利用函数性质判定方程解的存在PPT课件

合集下载

北师大版高中数学必修一-4.1.1 利用函数性质判定方程解的存在 教案

北师大版高中数学必修一-4.1.1 利用函数性质判定方程解的存在 教案

4.1.1利用函数性质判定方程解的存在教学目标1.理解函数零点的意义,能够利用函数性质判定方程解的存在2.通过函数性质判定方程解的存在,培养数形结合的思想3.通过学习,初步体会事物间相互转化的辩证思想教学重难点重点:利用函数性质判定方程解的存在难点:方程实数解的存在区间的求解教学过程问题1 下列函数图像x轴的交点坐标和相应方程的根有何关系?(画出图象并分析)y=2x-4 与2x-4=0 y= x2-2x-3与x2-2x-3=0概括总结:函数的零点定义:我们把函数y=f(x )的图象与x轴交点的横坐标叫做函数y=f(x)的零点等价关系:方程f(x)=0有实数根⇔函数y=f(x)的图象与X轴有交点⇔函数y=f(x)有零点示例·练习问题探究2概括总结零点存在性定理:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内至少有一个零点,f(x)=0至少有一个实数解。

思考下列问题:问题1:函数f(x)在区间(a,b)上f(a)f(b)<0,是否一定有零点? 举例说明。

问题2 :函数f(x)在区间(a,b)上有零点,是否一定有f(a)f(b)<0?举例说明。

问题3:函数f(x)在区间(a,b)上有零点,是否只有一个?举例说明。

总结出函数零点存在性定理注意事项:(1)函数y=f(x)的图象是连续不断地曲线(2)f(a)﹒f(b)<0 y=f(x)有零点,但不可逆(3)若f(a)﹒f(b)>0,不确定函数是否有零点示例·练习课后小结1.什么是函数的零点?2.如何使用函数性质判定方程解得存在?作业:P116.第3题[]实数解?为什么?内有没有在问方程已知函数0,1-0)(,3)(.22=-=x f x x f x []否存在零点。

上是在判断函数)(1,2-44)(.11-+=-x e x f x []并说明理由。

新北师大版第2章第8节方程解的存在性及方程的近似解课件(48张)

新北师大版第2章第8节方程解的存在性及方程的近似解课件(48张)
返回导航
对点强化 1 (1)(2022·江西高三模考)已知函数
f(x)=|fl(n xx|--3s)in ,x,x>03<x≤3 ,则 f(x)在(0,10)上的零点个数为(
)
A.6
B.7
C.8
D.9
B 由题意,当 0<x≤3 时,作出函数 y=|ln x|与 y=sin x 的图象.
由图可知,函数 y=|ln x|与 y=sin x 在(0,1)和[1,3]内各有一个交点,
返回导航
解析 方程 f(x)-kx=0⇔f(x)-2-(kx-2)=0. 画出 y=f(x)-2 与 y=kx-2 的函数图象如图所示:
返回导航
2.(多选题)已知函数 f(x)的图象是连续不断的,且有如下对应值表:
x 1 2 345 6 7
f(x) -4 -2 1 4 2 -1 -3
在下列区间中,函数 f(x)必有零点的区间为( )
A.(1,2)
B.(2,3)
C.(5,6)
D.(5,7)
BCD 由所给的函数值表知,
f(1)f(2)>0,f(2)f(3)<0,f(5)f(6)<0,f(5)f(7)<0,
返回导航
2.二分法 对于一般的函数 y=f(x),x∈[a,b],若函数 y=f(x)的图象是一条连__续__ 的曲线,_____f_(_a_)·_f_(b_)_<__0________,则每次取区间的中点,将区间一分为 二,再经比较,按需要留下其中一个小区间的求方程近似解的方法称为二 分法.
返回导航
返回导航
考点三 函数零点的应用 命题点 1 根据函数零点个数求参数
(2022·全国模拟)已知函数 f(x)=x|l2n+(2,x-x≤1)1,|+2,x>1. ,若关 于 x 的方程 f(x)-kx=0 有且只有一个实数根,则实数 k 的取值范围是 ________________.

