的七段LED引脚依次连接到单片机的GPIO引脚,并将共阳极引脚连接到单片机的VCC。
为了方便控制,可以利用74HC595芯片实现数码管的级联连接,这样只需要使用三个IO口即可控制多个数码管。
三、程序设计程序设计的主要逻辑是通过编写一系列的指令来控制数码管的显示。
以下是一个简单的实例程序:```#include <reg51.h>sbit SDA = P1^0; // 74HC595芯片的串行数据引脚sbit SCK = P1^1; // 74HC595芯片的时钟引脚sbit RCK = P1^2; // 74HC595芯片的输出使能引脚unsigned char code num[10] = {0xC0, // 数字0的显示码0xF9, // 数字1的显示码0xA4, // 数字2的显示码0xB0, // 数字3的显示码0x99, // 数字4的显示码0x92, // 数字5的显示码0x82, // 数字6的显示码0xF8, // 数字7的显示码0x80, // 数字8的显示码0x90 // 数字9的显示码};void delay(unsigned int t) {unsigned int i;while (t--) {for (i = 0; i < 1000; i++);}}void writeByte(unsigned char dat) {unsigned char i;for (i = 0; i < 8; i++) {SDA = (dat & 0x80) ? 1 : 0;dat <<= 1;SCK = 0;SCK = 1;}}void display(unsigned char n) {unsigned char i;for (i = 0; i < 8; i++) {writeByte(num[n]);RCK = 1;RCK = 0;delay(1); // 延时一段时间,使数码管显示出来}}void main() {unsigned char i;while (1) {for (i = 0; i < 10; i++) {display(i);delay(500); // 每个数字显示的时间间隔为500ms}}}```以上程序通过将各个数字的显示码存储在一个数组中,然后通过控制74HC595芯片的串行数据引脚、时钟引脚和输出使能引脚,来实现数码管的动态显示。
单片机实验报告——LED数码管显示实验
单片机实验报告——LED数码管显示实验引言单片机是一种基础的电子元件,作为电子专业的学生,学习单片机编程是必不可少的。
在单片机编程实验中,学习如何使用IO口驱动LED数码管显示是重要的一部分。
在此次实验中,我们用到的是STM32F103C8T6单片机,与之相配套的是LED数码管、杜邦线等元件,并利用Keil uVision5软件进行编程操作。
本文的目的是通过实验与实验数据的分析说明单片机控制LED数码管的方法,希望对单片机初学者有所帮助。
实验原理1.LED数码管简介LED数码管是利用发光二极管实现数字和字母的显示,其外观形式有共阳和共阴两种。
共阳型数码管的共阳端是接在公共的端子上,数字和字母的每一个元素(即1、2、3、4、5、6、7、8、9、A、B、C、D、E、F)的生命延伸出去,称为”高”电平;共阴型数码管的共阴端是接在公共的端子上,数字和字母的每一个元素的生命也是分别延伸出去,但称为”低”电平。
2.STM32F103C8T6单片机STM32F103C8T6单片机是一款功能完备的32位MCU产品,它具有高性能,低功耗的特点,可广泛应用于许多硬件系统。
此次实验所需的LED数码管的显示量是5个(共阳型),因此我们只需要5个IO口即可将STM32F103C8T6单片机与LED数码管连接起来。
实验材料STM32F103C8T6单片机、LED数码管、杜邦线、电容、电阻、面包板等。
实验步骤1.硬件连接:将LED数码管的针脚连接到单片机的IO口,如下图所示:其中P0-P4分别代表数字0-4,PE2口作为LED点亮控制口,分别接入面包板中。
2.软件设置:使用Keil uVision5进行程序编写,将代码下载到单片机控制器内,开启电路,即可观察到LED数码管上的数字进行了变化。
代码如下所示:实验结果将程序下载到开发板后,启动单片机,即可看到红色LED数码管逐个显示从0-9的数字。
达到9后又从0开始循环。
实验过程及结论本次实验中彻底了解到了用单片机控制LED数码管的方法,单片机控制LED数码管变化是通过选中不同的IO口来完成的,利用Keil uVision5软件可以完成程序编写。
单片机6个数码管上显示时分秒
