第4章信号分离电路--滤波器1

合集下载

滤波器基本知识

滤波器基本知识

有源滤波器Active Filter(信号分离电路) 测量系统从传感器拾取的信号往往包含噪声和许多与被测量无关的信号,并且原始的测量信号经传输、放大、变换、运算及各种其它处理过程,也会混入各种不同形式的噪声,从面影响测量精度。

这些噪声一般随机性很强,很难从时域中直接分离,但限于其产生的机理,其噪声功率是有限的,并按一定规律分布于频率域中某一特定频带中。

滤波器(信号分离电路):从频域中实现对噪声的抑制,提取所需要的信号,是各种测控系统中必不可少的组成部分。

对滤波器的要求:(1)滤波特性好;(2)级联特性好(输入,输出);(3)滤波频率便于改变滤波器举例:心电信号的滤波:主要受到50Hz的工频干扰,采用50Hz陷波(带阻)滤波器。

一.滤波器的基本知识⒈按处理信号的形式分类:模拟:连续的模拟信号(又分为:无源和有源)数字:离散的数字信号。

⒉理想滤波器对不同频率的作用:通带内,使信号受到很小的衰减而通过。

阻带内,使信号受到很大的衰减而抑制,无过渡带。

⒊按频谱结构分为5种类型:滤波器对信号不予衰减或以很小衰减让其通过的频段称为通带;对信号的衰减超过某一规定值的频段称为阻带;位于通带和阻带之间的频段称为过渡带。

根据通带和阻带所处范围的不同,滤波器功能可分为以下几种:低通(Low Pass Filter)高通(High Pass Filter)带通(Band Pass Filter)带阻(Band Elimination Filter)全通(All Pass Filter)(理想)各种频率信号都能通过,但不同的频率信号的相位有不同的变化,一种移相器。

图2-2 按频谱结构分类的各种滤波器的衰减(1-幅频)特性几个定义:(1)通带的边界频率:一般来讲指下降—3dB即对应的频率。

(2)阻带的边界频率:由设计时,指定。

(3)中心频率:对于带通或带阻而言,用f0或ω0表示。

(4)通带宽度:用Δf0或Δω0表示。

(5)品质因数:衡量带通或带阻滤波器的选频特性。

测控电路(第5版)第四章习题及答案

测控电路(第5版)第四章习题及答案

测控电路(第5版)第四章习题及答案第四章信号分离电路4-1简述滤波器功能,按照功能要求,滤波器可分为⼏种类型?4-2按照电路结构,常⽤的⼆阶有源滤波电路有⼏种类型?特点是什么?4-3测控系统中常⽤的滤波器特性逼近的⽅式有⼏种类型?简述这些逼近⽅式的特点。

4-4按照电路组成,滤波电路主要有⼏种类型?特点是什么?4-5滤波器特性参数主要有哪些?4-6两个特性参数完全相同的低通滤波器级联后,其3dB截⽌频率fc与原来的单个低通滤波器是否⼀致?其他特征频率是否⼀致?为什么?4-7证明⼆阶电路传递函数分母系数均为正时电路是稳定的(提⽰:极点位置均位于平⾯左半部分)4-8试确定图4-3所⽰的低通滤波器的群时延函数τ(ω),并证明当ω<<ω0时,贝赛尔逼近1/Q (ω)最接近常数。

(提⽰:将τ(ω)展成幂级数,并略去(ω/ω0)4及更⾼次项)图4-3 题4-8图4-9如果带通滤波器可等效成低通与⾼通滤波电路的级联,那么带阻滤波器呢?试以带阻滤波器传递函数证明之。

4-10具有图4-8所⽰的通带波动为0.5dB 的五阶切⽐雪夫低通滤波器可由⼀个⼀阶基本节与两个⼆阶基本节等效级联组成。

试求两个⼆阶基本节的品质因数,并确定通带内增益相对直流增益的最⼤偏离为百分之⼏。

20l g A (ω/ω0)/d Bb)-180-90?(ω/ω0图4-8 题4-10图4-11试确定⼀个单位增益巴特沃斯低通滤波器的传递函数,要求信号在通带f ≤250Hz 内,通带增益最⼤变化量ΔK p 不超过2dB ,在阻带f >1000Hz ,衰耗不低于25dB 。

4-12⽤单⼀运放设计⼀个增益为-1,f c =273.4Hz 的三阶巴特沃斯⾼通滤波器。

4-13⼀电路结构如图4-26所⽰。

其中R 0= R 1= R 5=10 kΩ,R 2=4.7 kΩ,R 3=47 kΩ, R 4=33 kΩ,C 1=C 2=0.1µF 。

实验四微带线带通滤波器设计

实验四微带线带通滤波器设计

实验四微带线带通滤波器设计实验四:基于ADS软件的平⾏耦合微带线带通滤波器的设计与仿真⼀、实验原理滤波器是⽤来分离不同频率信号的⼀种器件,在微波电路系统中,滤波器的性能对电路的性能指标有很⼤的影响,微带电路具有体积⼩,重量轻、频带宽等诸多优点,在微波电路系统应⽤⼴泛,其中⽤微带做滤波器是其主要应⽤之⼀。

平⾏耦合微带线带通滤波器在微波集成电路中是被⼴为应⽤的带通滤波器。

1、滤波器的介绍滤波波器可以分为四种:低通滤波器和⾼通滤波器、带通滤波器和带阻滤波器。

射频滤波器⼜可以分为以下波导滤波器、同轴线滤波器、带状线滤波器、微带滤波器。

滤波的性能指标:频率围:滤波器通过或截断信号的频率界限通带衰减:滤波器残存的反射以及滤波器元件的损耗引起阻带衰减:取通带外与截⽌频率为⼀定⽐值的某频率的衰减值寄⽣通带:有分布参数的频率周期性引起,在通带外⼜产⽣新的通带2、平⾏耦合微带线滤波器的理论当频率达到或接近GHz时,滤波器通常由分布参数元件构成,平⾏耦合微带传输线由两个⽆屏蔽的平⾏微带传输线紧靠在⼀起构成,由于两个传输线之间电磁场的相互作⽤,在两个传输线之间会有功率耦合,这种传输线也因此称为耦合传输线。