4.1.1利用函数性质判定方程解的存在公开课优质课比赛获奖课件

4.1.1利用函数性质判定方程解的存在公开课优质课比赛获奖课件

第四章 函数应用
想一想
函数y=f(x)的零点是“f(x)=0的点”吗? 提示:“零点”并不是“点”,而是一个 “实数”,是f(x)图像与 x轴交点的横坐 标.
第四章 函数应用
做一做
1.函数y=x的零点是( )
A.(0,0) B.0 C.1 D.不存在
解析:选B.y=x与x轴交于原点,y=0,
∴x=0.
第四章 函数应用
典题例证·技法归纳
题型一 求函数的零点
例1 下列函数是否存在零点?若存在,求 出其零点;若不存在,说明理由. (1)y=ax+2(a≠0); (2)y=4x2+4x+1(x>0); (3)y=ln x-1.
第四章 函数应用
【解】 (1)函数 y=ax+2(a≠0)存在零点.其 零点是使 ax+2=0 成立的 x 值,故 x=-2a (a≠0)是函数的零点. (2)函数 y=4x2+4x+1(x>0)不存在零点. 因为(2x+1)2=0,解得 x=-12∉{x|x>0}, 即使 4x2+4x+1=0(x>0)的 x 值不存在,
第四章 函数应用
题型三 判断零点所在区间
例3
在下列区间中,函数f(x)=ex+ 4x-3的零点所在的区间为( )
A.-14,0 B.0,14 C.14,12 D.12,34
第四章 函数应用
【思路点拨】 根据零点所在区间的判定定 理f(a)f(b)<0. 【解析】 y1=ex为增函数,y2=4x-3为 增函数,∴f(x)=y1+y2=ex+4x-3为增函 数f,-14=e-14-4<0,f0=e0-3=-2<0,
f14=e14-2<0,f12=e12-1>0. ∴f14·f12<0,零点区间为14,12.

利用函数的性质判定方程解的存在

利用函数的性质判定方程解的存在
例 1.判断方程 x x 6 0 是否存在实数解.
2
解:由题意知函数 f ( x) x x 6 的图像是连续的,
2
y
A
因 f (0) 6 0 , f (4) 6 0 ,
故方程 x x 6 0 在区间 (0, 4) 内有实根,记为 x1 ;
2
因 f (0) 6 0 , f (4) 14 0 ,
问题引入:
1.方程 x 2 x 1 0 是否有实数解?
2
2.方程 x 2 x 1 0 在区间 (2,3) 上是否有实数解?
2
3.方程 2 3x 0 在区间 (3,5) 上是否有实数解?
x
北师大版数学教材 必修1
利用函数性质判定方程解的存在
北师大版数学教材 必修1
实例分析:
故方程 x x 6 0 在区间 (4, 0) 内有实根,记为 x2 .
2
C
x2
-4 O
x1
4
x
综上可知,方程 x x 6 0 有两个实数解 x1 , x2 .
2
B
北师大版数学教材 必修1
抽象概括:
1.请指出函数的零点的概念. 2.函数的零点与方程的实数解之间有何关系? 3.用函数的性质来断定方程有解的条件有哪些?
北师大版数学教材 必修1
典例分析:
例 2.已知函数 f ( x ) 3x x 2 .问:方程 f ( x ) 0 在 [1,0] 内 有没有实数解?为什么?
解:由题意知函数 f ( x) 3 x 的图像是 0 , f (1) 2 0 , 3 x 2 所以方程 3 x 0 在区间 (1, 0) 内有实根.

利用函数性质判定方程解的存在 ppt课件

利用函数性质判定方程解的存在 ppt课件
轴的交点 (-1,0),(3,0)
一个交点 (1,0)
没有交点
一元二次方程的实数根二次函数图象与x轴交点的横坐标
(二)启发引导,形成概念
方判别式程Δ
x2-Δ2>x-03=0
x2-Δ2x=+01=0
x2-Δ2<x+03=0
方程方ax程2 +的bx根+c=0 两x个1=不-1,相等x2=的3 有两x个1=相x2=等1的
2x???方程xx2222xx30xx2222xx10xx2222xx30方程的根函数yyxx2222xx33yyxx2222xx1yyxx2222xx3函数yyax2bxccaa0的图象函数的图象与xx轴的交点一元二次方程的实数根?二次函数图象与xx轴交点的横坐标x11x23x1x21无实数根2243112oxy423112oxy423112oxy两个交点1030一个交点10没有交点问题1
(1)f(x)=-x2+3x+4 (2)f(x)=lg(x2+4x-4)
-1,4
1,- 5
(三)讨论探究,揭示定理
探究:在什么情况下,函数f(x)在区间(a,b)一定存在零 点呢?
1.如果把函数比作一部电影,那么函数的零点就像是电影的一个瞬间,一 个镜头。有时我们会忽略一些镜头,但是我们仍然能推测出被忽略的片断。 现在我有两组镜头(下图),哪一组能说明他的行程一定曾渡过河?
(一)设问激疑,创设情景
〖引例〗 解方程:
(1)2x10
x12
(2)x22x30 x13,x21
(3)x22x30 无根
(4)2-x=4; (5)2-x=x;
x2
(6)2xln (x2 )30
(二)启发引导,形成概念

