完整word版,二次根式知识点总结及常见题型.docx

合集下载

(word完整版)二次根式乘除法(含答案),推荐文档

(word完整版)二次根式乘除法(含答案),推荐文档

一、知识聚焦:1.积的算术平方根的性质:积的算术平方根,等于积中各因式的算术平方根的积。

2.二次根式的乘法法则:两个因式的算术平方根的积,等于这两个因式积的算术平方根。

3.商的算术平方根的性质:商的算术平方根等于被除式的算术平方根除以除式的算术平方根4.二次根式的除法法则:两个数的算术平方根的商,等于这两个数的商的算术平方根。

5.最简二次根式:符合以下两个条件:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式。

6.分母有理化:把分母的根号去掉的过程称作“分母有理化”二、经典例题:例1.化简(0x≥y,0≥例2.计算25⋅315⨯2例3.判断下列各式是否正确,不正确的请予以改正:=例4.化简:,0x)0≥yx≥y(>>b)0(>(≥,0,0a)0(4例5.计算:例6.下列各式中哪些是最简二次根式,哪些不是?为什么?(1)b a 23 (2)23ab(3)22y x + (4))(b a b a >- (5)5 (6)xy 8例7. 把下列各式化为最简二次根式:(1)12 (2)b a 245 (3)xyx 2例8. 把下列各式分母有理化例9. 比较3223和两个实数的大小答案: 例例2. (1(2)303 (3) (4)6例3. (1)不正确. ×3=6(2) 例4.(1)83 (2)a b 38 (3)y x 83 (4)yx 135 例5.(1)2 (2)23 (3)2 (4)22 例6.(3),(4),(5)是,其它不是例7.(1)23, (2) b a 53, (3) xy x 例8. (1)21144-(2) b a b a a ++2 例9. 3223>三、基础演练:1. ②×2.化简3.把下列各式化为最简二次根式:(1)3)(8y x + (2)2114 (3)mn 382334. 把下列各式分母有理化 (1)403 (2)xyy 422(x >0,y >0)5.比较大小(1)76与67 (2)--答案:1.①=82 ②=1215 ③=y a 2.25;32;62; 32ab 3.(1) )(2)(2y x y x ++ (2) 62 (3)m mn n 6 4.(1)2030(2) x xy y5.解:(1) 76<67 (2) --四、能力提升:1,•那么此直角三角形斜边长是( ).A ..3.9cm D .27cm 2.下列各等式成立的是( ).A ..C ..×3 ).A .27.27C .74.二次根式:①29x -;②))((b a b a -+;③122+-a a ;④x1;⑤75.0中最简二次根式是( ) A 、①② B 、③④⑤ C 、②③ D 、只有④5=6.分母有理化=______.答案:1. B 2. D 3. A 4. A 5.6136.=6263=22五、个性天地:(LJJ00002)(1=_________;(2)=___________;=_________;(2=__________.(SHY00002)已知x=3,y=4,z=5_______.答案:(LJJ00002)(1)4;(2)15;(ZZY00002)57;(2)24x (SHY00002)315。

《二次根式》知识点总结-题型分类-复习专用.doc

《二次根式》知识点总结-题型分类-复习专用.doc

《二次根式》题型分类知识点一:二次根式的概念 【知识要点】二次根式的定义:形如五的戎子叫二次根式,其中么叫被开 方数,只有当么是一个非负数时,石才有意义.【典型例题】题型一:二次根式的判定【例1】下列各式1)卫,2)底,3)-存714)扬,5)』(-A 6)举一反三:1、 使代数式有意义的X 的取值范围是x-4( )A 、x>3 B. x > 3C 、 x>4D 、 x 》3且XH 42、 若式子丁鼻有意义,则x 的取值范围\l x — 3是 _____________ .题型去二次根式定义的运用【例 31 若 y= Qx-5 +』5-x ,则 x+y= _______________7)J/著换三:若x 、y 都是实数,且yr 求xy 的值1、下列各式中,一定是二次根式的是( )A 、乔B 、V^IOC 、yfa + lD 、题型二:二次根式有意义【例2】J 兀-2有意义的x 的取值范围是 ---------已知a 是亦整数部分,b 是 亦的小数部分, 求a-b 的值。

V5V 3,其中是二次根式的是 ------------ (填序号). 举一反三: 2、在丽、Vl + x 2 、的中是二次根式的个数有 ------- 个3、当。

取什么值时,代数式血 + 1+1取值最小, 并求出这个最小值。

知识点二:二次根式的性质【知识要点】1.非负性:V^(a>0)是一个非负数.2. (V^)2 =a(a>0).注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全 平方的形式:a = (7a)2(a>0)4.公式=\a\=l a^~^ 与(Va)2 =a(a>0)的区别与联系-a(a < 0)(1) 品表示求一个数的平方的算术根,a 的范围是一切实数. (2) (需尸表示一个数的算术平方根的平方,a 的范围是非负数. (3) Q 和(石尸的运算结果都是非负的.【典型例题】題型二:二次根式的牲廣2(公式(石)2二a(a > 0)的运用)注意:此性质可作公式记住,后面根式运算中经常用到.f 例5】化简:卜一1| + (丁^二5)2的结果为()A 、4-2aB 、0C 、2a —4D 、4举一反三:在实数范围内分解因式:才-3二 _________________ ; 題型去二次根式餉濒3(公式7^? = |a| = J a(a ~0)的应用)注意:(1)字母不一定是正数.-a(a < 0)(2) 能开得尽方的因式移到根号外时,必须用它的算术平方根代替.(3) 可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外.f 例6】已知x<2,则化简J(x —2)2的结果是A % x — 2B 、兀+ 2C. —X — 2D. 2 — x3.=|a|= <a(a > 0)-a(a < 0)举一反三:1、根式J(-3)2的值是()A. -3B. 3 或-3C. 3D. 9那么|疑-2a |可化简为()2、已知a<0,A. - aB. aC. 一3aD. 3a【例71如果表示a, b两个实数的点在数轴上的位置如图所示,那么化简| a-b | + J(a + b)2的结果等于() ---- ----- -- --- Ab a oA. -2bB. 2bC. -2aD. 2a举一反三:实数a在数轴上的位置如图所示:化简:0-1| +J(Q-2)2= ______________ . 寸—()j-*-I:例811、把二次根式agl化简,正确的结果是( )A. J—aB. — J-aC. — -VaD.2、__________________________________________________________ 把根号外的因式移到根号内:当b>0时,-V7 = ; (。

(完整word版)二次根式知识点复习,文档

(完整word版)二次根式知识点复习,文档

二次根式复习【知识回忆】1. 二次根式: 式子 a 〔 a ≥ 0〕叫做二次根式。

2. 最简二次根式: 必定同时满足以下条件:⑴被开方数中 不含开方开的尽的因数或因式 ; ⑵被开方数中 不含分母 ; ⑶分母中 不含根式 。

3. 同类二次根式:二次根式化成最简二次根式后,假设被开方数相同,那么这几个二次根式就是同类二次根式。

4. 二次根式的性质:〔1〕〔2〔 a ≥ 0〕;〔2〕a 〕 = a 2aa 5. 二次根式的运算: ⑴二次根式的加减运算:先把二次根式化成最简二次根式,尔后合并同类二次根式即可。

⑵二次根式的乘除运算:a 〔 a >0〕0 〔 a =0〕;a 〔 a < 0〕① ab =a ?b 〔 a ≥ 0,b ≥ 0〕;②aaba 0,b 0b【例题讲解】例 1 计算:〔1〕 (3)2 ;〔2〕 (2 ) 2 ; 〔3〕 ( a b )2〔a+b ≥ 0〕3解析:依照二次根式的性质可直接获取结论。

例 2 计算:⑴6·15⑵ 1 ·24⑶ a 3 · ab 〔 a ≥ 0,b ≥ 0〕2解析:本例先利用二次根式的乘法法那么计算, 再利用积的算术平方根的意义进行化简得出计算结果。

例 3计算:〔1〕32+23-22+3〔 2〕12 +18 - 8 -32〔 3〕40 -1 +10510【基础训练】1.化简:〔 1〕72____ ;〔2〕252242___ __;〔3〕612 18 ____;〔4〕75x3 y2 (x0, y0) ____;〔5〕204_______ 。

2.(08 ,安徽 ) 化简42=_________。

3. 〔 08,武汉〕计算 4 的结果是A .2B.± 2C. -2D. 44. 化简:〔1〕〔 08,泰安〕9 的结果是;〔 2〕〔 08,南京〕12 3 的结果是;〔3〕(08 ,宁夏 ) 528 =;〔 4〕〔 08,黄冈〕 5 x -2x =_____ _;5.〔 08,重庆〕计算82的结果是A、 6B、 6C、 2D、 26.〔 08,广州〕 3 的倒数是。

(完整word版)二次根式知识点归纳及题型总结-精华版(可编辑修改word版)

(完整word版)二次根式知识点归纳及题型总结-精华版(可编辑修改word版)

二次根式知识点归纳和题型归类一、知识框图二、知识要点梳理知识点一、二次根式的主要性质:1. ;2. ;3. ;4.积的算术平方根的性质:;5.商的算术平方根的性质:.6.若,则.知识点二、二次根式的运算1.二次根式的乘除运算(1)运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号.(2)注意每一步运算的算理;2.二次根式的加减运算先化简,再运算,3.二次根式的混合运算(1)明确运算的顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里;(2)整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用.a - 3 x x 2 +1 x -1(x -1)2 2x -3 - 1 2x + 15 + x x + 4x (x -1) x x -1 x + 3 x +13m - 1 20m 10x -1 a - 2005 x - 3 3 - x m 2 - 9 + 9 - m 2 + 2 mn b - 3 x - y - m a 2 x 3 + 3x 2 - a 3b - ababab - ab(a + b - c )2 (b - c - a )2 (b + c - a )2 x 2 + 6x + 9 x 2 -10x + 25 1- 2a + a 2 ⎪⎩一. 利用二次根式的双重非负性来解题( ≥ 0 (a ≥0),即一个非负数的算术平方根是一个非负数。