平⾏耦合微带线可以构成带通滤波器,这种滤波器是由四分之⼀波长耦合线段构成,她是⼀种常⽤的分布参数带通滤波器。

当两个⽆屏蔽的传输线紧靠⼀起时,由于传输线之间电磁场的相互作⽤,在传输线之间会有功率耦合,这种传输线称之为耦合传输线。

根据传输线理论,每条单独的微带线都等价为⼩段串联电感和⼩段并联电容。

每条微带线的特性阻抗为Z0,相互耦合的部分长度为L,微带线的宽度为W,微带线之间的距离为S,偶模特性阻抗为Z e,奇模特性阻抗为Z0。

单个微带线单元虽然具有滤波特性,但其不能提供陡峭的通带到阻带的过渡。

如果将多个单元级联,级联后的⽹络可以具有良好的滤波特性。

⼆、耦合微带线滤波器的设计的流程1、确定滤波器指标2、计算查表确定滤波器级数N3、确定标准滤波器参数4、计算传输线奇偶模特性阻抗5、计算微带线尺⼨6、仿真7、优化再仿真得到波形图设计参数要求:(1)中⼼频率:2.4GHz;(2)相对带宽:9%;(3)带波纹:<0.5dB;(4)在频率1.9GHz和2.9GHz处,衰减>20dB;(5)输⼊输出阻抗:50Ω。

滤波器基础知识

滤波器基础知识

滤波器基础知识一、滤波器概述滤波器是一种二端口网络(各类电子系统中用于检测、传输、处理信息或能量的微波电路为微波网络),它允许输入信号中特定的频率成分通过,同时抑制或极大的衰减其它频率成分,还可用来分开或组合不同的频率段。

目前由于在雷达、微波、无线通信,特别是移动通信,多频率工作越来越普遍,还需要在有限的频谱范围内划分出更多的频段给不同的运营商,以满足多种通信业务的需求,各频道间的间隔规定非常的小。

为避免信道间相互干扰,需要在所有系统内配置高性能的滤波器。

滤波器既可用来限定大功率发射机在规定频带内辐射,反过来又可用来防止接收机受到工作频带以外的干扰。

总之,从超长波经微波到光波以上的所有电磁波段都需要用到滤波器。

二、滤波器的主要分类:(按应用分)⑴低通滤波器通频带为0-fC2, fC2-∞为阻带。

⑵高通滤波器与低通滤波器相反,通频带为 fC1-∞,f0-fC1为阻带。

⑶带通滤波器通频带为fC1-fC2,其它频率为阻带。

⑷带阻滤波器与带通滤波器相反,阻带为fC1-fC2,其它频率为通带。

除腔体滤波器外,还有:微带电路滤波器、晶体滤波器、声表面滤波器、介质滤波器等等,按不同的作用或功能等有不同的分类。

现在公司生产的一般都是带通腔体滤波器和双工器,因此我们主要以腔体滤波器进行分析和讲解,腔体滤波器的谐振器全部都由机械结构组成,本身有相当高的Q 值(数千甚至上万),非常适合于低插入损耗(<1dB)、窄带(1%-5%)、大功率(可达300W或更高)传输等应用场合,工作性能较为稳定。

但该类滤波器具有较大体积且有寄生通带,加工成本相对较高,但特别适合应用于现代移动通信基站或直放站中使用。

三、公司滤波器的发展公司成立至今无源产品的发展情况:无线信息传输技术是正在蓬勃发展的重要领域。

滤波器是一个常用的、必备的、广泛使用的部件。

自公司发展以来,无源类产品在公司领导的重视下,不断进行改进和创新,从波导滤波器、结构腔等到现在的一体腔,从以前的仿制到现在自主知识产权的发明专利。

测控电路课后习题答案

测控电路课后习题答案

第一章绪论1-1测控电路在整个测控系统中起着什么样的作用?传感器的输出信号一般很微弱,还可能伴随着各种噪声,需要用测控电路将它放大,剔除噪声、选取有用信号,按照测量与控制功能的要求,进行所需演算、处理与变换,输出能控制执行机构动作的信号。

在整个测控系统中,电路是最灵活的部分,它具有便于放大、便于转换、便于传输、便于适应各种使用要求的特点。

测控电路在整个测控系统中起着十分关键的作用,测控系统、乃至整个机器和生产系统的性能在很大程度是取决于测控电路。

1-2影响测控电路精度的主要因素有哪些,而其中哪几个因素又是最基本的,需要特别注意?影响测控电路精度的主要因素有:(1)噪声与干扰;(2)失调与漂移,主要是温漂;(3)线性度与保真度;(4)输入与输出阻抗的影响。

其中噪声与干扰,失调与漂移(含温漂)是最主要的,需要特别注意。

1-3为什么说测控电路是测控系统中最灵活的环节,它体现在哪些方面?为了适应在各种情况下测量与控制的需要,要求测控系统具有选取所需的信号、灵活地进行各种变换和对信号进行各种处理与运算的能力,这些工作通常由测控电路完成。

它包括:(1)模数转换与数模转换;(2)直流与交流、电压与电流信号之间的转换。

幅值、相位、频率与脉宽信号等之间的转换;(3)量程的变换;(4)选取所需的信号的能力,信号与噪声的分离,不同频率信号的分离等;(5)对信号进行处理与运算,如求平均值、差值、峰值、绝对值,求导数、积分等、非线性环节的线性化处理、逻辑判断等。

1-4测量电路的输入信号类型对其电路组成有何影响?试述模拟式测量电路与增量码数字式测量电路的基本组成及各组成部分的作用。

随着传感器类型的不同,输入信号的类型也随之而异。

主要可分为模拟式信号与数字式信号。

随着输入信号的不同,测量电路的组成也不同。

图X1-1是模拟式测量电路的基本组成。

传感器包括它的基本转换电路,如电桥,传感器的输出已是电量(电压或电流)。

根据被测量的不同,可进行相应的量程切换。

测控电路

测控电路

测控电路测控技术是现代生产和高科技中的一项必不可少的基础技术。

本书主要介绍工业生产和科学研究中常用的测量与控制电路。

包括测控电路的功用和对它的主要要求、测控电路的类型与组成、信号放大电路、信号调制解调电路、信号分离电路、信号运算电路、信号转换电路、信号细分与辩向电路、逻辑控制与连续信号控制电路、测控电路中的抗干扰技术,最后通过若干典型测控电路对电路进行分析。