//6个数码管上依次显示时、分、秒,//按下S2一次,停止计时,按下S2两次,开始计时;//停止计时后,按下S3一次,小时数加1;//停止计时后,按下S4一次,分钟数加1;//停止计时后,按下S5一次,秒数加1#include<reg52.h>//头文件#define uint unsigned int#define uchar unsigned char //宏定义sbit wela=P2^7;sbit dula=P2^6;//数码管锁存位声明sbit s2=P3^4;sbit s3=P3^5;sbit s4=P3^6;sbit s5=P3^7;//独立按键位声明uchar code table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};//0-9段码uchar code table1[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf};//位码uint num=0,num1,num2;//全局变量uchar shi,fen,miao;void delay(uint);void display(uchar,uchar);void keyscan();void main(){TMOD=0x01;TH0=(65536-50000)/256;//赋初值TL0=(65536-50000)%256;EA=1;//中断使能ET0=1;TR0=1;while(1){shi=num/3600;fen=num%3600/60;miao=num%60;if(shi==13)num=num%3600;if(fen==60)num=num/3600*3600+num%60;if(miao==60)num=num/60*60;keyscan();//按键if(num2==0){display(shi,0);//显示display(fen,2);display(miao,4);}else{switch(num2){case 1:display(shi,0);display(fen,2);display(miao,4);break;case 2:display(shi,0);break;case 3:display(fen,2);break;case 4:display(miao,4);break;}}}}void delay(uint x){uint i,j;//局部变量for(i=0;i<x;i++)for(j=0;j<110;j++);//延时子函数}void display(uchar disnum,uchar weinum){uchar sh,ge;sh=disnum/10;ge=disnum%10;P0=0xff;wela=1;wela=0;P0=table[sh];dula=1;dula=0;P0=table1[weinum];wela=1;wela=0;delay(2);//十位显示P0=0xff;wela=1;wela=0;P0=table[ge];dula=1;dula=0;P0=table1[weinum+1];wela=1;wela=0;delay(2);//个位显示*/}void keyscan(){if(s2==0){delay(15);//消抖if(s2==0){TR0=0;num2++;while(!s2);//松手检测if(num2==5){num2=0;TR0=1;}}}if(num2!=0){if(s3==0){delay(5);if(s3==0){while(!s3);num=num+3600;}}if(s4==0){delay(5);if(s4==0){num=num+60;while(!s4);}}if(s5==0){delay(5);if(s5==0){num++;while(!s5);}}}}void time0() interrupt 1{TH0=(65536-50000)/256;//赋初值TL0=(65536-50000)%256;num1++;if(num1==20){num1=0;num++;//if(num==43200)//num=0;}}。
单片机实验报告,数码管显示
单片机实验报告,数码管显示实验目的1、掌握数码管动态扫描显示的原理和编程实现方法;2、掌握软件延时程序的使用。
实验任务利用数码管动态显示,设计一个两位秒表,计时0-59,时间到了显示“FF”,使用软件延时实现。
实验原理数码管动态显示的连接方式是将所有数码管的段码a、b、c、d、e、f、g、dp的同名端连在一起,另外为每个数码管的公共极COM增加位选通控制电路,位选通由各自独立的I/O线控制。
所谓动态扫描显示,即轮流向各位数码管送出字形码和相应的位选,利用发光管的余辉和人眼视觉暂留作用,使人的感觉好像各位数码管同时都在显示。