)1. 下列各式中一定是二次根式的是()。

A 、 ; B 、 ;C 、 ;D 、2. 等式 =1-x 成立的条件是.3. 当 x时,二次根式 有意义.4.x 取何值时,下列各式在实数范围内有意义。

(1)(2)(3)( 4) 若 = , 则 x 的 取 值 范 围 是 ( 5) 若 = x + 3 , 则 x 的 取 值 范 围x +1是。

6. 若有意义,则 m 能取的最小整数值是 ;若 是一个正整数,则正整数 m 的最小值是.7. 当 x 为何整数时,+1 有最小整数值,这个最小整数值为。

(完整word版)最新苏教版八年级下册数学第十二章二次根式知识点

(完整word版)最新苏教版八年级下册数学第十二章二次根式知识点

第十二章二次根式一、二次根式的概念一般地,我们把形如 a (a≥0)的式子叫做二次根式,“”称为二次根号。

★正确理解二次根式的概念,要把握以下五点:(1)二次根式的概念是从形式上界定的,必须含有二次根号“”,“”的根指数为2,即“2”,我们一般省略根指数2,写作“”。

如25 可以写作 5 。

(2)二次根式中的被开方数既可以是一个数,也可以是一个含有字母的式子。

(3)式子 a 表示非负数a的算术平方根,因此a≥0, a ≥0。

其中a≥0是 a 有意义的前提条件。

(4)在具体问题中,如果已知二次根式 a ,就意味着给出了a≥0这一隐含条件。

(5)形如b a (a≥0)的式子也是二次根式,b与 a 是相乘的关系。

要注意当b是分数时不能写成带分数,例如832 可写成8 23,但不能写成2232 。

二、二次根式的性质:★( a )2(a≥0)与a2的区别与联系:三、代数式用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数或表示数的字母连接起来的式子叫代数式。

例:3,x,x+y,3x (x≥0),-ab,st(t≠0,x3都是代数式注(1)单独一个数或字母也是代数式;(2)代数式中不能含有关系符号(>,<,=等)(1)将两个代数式用关系符号(>,<,=等)连接起来的式子叫关系式,方程和不等式都是关系式。

如2x+3>3x-5是关系式。

列代数式的常用方法:(1)直接法:根据问题的语言叙述直接写出代数式。

(2)公式法:根据公式列出代数式。

(3)探究规律法:将蕴含在一组数或一组图形中的排列规律用代数式表示出来。

四、二次根式的乘除1、单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

2、单项式与单项式相除,把系数与同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

五、二次根式的乘法法则a .b =ab (a≥0,b≥0)即:二次根式相乘,把被开方数相乘,根指数不变(1)进行二次根式的乘法运算时,一定不能忽略其被开方数a,b均为非负数这一条件。

二次根式知识点归纳及题型总结-精华版

二次根式知识点归纳及题型总结-精华版

二次根式知识点归纳与题型归类一、知识框图二、知识要点梳理知识点一、二次根式得主要性质:1、; 2、; 3、;ﻫ4、积得算术平方根得性质:;ﻫ5、商得算术平方根得性质:、6、若,则、知识点二、二次根式得运算1.二次根式得乘除运算(1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号、(2)注意每一步运算得算理;2.二次根式得加减运算先化简,再运算, ﻫ3.二次根式得混合运算(1)明确运算得顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里;ﻫ(2)整式、分式中得运算律、运算法则及乘法公式在二次根式得混合运算中也同样适用、一、利用二次根式得双重非负性来解题((a≥0),即一个非负数得算术平方根就是一个非负数。

)1、下列各式中一定就是二次根式得就是()。

A、; B、;C、; D、2.等式=1-x成立得条件就是_____________.3.当x____________时,二次根式有意义.4、x取何值时,下列各式在实数范围内有意义。

(1) (2) (3) ﻫ(4)若,则x得取值范围就是(5)若,则x得取值范围就是。

6、若有意义,则m能取得最小整数值就是 ;若就是一个正整数,则正整数m得最小值就是________.7、当x为何整数时,有最小整数值,这个最小整数值为。

8、若,则=_____________;若,则9.设m、n满足,则=。

10、若三角形得三边a、b、c满足=0,则第三边c得取值范围就是11、若,且时,则( ) A、B、ﻩC、D、二.利用二次根式得性质=|a|=(即一个数得平方得算术平方根等于这个数得绝对值)来解题1、已知=-x,则( ) A、x≤0 B、x≤-3 C、x≥-3 D、-3≤x≤02、.已知a<b,化简二次根式得正确结果就是()A. B. C.D.3、若化简|1-x|-得结果为2x-5则( ) A、x为任意实数B、1≤x≤4 C、x≥1 D、x≤44、已知a,b,c为三角形得三边,则=5、当-3<x<5时,化简= 。