本教材不是一般意义上电子技术教程的深化与提高,而是着重讲清如何在电子技术与测量、控制之间架起一座桥梁,使学员熟悉怎样运用电子技术来解决测量与控制中的任务,实现测控的总体思想,围绕精、快、灵和测控任务的其他要求来选用和设计电路。

"前言第一章绪论第一节测控电路的功用第二节对测控电路的主要要求一、精度高二、响应快三、转换灵活四、可靠性与经济性第三节测控电路的输入信号与输出信号一、模拟式信号二、数字式信号第四节测控电路的类型与组成一、测量电路的基本组成二、控制电路的基本组成第五节测控电路的发展趋势第六节课程的性质、内容与学习方法思考题与习题第二章信号放大电路第一节测量放大电路一、基本要求与类型.二、稳零放大电路三、高输入阻抗放大电路四、高共模抑制比较放大电路五、电桥放大电路六、电荷放大电路七、单片集成测量放大器第二节增益调整与切换以及线性化电路一、增益调整电路二、可编程增益放大电路三、线性化电路第三节隔离放大电路一、基本原理二、通用隔离放大电路三、程控增益隔离放大电路第四节功率放大电路一、基本电路二、组合式功率放大电路三、单片集成功率放大器思考题与习题第三章信号调制解调电路第一节调制解调的功用与类型第二节调幅式测量电路一、调幅原理与方法二、包络检波电路三、相敏检波电路第三节调频式测量电路一、调频原理与方法二、鉴频电路第四节调频式测量电路一、调频原理与方法二、鉴相电路第五节脉冲调制式测量电路一、脉冲调制原理与方法二、脉冲调制信号与方法三、脉冲调制测量电路应用举例思考题与习题第四章信号分离电路第一节滤波器的基本知识一、滤波器的类型二、模拟滤波器的传递函数与频率特性三、滤波器特性的逼近第二节 RC有源滤波电路一、压控电压源型滤波电路二、无限增益多路反馈型滤波电路三、双二阶环滤波电路四、有源滤波器设计第三节集成有源滤波器一、开关电容滤波原理二、集成有源滤波芯片介绍第四节跟踪滤波器一、压控跟踪滤波器二、变频跟踪滤波器第五节数字滤波器简介一、数字系统频域分析二、数字滤波原理简介三、数字滤波器的实现思考题与习题第五章信号运算电路第一节加减运算电路一、加法运算电路二、减法运算电路第二节对数、指数及乘除运算电路一、对数运算电路二、指数运算电路三、乘除和乘方、开方运算电路第三节微分积分运算电路一、积分运算电路二、微分运算电路三、PID电路第四节常用特征值运算电路一、绝对值运算电路二、平均值运算电路三、峰值运算电路四、有效值运算电路第五节复杂运算电路一、反函数运算电路二、任意函数电路三、解微分方程运算电路思考题与习题第六章信号转换电路第一节采样保持电路一、基本原理二、模拟开关三、采样保持实用电路第二节电压比较电路一、电平比较电路二、滞回比较电路三、窗口比较电路第三节电压频率转换电路一、V/f转换器二、f/V转换器第四节电压电流转换电路一、I/V转换器二、V/I转换器第五节模拟数字转换电路一、D/A转换器二、A/D转换器思考题与习题第七章信号细分与辨向电路第一节直传式细分电路一、四细分辨向电路二、电阻链分相细分三、微型计算机细分四、只读存储器细分第二节平衡补偿式细分一、相位跟踪细分二、幅值跟踪细分三、脉冲调宽型幅值跟踪细分四、频率跟踪细分——锁相倍频细分思考题与习题第八章逻辑控制电路第一节二值可控元件驱动电路一、功率开关驱动电路二、继电器与电磁阀驱动电路三、步进电动机驱动电路第二节可编程逻辑器件一、可编程阵列逻辑PAL二、通用阵列逻辑GAL思考题与习题第九章连续信号控制电路第一节导电角控制逆变器一、120°导电角控制逆变器二、180°导电角控制逆变器第二节脉宽调制(PWM)控制电路一、脉宽调制控制电路的工作原理二、典型脉宽调制电路三、PWM功率转换电路四、同步式与异步式脉宽调制控制电路第三节变频控制电路一、基本原理和分类二、控制方式和特性三、AC-AC变频器四、AC-DC-AC变频器五、脉宽调制型变频控制电路第四节程控电源一、程控相控型电源二、程控交流稳定电源思考题与习题第十章测控电路中的抗干扰技术第一节电磁干扰一、干扰与噪声源二、干扰与噪声的耦合方式三、干扰与噪声抑制的一般措施第二节屏蔽、接地、隔离、布线与灭弧技术一、屏蔽技术二、接地技术三、隔离技术四、布线技术五、灭弧技术第三节电源干扰的抑制一、电网干扰抑制技术二、电源稳定净化技术思考题与习题第十一章典型测控电路分析第一节温度测量与控制系统一、温度、压力测控仪二、半导体激光电源的温度控制电路第二节数控机床的速度、位移测控系统一、速度控制二、位置控制思考题与习题参考文献。