具体过程是:当单片机输出字形码时,所有数码管都接收到相同的字形码,但究竟是哪个数码管会显示出字形,取决于单片机对位选通COM端电路的控制,所以只要将需要显示的数码管的位选通控制打开,该位就显示出字形,没有选通的数码管就不会亮。
通过分时轮流控制各个数码管的COM端,就使各个数码管轮流受控显示,这就是动态驱动。
在轮流显示过程中每位数码管的点亮时间为2ms左右,由于人的视觉暂留现象及发光极管的余辉效应,尽管实际上各位数码管并非同时点亮,但只要扫描的速度足够快,给人的印象就是一组稳定的显示数据,不会有闪烁感。
实现延时通常有两种方法:一种是硬件延时,这需要用到单片机的定— 1 —时器,这种方法可以提高CPU的工作效率,也能做到精确控制时间,此方法将在实验四中再学习;另一种方法是软件延时,这种方法主要采用循环体进行。
可以采用for循环以及for循环嵌套的方式达到粗略的长时间延时,利用Keil软件可以调试和观察for语句的延时时间。
实验结果:总结:本次实验我很好的复习了有关C语言的相关语句知识点,合理的运用到了单片机的程序编码中去,但实验过程中,也出现了很多问题。
比如在运行过程中,数码管会乱码,检查后发现是扫描信号端口错误,将扫描信号端口顺序调换,重新运行则解决了乱码问题。
共阴数码管电路0到15的显示参数代码表要记清楚。
51单片机数码管显示时钟程序
#include〈reg52.h〉//#include#include<intrins。
h〉#define uchar unsigned char#define uint unsigned intsbit dula=P2^6;sbit wela=P2^7;sbit key1=P3^4;sbit key2=P3^5;sbit key3=P3^6;sbit beep=P2^3;unsigned code table[]={0x3f ,0x06 ,0x5b , 0x4f ,0x66 ,0x6d ,0x7d ,0x07 ,0x7f ,0x6f ,0x77 ,0x7c,0x39 , 0x5e , 0x79 ,0x71};uchar num1,num2,s,s1,m,m1,f,f1,num,numf,nums,dingshi;uchar ns,ns1,nf,nf1,numns,numnf;void delay(uint z);void keyscan ();void keyscan1 ();void alram();void display(uchar m,uchar m1,uchar f,ucharf1,uchars,uchars1); void display0(uchar nf,uchar nf1,uchar ns,uchar ns1);void main(){TMOD=0x01;//设定定时器0工作方式1TH0=(65536—46080)/256 ;TL0=(65536—46080)%256 ;EA=1;//开总中断ET0=1;//开定时器0中断TR0=1;//启动定时器0中断numns=12;numnf=0;while(1){if(dingshi==0){keyscan ();display(m,m1,f,f1,s,s1);alram();}else{keyscan1 ();display0(nf,nf1,ns,ns1);}}}void keyscan (){if(key1==0){delay(10);if(key1==0)nums++;if (nums==24)nums=0;while(!key1);display(m,m1,f,f1,s,s1);}if(key2==0){delay(10);if(key2==0)numf++;if (numf==60)numf=0;while(!key2);display(m,m1,f,f1,s,s1);}if(key3==0){delay(10);if(key3==0){dingshi=~dingshi;while(!key3)display(m,m1,f,f1,s,s1);}}/*if(key4==0){delay(10);if(key4==0){flag=1;while(!key4);display(m,m1,f,f1,s,s1);}}*/}void keyscan1(){if(key1==0){delay(10);if(key1==0)numns++;if (numns==24)numns=0;while(!key1);// display(nf,nf1,ns,ns1);}if(key2==0){delay(10);if(key2==0)numnf++;if (numnf==60)numnf=0;while(!key2);// display(nf,nf1,ns,ns1);}if(key3==0){delay(10);if(key3==0){dingshi=0;while(!key3);// display(m,m1,f,f1,s,s1);}}}void