二次根式知识点总结及常见题型

二次根式知识点总结及常见题型

二次根式知识点总结及常见题型一、二次根式的定义形如a (a ≥0)的式子叫做二次根式.其中“”叫做二次根号,a 叫做被开方数.(1)二次根式有意义的条件是被开方数为非负数.据此可以确定字母的取值范围; (2)判断一个式子是否为二次根式,应根据以下两个标准判断: ①是否含有二次根号“”;②被开方数是否为非负数.若两个标准都符合,则是二次根式;若只符合其中一个标准,则不是二次根式.(3)形如a m (a ≥0)的式子也是二次根式,其中m 叫做二次根式的系数,它表示的是:a m a m ⋅=(a ≥0);(4)根据二次根式有意义的条件,若二次根式B A -与A B -都有意义,则有B A =. 二、二次根式的性质 二次根式具有以下性质:(1)双重非负性:a ≥0,a ≥0;(主要用于字母的求值) (2)回归性:()a a =2(a ≥0);(主要用于二次根式的计算)(3)转化性:⎩⎨⎧≤-≥==)0()0(2a a a a a a .(主要用于二次根式的化简)重要结论:(1)若几个非负数的和为0,则每个非负数分别等于0. 若02=++C B A ,则0,0,0===C B A . 应用与书写规范:∵02=++C B A ,A ≥0,2B ≥0,C ≥0∴0,0,0===C B A . 该性质常与配方法结合求字母的值. (2)()()()⎩⎨⎧≤-≥-=-=-B A A B B A B A B A B A 2;主要用于二次根式的化简.(3)()()⎪⎩⎪⎨⎧<⋅->⋅=0022A B A A B A B A ,其中B ≥0; 该结论主要用于某些带系数的二次根式的化简:可以考虑把二次根号外面的系数根据符号以平方的形式移到根号内,以达到化简的目的. (4)()B A BA ⋅=22,其中B ≥0.该结论主要用于二次根式的计算. 例1. 式子11-x 在实数范围内有意义,则x 的取值范围是_________.分析:本题考查二次根式有意义的条件,即被开方数为非负数,注意分母不能为0. 解:由二次根式有意义的条件可知:01>-x ,∴1>x . 例2. 若y x ,为实数,且2111+-+-=x x y ,化简:11--y y .分析:本题考查二次根式有意义的条件,且有重要结论:若二次根式B A -与A B -都有意义,则有B A =. 解:∵1-x ≥0,x -1≥0 ∴x ≥1,x ≤1 ∴1=x ∴1212100<=++=y ∴11111-=--=--y yy y . 习题1. 如果53+a 有意义,则实数a 的取值范围是__________. 习题2. 若233+-+-=x x y ,则=y x _________. 习题3. 要使代数式x 21-有意义,则x 的最大值是_________. 习题4. 若函数xxy 21-=,则自变量x 的取值范围是__________. 习题5. 已知128123--+-=a a b ,则=b a _________.例3. 若04412=+-+-b b a ,则ab 的值等于 【 】(A )2- (B )0 (C )1 (D )2分析:本题考查二次根式的非负性以及结论:若几个非负数的和为0,则每个非负数分别等于0.解:∵04412=+-+-b b a ∴()0212=-+-b a∵1-a ≥0,()22-b ≥0∴02,01=-=-b a ∴2,1==b a∴221=⨯=ab .选择【 D 】.例4. 无论x 取任何实数,代数式m x x +-62都有意义,则m 的取值范围是__________. 分析:无论x 取任何实数,代数式m x x +-62都有意义,即被开方数m x x +-62≥0恒成立,所以有如下两种解法:解法一:由题意可知:m x x +-62≥0 ∵()93622-+-=+-m x m x x ≥0∴()23-x ≥m -9∵()23-x ≥0∴m -9≤0,∴m ≥9. 解法二:设m x x y +-=62∵无论x 取任何实数,代数式m x x +-62都有意义 ∴m x x y +-=62≥0恒成立即抛物线m x x y +-=62与x 轴最多有一个交点 ∴()m m 436462-=--=∆≤0解之得:m ≥9.例 5. 已知c b a ,,是△ABC 的三边长,并且满足c c b a 20100862=++-+-,试判断△ABC 的形状.分析:非负数的性质常和配方法结合用于求字母的值. 解:∵c c b a 20100862=++-+- ∴010020862=+-+-+-c c b a ∴()010862=-+-+-c b a∵6-a ≥0,8-b ≥0,()210-c ≥0∴010,08,06=-=-=-c b a ∴10,8,6===c b a∵10010,10086222222===+=+c b a ∴222c b a =+ ∴△ABC 为直角三角形.习题 6. 已知实数y x ,满足084=-+-y x ,则以y x ,的值为两边长的等腰三角形的周长为 【 】 (A )20或16 (B )20(C )16 (D )以上答案均不对习题7. 当=x _________时,119++x 取得最小值,这个最小值为_________.习题8. 已知24422--+-=x x x y ,则y x 的值为_________.习题9. 已知非零实数b a ,满足()()a b a b a a =++-+-++-415316822,求1-b a 的值.提示:由()()152+-b a ≥0,且012>+b 可得:5-a ≥0,∴a ≥5.例6. 计算:(1)()26; (2)()232+x ; (3)2323⎪⎪⎭⎫⎝⎛-. 分析:本题考查二次根式的性质: ()a a =2(a ≥0).该性质主要用于二次根式的计算.解:(1)()662=;(2)()32322+=+x x ;(3)()6329323323222=⨯=⎪⎪⎭⎫ ⎝⎛⨯-=⎪⎪⎭⎫ ⎝⎛-. 注意:()B A B A ⋅=22,其中B ≥0.该结论主要用于二次根式的计算.例7. 化简:(1)225; (2)2710⎪⎭⎫ ⎝⎛-; (3)962+-x x ()3<x .分析:本题考查二次根式的性质:⎩⎨⎧≤-≥==)0()0(2a a a a a a .该性质主要用于二次根式的化简.解:(1)2525252==;(2)7107107102=-=⎪⎭⎫ ⎝⎛-; (3)()339622-=-=+-x x x x∵3<x ∴原式x -=3.注意: 结论:()()()⎩⎨⎧≤-≥-=-=-B A A B B A B A B A B A 2.该结论主要用于二次根式和绝对值的化简.例8. 当3-x 有意义时,化简:()()22125x x x -+-++.解:∵二次根式3-x 有意义 ∴3-x ≥0 ∴x ≥3 ∴()()22125x x x -+-++图(1)23125125+=-+-++=-+-++=x x x x x x x例9. 化简:()()2223-+-x x .分析:()222-=-x x ,继续化简需要x 的取值范围,而取值范围的获得需要挖掘题目本身的隐含条件:3-x 的被开方数3-x 为非负数. 解:由二次根式有意义的条件可知:3-x ≥0 ∴x ≥3 ∴()()2223-+-x x522323-=-+-=-+-=x x x x x 例10. 已知10<<a ,化简=-+-++2121aa a a __________. 解:∵10<<a ∴aa 1<∴2121-+-++aa a a aaa a a a a a a a a a a a a a a 21111111122=+-+=⎪⎭⎫⎝⎛--+=--+=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+= 例11. 已知直线()23-+-=n x m y (n m ,是常数), 如图(1),化简1442--+---m n n n m . 解:由函数()23-+-=n x m y 的图象可知:02,03<->-n m∴2,3<>n m∴1442--+---m n n n m()()()1121212122-=+-+--=-----=-----=-----=m n n m m n n m m n n m m n n m例12. 已知c b a ,,在数轴上的位置如图(2)所示,化简:()()222b a c c a a --++-.解:由数轴可知:b a c <<<0 ∴0<+c a ∴()()222b a c c a a --++-ba b c a c a a b a c c a a -=--+++-=--++--=习题10. 要使()()2222-=-x x ,x 的取值范围是__________.习题11. 若02=+a a ,则a 的取值范围是__________.习题12. 计算:=⎪⎪⎭⎫⎝⎛243_________. 习题13. 计算:=⎪⎭⎫⎝⎛-2221_________. 习题14. 若()332-=-x x 成立,则x 的取值范围是__________.习题15. 下列等式正确的是 【 】 (A )()332= (B )()332-=-(C )333= (D )()332-=-习题16. 下列各式成立的是 【 】图(2)(A )21212-=⎪⎭⎫ ⎝⎛- (B )()ππ-=-332(C )21212=⎪⎪⎭⎫ ⎝⎛ (D )74322=+ 习题17. 计算:()=-272_________.习题18. 化简:()=+-22x x_________.习题19. 若=-+=++++-b a a b b a a 22221,01213则________. 习题20. 已知01<<-a ,化简414122+⎪⎭⎫ ⎝⎛-+-⎪⎭⎫ ⎝⎛+a a a a 得__________. 习题21. 实数c b a ,,在数轴上对应的点如图(3)所示,化简代数式:222212b ab a c b a a +---++-的结果为 【 】 (A )12--c b (B )1- (C )12--c a (D )1+-c b习题22. 化简:()2232144--+-x x x .例13. 把aa 1-中根号外的因式移到根号内,结果是 【 】 (A )a - (B )a - (C )a (D )a --分析:本题实为二次根式的化简:某些二次根式在化简时,把根号外的系数移到根号内,可以达到化简的目的,但要注意根号外面系数的符号.有如下的结论:()()⎪⎩⎪⎨⎧<⋅->⋅=0022A B A A B A B A ,其中B ≥0. 图(3)解:由二次根式有意义的条件可知:01>-a∴0<a ∴a a a a a --=⎪⎭⎫⎝⎛-⋅-=-112.选择【 D 】. 习题23. 化简()212--a a 得__________. 三、二次根式的乘法 一般地,有:ab b a =⋅(a ≥0,b ≥0)(1)以上便是二次根式的乘法公式,注意公式成立的条件:a ≥0,b ≥0.即参与乘法运算的每个二次根式的被开方数均为非负数;(2)二次根式的乘法公式用于二次根式的计算;(3)两个带系数的二次根式的乘法为:ab mn b n a m =⋅(a ≥0,b ≥0); (4)二次根式的乘法公式可逆用,即有:b a ab ⋅=(a ≥0,b ≥0)公式的逆用主要用于二次根式的化简.注意公式逆用的条件不变.例14. 若()66-=-⋅x x x x 成立,则 【 】 (A )x ≥6 (B )0≤x ≤6 (C )x ≥0 (D )x 为任意实数分析:本题考查二次根式乘法公式成立的条件:ab b a =⋅(a ≥0,b ≥0)解:由题意可得:⎩⎨⎧≥-≥060x x解之得:x ≥6. 选择【 A 】.例15. 若1112-⋅+=-x x x 成立,则x 的取值范围是__________.分析:本题考查二次根式乘法公式逆用成立的条件:b a ab ⋅=(a ≥0,b ≥0)解:由题意可得:⎩⎨⎧≥-≥+0101x x解之得:x ≥1. 例16. 计算:a a 812⋅(a ≥0). 解:a a a a a a a 21214181281222=⎪⎭⎫ ⎝⎛==⋅=⋅(a ≥0). 习题24. 计算:=⨯2731_________. 习题25. 已知()21233-⨯⎪⎪⎭⎫⎝⎛-=m ,则有 【 】 (A )65<<m (B )54<<m (C )45-<<-m (D )56-<<-m 习题26. 化简12的结果是_________. 四、二次根式的除法 一般地,有:baba =(a ≥0,0>b ) (1)以上便是二次根式的除法公式,要特别注意公式成立的条件; (2)二次根式的除法公式用于二次根式的计算;(3)二次根式的除法公式可写为:b a b a ÷=÷ (a ≥0,0>b ); (4)二次根式的除法公式可逆用,即有:ba b a =(a ≥0,0>b ) 公式的逆用主要用于二次根式的化简,注意公式逆用的条件不变. 五、最简二次根式符合以下条件的二次根式为最简二次根式: (1)被开方数中不含有完全平方数或完全平方式; (2)被开方数中不含有分母或小数.注意:二次根式的计算结果要化为最简二次根式.六、分母有理化把分母中的根号去掉的过程,叫做分母有理化. 如对21进行分母有理化,过程为:2222221=⨯=;对321+进行分母有理化,过程为:()()723232323321-=-+-=+. 由举例可以看出,分母有理化是借助于分数或分式的性质实现的.例17. 计算:(1)654; (2)3223238÷; (3)()22728y xy -÷. 解:(1)39654654===; (2)24338169388323383823383832383223238=⨯==⨯⨯=÷⨯=÷=÷; (3)()x x y xy y xy 247287282222-=-=÷-=-÷.例18. 化简: (1)65; (2)4.0; (3)a a a 9623+-(3>a ). 解:(1)63066656565=⨯⨯==; (2)51052524.0===; (3)∵3>a ∴()()()a a a a a a a a a a 3396962223-=-=+-=+- 注意:随着学习的深入,在熟练时某些计算或化简的环节可以省略,以简化计算. 例19. 式子2121-+=-+x x x x 成立的条件是__________.分析:本题求解的是x 的取值范围,考查了二次根式除法公式逆用成立的条件:ba b a = (a ≥0,0>b ). 解:由题意可得:⎩⎨⎧>-≥+0201x x 解之得:2>x .例20. 计算:(1)7523⨯; (2)5120-; (3)2832-. 解:(1)5225275237523==⨯=⨯; (2)552515205120-=-=-; (3)解法1:224416282322832=-=-=-=-. 解法2:()2248216642228322832=-=-=⨯⨯-=-. 二次根式的乘除混合运算例21. 计算:(1)⎪⎪⎭⎫ ⎝⎛-÷⨯21223222330; (2)182712⨯÷. 解:(1)原式⎪⎪⎭⎫ ⎝⎛-÷⨯=252382330 232443216435238302123-=⨯⨯-=⨯⨯-=⨯⨯⨯⎪⎭⎫ ⎝⎛-⨯=(2)原式228324182712===⨯=.习题27. 下列计算正确的是 【 】(A )3212= (B ) (C ) (D )x x =2习题28. 计算:=÷⨯213827_________. 习题29. 计算:=÷32643x x _________. 习题30. 直线13-=x y 与x 轴的交点坐标是_________.习题31. 如果0,0<+>b a ab ,那么下面各式:①ba b a =; ②1=⋅a b b a ; ③b b a ab -=÷. 其中正确的是_________(填序号).习题32. 若0<ab ,则化简2ab 的结果是_________.习题33. 计算:(1)⎪⎪⎭⎫ ⎝⎛-⨯÷7225283212; (2)⎪⎪⎭⎫ ⎝⎛÷⨯2143236181841.例22. 先化简,再求值:1441132+++÷⎪⎭⎫ ⎝⎛+-+x x x x x ,其中22-=x . 解:1441132+++÷⎪⎭⎫ ⎝⎛+-+x x x x x ()()()()()()2221122211111322+--=++⋅+-+-=++⋅⎥⎦⎤⎢⎣⎡+-+-+=x x x x x x x x x x x x x 2323=x x x -=-3当22-=x 时 原式122242222222-=--=+----=.习题34. 先化简,再求值:11121122-+÷+-+--a a a a a a ,其中12+=a .习题35. 先化简,再求值:2222221y xy x y x x x yx +--÷⎪⎭⎫ ⎝⎛---,其中6,2==y x .习题36. 下列根式中是最简二次根式的是【】 (A )32(B )3 (C )9 (D )12例23. 观察下列各式: ()()()()()().;34434343431;23323232321;12212121211 -=-+-=+-=-+-=+-=-+-=+ (1)请利用上面的规律直接写出100991+的结果;(2)请用含n (n 为正整数)的代数式表示上述规律,并证明;(3)计算:()20171201720161431321211+⨯⎪⎭⎫ ⎝⎛++++++++ . 分析:本题考查分母有理化.解:(1)1131099100100991-=-=+; (2)n n n n -+=++111; (3)原式()()2017120162017342312+⨯-++-+-+-= ()()2016120171201712017=-=+-= 习题37. 化简:891231121++++++ .七、同类二次根式 如果几个最简二次根式的被开方数相同,那么它们是同类二次根式. 同类二次根式的判断方法:(1)先化简二次根式;(2)看被开方数是否相同;(3)定结果:若相同,则它们是同类二次根式;若不相同,则不是.同类二次根式的合并方法:几个同类二次根式相加减,将它们的系数相加减,二次根式保持不变.八、二次根式的加减二次根式相加减,先把各个二次根式化简,再合并同类二次根式.二次根式加减运算的步骤:(1)化简参与运算的二次根式;(2)合并同类二次根式;(3)检查结果.例24. 计算:(1)12188++; (2)451227+-. 解:(1)原式3225322322+=++=;(2)原式533533233+=+-=.注意:不是同类二次根式不能合并.例25. 计算:1832225-+.解:原式232425-+=2272225=+=例26. 计算:(1)⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛+32233223;(2)()()()23225775-++-.解:(1)原式223223⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛=36199243=-=(2)原式364875+-+-=649-=.。