利用函数性质判定方程解的存在(公开课)ppt课件

利用函数性质判定方程解的存在(公开课)ppt课件
y
o
• 1
• 2
x
3
函数零点的定义:
函数的图像与横轴的交点的横坐标称为这个 函数的零点。
注意: 1.零点指的是一个实数;
零点是一个点吗?
2.不是所有函数都有零点.
如:
y 1 , y x2 2x 3. x
函数都有零点吗?
4
等价关系: 方程f(x)=0有实数根
函数y=f(x)的图像与x轴有交点 函数y=f(x)有零点
7
观察函数 f (x) x 1 的图像,此函数在区间
0,2上有没有零点?
计算函数 f (x) x 1在区间0,2 的两个端点
对应的函数值 f (0)和 f (2) 的乘积,你能发现这
个乘积有何特点? y
1
o

1
2
x
-1
8
观察二次函数 f (x) x2 3x 2 的图像,此函数
在区间
0,
5
例1、求函数 f (x) lg(x 1) 的零点。
练习:求下列函数的零点:
(1)、f (x) x2 5x 6
(2)、f (x) 2x 1
评注:求函数的零点就是求相应方程的根,
一般可以借助求根公式或因式分解等办法, 求出方程的根,从而得出函数的零点。
6
问题三:
函数 y f (x) 在某个区间上是否一定有零点?怎样 的条件下,函数 y f (x) 一定有零点?
3 2
上没有零点?
计算二次函数 f (x) x
两个端点对应的函数值 f
2 3x
(0)和 f
2
(3)
在区间
0,
3 2

,你能发现这个
乘积有何特点?

函数与方程_PPT课件

函数与方程_PPT课件
对于在[a,b]上连续不断,且 f(a)·f(b)<0 的函数 y=f(x),通 过不断地把函数 f(x)的 零点 所在的区间 一分为二 ,使区间的两 端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.
课前自助餐
授人以渔
自助餐
5.用二分法求函数 f(x)零点近似值 (1)确定区间[a,b],验证 f(a)·f(b)<0 ,给定精确度 ε; (2)求区间(a,b)的中点 x1; (3)计算 f(x1); ①若 f(x1)=0 ,则 x1 就是函数的零点; ②若 f(a)·f(x1)<0 ,则令 b=x1,(此时零点 x0∈(a,x1)); ③若 f(x1)·f(b)<0 ,则令 a=x1,(此时零点 x0∈(x1,b)). (4)判断是否达到精确度 ε:即若|a-b|<ε,则得到零点近似值 a(或 b);否则重复(2)-(4).
答案 C
课前自助餐
授人以渔
自助餐
课前自助餐
授人以渔
自助餐
3.函数 f(x)=ex+3x 的零点个数是( )
A.0
B.1
C.2
D.3
答案 B
解析 由已知得 f′(x)=ex+3>0,所以 f(x)在 R 上单调递增, 又 f(-1)=e-1-3<0,f(1)=e+3>0,因此 f(x)的零点个数是 1, 故选 B.
课前自助餐
授人以渔
自助餐
4.二次函数 f(x)=ax2+bx+c 中,a·c<0,则函数的零点个数 是________.
答案 2 解析 ∵c=f(0),∴a·c=af(0)<0,即 a 和 f(0)异号. ∴a>0, f0<0 或a<0, f0>0.

利用函数性质判定方程解的存在性 获取数据的途径(2) 高一下学期数学北师大版(2019)必修第一册

利用函数性质判定方程解的存在性 获取数据的途径(2) 高一下学期数学北师大版(2019)必修第一册
能否换一种方法,从函数的角度研究如何判定一元二次方程实数根的存在性呢?
如何从函数的角度判定方程 2 − − 6 = 0实数根的存在性呢?
观察函数 = 2 − − 6的图象,
−4 = 14 > 0
6 与
点C 4,6 之间的那部分曲线必然穿过x轴,即在区间
= ln 在区间
它是方程− 2 − + 2 = 0的一个根.
它是方程ln = 0的一个根.
<0
内有零点 = 1,
= − 2 − + 2在 −3,0 内有零点 = −2,
它是方程− 2 − + 2 = 0的另一个根.
➢你能概括上面两种情况的共性吗?
如果函数 = 在区间[,]上满足 • < 0,是否一定能得到函数
至少有一个零点,即在区间 , 内相应的方程 = 0至少有一个解.
如果满足零点存在定理的条件,那么方程 = 0 在区间 , 内只有一个解吗?
不一定.
如: = (-1)(-2)(-3), 0 4 = -6 × 6 < 0,
但是该函数在区间(0,4)内有三个零点 = 1, = 2和 = 3.
加什么条件就能保证函数 = 在区间[,]内存在零点?
函数 = 的图象在给定区间[,]上的图象连续不断.
零点存在定理 若函数 = 在闭区间[,]上的图象是一条连续的曲线,并且在
区间端点的函数值一正一负,即 • < 0,则在开区间 , 内,函数 =
画出函数 = − 2 − 5 − 1的图象,如图:
观察得, −1 = −1 × −4 − 1 = 3 > 0, 6 = 4 × 1 − 1 = 3 > 0.