滤波器超全资料

滤波器超全资料

滤波器超全资料滤波器是一种选频装置,可以使信号中特定的频率成分通过,而极大地衰减其他频率成分。

利用滤波器的这种选频作用,可以滤除干扰噪声或进行频谱分析。

换句话说,凡是可以使信号中特定的频率成分通过,而极大地衰减或抑制其他频率成分的装置或系统都称之为滤波器。

滤波的概念滤波是信号处理中的一个重要概念,滤波电路的作用是尽可能减小脉动的直流电压中的交流成分,保留其直流成分,使输出电压纹波系数降低,波形变得比较平滑。

一般来说,滤波分为经典滤波和现代滤波。

经典滤波是根据傅里叶分析和变换提出的一个工程概念,根据高等数学理论,任何一个满足一定条件的信号,都可以被看成是由无限个正弦波叠加而成。

换句话说,就是工程信号是不同频率的正弦波线性叠加而成的,组成信号的不同频率的正弦波叫做信号的频率成分或叫做谐波成分。

只允许一定频率范围内的信号成分正常通过,而阻止另一部分频率成分通过的电路,叫做经典滤波器或滤波电路。

在经典滤波和现代滤波中,滤波器模型其实是一样的(硬件方面的滤波器其实进展并不大),但现代滤波还加入了数字滤波的很多概念。

滤波电路的原理当流过电感的电流变化时,电感线圈中产生的感应电动势将阻止电流的变化。

当通过电感线圈的电流增大时,电感线圈产生的自感电动势与电流方向相反,阻止电流的增加,同时将一部分电能转化成磁场能存储于电感之中;当通过电感线圈的电流减小时,自感电动势与电流方向相同,阻止电流的减小,同时释放出存储的能量,以补偿电流的减小。

因此经电感滤波后,不但负载电流及电压的脉动减小,波形变得平滑,而且整流二极管的导通角增大。

在电感线圈不变的情况下,负载电阻愈小,输出电压的交流分量愈小。

只有在RL>>ωL时才能获得较好的滤波效果。

L愈大,滤波效果愈好。

滤波器的作用1、将有用的信号与噪声分离,提高信号的抗干扰性及信噪比;2、滤掉不感兴趣的频率成分,提高分析精度;3、从复杂频率成分中分离出单一的频率分量。

理想滤波器与实际滤波器理想滤波器使通带内信号的幅值和相位都不失真,阻喧内的频率成分都衰减为零的滤波器,其通带和阻带之间有明显的分界线。

第四章 阵列信号处理

第四章 阵列信号处理
si (t ) = s (t − 1 riT α ) exp[ j (ωt − riT k )] c
通常信号的频带B比载波 ω 小很多,即s(t)变化 相对 ω 缓慢,则延时
1 c
r α <<
T
1 B
则可以认为 s (t − r α ) ≈ s (t ) 即信号包络 在各阵元上差异可忽略——窄带信号。
4.2 等距线阵与均匀圆阵
一、等距线阵 M个阵元等距排成一直线,阵元间距为d,到达波 的方向角定义为与阵列法线的夹角 θ ,称为波 达方向(DOA)。 在三维空间中还可以 θ θ 确定信源方位角 ψ
d
5
4
y
ψ
2
1
x
等距线阵(ULA)的方向向量
aULA (θ ) = [1, e = [1, e
−j 2π − j k d sin θ −j
,L, e

− j k ( M −1) d sin θ T
]
λ
d sin θ
,L, e
λ
( M −1) d sin θ
]T
若有多个信源(p个),波达方向分别为 θ i (i − 1, L, p) 方向矩阵为
A = [a(θ1 ), a(θ 2 ),L, a(θ p )] = 1 ⎡ ⎢ e − j 2λπ d sin θ1 =⎢ ⎢ L ⎢ − j 2λπ ( M −1) d sin θ1 ⎣e ⎤ π − j 2λ d sin θ p ⎥ L e ⎥ ⎥ L L π − j 2λ ( M −1) d sin θ p ⎥ L e ⎦ L 1
θ
d sin θ
Vandermonde矩阵
阵列结构不允许其方向向量和空间角之间模糊, 等距线阵阵元间距不能大于 λ ,则可以保证 2 方向矩阵中各个列向量线性独立。 二、等距线阵的阵列响应与方向图 在单个信源情况下,阵列输出为各阵元信号的加 权和(不考虑噪声),

滤波器工作原理

滤波器工作原理

滤波器工作原理滤波器是一种能够改变信号频率特性的电路或设备,它可以通过增强或抑制特定频率的信号来实现信号的处理和分析。

滤波器在电子电路、通信系统、音频处理等领域都有着广泛的应用,其工作原理是基于信号的频率特性进行处理,下面我们将详细介绍滤波器的工作原理。

首先,我们需要了解滤波器的分类。

根据频率特性的不同,滤波器可以分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器四种基本类型。

低通滤波器可以通过滤除高频信号来使低频信号通过,高通滤波器则相反,可以滤除低频信号来使高频信号通过。

带通滤波器可以选择特定的频率范围内的信号通过,而带阻滤波器则可以选择特定的频率范围内的信号被滤除。

其次,滤波器的工作原理是基于信号的频率特性进行处理。

当信号经过滤波器时,滤波器会根据其设计的频率特性对信号进行处理。

以低通滤波器为例,当输入信号包含多个频率成分时,低通滤波器会滤除高频成分,只允许低频成分通过。

这是通过滤波器内部的电路结构和元件参数来实现的,例如电容、电感、电阻等元件的组合可以形成不同类型的滤波器,从而实现对信号频率特性的处理。

另外,滤波器的工作原理还涉及到信号的频域分析。

信号可以表示为时域和频域两种形式,时域表示信号随时间的变化,而频域则表示信号的频率成分。

滤波器的工作原理是基于对信号频域特性的分析和处理,通过对信号进行频域分析,可以确定需要滤除或保留的频率范围,从而设计相应类型的滤波器来实现信号的处理。

总的来说,滤波器的工作原理是基于对信号频率特性的分析和处理,通过滤波器可以实现对信号频率特性的改变,从而达到不同的信号处理和分析的目的。

不同类型的滤波器有着不同的频率特性和工作原理,可以根据具体的应用需求选择合适的滤波器类型来实现信号的处理和分析。

希望本文对滤波器工作原理的理解有所帮助。

测控电路基础概念总结

测控电路基础概念总结

第一章绪论1、测控系统主要由传感器(测量装置)、测量控制电路(测控电路)、执行机构组成2、测控电路的主要要求:精、快、灵、可靠3、测控电路的特点:精度高、动态性能好、高的识别和分析能力、可靠性高、经济性好4、为了提高信号的抗干扰能力,往往需要对信号进行调制。