二次根式题型知识总结.doc

二次根式题型知识总结.doc

⎩⎨⎧<-≥==)0()0(2a a a a a a 二次根式知识方法题型总结一、本章知识内容归纳1.概念:①二次根式——形如 的式子;当 时有意义,当 时无意义; ②最简二次根式——根号中不含 和 的二次根式; ③同类二次根式—— 的二次根式;2.性质:①)0(0≥≥a a 非负性; ②)0()(2≥=a a a ;③ (字母从根号中开出来时要带绝对值再根据具体情况判断是否需要讨论)3.运算: 运算结果每一项都是最简二次根式,且无可合并的同类二次根式. ①乘法和积的算术平方根可互相转化:)0,0(≥≥=⋅b a ab b a ;②除法和商的算术平方根可互相转化:)0,0(>≥=b a baba ③加减法:先化为最简二次根式,然后合并同类二次根式;④混合运算:有理式中的运算顺序,运算律和乘法公式等仍然适用; ⑤乘法公式的推广:)0,.....0,0(...............21321321≥⋅≥⋅≥⋅⋅⋅=⋅⋅⋅n n n a a a a a a a a a a a 二、本章常用方法归纳方法1.开方 ①偶数次方:aann=2; ②奇数次方:a aann ⋅=+12方法2.分母有理化:①概念:分母有理化就是通过 使得其中 叫做该分母的有理化因式; ②常用的有理化因式:a 与a 、b a +与b a -、b a +与b a -互为有理化因式;③分母有理化步骤:先将二次根式尽量化简,找分母最简有理化因式; 将计算结果化为最简二次根式的形式。

方法3. 非0的二次根式的倒数 ①a 的倒数:a aa a==11(a>0); ②b a 的倒数:a b (a>0, b>0); ③※因为=-+++)1)(1(n n n n ,所以)1(n n ++的倒数为 ;方法4. 利用“”外的因数化简“”①a aaa a==1)0(≥a ; ②)0,0(2≥≥=b a b a b a ;三、本章典型题型归纳(一)二次根式的概念和性质1.x 是怎样的实数时,下列各式在实数范围内有意义? (1)2+x -x 23-; (2)x --11+x ; (3)2||12--x x ;2.若x 、y 为实数,y =2-x +x -2+3.则y x= 3.根据下列条件,求字母x 的取值范围: (1)3)3(2+=+x x ; (2)x x -=2;(3)122+-x x =1-x ;(4)※22)3()2(-+-x x =1 ;4.已知12-a +a b 2-+c b a ++=0. 则a= , b= , c= .5.已知()039322=+-+-x x y x ,则11++y x =______________ 6.在实数范围内因式分解:x 4-4=______________. 7.已知a,b,c 为三角形的三边,则222)()()(a c b a c b c b a -++--+-+= 8.若最简二次根式1452+x 与最简二次根式164-x 可以合并,则x 的取值为※9.已知a<0,化简二次根式b a 3- = ※10.把mm 1-根号外的因式移到根号内,得 (二)二次根式的运算 11.乘除法口算: (1)61= (3)8517÷=(5)312=(2)81=(4)322=(6)yx 5=(7) 211311÷=(9)33= (11)326-= (8)yx xy 3212÷= (10)26=(12)bb2142=(13)52245454÷= (15))25(122)341(-÷⋅-= (14)61132135÷⋅=12. 计算:(能简算的要简算)(1)0(π1)+. (2)8+(-1)3-2×22(3) 2484554+-+ (4) 3)154276485(÷+-(5) x xx x 3)1246(÷- (6) 2)32()122)(488(---+(7) ((((22221111-(8)62332)(62332(+--+) (9) ab -b a ―ab+2++a b b a (a >0,b >0) (10)abb a ab b 3)23(235÷-⋅※(11)673)32272(-⋅++ ※(12)21418122-+-13. 若3的整数部分是a ,小数部分是b ,则=-b a 314.在数轴上与表示的点的距离最近的整数点所表示的数是___________15.若一个正方体的长为cm 62,宽为cm 3,高为cm 2,则它的体积为 3cm . ※16.23231+-与的关系是17.甲、乙两人对题目“化简并求值:21122-++a a a,其中51=a ”有不同的解答:甲的解答:549211)1(1211222=-=-+=-+=-++a a a a a a a a a a a,乙的解答:5111)1(1211222==-+=-+=-++a a a a a a a a a a 。

(word完整版)二次根式知识点总结及常见题型,推荐文档

(word完整版)二次根式知识点总结及常见题型,推荐文档

∴ a 6 b 8 c 2 20c 100 0
∴ a 6 b 8 c 102 0 ∵ a 6 ≥0, b 8 ≥0, c 102 ≥0
∴ a 6 0, b 8 0, c 10 0
∴ a 6, b 8, c 10
∵ a 2 b 2 62 82 100, c 2 102 100
应用与书写规范:∵ A B 2 C 0 ,
A ≥0, B 2 ≥0, C ≥0
∴ A 0, B 0, C 0 . 该性质常与配方法结合求字母的值.
第1页
(2)
A B2
AB
A B
BA AA
B B;主要用于二次根式的化简.
(3) A
B
A2 B A 0
,其中 B ≥0;
A2 B A 0
习题 8. 已知 y x 2 4 4 x 2 ,则 x y 的值为_________. x2
习题 9. 已知非零实数 a, b 满足 a 2 8a 16 b 3 a 5b 2 1 4 a ,求 ab1 的值. 提示:由 a 5b2 1≥0,且 b2 1 0 可得: a 5 ≥0,∴ a ≥5.
∵无论 x 取任何实数,代数式 x 2 6x m 都有意义 ∴ y x 2 6x m ≥0 恒成立
即抛物线 y x 2 6x m 与 x 轴最多有一个交点
∴ 62 4m 36 4m ≤0
第3页
解之得: m ≥9. 例 5. 已知 a, b, c 是△ABC 的三边长,并且满足 a 6 8 b c 2 100 20c ,试判断△ABC 的形状. 分析:非负数的性质常和配方法结合用于求字母的值. 解:∵ a 6 8 b c 2 100 20c
该结论主要用于某些带系数的二次根式的化简:可以考虑把二次根号外面的系数根据符

(完整word版)二次根式知识结构

(完整word版)二次根式知识结构

(完整word版)二次根式知识结构1、定义:一般的,式子a( a≥0 ) 叫做二次根式。

其中“”叫做二次根号,二次根号下的a叫做被开方数。

(根号下的a可以是任意代数式,必须被看做一个整体。

)只有当a是一个非负数时,a才有意义。

2、性质:非负性:(1)根号下的a必须是非负数,表示为a≥0;(2)a(a≥0)本身是一个非负数.表示为a≥03、基本运算:(1)a(a≥0)的平方根是±a,a(a≥0)的算术平方根是a(2)2a=│a│= 要特别注意:绝对值内代数式的正负性,绝对值内是一个整体。

(3)(a)2=a(a≥0)(4)a·b=ab(a≥0,b≥0)反过来:ab=a·b(a≥0,b≥0)(5)ab=ab(a≥0,b>0)反过来,ab=ab(a≥0,b>0)a (a≥0)-a (a<0)二次根式4、最简二次根式应满足的条件:(1)被开方数不含分母或分母中不含二次根式;(2)被开方数中不含开得尽方的因数或因式5、化简最简二次根式的方法:(1)把被开方数(或根号下的代数式)化成积的形式,即分解因式;(2) 化去根号内的分母(或分母中的根号),即分母有理化;基本概念运算1、加减法:先把各个二次根式化为最简二次根式,再把被开方数相同的二次根式(即同类二次根式)进行合并。