北师大版高中数学必修第一册第五章《函数应用》§1《方程解的存在性及方程的近似解》PPT课件

北师大版高中数学必修第一册第五章《函数应用》§1《方程解的存在性及方程的近似解》PPT课件
数的零点,方程的根,图象与x轴交点 数零点与方程解的关系.
的横坐标之间的转化在研究函数中的 2.了解零点存在定理、会判断函数零点
应用,提高学生数学抽象,直观想象 的个数.
的素养.
新知探究
路上有一条河,小明从A点走到了B点.观察下列两组画面,并推断哪一组能说明小 明的行程一定曾渡过河?
将这个实际问题抽象成数学模型. 问题 1.若将河看成x轴,A,B是人的起点和终点,则A,B应该满足什么条件就 能说明小明的行程一定曾渡过河?
(2)∵f(x)=x2+3(m+1)x+n的零点是1和2, ∴f(1)=12+3(m+1)+n=0, 即3m+n+4=0,① f(2)=4+3×2×(m+1)+n=0, 即6m+n+10=0,② 由①②可解得m=-2,n=2.
代入函数y=logn(mx+1). 故函数y=logn(mx+1)的解析式为y=log2(-2x+1). 令y=log2(-2x+1)=0,即-2x+1=1,可得x=0. ∴函数y=logn(mx+1)的零点是0.
2.函数y=f(x)在区间[a,b]内有零点应该满足什么条件? 3.结合下图,进一步分析一下你对上述结论的认识.
提示 1.图中A处的函数值与B处的函数值符号相反. 2.在f(x)的图象不间断的情况下,应满足f(a)·f(b)<0. 3.因为f(a)·f(b)<0,f(b)·f(c)<0,f(c)·f(d)<0,所以在[a,b],[b,c][c,d]上存在零 点.f(d)·f(e)>0,但f(x)在[d,e]上存在零点.
拓展深化 [微判断] 判断下列说法的正误. 1.函数的零点是一个点的坐标.( ×) 2.函数y=f(x)在区间(a,b)内有零点(图象连续不断),则f(a)·f(b)<0.( × ) 3.二次函数y=ax2+bx+c(a≠0)在b2-4ac<0时没有零点.( √ )

《函数的零点与方程的解》示范课教学课件【高中数学】

《函数的零点与方程的解》示范课教学课件【高中数学】
答案:(1)(1,2).
(2)(3,4).
(3)(0,1).
(4)(-4,-3),(-3,-2),(2,3).
归纳小结
问题6 回顾本节课,说说运用函数零点存在定理时,需要注意些什么?
(3)函数零点存在定理只能判定在某一段区间内函数的零点存在,但是零点的个数无法确定.要确定零点的个数,还需要结合函数的单调性等性质,对函数进一步研究.
答案:不能.
目标检测
下图中的(1)(2)(3)分别为函数 在三个不同范围的图象.能否仅根据其中一个图象,得出函数 在某个区间只有一个零点的判断?为什么?
1
同一个函数的图象在三个不同范围看到的情况都不一样,
只能从图(1)观察到它与x轴有1个交点,
从图(2)观察到它与x轴有2个交点,
答案:不能.
目标检测
下图中的(1)(2)(3)分别为函数 在三个不同范围的图象.能否仅根据其中一个图象,得出函数 在某个区间只有一个零点的判断?为什么?
1
从图(3)观察到它与x轴有3个交点,
所以仅凭观察函数图象只能初步判断它在某个区间是否有零点,
答案:不能.
目标检测
下图中的(1)(2)(3)分别为函数 在三个不同范围的图象.能否仅根据其中一个图象,得出函数 在某个区间只有一个零点的判断?为什么?
1
至于是否真的有零点,以及有几个零点,
要依据函数零点存在定理和在某个区间的单调性判断.
目标检测
利用计算工具画出函数的图象,并指出下列函数零点所在的大致区间:
2
(1) ; (2) ;
(3) ; (4) .
新知探究
新知探究
追问2 函数 在区间[-2,0]上也有零点,这时,函数图象与x轴有什么关系?函数f(x)的取值有什么规律?你能用 在区间[-2,0]上的两个具体的函数值来刻画这种关系和规律吗?