alram(){if((numnf==numf)&&(numns==nums))beep=0;if(((numnf+1==numf)&&(numns==nums))&&(dingshi==0))//一分钟报时提示beep=1;}void display0(uchar nf,uchar nf1,uchar ns,uchar ns1)//闹钟显示函数{nf=numnf%10;nf1=numnf/10;ns=numns%10;ns1=numns/10;/*wela=1;P0=0xc0;//送位选数据wela=0;P0=0xff;*/dula=1;P0=table[ns1];dula=0;P0=0xff;wela=1;P0=0xfe;wela=0;delay(1);dula=1;P0=table[ns]|0x80;dula=0;wela=1;P0=0xfd;wela=0;delay(1);dula=1;P0=table[nf1];dula=0;P0=0xff;wela=1;P0=0xfb;wela=0;delay(1);dula=1;P0=table[nf];dula=0;P0=0xff;wela=1;P0=0xf7;wela=0;delay(1);}void display(uchar m,uchar m1,uchar f,ucharf1,uchars,uchars1) //时间显示{dula=1;P0=table[m1];//秒位第1位dula=0;P0=0xff;wela=1;P0=0xef;wela=0;delay(1);dula=1;P0=table[m];// 秒位第2位dula=0;P0=0xff;wela=1;wela=0;delay(1);dula=1;P0=table[s1]; //时位第一位dula=0;P0=0xff;wela=1;P0=0xfe;wela=0;delay(1);dula=1;P0=table[s]|0x80;dula=0;P0=0xff;wela=1;P0=0xfd;wela=0;delay(1);dula=1;P0=table[f1];//分位第一位dula=0;P0=0xff;wela=1;P0=0xfb;wela=0;delay(1);dula=1;P0=table[f]|0x80;dula=0;P0=0xff;wela=1;P0=0xf7;wela=0;delay(1);}void T0_timer() interrupt 1{TH0=(65536—46080)/256 ;TL0=(65536—46080)%256 ;num2++;if(num2==20){num++;num2=0;m=num%10;m1=num/10;f=numf%10;f1=numf/10;s=nums%10;s1=nums/10;if(num==59){num=0;numf++;if(numf==59){numf=0;nums++;}if (nums==24)nums=0;}}}void delay(uint z){uint x,y;for(x=110;x〉0;x—-)for(y=z;y>0;y—-);}。
8051单片机_数码管动态显示
8051单片机——数码显示器的动态显示方法
为了节省单片机的I/O口线,常采用动态扫描方式来作为LED数码管的接口电路。
在实际的工程应用中,它是使用最为广泛的一种显示方式,其接口电路是把所有显示器的8个笔划段h-a同名端连在一起,而每一个显示器的公共极COM端与各自独立的I/O口连接。
当CPU向字段输出口送出字形码时,所有显示器接收到相同的字形码,但究竟是那个显示器亮,则取决于COM端,而这一端是由I/O口控制的,所以我们就可以自行决定何时显示哪一位了。
而所谓动态扫描就是指我们采用分时的方法,一位一位地轮流控制各个显示器的COM 端,使各个显示器每隔一段时间点亮一次。
在轮流点亮的扫描过程中,每位显示器的点亮时间是极为短暂的(约1ms 左右),由于人的视觉暂留现象及发光二极管的余辉效应,尽管实际上各位显示器并非同时点亮,但只要扫描的速度足够快,给人的印象就是一组稳定的显示数据,不会有闪烁感
电路原理
显示‘8051’的源程序ORG00H
START:
SETB P0.0
MOV P2,#80H
LCALL DELAY
CLR P0.0
SETB P0.1
MOV P2,#0C0H
LCALL DELAY
CLR P0.1
SETB P0.2
MOV P2,#92H
LCALL DELAY
CLR P0.2
SETB P0.3
MOV P2,#0F9H
LCALL DELAY