(合并方法为:将系数相加减,二次根式部分不变),不能合并的直接抄下来。

2、乘法:a·b=ab(a≥0,b≥0),结果要化为最简二次根式。

3、除法:二次根式相除,通常先写成分式的形式,然后把分母的根号化去。

把分母的根号化去,叫做分母有理化。

方法为:(1)分子、分母可以约分;(2)分子、分母都乘以分母的有理化因式。

常见的互为有理化因式有如下几类: ①与;②与;③与;④与.。

(完整word)二次根式知识点归纳及题型总结-精华版文档

(完整word)二次根式知识点归纳及题型总结-精华版文档

(完整word)二次根式知识点归纳及题型总结-精华版文档二次根式知识点归纳和题型归类二、知识要点梳理知识点一、二次根式的主要性质:[爲工Og叭2“)=9-0);3^★4L鳥<0);积的算术平方根的性质:、’、:、「「〔;E=^a>OfZ>>0)商的算术平方根的性质:*.若7'.知识点二、二次根式的运算二次根式的乘除运算运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号注意每一步运算的算理;二次根式的加减运算先化简,再运算,二次根式的混合运算(1)明确运算的顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里;(2)整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用TOC\o"1-5"\h\z.利用二次根式的双重非负性来解题(岛0(a>0),即一个非负数的算术平方根是一个非负数。

)B、?:;X;C、弩B、?:;X;C、弩x1;Dx1i"22?等式J(X1)=1—x成立的条件是.3?当x时,二次根式J2x3有意义.x取何值时,下列各式在实数范围内有意义。

(2)(4)若x(x1).XIX1,则x的取值范围是(5)若X3.X3,则x的取值范围是\X1Jx16若J3m1有意义,则m能取的最小整数值是;若J20m是一个正整数,则正整数m的最小值是TOC\o"1-5"\h\z当X为何整数时,10X11有最小整数值,这个最小整数值为。

若2022aVa2022a,则a20222=;若y4,则xym29.9m22—设m、n满足n,贝V.mn=。

m3若三角形的三边ab、c满足a24a4-b3=0,则第三边c的取值范围是若|4x8|xym0,且y0时,则()A、0m1B、m2C、m2Dm2二.利用二次根式的性质a2=|a|=a(ab)(即一个数的平方的算术平方根等于这个数的绝对值)来解题u(a0)a(a0)1.已知x33x2=—1.已知x33x2=—x厂3,则()A.xw0B.xw—3C.x>—3D.—3<xw02..已知a<b,化简二次根式?a3b的正确结果是()A.aaba、abC.aabd.aabA、x为任意实数3.若化简|1-x|-x28x16的结果为A、x为任意实数4.已知a,b,c为三角形的三边,则(abc)2,(bca)2.(bca)2=5.当-3<x<5时,化简x26x9、x210x25=6、化简|xy|x2(xy0)的结果是()A6、化简|xy|x2(xy0)的结果是()AyC.2x7、已知:a2aa2=1,则a的取值范围是()。

二次根式知识点归纳(完整资料).doc

二次根式知识点归纳(完整资料).doc

【最新整理,下载后即可编辑】二次根式知识点归纳定义:一般的,式子a( a ≥0 ) 叫做二次根式。

其中“”叫做二次根号,二次根号下的a叫做被开方数。

性质:1、a(a≥0)是一个非负数.即a≥02、2a=│a│即a≥0,等于a;a<0,等于-a3、4、a·b=ab.(a≥0,b≥0)反过来: ab=a·b(a≥0,b≥0)5、ab =ab(a≥0,b>0)反过来,ab =ab(a≥0,b>0)61.被开方数不含分母;2.被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.7、同类二次根式:几个二次根次化成最简二次根式以后如果被开数相同,这几个二次根式就叫做同类二次根式8、数的平方根与二次根式的区别:①4的平方根为±2,算术平方根为2;②4=2,二次根式即是算术平方根9、二次根式化运算及化简:①先化成最简②合并同类项二次根式中考试题精选一.选择题:1.【05宜昌】化简20的结果是().A. 25 B.52 C. 10. D.542.【05南京】9的算术平方根是().A.-3B.3C.±3D.813.【05南通】已知2x<,244x x-+).A、2x-B、2x+C、2x--D、2x-4.【05泰州】下列运算正确的是().(a)2=a(a≥0)A .a 2+a 3=a 5B .(-2x)3=-2x 3C .(a -b)(-a +b)=-a 2-2ab -b 2D .2832+=5.【05无锡】下列各式中,与y x 2是同类项的是( )A 、2xyB 、2xyC 、-y x 2D 、223y x 6.【05武汉】若a ≤1,则化简后为( ).A.B.C.D.7.【05绵阳52-时,甲的解法是:52-3(52)(52)(52)+-+52,乙的52-(52)(52)52+--52 ).A. 甲的解法正确,乙的解法不正确B. 甲的解法不正确,乙的解法正确C. 甲、乙的解法都正确D. 甲、乙的解法都不正确8.【05杭州】设32,23,52a b c ===,则,,a b c 的大小关系是: ( ). (A)a b c >> (B)a c b >> (C)c b a >> (D)b c a >> 9.【05丰台】4的平方根是( ).A. 8B. 2C. ±2D. ±210.【05北京】下列根式中,与3是同类二次根式的是( ). A.24B. 12C.32D. 1811.【05南平】下列各组数中,相等的是( ).A.(-1)3和1B.(-1)2和-1C.|-1|和-1D.2(1)-和1 12.【05宁德】下列计算正确的是( ).A 、x 2·x 3=x 6B 、(2a 3)2=4a 6C 、(a -1)2=a 2-1D 、 4 =±2 13.【05毕节2(3)a -―a 的正整数a 的值有( ). A .1个 B .2个 C .3个 D .4个14.【05黄岗】已知y x ,为实数,且()02312=-+-y x ,则y x -的值为( ). A .3 B .– 3 C .1 D .– 115.【05湘潭】下列算式中,你认为错误的是 ( ).A .a a b ++b a b +=1B .1÷b a ×ab =1 C .21-=2+1 D .21()a b +·22a b a b --=1a b+ 二、填空题1.【05连云港】计算:)13)(13(-+= .2.【05南京】10在两个连续整数a 和b 之间,a<10<b, 那么a , b 的值分别是 。