第八节 函数与方程 课件(共31张PPT)

第八节 函数与方程 课件(共31张PPT)

答案:C
2.函数 f(x)=4cos2 x2·cosπ2-x-2sin x-|ln(x+1)| 的零点个数为________.
解析:f(x)=2(1+cos x)sin x- 2sin x-|ln(x+1)|=sin 2x-|ln(x+ 1)|,x>-1,函数 f(x)的零点个数即为 函数 y1=sin 2x(x>-1)与 y2=|ln(x+1)|(x>-1)的图象的 交点个数.分别作出两个函数的图象如图所示,可知有两 个交点,则 f(x)有两个零点.
x2-2x,x≤0, 1.已知函数 f(x)=1+1x,x>0, 则函数 y=f(x)+
3x 的零点个数是( )
A.0 B.1
C.2 D.3
解析:令 f(x)+3x=0,
则xx≤2-02,x+3x=0或x1>+01x,+3x=0,
解得 x=0 或 x=-1,
所以函数 y=f(x)+3x 的零点个数是 2.
的取值范围是( )
A.a<-1
B.a>1
C.-1<a<1 D.0≤a<1 解析:令 f(x)=2ax2-x-1, ①当 a=0 时,-x-1=0,x=-1 不合适. ②a≠0 时,f(0)·f(1)<0,a>1.验证若 f(0)=0,此式不成立; 当 f(1)=0 时,2a-1-1=0.
a=1,方程另一根为-12(不合题意),故 a>1,选 B. 答案:B
考点 2 判断函数零点个数
[例 1] (1)函数 f(x)=x-2+1+x-ln2x,,xx≤>00,的零点个数
为( )
A.3
B.2
C.7
D.0
(2)已知函数 y=f(x)是周期为 2 的周期函数,且当 x∈

01-第一节 方程解的存在性及方程的近似解-课时1 利用函数性质判定方程解的存在性高中必修一北师大版

01-第一节 方程解的存在性及方程的近似解-课时1 利用函数性质判定方程解的存在性高中必修一北师大版

= 0的解集为{−2,0,2}.
知识点2 零点存在定理
6.已知函数 在区间[−2,2]上有定义,则“ 在区间[−2,2]上有零点”是“
−2 ⋅ 2 < 0”的( D )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
【解析】 已知函数 在区间[−2,2]上有定义,若 在区间[−2,2]上有零点,不妨取 = 2 ,则 −2 ⋅ 2 > 0,即 在区间[−2,2]上有零点
−1, −2 ≤ < 0,
⇏ −2 ⋅ 2 < 0;若 −2 ⋅ 2 < 0,不妨取 = ቊ
则 在区间[−2,2]上无零点,即 在区间[−2,2]上有零点
1,0 ≤ ≤ 2,
⇍ −2 ⋅ 2 < 0.故“ 在区间[−2,2]上有零点”是“ −2 ⋅ 2 < 0” 的既不充分也不必要条件.
函数 = 2 − 2 − 3在区间 −2,0 和区间 0,5 上有零点,即方程
2 − − 3 = 有解,故B中函数是“不动点”函数;对于C,由题意
1
2
+ 1 = ,解得 =
3+ 5
,所以C中函数是“不动点”函数;
2
对于D, log 2 − 1 = ,即 log 2 = + 1,在同
123.56
21.45
−7.82
11.57
−53.76
−126.49
则函数 在区间[1,6]上的零点( D )
A.有2个
B.有3个
C.至多有2个
D.至少有3个
【解析】 因为函数 的图象是连续不断的,且 2 3 < 0,

高中函数的应用ppt课件ppt课件ppt

高中函数的应用ppt课件ppt课件ppt

在生物学中,二次函数可以用于描述 种群增长、生物繁殖和生态平衡等现 象。
物理学
在物理学中,二次函数可以用于描述 物体的运动轨迹、振动和波动等现象 。
二次函数与其他数学知识的结合
与导数结合
通过求导数,可以研究二次函数的单调性、极值 和拐点等性质。
与三角函数结合
通过与三角函数的结合,可以研究一些周期性和 对称性问题。
的交叉也将越来越深入。例如,在物理学、工程学、经济学等领域中,
函数都有广泛的应用。
02
数学建模的普及
随着数学建模的普及,函数作为数学建模的重要工具之一,其应用也将
越来越广泛。通过数学建模,学生能够更好地理解现实世界中的问题,
并运用数学方法来解决这些问题。
03
新函数类型的出现
随着数学的发展,新的函数类型也将不断出现。例如,分形函数、混沌
分式函数在交通工程中的应用
在交通工程中,分式函数可以用来描述车辆行驶的速度和时 间之间的关系,以及道路通行能力与车辆数量之间的关系。 通过分式函数的分析,可以优化交通流量的分配和管理。
分式函数与其他数学知识的结合
分式函数与导数的结合
分式函数的导数可以用来研究函数的单调性、极值和拐点等问题。通过导数的计 算和分析,可以更好地理解分式函数的性质和变化规律。
度、长度、面积和体积等。
三角函数在解析几何中的应用
02

通过三角函数,可以将几何问题转化为代数问题,从而利用代
数方法求解。
三角函数在复数中的应用
03
复数中的三角函数可以用于解决与周期性、波动性和旋转相关
的问题。
三角函数在实际生活中的应用
航海和航空中的应用
通过三角函数,可以计算航行路线、飞行轨迹和高度等。