CLR P0.3
AJMP START DELAY:
MOV R1,#5
D2:MOV R2,#100
DJNZ R2,$
DJNZ R1,D2
RET
end。
单片机控制8位数码管显示秒表课程设计
长沙学院《单片机原理及应用》课程设计说明书题目 LED数码管显示电子秒表设计系(部) **系专业(班级) *************姓名邹部长9931学号******指导教师***起止日期 2016.12.19—2016.12.24《单片机原理及应用》课程设计任务书1系(部):**系专业:******长沙学院课程设计鉴定表目录摘要 (5)第一章概述 (6)1.1电子秒表的设计要求 (6)1.2电子秒表的电路图 (6)1.3电子秒表的设计原理及方案 (7)第二章电子秒表的程序设计 (8)2.1 程序设计流程图 (8)2.2程序设计源代码 (10)第三章程序的调试 (16)第四章设计总结 (17)参考文献 (18)摘要随着经济与社会的发展对智能化和信息化技术要求的不断提高,单片机作为智能控制的核心,逐渐渗透到社会生产和生活的各个方面。
而本文则主要阐述基于单片机设计的数码管秒表,这次设计所采用的的单片机为stc89c52单片机,数码管则是使用2个4位共阴LED数码管组成的8位。
为减少I/O口,而使用了SM74HC138 和74HCT573这2片芯片实现数码管显示8位数据。
利用单片机内部定时器实现计时功能,分别显示为:分—秒—0.01秒。
控制则是使用一键控制,可实现计时开始,计时暂停,计时清零3个功能的循环。
本次的程序设计采用C语言编写,包括显示程序,定时中断服务程序,延时程序。
最后在单片机电路板来观察工作状态。
第一章概述1.1电子秒表的设计要求○1显示要求在初始状态显示的是00—00—00,最左边的2位显示分钟,中间2位显示秒,左边2位显示十分之一秒和百分之一秒,还有个2个LED数码管只显示中间那一段,用作间隔符。
○2然后还的有一个键用来控制秒表,要求按第一下开始计时,按第二下暂停计时,按第三下清零,以此往复循环控制。
○3使用单片机T0方式实现计时0.01秒。
1.2电子秒表的电路图1.3电子秒表的设计原理及方案设计原理根据单片机本身的定时计数器实现1秒的计时。
单片机实验报告二-数码管显示实验
单片机实验报告二-数码管显示实验摘要:本实验使用单片机控制数码管的显示,在实验过程中通过学习单片机的GPIO口的编程,调试程序、调节电路来达到正确的显示效果。
最终按照要求实现了单片机控制数码管的计数器。
关键词:单片机、数码管、GPIO口、计数器一、实验介绍数码管是一种介于机械仪表和液晶显示器之间的电子显示器件,广泛应用于计时器、计数器、仪表等电子产品中。
本实验旨在通过单片机控制数码管的显示来加深对GPIO口的使用和调试程序的理解,同时了解数码管的原理。
本实验主要分为两部分:数码管显示基础实验和数码管控制开关实验。
通过这两部分的实验可以了解数码管的工作原理和单片机的基本控制方式。
二、实验原理2.1 数码管的基本原理数码管显示器将数字显示为一组符号,例如“0”到“9”。
表示不同数字的符号被编码成一个数字码。
七段数码管用一个七段数码字母来表示数字,如下表所示:| 数字 | a | b | c | d | e | f | g || ---- | - | - | - | - | - | - | - || 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 || 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 || 2 | 1 | 1 | 0 | 1 | 1 | 0 | 1 || 3 | 1 | 1 | 1 | 1 | 0 | 0 | 1 || 4 | 0 | 1 | 1 | 0 | 0 | 1 | 1 || 5 | 1 | 0 | 1 | 1 | 0 | 1 | 1 || 6 | 0 | 0 | 1 | 1 | 1 | 1 | 1 || 7 | 1 | 1 | 1 | 0 | 0 | 0 | 0 || 8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 || 9 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |通过控制数码管的七个LED灯的亮灭,可以实现不同符号显示。
数码管时分秒动态显示
数码管时分秒动态显示1、目的:数码管显示时、分、秒,实现计时功能。
2、原理:定时器产生中断,一秒钟计数一次,计数值转换成时、分、秒后,数码管动态显示。
3、原理图4、函数思路。
单片机工作频率是12MHZ,定时器12分频后累加计数,也就是1us计数一次。