二次根式知识点总结及常见题型

二次根式知识点总结及常见题型

二次根式知识点总结及常见题型资料编号:一、二次根式的定义形如.a( a >0)的式子叫做二次根式.其中“”叫做二次根号,a叫做被开方数.(1)二次根式有意义的条件是被开方数为非负数.据此可以确定字母的取值范围;(2)判断一个式子是否为二次根式,应根据以下两个标准判断:①是否含有二次根号“”;②被开方数是否为非负数.若两个标准都符合,则是二次根式;若只符合其中一个标准,则不是二次根式.(3)形如m・.a ( a > 0)的式子也是二次根式,其中m叫做二次根式的系数,它表示的是:m- a m a ( a > 0);(4)根据二次根式有意义的条件,若二次根式、、A B与.B A都有意义,则有A B.二、二次根式的性质二次根式具有以下性质(1)双重非负性:..a >0, a >0;(主要用于字母的求值)(2)回归性:...a2 a( a > 0);(主要用于二次根式的计算)(3)转化性:a2 a a(a (主要用于二次根式的化简)a(a 0)重要结论:(1)若几个非负数的和为°,则每个非负数分别等于0.若 A B2C 0,贝卩 A 0,B 0,C 0.应用与书写规范:V A B2.C 0,A > 0, B2>0,、C > 0A 0,B 0,C 0.该性质常与配方法结合求字母的值.(2)•. AB2 AB A BA B ;主要用于二次根式的化简.A2 B A 0(3)A国—,其中 B > 0;<A2 B A 0该结论主要用于某些带系数的二次根式的化简:可以考虑把二次根号外面的系数根据符号以平方的形式移到根号内,以达到化简的目的.2(4) A B A2 B,其中 B > 0.该结论主要用于二次根式的计算.例1.式子〒二在实数范围内有意义,则x的取值范围是 ____________ .寸x 1分析:本题考查二次根式有意义的条件,即被开方数为非负数,注意分母不能为0.解:由二次根式有意义的条件可知:x 1 0,二x 1.例2.若x,y为实数,且y -x 1 J x丄,化简:丄」.2 y 1分析:本题考查二次根式有意义的条件,且有重要结论:若二次根式A B与B A都有意义,则有A B .解:•/ x 1 > 0, 1 x > 0x》1, x W 1/. x 1• 1 1 ,…y 0 0 12 2习题1.如果V3C有意义,则实数a的取值范围是_____________ .习题 2.若y 4^32,则x y_____________ .习题3.要使代数式(P 有意义,则x的最大值是 _______________ .习题4.若函数y 丄空,则自变量x的取值范围是.x习题5. 已知b J3a 12 <8 2a 1,贝廿a b__________________ .例 3. 若.a 1 b2 4b 4 0 ,贝卩ab 的值等【】(A) 2 (B) 0 (C) 1 (D) 2分析:本题考查二次根式的非负性以及结论:若几个非负数的和为0,则每个非负数分别等于0.解:T1 b2 4b 4 0/. a 1 b 2 20T a 1 > 0, b 2 2> 0二 a 1 0,b 2 0「• ab 1 2 2.选择【D ] 例4.无论x取任何实数,代数式x2 6x m都有意义,则m的取值范围是 __________ .分析:无论x取任何实数,代数式.x2 6x m都有意义,即被开方数x2 6x m > 0恒成立,所以有如下两种解法:解法一:由题意可知:x2 6x m > 0T x2 6x m x 3 2 m 9 > 0--x 3 > 9 m•/ x 3 2> 0/. 9 m < 0, A m > 9.解法二:设y x2 6x mT•无论x取任何实数,代数式x2 6x m都有意义A y x2 6x m》0恒成立即抛物线y x2 6x m与x轴最多有一个交点2A 6 4m 36 4m < 0解之得:m > 9.例5.已知a,b,c是厶ABC勺三边长,并且满足、、a 6 8 b c2 100 20c,试判断△ ABC勺形状.分析:非负数的性质常和配方法结合用于求字母的值解:T a 6 8 b c2100 20ca 6b 8 c220c 100 0.a 6 b 8 c 10 20T a 6 > 0, b 8 > 0, c 10 2> 0二 a 6 0, b 8 0,c 10 0二 a 6, b 8, c 10T a2 b26282100,c2102100•••△ ABC为直角三角形.习题6.已知实数x,y满足x 4,Y 8 0,则以x,y的值为两边长的等(A) 20或16 (B) 20解:(1 )-6 2 6;(D )以上答案均不对习题7.当x ________________ 时,<9x 1 1取得最小值,这个最小值为习题8.已知V 我4韶X?,则x y 的值为x 2习题9.已知非零实数a,b 满足.a 2 8a 16 b 3 . a 5 b 2 1 4 a ,求a b1的值.提示:由 a 5 b 2 1 > 0,且 b 2 1 0可得:a 5》0, — a > 5.例6•计算:二次根式的计算.(C ) 16 —2(1)6 ;------------- 2(2)2x 3 ;(3)3,3分析:本题考查二次根式的性质_ 2 ______________________________________________________ . ”.a a ( a > 0).该性质主要用于_ ______ 2(2)、2x 3 2x 3;-2 - 2(3)3J - 3 29 - 6. ^3丫 3 3注意:A. B 2 A 2 B ,其中B > 0.该结论主要用于二次根式的计算例7.化简:I2(1)< 252 ; ( 2)10; ( 3). X 2 6x 9 x 3 .¥7二次根式的化简. 解:(1).25225 25;10 ;7;二原式 3 x .和绝对值的化简.分析:本题考查二次根式的性质:a 2aaa(a 0)0).该性质主要用于(2)注意:结论:.A B 2A BABA B A A.该结论主要用于二次根式10 7(3) x 2 6x 932例10.已知0 a 1 ,化简:a ; 2例8.当、、x 3有意义时,化简:x 5 . x 22.. 1解:•••二次根式、x 3有意义-----2'xx 5 x 2 1xx 5 x 2 x 13x 2例9. 化简:i.2一 x 2分析:,x 2 2x 2,继续化简需要x 的取值范围需要挖掘题目本身的隐含条件 「X 3的被开方数 ,而取值范围的获得x 3为非负数.解:由二次根式有意义的条件可知:* 3 >----------- 2 --------------------------x 3 x 2x 3 x 2 x 3 x 22x 5221解:由函数y m 3x n 2的图象可知: m 3 0, n 2 0m 3,n 2m n | :n 2 4n 4 |m 1m n..n 2 2 m1mn n2 m 1 m n 2 n m 1m n 2 n m 1解:•/ 0 a 1• r~ 1…、.a —.a2肓I.a 1 ■- a1 a 1 .a例11.已知直线y m 3 x n 2 ( m,n 是常数),如图(1),化简m| *n 2 4n 4 m 1 .x例12.已知a,b,c在数轴上的位置如图(2 )所示,化简:ac a 0图(2)解:由数轴可知:c a 0 b二 a a c $ 、c a $ . b2习题10.要使..x 2 2 x 2 2 ,x的取值范围是习题11.若.a2 a 0,则a的取值范围是习题12.习题13.计算:〉2习题14. 若:.x 3 2x 3成立,则x的取值范围是15. 下列等式正确2 __________________________________________________________ _____ _(A )品 3(B )厂〒 3___ 2(C )-..33 3(D )、、3 3习题18.化简:厂2卫 _________________ .习题 19.若 Ja 2 3a 1 b 2 2b 1 0,则a 2 丄 b ______________________a2 '2~习题20.已知1 a 0,化简{ a 14J a 14得 -----------16.下 列 各 式成 立 的 是(A )(B )32 3(C )(D), 32 42 7习题17.计算:2、72习题21.实数a,b,c 在数轴上对应的点如图3)所示,化简代数式: a 2 2a 1 b c | ::a 2 2ab b 2的【 】 结果为(A ) 2b c 1(B ) 1(C) 2a c 1 (D) b c 11 212例13.把a 1中根号外的因式移到根号内,结果是Y a【 】(A ) . a( B ) .. a ( C ) . a( D )a分析:本题实为二次根式的化简:某些二次根式在化简时,把根号外的 系数移到根号内,可以达到化简的目的,但要注意根号外面系数的符 号.有如下的结论:解:由二次根式有意义的条件可知:1 0a图(3)习题22.化简:.4x 2 4x 1________ 2“2x 3A-BA 2B A 0 A 2B A 0,其中B > 0.1 a 1aa .选择【D ]习题23.化简2「工得\a 2 ----------------------三、二次根式的乘法一般地,有:a b ab ( a > 0, b > 0)(1)以上便是二次根式的乘法公式,注意公式成立的条件:a >0, b > 0.即参与乘法运算的每个二次根式的被开方数均为非负数;(2)二次根式的乘法公式用于二次根式的计算;(3)两个带系数的二次根式的乘法为:m.. a n b mn._ ab ( a > 0, b > 0);(4)二次根式的乘法公式可逆用,即有:' ab a ' b ( a》0, b》0)公式的逆用主要用于二次根式的化简.注意公式逆用的条件不变.例14.若.x x 6 .. x x 6 成立,则【】(C) x > 0 (D) x为任意实数(A) x》6(B) 0w x w 63分析:本题考查二次根式乘法公式成立的条件:•. a .b . ab ( a > 0, b > 0)解:由题意可得解之得:x > 6.选择【A J .例15.若Vx2 i jx i 成立,则x的取值范围是___________________分析:本题考查二次根式乘法公式逆用成立的条件:ab - a0, b >0)解:由题意可得解之得:x > 1.例16.计算:..2a :;a ( a >0) 解:2a 8a .2a 8a >2■. :a厂a》0)习题24.计算:J-叼 ______________ .习题25. 已知2 213(A ) 5 m 6(C )5 m 4(D )6 m 5习题26.化简 辺 的结果是 __________ .四、二次根式的除法般地,有:(1) 以上便是二次根式的除法公式,要特别注意公式成立的条件(2) 二次根式的除法公式用于二次根式的计算;(3) 二次根式的除法公式可写为:•. a . a b ( a > 0, b 0 )(4) 二次根式的除法公式可逆用,即有:公式的逆用主要用于二次根式的化简,注意公式逆用的条件不变 五、最简二次根式符合以下条件的二次根式为最简二次根式(B) 4 m 5:a(a》o,b(1)被开方数中不含有完全平方数或完全平方式(2)被开方数中不含有分母或小数.注意:二次根式的计算结果要化为最简二次根式.六、分母有理化把分母中的根号去掉的过程,叫做分母有理化.如对寺进行分母有理化,过程为:〒2 2 2 2;对、233进行42分母有理化,过程为:丽 3 、2 3 -、23 .2 3 27 '由举例可以看出,分母有理化是借助于分数或分式的性质实现的.例17•计算:(1 ;(2)8占23 ;(3)J28xy2 J7『.解:(1)54 54.9 3;(2)83 3 228338 8 3 8 8 3 3 8 9 8 3(2)®2 3 23 8:2 3、3 3 -2 3 3-2 8 3 “6 3 ;2;v4x 2丘.3 - 28xy2...7y2 28xy2 7y2例18.化简:(1) 5;(2) .、0.4;(3) ,.a3 6a2 9a ( a 3).Y 6解:(1) 5i5'-5 6 30 .解:(1)'. 6 .6 .6、6 可;(—5; ¥;(3)V a 3/. .a3 6a2 9a a a2 6a 9 、aa 32 a 3 , a注意:随着学习的深入,在熟练时某些计算或化简的环节可以省略以简化计算.例19.式子$ —旦成立的条件是\x 2 v x 2 ----------------------分析:本题求解的是x的取值范围,考查了二次根式除法公式逆用成立的条件:a a\ b vb(a > 0, b 0 )解:由题意可得解之得:x 2.2 4-16 2 4,2 4 3、-2例20.计算:⑵201解:(1)3 . 752 2 .275 ■. 25 ~5(2)(3) 解法1:32'.8.232 8.16 42 24 22.解法 2: 32.82:、22 、8 、2 ■::2 」2• 64 、162二次根式的乘除混合运算 例21.计算:222W ;(2)■ 12 .27.18.解:(〔)原式竝号芒2£18 3(2原式1218f --- 1 O 24、8 2.2.;27■ 3习题27.下列计算正确的是【】(A)J2 2.3(B) . 3\ 22(C)、、x3x.. x(D). x2x习题28.计算:727 J8黒.\ 3 \ 2 -------------------习题29.计算:^r6x y2\卜.\ 3习题30.直线y打x 1与x轴的交点坐标是____________ .习题31.如果ab 0, a b 0 ,那么下面各式:①,a a;②.a . b 1;③ ab ,a b.-b . b■. b . a,b其中正确的是__________ (填序号).习题32.若ab 0,则化简J硬的结果是 _____________ .习题33.计算:(1)■. 2 1 3.28 5 22;(2)1 18 8 1〈41\ 2 V 7 4 * 36 ^2X 3 4x 4 n3X 1 X 1 X 1 X 1X 12x 2X 2 x 2 X 1X 1 X 22X 2X2当X2 2时原式2 2 2 2 4222 2 2J 、J3X例也先化简,再求值:耳X 1=,其中X 2 *-习题34.先化简,再求值:占a 1 a 2 2a 1时其中 a 2 1.2 2x y2 2X 2xy y习题36.下列根式中是最简二次根式的是(B) 3(C) .9 (D) 、12例23.观察下列各式:112 .313 .41 、21 \2 1 2■ 3 .2;卅4 ?3;(1)请利用上面的规律直接写出 199 .100的结果(2)请用含n ( n为正整数)的代数式表示上述规律,并证明;(3)计算:丿I 1 V2017■ 2016-2017分析:本题考查分母有理化2. 100、99 10 3 11 ; •、99 .100(2).2017 1 . 2017 12017 1 2016七、同类二次根式如果几个最简二次根式的被开方数相同,那么它们是同类二次根 式•同类二次根式的判断方法:(1) 先化简二次根式;(2) 看被开方数是否相同;(3) 定结果:若相同,则它们是同类二次根式;若不相同,则不是.同类二次根式的合并方法几个同类二次根式相加减,将它们的系数相加减,二次根式保持解:(1) (3)原式 2 1,3 ,2.3 .2017 ,2016 1 .. 2017习题37.化简:二1、9 、8不变.八、二次根式的加减二次根式相加减,先把各个二次根式化简,再合并同类二次根式二次根式加减运算的步骤:(1)化简参与运算的二次根式;(2)合并同类二次根式;(3)检查结果.例24.计算:(1).8 -.18 12;(2)• 27 ■. 12 . 45 .解:(1)原式2、2 3-2 2..3 5 2 2 3 ;(2)原式 3 3 2.3 3 5 ,3 3.5 .注意:不是同类二次根式不能合并例25 •计算:..25 32 <18.2解:原式4.2 3、\2 .227、22例26 •计算:(1)三二虫二T V T V解:(1)原式3 24 91936(2)原式 5 7 8 463习题35.先化简,再求值:--x 12。