在紧密测量中希望从信号一形成就成为已调制信号,因此常在传感器中进行调制。

5用电感传感器测量工件轮廓形状时—这是一个幅值按被测轮廓调制的已调制信号---称为调幅信号6、用应变片测量梁的变形,并将应变片接入交流电桥。

这时电桥的输出也是调幅信号,载波信号的频率为电桥供电频率,电桥输出信号的幅值为应变片的变形所调制。

7、采用光栅、激光干涉法等测量位移时时传感器的输出为增量码信号。

8、增量码信号是一种反映过程的信号,或者说是一种反映变化增量的信号。

它与被测对象的状态并无一一对应的关系。

9、绝对码信号是一种与状态相对应的信号。

10、开关信号可视为绝对码信号的特例,当绝对码信号只有一位编码时,就成了开关信号。

开关信号只有0和1两个状态。

11、控制方式可分为开环控制与闭环控制。

12、闭环控制的特点:它的主要特点是用传感器直接测量输出量,将它反馈到输入端与设定电路的输出相比较,当发现他们之间有差异时,进行调节补充:1、信息时代的标志——高性能计算机的发展,速度和容量为其主要标志2、影响测控电路精度的主要因素有哪些?其中那几个因素是最基本的?(1)、噪声与干扰★(2)、失调与漂移,主要是温漂★(3)、线性度与保真度(4)、输入与输出阻抗的影响第二章信号放大电路1、输入失调电压u0s:对于理想运算放大器,输入电压为零,输出电压也必然为零。

然而,实际运算放大器中,前置级的差动放大器并不一定完全对称,必须在输入端加上某一直流电压后才能使输出为零,这一直流电压称之。

2、零点漂移:失调电压随时间和温度而变化,即零点在变动,称之3、输出失调电压u0=(1+R2/R1)u0s4、输出端产生的失调电压u02=-R2I b1+(1+R2/R1)R3I b2若取R3=R1//R2,则u02=R2(I b2-I b1)=R2I0s I0s称为输入失调电流5、绝大部分的运算放大器都是用于反馈状态6、由于运算放大器通常使用在负反馈状态,本来就有1800的相位差,再加上外接和内部电路的RC网络,有可能出现3600的相位差,使电路振荡。

测控电路第五版李醒飞第4章习题答案

测控电路第五版李醒飞第4章习题答案

第四章信号分离电路4-1简述滤波器功能,按照功能要求,滤波器可分为几种类型?滤波器是具有频率选择作用的电路或运算处理系统,即对不同频率信号的幅值有不同的增益,并对其相位有不同的移相作用。

按照其功能要求,滤波器可分为低通、高通、带通、带阻与全通五种类型。

4-2按照电路结构,常用的二阶有源滤波电路有几种类型?特点是什么?常用的二阶有源滤波电路有三种:压控电压源型滤波电路、无限增益多路反馈型滤波电路和双二阶环型滤波电路。

压控电压源型滤波电路使用元件数目较少,对有源器件特性理想程度要求较低,结构简单,调整方便,对于一般应用场合性能比较优良,应用十分普遍。

但压控电压源电路利用正反馈补偿RC网络中能量损耗,反馈过强将降低电路稳定性,因为在这类电路中,Q值表达式均包含-Kf项,表明Kf过大,可能会使Q值变负,导致电路自激振荡。

此外这种电路Q值灵敏度较高,且均与Q成正比,如果电路Q值较高,外界条件变化将会使电路性能发生较大变化,如果电路在临界稳定条件下工作,也会导致自激振荡。

无限增益多路反馈型滤波电路与压控电压源滤波电路使用元件数目相近,由于没有正反馈,稳定性很高。

其不足之处是对有源器件特性要求较高,而且调整不如压控电压源滤波电路方便。

对于低通与高通滤波电路,二者Q值灵敏度相近,但对于图4-17c所示的带通滤波电路,其Q值相对R,C变化的灵敏度不超过1,因而可实现更高的品质因数。

双二阶环型滤波电路灵敏度很低,可以利用不同端输出,或改变元件参数,获得各种不同性质的滤波电路。

与此同时调整方便,各个特征参数可以独立调整。

适合于构成集成电路。

但利用分立器件组成双二阶环电路,用元件数目比较多,电路结构比较复杂,成本高。

4-3测控系统中常用的滤波器特性逼近的方式有几种类型?简述这些逼近方式的特点。

测控系统中常用的滤波器特性逼近的方式可分为巴特沃斯逼近、切比雪夫逼近与贝赛尔逼近三种类型。

巴特沃斯逼近的基本原则是在保持幅频特性单调变化的前提下,通带内最为平坦。

信号分离电路

信号分离电路

-31-
几种逼近方法的对比(续)
▪ 三种二阶低通波器的单位阶跃响应
uo(t)/ui 1.0 0.8 0.6 0.4 0.2
0
321
2
4
6
8 t/t0
2020/9/20
-32-
4.2 RC有源滤波电路
特点:
2020/9/20
-33-
4.2.1 一阶滤波电路
,应用广泛.
2020/9/20
-34-
4.2.2 压控电压源型滤波电路
R04
∞ -
+ + N1
R03
C1
R1
∞ -
+
+ N2
C2
R05
R2
∞ -
R06
+
+ N3
R07
ux(t)
R0 ∞
+
+ N4
2020/9/20
-47-
4.2.5 有源滤波器设计
▪ 重点讨论压控电压源、无限增益多路反馈型与双二阶这三 种二阶有源滤波电路。
▪ 有源滤波器的设计主要包括以下四个过程:
1,确定传递函数 2,选择电路结构 3,选择有源器件 4,计算无源元件参数
▪ 这种逼近方法的基本原则:是允许通带内有一定的波动量 △Kp,故在电路阶数一定的条件下,可使其幅频特性更接近 矩形.其幅频特性为
2020/9/20
-26-
切比雪夫逼近(续)
2020/9/20
-27-
切比雪夫逼近(续)
2020/9/20
-28-
P107,表4-1(部分)
2020/9/20
-29-
• 分析:
A 1.0