定时一秒,定时器装入初值50000,则需进入中断20次,才能实现(50000*20=100000=1s)!数码管动态显示,要求控制显示延时时间和消隐。
累计计数转换成时、分、秒,转换思路是计数分割。
一分等于60,秒,一小时等于60分。
计数累加,计数一次,秒加1,;计数60次,分加1,;计数3600次,时加1.计数86400次,24小时满,而后计数清零。
5、程序#include<reg52.H>#include<intrins.H> // 加载头文件#define uchar unsigned char // 宏定义无符号字符型#define uint unsigned long int // 宏定义无符号长整型uint num ; // 定义num和cunt为全局变量,全局更改有效uchar cunt ;uchar tab1[] = {0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x40}; // 数码管段选编码高电平有效uchar code tab2[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdF,0xbF,0x7F}; //数码管位选编码,低电平有效void display(uint num ); // 显示函数函数声明void delay (); // 延时函数声明void init () // 中断初始化{TMOD=0x01; // 设置定时器T0为16位定时模式TH0=(65535-50000)/256; // T0装入初值50000TL0=(65535-50000)%256; // / 取整,%取余。
基于单片机的电子时钟6位LED数码管显示
数码管显示电子时钟设计一.功能要求1.数字电子时钟最主要是LED数码管显示功能,以24小时为一个周期,显示时间时、分、秒。
2.具有校时功能,可以对时、进行单独校对,使其校正到标准时间。
二.方案论证1.数字时钟方案数字时钟是本设计的最主要的部分。
根据需要,可利用两种方案实现。
方案一:本方案采用Dallas公司的专用时钟芯片DS12887A。
该芯片内部采用石英晶体振荡器,其芯片精度不大于10ms/年,且具有完备的时钟闹钟功能,因此,可直接对其以用于显示或设置,使得软件编程相对简单。
为保证时钟在电网电压不足或突然掉电等突发情况下仍能正常工作,芯片内部包含锂电池。
当电网电压不足或突然掉电时,系统自动转换到内部锂电池供电系统。
而且即使系统不上电,程序不执行时,锂电池也能保证芯片的正常运行,以备随时提供正确的时间。
方案二:本方案完全用软件实现数字时钟。
原理为:在单片机内部存储器设三个字节分别存放时钟的时、分、秒信息。
利用定时器与软件结合实现1秒定时中断,每产生一次中断,存储器内相应的秒值加1;若秒值达到60,则将其清零,并将相应的分字节值加1;若分值达到60,则清零分字节,并将时字节值加1;若时值达到24,则将十字节清零。
该方案具有硬件电路简单的特点。
但由于每次执行程序时,定时器都要重新赋初值,所以该时钟精度不高。
而且,由于是软件实现,当单片机不上电,程序不执行时,时钟将不工作。
基于硬件电路的考虑,本设计采用方案二完成数字时钟的功能。
2.数码管显示方案方案一:静态显示。
所谓静态显示,就是当显示器显示某一字符时,相应的发光二极管恒定的导通或截止。
该方式每一位都需要一个8 位输出口控制。
静态显示时较小的电流能获得较高的亮度,且字符不闪烁。
但当所显示的位数较多时,静态显示所需的I/O口太多,造成了资源的浪费。
方案二:动态显示。
所谓动态显示就是一位一位的轮流点亮各个位,对于显示器的每一位来说,每隔一段时间点亮一次。
单片机数码管静态显示及定时器和中断应用
例 利用定时/计数器T1的方式1,产生10ms的定时,并使P1.0引脚上输出周期为20ms的方波,采用中断方式,设系统时钟频率为12 MHz。 解:1、计算计数初值X: 由于晶振为12 MHz,所以机器周期Tcy为1 s。 所以: N=t/ Tcy =10000/1=10000 X=65536-10000=55536=D8F0H 即应将D8H送入TH0中,F0H送入TL0中 2、求T1的方式控制字TMOD: M1M0=01,GATE=0,C/T=0,可取方式控制字为01H;
GATE:门控位。GATE=0时,只要用软件使TCON中的TR0或TR1为1,就可以启动定时/计数器工作;GATA=1时,要用软件使TR0或TR1为1,同时外部中断引脚或也为高电平时,才能启动定时/计数器工作。即此时定时器的启动多了一条件。 :定时/计数模式选择位。 =0为定时模式; =1为计数模式。 M1M0:工作方式设置位。定时/计数器有四种工作方式,由M1M0进行设置。