函数单调性课件(公开课)ppt

函数单调性课件(公开课)ppt
函数单调性课件(公开课)
目录
• 函数单调性的定义与性质 • 判断函数单调性的方法 • 单调性在解决实际问题中的应用 • 函数单调性的深入理解 • 函数单调性的实际案例分析
01 函数单调性的定义与性质
函数单调性的定义
函数单调性是指函数在某个区间内的增减性。如果函数在某个区间内单调递增, 则表示函数值随着自变量的增加而增加;如果函数在某个区间内单调递减,则表 示函数值随着自变量的增加而减小。
的计算过程。
单调性与微分方程的关系
要点一
单调性决定了微分方程解的稳定 性
对于一阶线性微分方程,如果其系数函数在某区间内单调 递增(或递减),则该微分方程的解在此区间内是稳定的 。
要点二
单调性是研究微分方程的重要工 具
通过单调性可以判断微分方程解的存在性和唯一性,以及 研究解的动态行为。
05 函数单调性的实际案例分 析
总结词
利用单调性证明或解决不等式问题
详细描述
单调性在解决不等式问题中起到关键作用。通过分析函数的单调性,我们可以证明不等式或解决与不等式相关的 问题。例如,利用单调性可以证明数学归纳法中的不等式,或者在比较大小的问题中利用单调性进行判断。
单调性在函数极值问题中的应用
总结词
利用单调性求解函数的极值
详细描述
函数单调性的定义可以通过函数的导数来判断。如果函数的导数大于0,则函数在该 区间内单调递增;如果函数的导数小于0,则函数在该区间内单调递减。
函数单调性的性质
函数单调性具有传递性,即如果函数在区间I上单调递增,且 在区间J上单调递增,则函数在区间I和J的交集上也是单调递 增的。
函数单调性具有相对性,即如果函数在区间I上单调递增,且 另一个函数在区间J上单调递增,则这两个函数在区间I和J的 交集上也是单调递增的。

「精品」北师大版高中数学必修一课件4-1-1~2-精品课件

「精品」北师大版高中数学必修一课件4-1-1~2-精品课件

∴ ff01> <00, , f2>0,
(6 分)
即 1a> -02, +1<0, 4a-4+1>0,
解得34<a<1.(8 分)
(3)当 a<0 时,设方程的两根为 x1,x2, 则 x1·x2=1a<0,(10 分) x1,x2 一正一负不符合题意. 综上,a 的取值范围为34,1(12 分)
1.25
f(1.25)<0
(1.25,1.5)
1.375
f(1.375)>0
(1.25,1.375)
1.312 5
f(1.312 5)<0
(1.312 5,1.375)
∵|1.375-1.312 5|=0.062 5<0.1, 故函数 f(x)=x3-x-1 在(1,1.5)内的一个近似零点为 1.375, 即方程 x3-x-1=0 在(1,1.5)内的一个近似解为 1.375.
规律方法 这是一类非常基础且常见的问题,考查的是函数零 点的判定方法,一般而言只需将区间端点代入函数求出函数值, 进行符号判断即可得出结论,这类问题的难点往往是函数值符 号的判断,可运用函数的有关性质进行判断,同时也要注意该 函数的单调性.
【训练 1】 求下列函数的零点: (1)f(x)=-x2-2x+3; (2)f(x)=x4-1; (3)f(x)=x3-4x.
规律方法 使用二分法求方程的近似解应转化为求其相应函数 的近似零点,当区间两个端点在满足精确度条件下的近似值相 等时,所得区间两个端点的近似值便为所求方程的根(或函数零 点).
【训练 2】 在一个风雨交加的夜晚,从某水库闸房到防洪指挥 部的电话线路发生了故障,这是一条 10 km 长的线路,每隔 50 m 有一根电线杆,维修工人需爬上电线杆测试,你能帮他找到 一个简便易行的方法吗?

北师大版高中数学必修1《四章 函数应用 1 函数与方程 1.1 利用函数性质判定方程解的存在》优质课教案_21

北师大版高中数学必修1《四章 函数应用  1 函数与方程  1.1 利用函数性质判定方程解的存在》优质课教案_21

利用函数性质判定方程解的存在学习目标:1、理解函数零点的意义,理解函数零点与方程的根之间关系。

2、正确掌握函数的零点和方程的根存在的判断方法。

教学重点:函数零点的判断 教学难点:函数零点的应用学习方法:合作探究、学案导学法 教学过程: 一、 自主学习。

梳理基础1.概念:对于函数)(x f y =,称使0)(0=x f 的实数0x 为函数的 ,即函数)(x f y =的图像与 的交点的 。

2.函数的零点与方程根的关系:若方程0)(=x f 的实数根为0x ,则函数)(x f y =的图像与x 轴的交点横坐标为 ,函数)(x f y =的零点是 。

3.零点存在性定理:如果函数)(x f y =在区间[]b a ,上的图像是 的一条曲线,并且有0)()(b f a f ∙(填“>”或“<”),那么函数)(x f y =在区间[]b a ,内有 ,即存在),(b a c ∈,使得 ,这个c 也就是方程0)(=x f 的 。