测控电路_复习

测控电路_复习

第一章 绪论
第一节 第二节 第三节 第四节 测控电路的功用 对测控电路的主要要求 测控电路的输入信号与输出信号 测控电路的类型与组成
第五节
测控电路的发展趋势
本章基本概念
1.
对测控电路的主要要求(精度高;高的输入阻抗和低的输出阻抗; 响应速度快和动态失真小;转换灵活;可靠性与经济性); 影响测控电路精度的主要因素(噪声与干扰★;失调与漂移,主 要是温漂;线性度与保真度★ ;输入与输出阻抗的影响);
基本微分电路的微分方程、微分器的阶跃相应;
二、推导、分析和计算
练习:5-1,5-2,5-3,5-4
第五章
信号运算电路
三、推导、分析和计算
5-2.试设计一个能实现加减混合运算的电路。
1 1 U o U i1 U i 2 U i 5 U i1 U i2 U i3 5 5
6-1 常用的信号转换电路有哪些种类?试举例说明其功能。
答:常用的信号转换电路有采样/保持(S/H)电路、电压比较电路、 V/f(电压/频率)转换器、f/V(频率/电压)转换器、V/I(电压/电流 )转换器、I/V(电流/电压)转换器、A/D(模/数)转换器、D/A(数/ 模)转换器等。 采样/保持(S/H)电路具有采集某一瞬间的模拟输入信号,根据 需要保持并输出采集的电压数值的功能。 模拟电压比较电路是用来鉴别和比较两个模拟输入电压大小的电 路。比较器的输出反映两个输入量之间相对大小的关系。 V/f(电压/频率)转换器能把输入信号电压转换成相应的频率信号。 V/I(电压/电流)转换器的作用是将电压转换为电流信号。 模/数转换器在以微型计算机为核心组成的数据采集及控制系统中,必 须将传感器输出的模拟信号转换成数字信号,为此要使用模/数转 换器(简称A/D转换器或ADC)。

测控答案(终极版)

测控答案(终极版)

第二章 信号放大电路2-1 何谓测量放大电路?对其基本要求是什么?在测量控制系统中,用来放大传感器输出的微弱电压,电流或电荷信号的放大电路称为测量放大电路,亦称仪用放大电路。

对其基本要求是:①输入阻抗应与传感器输出阻抗相匹配;②一定的放大倍数和稳定的增益;③低噪声;④低的输入失调电压和输入失调电流以及低的漂移;⑤足够的带宽和转换速率(无畸变的放大瞬态信号);⑥高输入共模范围(如达几百伏)和高共模抑制比;⑦可调的闭环增益;⑧线性好、精度高;⑨成本低。

2-3 N 1、N 2为理想运算放大器,R 4=R 2=R 1=R 3=R ,试求其闭环电压放大倍数。

由图2-8b 和题设可得u 01 =u i1 (1+R 2 /R 1) = 2u i1 , u 0=u i2 (1+R 4 /R 3 )–2u i1 R 4/R 3 =2u i2–2 u i1=2(u i2-u i1),所以其闭环电压放大倍数K f =2。

2-9 何谓自举电路?应用于何种场合?请举一例说明之。

自举电路是利用反馈使输入电阻的两端近似为等电位,减小向输入回路索取电流,从而提高输入阻抗的电路。

应用于传感器的输出阻抗很高(如电容式,压电式传感器的输出阻抗可达108Ω以上)的测量放大电路中。

2-11 线性电桥放大电路中(见图2-14),若u 采用直流,其值U=10V ,R 1=R 3= R =120Ω,ΔR =0.24Ω时,试求输出电压Uo 。

如果要使失调电压和失调电流各自引起的输出小于1mV ,那么输入失调电压和输入失调电流应为多少?由图2-14电路的公式(式2-24): u R R R R u R R R R R R R u 31231231312o ))(1(+-=⎥⎦⎤⎢⎣⎡-++= 并将题设代入,可得U o =–U ΔR /(2R )=10mV 。

设输入失调电压为u 0s 和输入失调电流为I 0s ,当输出失调电压小于1mV 时,输入失调电压u 0s ﹤(1×10–3)/ (1+R 2/R 1)=0.5mV ;输入失调电流为I 0s ﹤(1×10–3)/[R 1 (1+R 2/R 1)]=4.17μA 。

测控电路复习重点

测控电路复习重点
指数运算的精度也与温度有关。
图5-9 指数运算电路
Is: PN结的反向饱和电流;UT: 热电压,UT=kT/q;
• 求如所示电路中输出电压uo和u1与u2的关 系式,并说明此电路可实现什么运算。
波形分析例题:由理想运算放大器构成如图4所示组合运算电路。其
中R2=R1=100KΩ, C1=10µF, C2=5µF。输入信号ui如图5所示,要求( 1)分别计算微分时间常数和积分时间常数;(2)分别画出u01和u0的
书上29,30页
双运放高共模抑制比放大电路
2. 同相串联结构型
ui2
uo1=(1+R2/R1) ui1
(uo1–ui2)/R3= (ui2–uo)/R4
uo=(1+R4/R3) ui2 -(1+R2/R1)(R4/R3)ui1
由于共模电压
ui1
差模电压
uic

1 2 (ui1
ui2 )
uid ui2 ui1
uo
∞ -
R2
R8
R6
+
ui2
+ N2
uo2 R4
图3 三运放高共模抑制比放大电路
解:(1)由于已知
IR

u02 ui2 R2

ui1 u01 R1

ui2 ui1 R0
所以
uo1

(1
R1 Ro
)ui1

R1 Ro
ui 2
, uo 2

(1
R2 Ro
)ui 2

R2 Ro
ui1
∞ +
+ - N2
∞ ++ - N1

实验四--信号的产生、分解与合成

实验四--信号的产生、分解与合成

实验四信号的产生、分解与合成【实验内容】设计并安装一个电路使之能够产生方波,并从方波中分离出主要谐波,再将这些谐波合成为原始信号或其他周期信号。

1.基本要求(1)设计一个方波发生器,要求其频率为1kHz,幅度为5V;(2)设计合适的滤波器,从方波中提取出基波和3次谐波;(3)设计一个加法器电路,将基波和3次谐波信号按一定规律相加,将合成后的信号与原始信号比较,分析它们的区别及原因。