TF0(TCON.5),片内定时/计数器T0溢出中断请求标志。当定时/计数器T0发生溢出时,置位TF0,并向CPU申请中断。
TF1(TCON.7),片内定时/计数器T1溢出中断请求标志。当定时/计数器T1发生溢出时,置位TF1,并向CPU申请中断。
RI(SCON.0)或TI(SCON.1),串行口中断请求标志。当串行口接收完一帧串行数据时置位RI或当串行口发送完一帧串行数据时置位TI,向CPU申请中断。
使用LED显示器时,要注意区分这两种不同的接法。为了显示数字或字符,必须对数字或字符进行编码。七段数码管加上一个小数点,共计8段。因此为LED显示器提供的编码正好是一个字节。TX实验板用共阴LED显示器,根据电路连接图显示16进制数的编码已列在下表。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
#include<>
#define uchar unsigned char
#define uint unsigned int
uchar code table[]={
0x3f,0x06,0x5b,0x4f,
0x66,0x6d,0x7d,0x07,
0x7f,0x6f,0x77,0x7c,
0x39,0x5e,0x79,0x71};//0~9的数码管显示
sbit dula=P2^6;//声明段选
sbit wela=P2^7;//声明位选
uchar h,m,s,num1;//定义变量
void delay(uint xms)//延时函数
{
uint i,j;
for(i=xms;i>0;i--)
for(j=110;j>0;j--);
}
void init()//初始化
{
TMOD=0x10;// 0001 0001 定时器0的工作方式1,定时器1的工作方式1 TH1=(65536-45872)/256;
TL1=(65536-45872)%256;
EA=1;//开总中断
ET1=1;//开定时器1中断
TR1=1;//启动定时器1
}
void main()//主函数
{
init(); //初始化
while(1) //while循环
{
wela=1; //打开位选
P0=0xfe; //点亮数码管
wela=0; //关闭位选
dula=1; //打开段选
P0=table[h/10];//送入数据
dula=0; // 关闭段选
delay(1); //延时5ms
wela=1; //打开位选
P0=0xfd; //点亮数码管
wela=0; //关闭位选
dula=1; //打开段选
P0=table[h%10];//送入数据
dula=0; // 关闭段选
delay(1); //延时5ms
wela=1; //打开位选
P0=0xfb; //点亮数码管
wela=0; //关闭位选
dula=1; //打开段选
P0=table[m/10];//送入数据
dula=0; // 关闭段选
delay(1); //延时5ms
wela=1; //打开位选
P0=0xf7; //点亮数码管
wela=0; //关闭位选
dula=1; //打开段选
P0=table[m%10];//送入数据
dula=0; // 关闭段选
delay(1); //延时5ms
wela=1; //打开位选
P0=0xef; //点亮数码管
wela=0; //关闭位选
dula=1; //打开段选
P0=table[s/10];//送入数据
dula=0; // 关闭段选
delay(1); //延时5ms
wela=1;
P0=0xdf;
wela=0;
dula=1;
P0=table[s%10];
dula=0;
delay(1);
}
}
void T1_time()interrupt 3 //中断3
{
TH1=(65536-45872)/256; //重装初值
TL1=(65536-45872)%256; //
num1++; //num2每加一次判断一次是否到20次了if(num1==20) //如果到了20次,说明1秒钟到了
{
num1=0; //把num1清零,重新再计20次
s++; //s每加一次判断一次,是否到60次了
if(s==60) //如果到了60次,说明1分钟到了
{
s=0; //把s清零,重新再计60次
m++; //m每加一次判断一次是否到60次了
if(m==60) //如果到了60次,说明1小时到了
{
m=0; //把m清零,重新再计60次
h++; //h每加一次判断一次是否到24次了
if(h==24)//如果h到了24次,说明24小时到了
{
h=0; //把m清零,重新再计60次
}
}
}
}
}。