思考:零点存在性定理能否判断零点的个数? 二、 课堂合作探究(一)实例引入 强化理解 1、解方程:(1)2-x =4; (2)2-x =x .2、一元二次方程的根与二次函数图象之间的关系. 填空:问题1:从该表你可以得出什么结论?问题2:一元二次方程的根与相应的二次函数的图象之间有怎样的关系?3、一般函数的图象与方程根的关系.问题3:其他的函数与方程之间也有类似的关系吗?请举例!师生互动,在学生提议的基础上,老师加以改善,现场在几何画板下展示类似如下函数的图象:y =2x -4,y =2x -8,y =ln(x -2),y =(x -1)(x +2)(x -3).比较函数图象与x 轴的交点和相应方程的根的关系,从而得出一般的结论:方程f (x )=0有几个根,y =f (x )的图象与x 轴就有几个交点,且方程的根就是交点的横坐标.(二)辨析讨论,深化概念. 4、函数零点.概念:对于函数y =f (x ),把使f (x )=0的实数x 叫做函数y =f (x )的零点. 即兴练习:函数f (x )=x (x 2-16)的零点为 ( D ) A .(0,0),(4,0) B .0,4 C .(–4,0),(0,0),(4,0) D .–4,0,4 说明:①函数零点不是一个点,而是具体的自变量的取值. ②求函数零点就是求方程f (x )=0的根. 5、归纳函数的零点与方程的根的关系.问题4:函数的零点与方程的根有什么共同点和区别?(1)联系:①数值上相等:求函数的零点可以转化成求对应方程的根;②存在性一致:方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点.(2)区别:零点对于函数而言,根对于方程而言.以上关系说明:函数与方程有着密切的联系,函数问题有时可转化为方程问题,同样,有些方程问题可以转化为函数问题来求解,这正是函数与方程思想的基础.练习:求下列函数的零点: 22(1)()34(2)()lg(44)=-++=+-f x x x f x x x 设计意图:使学生熟悉零点的求法(即求相应方程的实数根).(三)实例探究,归纳定理. 6、零点存在性定理的探索.问题5:在怎样的条件下,函数y =f (x )在区间[a ,b ]上一定有零点? 探究:(1)观察二次函数f (x )=x 2-2x -3的图象: 在区间[-2,1]上有零点______; f (-2)=_______,f (1)=_______,f (-2)·f (1)_____0(“<”或“>”). 在区间(2,4)上有零点______;f (2)·f (4)____0(“<”或“>”).(2)观察函数的图象:①在区间(a ,b )上___(有/无)零点;f (a )·f (b ) ___ 0(“<”或“>”②在区间(b ,c )上___(有/无)零点;f (b )·f (c ) ___ 0(“<”或“>”③在区间(c ,d )上___(有/无)零点;f (c )·f (d ) ___ 0(“<”或“>”意图:通过归纳得出零点存在性定理. 7、零点存在性定理:如果函数y =f (x )在区间[a ,b ]上的图象是连续不断一条曲线,并且有f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点.即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根.即兴练习:下列函数在相应区间内是否存在零点? (1)f (x )=log 2x ,x ∈[12,2]; (2)f (x )=e x -1+4x -4,x ∈[0,1].意图:通过简单的练习适应定理的使用. 8.定理辨析与灵活运用例1 判断下列结论是否正确,若不正确,请使用函数图象举出反例:(1)已知函数y=f (x )在区间[a ,b ]上连续,且f (a )·f (b )<0,则f (x )在区间(a ,b )内有且仅有一个零点. ( × )(2)已知函数y=f (x )在区间[a ,b ]上连续,且f (a )·f (b )≥0,则f (x )在区间(a ,b )内没有零点. ( × )(3)已知函数y=f (x )在区间[a ,b ]满足f (a )·f (b )<0,则f (x )在区间(a ,b )内存在零点. ( × ) 请一位学生板书反例,其他学生补充评析,例如:归纳:定理不能确零点的个数;定理中的“连续不断”是必不可少的条件;不满足定理条件时依然可能有零点.意图:通过对定理中条件的改变,将几种容易产生的误解正面给出,在第一时间加以纠正,从而促进对定理本身的准确理解. (五)综合应用,拓展思维. 例题讲解例2:求函数f (x )=ln x +2x -6的零点的个数,并确定零点所在的区间[n ,n +1](n ∈Z).练习 求方程2-x =x 的解的个数,并确定解所在的区间[n ,n +1](n ∈Z).意图:一方面与引例相呼应,又作为例题方法的巩固,也为下一节课作铺垫. 三、(1( C )A .5个B .4个C .3个D .2个 (2)方程– x 3 – 3x + 5=0的零点所在的大致区间为 ( ) A .(– 2,0) B .(0,1) C .(0,1) D .(1,2)意图:一方面促进对定理的活用,另一方面为突破后面的例题铺设台阶.四、课后巩固1、函数f(x)=(x+4)(x-4)(x+2)在区间[-5,6]上是否存在零点?若存在,有几个?2.利用函数图象判断下列方程有几个根:(1)2x(x-2)=-3;(2)e x-1+4=4x.3.结合上课给出的图象,写出并证明下列函数零点所在的大致区间:(1)f(x)=2x ln(x-2)-3;(2)f(x)=3(x+2)(x-3)(x+4)+x.思考题:方程2-x =x在区间______内有解,如何求出这个解的近似值?请预习下一节.设计意图:为下一节“用二分法求方程的近似解”的学习做准备.五、课后作业1.利用函数图象判断下列方程有几个根:(1)2x(x-2)=-3;(2)e x-1+4=4x.2.写出并证明下列函数零点所在的大致区间:(1)f(x)=2x ln(x-2)-3;(2)f(x)=3(x+2)(x-3)(x+4)+x。