2.提高要求设计5次谐波滤波器或设计移相电路,调整各次谐波的幅度和相位,将合成后的信号与原始信号比较,并与基本要求部分作对比,分析它们的区别及原因。

3. 其他部分用类似方式合成其他周期信号,如三角波、锯齿波等。

【实验目的】1.掌握方波信号产生的基本原理和基本分析方法,电路参数的计算方法,各参数对电路性能的影响;2. 掌握滤波器的基本原理、设计方法及参数选择;3. 了解实验过程:学习、设计、实现、分析、总结。

4. 系统、综合地应用已学到的电路、电子电路基础等知识,在单元电路设计的基础上,利用multisim 和FilterPro 等软件工具设计出具有一定工程意义和实用价值的电子电路。

5. 掌握多级电路的安装调试技巧,掌握常用的频率测量方法。

6. 本实验三人一组,每人完成一个功能电路,发挥团队合作优势,完成实验要求。

【报告要求】1. 根据实验内容、技术指标及实验室现有条件,自选方案设计出原理图,分析工作原理,计算元件参数。

(写出理论推导,不能只有图) 非正弦周期信号可以通过Fourier 分解成直流、基波以及与基波成自然倍数的高次谐波的叠加。

本实验需要设计一个高精度的带通滤波器和移相器,组成选频网络,实现方波Fourier 分解的原理性实验,实现方波合成的原理性实验。

简易波形分解与合成由下述四个部分功能电路—周期信号产生电路、波形分解电路(滤波器)、相位调节、幅值调节与合成电路组成。

1. 非正弦周期信号的分解与合成对某非正弦周期信号()f t ,其周期为T ,频率为f ,则可以分解为无穷项谐波之和,即:000112()sin()sin(2)n n n n n n nf t c c t c c f t T πϕπϕ∞∞===++=++∑∑上式表明,各次谐波的频率分别是基波频率0f 的整数倍。

滤波器的种类归纳

滤波器的种类归纳

滤波器的种类滤波器是一种选频装置,可以使信号中特定的频率成分通过,而极大地衰减其他频率成分。

利用滤波器的这种选频作用,可以滤除干扰噪声或进行频谱分析。

换句话说,凡是可以使信号中特定的频率成分通过,而极大地衰减或抑制其他频率成分的装置或系统都称之为滤波器。

滤波的概念滤波是信号处理中的一个重要概念,滤波电路的作用是尽可能减小脉动的直流电压中的交流成分,保留其直流成分,使输出电压纹波系数降低,波形变得比较平滑。

一般来说,滤波分为经典滤波和现代滤波。

经典滤波是根据傅里叶分析和变换提出的一个工程概念,根据高等数学理论,任何一个满足一定条件的信号,都可以被看成是由无限个正弦波叠加而成。

换句话说,就是工程信号是不同频率的正弦波线性叠加而成的,组成信号的不同频率的正弦波叫做信号的频率成分或叫做谐波成分。

只允许一定频率范围内的信号成分正常通过,而阻止另一部分频率成分通过的电路,叫做经典滤波器或滤波电路。

在经典滤波和现代滤波中,滤波器模型其实是一样的(硬件方面的滤波器其实进展并不大),但现代滤波还加入了数字滤波的很多概念。

滤波电路的原理当流过电感的电流变化时,电感线圈中产生的感应电动势将阻止电流的变化。

当通过电感线圈的电流增大时,电感线圈产生的自感电动势与电流方向相反,阻止电流的增加,同时将一部分电能转化成磁场能存储于电感之中;当通过电感线圈的电流减小时,自感电动势与电流方向相同,阻止电流的减小,同时释放出存储的能量,以补偿电流的减小。

因此经电感滤波后,不但负载电流及电压的脉动减小,波形变得平滑,而且整流二极管的导通角增大。

在电感线圈不变的情况下,负载电阻愈小,输出电压的交流分量愈小。

只有在RL>>ωL时才能获得较好的滤波效果。

L愈大,滤波效果愈好。

滤波器的作用1、将有用的信号与噪声分离,提高信号的抗干扰性及信噪比;2、滤掉不感兴趣的频率成分,提高分析精度;3、从复杂频率成分中分离出单一的频率分量。

理想滤波器与实际滤波器理想滤波器使通带内信号的幅值和相位都不失真,阻喧内的频率成分都衰减为零的滤波器,其通带和阻带之间有明显的分界线。

测控电路第五版李醒飞第4章习题答案

测控电路第五版李醒飞第4章习题答案

测控电路第五版李醒飞第4章习题答案第四章信号分离电路4-1简述滤波器功能,按照功能要求,滤波器可分为几种类型?滤波器是具有频率选择作用的电路或运算处理系统,即对不同频率信号的幅值有不同的增益,并对其相位有不同的移相作用。

按照其功能要求,滤波器可分为低通、高通、带通、带阻与全通五种类型。

4-2按照电路结构,常用的二阶有源滤波电路有几种类型?特点是什么?常用的二阶有源滤波电路有三种:压控电压源型滤波电路、无限增益多路反馈型滤波电路和双二阶环型滤波电路。

压控电压源型滤波电路使用元件数目较少,对有源器件特性理想程度要求较低,结构简单,调整方便,对于一般应用场合性能比较优良,应用十分普遍。

但压控电压源电路利用正反馈补偿RC网络中能量损耗,反馈过强将降低电路稳定性,因为在这类电路中,Q值表达式均包含-Kf项,表明Kf过大,可能会使Q 值变负,导致电路自激振荡。