二次根式知识点总结及常见题型

二次根式知识点总结及常见题型

二次根式知识点总结及常见题型二次根式知识点总结及常见题型一、二次根式的定义形如$a\sqrt{a}$的式子叫做二次根式。

其中$\sqrt{a}$叫做二次根号,$a$叫做被开方数。

1) 二次根式有意义的条件是被开方数为非负数。

据此可以确定字母的取值范围。

2) 判断一个式子是否为二次根式,应根据以下两个标准判断:①是否含有二次根号“$\sqrt{}$”;②被开方数是否为非负数。

若两个标准都符合,则是二次根式;若只符合其中一个标准,则不是二次根式。

3) 形如$m\sqrt{a}$的式子也是二次根式,其中$m$叫做二次根式的系数,它表示的是:$m\sqrt{a}=m\cdot\sqrt{a}$。

4) 根据二次根式有意义的条件,若二次根式$A-B$与$B-A$都有意义,则有$A=B$。

二、二次根式的性质二次根式具有以下性质:1) 双重非负性:$a\geq0$,$\sqrt{a}\geq0$。

(主要用于字母的求值)2) 回归性:$(\sqrt{a})^2=a$,其中$a\geq0$。

(主要用于二次根式的计算)begin{cases}sqrt{a}(a\geq0)\\sqrt{a}(a\leq0)end{cases}$(主要用于二次根式的化简)重要结论:1) 若几个非负数的和为0,则每个非负数分别等于0.若$A+B^2+C=0$,则$A=0$,$B=0$,$C=0$。

应用与书写规范:$\because A+B^2+C=0$,$A\geq0$,$B^2\geq0$,$C\geq0$,$\therefore A=0$,$B=0$,$C=0$。