新教材高中数学第五章函数应用1方程解的存在性及方程的近似解第1课时利用函数性质判定方程解的存在性课件

新教材高中数学第五章函数应用1方程解的存在性及方程的近似解第1课时利用函数性质判定方程解的存在性课件
再证明该函数在定义域内单调.
变式训练2
(1)若abc≠0,且b2=ac,则函数f(x)=ax2+bx+c的零点的个数是(
A.0
B.1
C.2
D.1或2
(2)判断函数f(x)=x-3+ln x的零点个数.
(1) 答案 A
解析 ∵b2=ac,且abc≠0,
∴方程ax2+bx+c=0的判别式Δ=b2-4ac=b2-4b2=-3b2<0.
(方法二)因为f(3)=ln 3>0,
f(2)=-1+ln 2=ln
2
<0,
e
所以f(3)·f(2)<0,
说明函数f(x)=x-3+ln x在区间(2,3)内有零点.
又f(x)=x-3+ln x在区间(0,+∞)上单调递增,所以原函数只有一个零点.
探究点三 已知零点个数求参数的取值范围
【例 3】 已知函数 f(x)=
2
出函数 g(x)和 h(x)的图象如图所示.
由图象可知,两个函数图象只有一个交点,故函数f(x)只有一个零点.
(3)(方法一)∵f(0)=1+0-2=-1<0,
f(2)=4+lg 3-2=2+lg 3>0,
∴f(x)在(0,2)上必定存在零点.
又f(x)=2x+lg(x+1)-2在区间(-1,+∞)上单调递增,故f(x)有且只有一个零点.
故函数f(x)=ax2+bx+c的零点个数为0.
)
(2)解(方法一)令f(x)=x-3+ln x=0,则ln x=3-x.
在同一平面直角坐标系中分别画出函数y=ln x与y=-x+3的图象,如图所示.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

总结 方程与函数的关系 根的存在性的判断 的方法
8 2020/10/13
谢谢您的指导
THANK YOU FOR YOUR GUIDANCE.
感谢阅读!为了方便学习和使用,本文档的内容可以在下载后随意修改,调整和打印。欢迎下载!
汇报人:XXXX 日期:20XX年XX月XX日
y=f(x)的图像与x轴的交点的横 坐标叫做该函数的零点。即 f(x)=0的解。
若y=f(x)的图像在[a,b]上是连续 曲线,且f(a)f(b)<0,则在(a,b)内 至少有一个零点,即f(x)=0在 (a,b)内至少有一个实数解。
4 2020/10/13
例2
f(x)=x2-5x+m=0的 两根都大于1,求m 的范围。
利用函数性质判 定方程解的存在
1 2020/10/13
问题提出
方程与函数都是代数的 重要内容 多数方程没有求解公式 如何利用方程与函数的 关系求方程的解?
2 2020/10/13
实例分析
判断方程 x2-x-6=0 解的存在。 F(x)= x2-x-6
-3
0
4
-6
3 2020/10/13
抽象概括
数形 结合
5 2020/10/13
例3
讨论 2-x=log2x 解的个数和分 布情况。
数形 结合
怎样求这个根的近似值? 6 2020/10/13
练习
P133:1,2,3
1、若y=-x-1只有一个零点,求a范围。
2、设函数 若 x2bxc,x0,x0
f(x) 2,
x0
f4f0, f22,
则关于x的方程 f (x)x 解的个数为 已知函数的图象有公共点A,且点A的横坐标为2,则
(A)1 (B)2 (A)
(B)
(C)
((D)C)3(D)4
3、已知函数 ylo1gx与 yk的x图象有公共点A,且点
A的横坐标为2,则4 k =
(A)
1 4
(B)12
(C)
1 4
(D)
1 2
7 2020/10/13
相关文档
最新文档