该性质常与配方法结合求字母的值。

2) $\begin{cases}A-B(A\geq B)\\frac{(A-B)^2}{A+B}\end{cases}$(主要用于二次根式的化简)3) $AB=\begin{cases}A\cdot B(A>0)\\A\cdot B(A<0)\end{cases}$,其中$B\geq0$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式知识点总结及常见题型资料编号 :20190802一、二次根式的定义形如 a ( a ≥0)的式子叫做二次根式.其中“”叫做二次根号, a叫做被开方数.(1)二次根式有意义的条件是被开方数为非负数. 据此可以确定字母的取值范围;(2)判断一个式子是否为二次根式, 应根据以下两个标准判断:①是否含有二次根号“” ;②被开方数是否为非负数 .若两个标准都符合, 则是二次根式 ; 若只符合其中一个标准, 则不是二次根式 .( 3)形如m a(a≥ 0)的式子也是二次根式, 其中m叫做二次根式的系数, 它表示的是 : m a m a ( a ≥0);(4)根据二次根式有意义的条件, 若二次根式A B 与B A 都有意义,则有A B.二、二次根式的性质二次根式具有以下性质 :(1)双重非负性 : a ≥0, a ≥0;(主要用于字母的求值)(2)回归性 :2a a ( a ≥0);(主要用于二次根式的计算)(3)转化性 : a 2a(a0)aa(a.(主要用于二次根式的化简)0)重要结论 :(1)若几个非负数的和为0, 则每个非负数分别等于0.若 A B 2C0 ,则 A 0, B 0,C 0 .应用与书写规范 : ∵ A B 2C0 ,A ≥0,B2≥0, C ≥0∴ A 0, B0, C0 .该性质常与配方法结合求字母的值.(2) A B 2 A BA B A B;主要用于二次根式的化简.B A A BA2 B A 0(3)A B, 其中B≥ 0;A2 B A 0该结论主要用于某些带系数的二次根式的化简: 可以考虑把二次根号外面的系数根据符号以平方的形式移到根号内, 以达到化简的目的.(4) A B 2A2 B ,其中B≥0.该结论主要用于二次根式的计算.例 1. 式子1在实数范围内有意义,则x的取值范围是 _________.x1分析 : 本题考查二次根式有意义的条件, 即被开方数为非负数, 注意分母不能为0.解: 由二次根式有意义的条件可知: x10 ,∴ x 1.例 2.若 x, y 为实数,且y x111y1 x,化简 :.2y1分析 : 本题考查二次根式有意义的条件, 且有重要结论 : 若二次根式 A B 与 B A 都有意义 , 则有A B .解: ∵x 1≥ 0,1 x≥ 0∴ x ≥1, x ≤1∴ x1∴ y00111 22y11y1 .∴1y1y习题 1.如果3a 5 有意义,则实数 a 的取值范围是__________.习题 2.若 y x33x 2 ,则 x y_________.习题 3.要使代数式 12x有意义 ,则x的最大值是 _________.习题 4.若函数 y 1 2 x,则自变量x 的取值范围是__________. x习题 5.已知 b3a1282a 1 ,则 a b_________.例 3.若a1 b 24b 4 0 则ab 的值等于【】,(A )2( B) 0( C)1( D) 2分析 : 本题考查二次根式的非负性以及结论: 若几个非负数的和为0, 则每个非负数分别等于0.解: ∵a 1b2440b∴ a1b 2 20∵ a 1 ≥0,b 2 2≥ 0∴ a10,b20∴a 1,b 2∴ab 1 2 2 .选择【D】.例 4. 无论x取任何实数,代数式x 26x m 都有意义,则 m 的取值范围是__________.分析 : 无论x取任何实数, 代数式x26x m 都有意义,即被开方数 x 26x m ≥0恒成立, 所以有如下两种解法:解法一 :由题意可知 : x26x m ≥0∵ x26x m x 3 2m9 ≥0∴ x 3 2≥ 9 m∵x 3 2≥0∴9 m ≤0,∴ m ≥9.解法二 :设y x 26x m∵无论 x 取任何实数,代数式 x 26x m 都有意义∴ y x2 6 x m ≥0恒成立即抛物线y x 26x m 与 x 轴最多有一个交点∴ 6 24m364m ≤0解之得 : m≥ 9.例 5. 已知a, b, c是△ ABC 的三边长 ,并且满足 a 6 8 b c 2100 20c ,试判断△ABC的形状 .分析 : 非负数的性质常和配方法结合用于求字母的值.解: ∵a68b c 210020c∴ a6b8 c 220c100 0∴ a6b8c10 20∵ a 6 ≥0, b 8 ≥0, c 102≥ 0∴ a60,b80, c100∴ a6,b8,c10∵a2 b ∴ a2b 226c28 2100,c 210 21002∴△ ABC 为直角三角形 .习题 6.已知实数 x, y 满足x4y 8 0 ,则以x, y的值为两边长的等腰三角形的周长为【】(A ) 20 或 16( B) 20(C) 16( D)以上答案均不对习题 7.当 x _________时,9x11取得最小值,这个最小值为_________.习题 8.已知 y x2424x2,则x y的值为 _________.x习题 9.已知非零实数满足22 b 1a,b a8a 16 b 3a 5 b 1 4 a 求a 的值.,提示 : 由 a 5 b2 1 ≥0,且 b 210 可得: a 5 ≥0,∴ a ≥5.例 6. 计算 :2(1)2226;( 2)2 x3 ;( 3) 3.3分析 : 本题考查二次根式的性质:a 2a ( a ≥0) .该性质主要用于二次根式的计算 .解: ( 1)26 ;622x 3 ;(2)2x 322(3)323 229 26.333注意 : A2A 2B , 其中 B ≥ 0.该结论主要用于二次根式的计算.B例 7. 化简 :2(1)252 ;( 2)10;(3) x 26x 9 x 3 .7分析 : 本题考查二次根式的性质: a 2aa(a 0) . 该性质主要用于二次根式的化简.a( a 0)解: ( 1) 25225 25 ;210 10(2)1077;7(3)x 26x 9x 3 2x 3∵ x 3∴原式3 x .注意 : 结论 :A B 2A BA B A B. 该结论主要用于二次根式和绝对值的化B A AB简.例 8. 当 x 3 有意义时 ,化简 : x 5 x 22 21 x .解: ∵二次根式 x 3 有意义∴ x3 ≥ 0∴ x ≥ 3∴ x5x2122x x5x21xx5x2x13x2例 9.化简 :22 x3x2.分析 :x 2 2x 2 ,继续化简需要x 的取值范围,而取值范围的获得需要挖掘题目本身的隐含条件 :x 3 的被开方数 x 3 为非负数.解: 由二次根式有意义的条件可知:x 3 ≥0∴x ≥322∴x3x2x3x2x3x22x5例 10.已知0a1,化简a 12a1a2 __________.a解: ∵0a1∴a 1 a∴ a12a12a a1212 a aa aa 1a1y a aa 11aa a O xa 11a a a2a例 11. 已知直线y m 3 x n 2 ( m, n 是常数),图( 1)n 2解: 由函数y m 3 x n 2 的图象可知: m 30,n20∴ m3, n2∴ m n n24n4m 1m n n2m1 2m n n2m1 m n2n m1 m n2n m 11例 12.已知 a,b, c 在数轴上的位置如图(2)所示 ,化简 : a2 a cca0b图( 2)解: 由数轴可知 : c a 0 b∴a c 0∴ a2c a2 b 2a ca a c c a ba a c a c ba b习题 10.要使x2x22 2 , x 的取值范围是__________.习题 11.若 a 2a0 ,则 a 的取值范围是__________.32习题 12.计算 :_________.412习题 13.计算 :2_________.2习题 14.若x 32x3 成立则x的取值范围是__________.,习题 15. 下列等式正确的是22(A )33( B )33c a22 .b【】(C )3332( D )33习题 16. 下列各式成立的是【】21(A )1( B )232232(C )1 1 ( D ) 324 2722习题 17. 计算 :2 72_________.习题 18. 化简 :2x 2_________.x习题 19. 若 a 23a 1 b 22b 1 0,则 a 21b________.a 221 2习题 20. 已知1 a 0 ,化简a 14 得__________.4aaa习题 21. 实数 a,b, c 在数轴上对应的点如图( 3)所示 ,化简代数式 :a 2 2a 1b ca 22ab b 2 的结果为【】(A ) 2bc1( B ) 1(C ) 2a c 1(D ) b c 1c b1 a图( 3)习题 22. 化简 : 4 x 224x 12x 3 .例 13. 把 a1中根号外的因式移到根号内,结果是【 】a(A )a ( B ) a (C )a (D ) a分析 : 本题实为二次根式的化简 : 某些二次根式在化简时, 把根号外的系数移到根号内, 可以A2 B A 0A B, 其中B≥ 0.A2 B A 01解: 由二次根式有意义的条件可知:0a∴ a0∴ a1a21 a .选择【D】.a a习题 23.化简 2a1得 __________. a2三、二次根式的乘法一般地 ,有 :a b ab ( a ≥0, b ≥0)(1)以上便是二次根式的乘法公式, 注意公式成立的条件: a≥ 0, b≥ 0. 即参与乘法运算的每个二次根式的被开方数均为非负数;(2)二次根式的乘法公式用于二次根式的计算;(3)两个带系数的二次根式的乘法为: m a n b mn ab ( a ≥0, b ≥0);(4)二次根式的乘法公式可逆用, 即有 :ab a b ( a ≥0, b ≥0)公式的逆用主要用于二次根式的化简. 注意公式逆用的条件不变.例 14. 若x x 6x x 6 成立,则【】(A )x≥ 6(B)0≤ x≤6(C)x≥ 0(D)x为任意实数分析 : 本题考查二次根式乘法公式成立的条件: a b ab ( a ≥0,b ≥0)解:由题意可得 :x 0x 6 0解之得 : x≥ 6.选择【 A 】 .例 15. 若x 21x 1 x 1 成立,则 x 的取值范围是__________.分析 : 本题考查二次根式乘法公式逆用成立的条件 : aba b ( a ≥ 0, b ≥ 0)解: 由题意可得 :x 1 0x1解之得 : x ≥ 1.例 16.计算 : 2 a1 a ( a ≥ )8 0 .1 1 121解:21a a2aaaaa (a≥ ).288422习题 24. 计算 :127 _________.3习题 25. 已知m32 21 则有【】3,(A ) 5 m 6 ( B ) 4 m 5(C )5 m 4( D ) 6 m 5习题 26. 化简 12 的结果是 _________.四、二次根式的除法一般地 ,有 :aa0 )( a ≥ 0, b b b( 1)以上便是二次根式的除法公式, 要特别注意公式成立的条件 ;( 2)二次根式的除法公式用于二次根式的计算;(3)二次根式的除法公式可写为 : a ba b ( a ≥ 0, b 0 ) ;(4)二次根式的除法公式可逆用, 即有 :a a 0 )b( a ≥ 0, bb公式的逆用主要用于二次根式的化简, 注意公式逆用的条件不变 .五、最简二次根式符合以下条件的二次根式为最简二次根式:(2)被开方数中不含有分母或小数.注意 : 二次根式的计算结果要化为最简二次根式.六、分母有理化把分母中的根号去掉的过程,叫做分母有理化 .如对1进行分母有理化,过程为 : 1222;对1进行分母有理化,过程222223为:13232233232.7由举例可以看出, 分母有理化是借助于分数或分式的性质实现的.例17. 计算 :(1)54;( 2)8332 2;( 3)28xy 27 y 2.623解: ( 1)54549 3 ; 66(2)833 223388388338983238332332831632 ;24(3)28xy 27 y 228xy 27y 24x2x .例18. 化简 :(1)532;()0.4;() a6a 9a (a3). 6解: ( 1)5556306666;6(2)0.42210; 555(3)∵a3∴ a 36a 29a a a 26a 9a a 3 2 a 3 a注意 : 随着学习的深入,在熟练时某些计算或化简的环节可以省略, 以简化计算 .例 19.式子x1x 1成立的条件是 __________.x2x2分析 : 本题求解的是 x 的取值范围 , 考查了二次根式除法公式逆用成立的条件a a:bb( a ≥ 0, b 0 ) .解: 由题意可得 x 1 0:2x解之得 : x2 .例 20. 计算 :(1) 32;(2)20 1 ( 3)3285;.752解: ( 1)32 32 2275 75 25;5(2)201201 5 ;55255(3)解法 1:32832 8164 422 .222解法 2:328 328 26416 8 4 2 .22222二次根式的乘除混合运算例 21. 计算 :(1)30 3 2 22 21;( 2) 1227 18 .2 32解: ( 1)原式30 3 82 52 3231 30 8 222 3 5316243 4 243 2(2)原式12 1824 8 2 2 .273习题 27. 下列计算正确的是【】(A ) 122 3( B )3 322(C )x 3x x( D ) x 2 x习题 28. 计算 :278 1 _________.3 2习题 29. 计算 : 46x 32 x_________.3习题 30. 直线 y 3x 1与 x 轴的交点坐标是 _________.习题 31. 如果 ab 0, ab0 ,那么下面各式 :①a a ; ab 1 ;③ aba b .bb②abb其中正确的是 _________(填序号) .习题 32. 若 ab 0 ,则化简 ab 2 的结果是 _________.习题 33. 计算 :(1) 213 285 22;( 2) 118 8 12 4 1 .274363 2例 22. 先化简 ,再求值 :3 x 24x 4 x1x 1,其中 x2 2 .x1解:3 x1x 2 4x 41x 1x3 x 1 x 1 x 1 x 1x 1x 2 2x 2 x2x 1x 1x 2 2x 2x 2当 x22 时原式22 2 2 41 .22 22 2 2习题 34.先化简 ,再求值 :2 a 1a 1 ,其中 a2 1.a1 a2 2a 1 a 1习题 35. 先化简 ,再求值 : x2y x 1x 2x 2 y 2x2xyy 2,其中 x 2 , y 6.习题 36. 下列根式中是最简二次根式的是【 】(A )2(B ) 3( C ) 9( D ) 123例 23. 观察下列各式 :11 2 2 1;12 12 1212332;2323 2 3134 43;34 3 4 34.1(1)请利用上面的规律直接写出的结果 ;99 100(2)请用含 n ( n 为正整数)的代数式表示上述规律,并证明 ;(3)计算 :111112017 .22334201612017分析 : 本题考查分母有理化 .解: ( 1)11009910311 ; 99100(2)1n1n ;n1n(3)原式21324320172016 12017 2017120171201712016习题 37.化简 :111.213298七、同类二次根式如果几个最简二次根式的被开方数相同,那么它们是同类二次根式.同类二次根式的判断方法:(1)先化简二次根式 ;(2)看被开方数是否相同 ;(3)定结果 : 若相同 , 则它们是同类二次根式 ; 若不相同 , 则不是 .同类二次根式的合并方法:几个同类二次根式相加减, 将它们的系数相加减, 二次根式保持不变.八、二次根式的加减二次根式相加减,先把各个二次根式化简,再合并同类二次根式.二次根式加减运算的步骤:(1)化简参与运算的二次根式 ;(2)合并同类二次根式 ;例 24. 计算 :(1 ) 8 18 12 ;( 2) 27 12 45 .解: ( 1)原式 2 2 3 2 2 3 5 2 2 3 ; (2 )原式3 3 2 33 53 35 .注意 : 不是同类二次根式不能合并.例 25. 计算 : 253218 .2解: 原式5 42 3 225 2 2272 2例 26. 计算 :(1)32 3 2 2232;( 2) 57 75 2 23 .322 2解: ( 1)原式 32 3324 9 1936( 2)原式 5 7 8 4 6 39 4 6 .。

相关文档
最新文档