此外这种电路Q值灵敏度较高,且均与Q成正比,如果电路Q值较高,外界条件变化将会使电路性能发生较大变化,如果电路在临界稳定条件下工作,也会导致自激振荡。

无限增益多路反馈型滤波电路与压控电压源滤波电路使用元件数目相近,由于没有正反馈,稳定性很高。

其不足之处是对有源器件特性要求较高,而且调整不如压控电压源滤波电路方便。

对于低通与高通滤波电路,二者Q值灵敏度相近,但对于图4-17c所示的带通滤波电路,其Q值相对R,C变化的灵敏度不超过1,因而可实现更高的品质因数。

双二阶环型滤波电路灵敏度很低,可以利用不同端输出,或改变元件参数,获得各种不同性质的滤波电路。

与此同时调整方便,各个特征参数可以独立调整。

适合于构成集成电路。

但利用分立器件组成双二阶环电路,用元件数目比较多,电路结构比较复杂,成本高。

4-3测控系统中常用的滤波器特性逼近的方式有几种类型?简述这些逼近方式的特点。

测控系统中常用的滤波器特性逼近的方式可分为巴特沃斯逼近、切比雪夫逼近与贝赛尔逼近三种类型。

巴特沃斯逼近的基本原则是在保持幅频特性单调变化的前提下,通带内最为平坦。

《测控电路》复习题

《测控电路》复习题

第一章绪论测控电路在整个测控系统中起着什么样的作用?影响测控电路精度的主要因素有哪些,而其中哪几个因素又是最基本的,需要特别注意?为什么说测控电路是测控系统中最灵活的环节,它体现在哪些方面?第二章信号放大电路何谓测量放大电路?对其基本要求是什么?什么是差动放大器?何谓自举电路?应用于何种场合?请举一例说明之。

什么是高共模抑制比放大电路?应用何种场合?图2-13b所示电路,N、Na为理想运算放大器, 试求其闭环电压放大倍数。

图2-14所示电路,N、N2、Z工作在理想状态,R=R2=1OOk0,R o=1Ok0,F3=RF20kO ,图2-13b电路是什么电路?试述其工作原理。

为使其具有所需性能,对电阻值有什么要求? F5=F6=60k」Nz同相输入端接地,试求电路的差模增益?电路的共模抑制能力是否降低?为什么?试求增益可调式差动比例放大电路的电压放大倍数何谓电桥放大电路?应用于何种场合?试推导图2-16b所示电路u o的计算公式,并根据所推导的公式说明其特点。

图示电路是什么电路?图中R I=R2 >>R,试述其工作原理,写出其输出表达式(8分)线性电桥放大电路中(见图2-18 ),若u采用直流,其值U = 10V, R= R= R= 120 Q ,请根据图2-29b ,画出可获得1、10、100十进制增益的电路原理图。

由图X2-3可得:当开关 A 闭合时,U 0=U i ;当开关B 闭合时,U =10U ,当开关C 闭合时,U =100U 。

根据图2-29c 和其增益表达式,若采用 6个电阻,请画出电路原理图,并计算电阻网络各电阻的阻值。

+R+ R 3+R>=5R ,什么是隔离放大电路?应用于何种场合?试分析图2-33b 电路中的限幅电路是如何工作的?并写出U o 的计算公式。

第三章信号调制解调电路什么是信号调制?在测控系统中为什么要采用信号调制?什么是解调?在测控系统中常用 的调制方法有哪几种?什么是调制信号?什么是载波信号?什么是已调信号?什么是调幅?请写出调幅信号的数学表达式,并画出它的波形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

-1
0
1
lg(ω/ω0)
通滤波 器在品 质因数 不同时 的幅频 特性与
-20
a) 幅频特性
-40
-60
Q=100
Q=40 Q=20
/(°)
Q=5 Q=2.5 -1Q=1 Q=0.5
Q=10 Q=20
Q=40 Q=100
相频特
性曲线 如图所
90o
0o
0
1
lg(ω/ω0)
b) 相频特性
-90o
示。
0 品质因数 Q 1 称为相对带宽, 称为3dB绝对带宽。 Q 0
K P 0 H (s) s 0 KPs H (s) s 0
1. 二阶低通滤波器
二阶低通滤波器的传递函数的一般形式为
它的固有频率为 0 a0 通带增益为
K P b0 a0
改写成规范形幅频特性与相频特性为
二阶低
20lgA/dB
20
α=0.1
滤波器、RC有源滤波器。
按传递函数的微分方程阶数分:一阶、二阶、高阶滤波器。
A()
A()
Kp Kp
O
Kp
Kp
pc
a)
r

O
r c p
b)

A()
A()
Kp Kp
O
Kp Kp
r1
c1 p1 p 2 c2
c)
r2
O
p1 c1 r1 r 2 c2 p 2
其中
N与巴特沃思多项式的关系
B(S )
S 1
n 1
2
3 4
S 2 2S 1
(S 2 S 1) (S 1)
1 2.613S 3.414S 2.613S S
2 3
4
n=2,4,5阶巴特沃斯低通滤波器的幅频与相频 特性曲线为
A
1.0 n=2 n=4 n=5
0.5
P 2 (sinh2 cos2 k ) KP 2 , n 2N 2 2 2 k 1 s 2 P sinh sin k s P (sinh cos k ) H ( s) P 2 (sinh2 cos2 k ) K PP sinh N s P sinh k 1 s 2 2P sinh sin k s P 2 (sinh2 cos2 k )
6. 二阶全通滤波电路(移相电路) 二阶全通滤波电路的传递函数的一般形式为
K P ( s 2 0 s 0 ) H ( s) 2 s 2 0 s 0
2
其幅频特性为常数,相频特性为
相频特性与二阶低通滤波器的相频特性 表达式只差一个系数2,曲线形状相似。 参考二阶低通滤波器的相频特性
第4章 信号分离电路
4.1 滤波器的基本知识 4.2 RC有源滤波电路 4.3 集成有源滤波器 4.4 跟踪滤波器
信号分离电路是利用滤波器
从频域中实现对噪声的抑制,提
取所需的测量信号,是各种测控 系统中必不可少的组成部分。例
a)工件表面轮廓
如利用轮廓仪表测量表面所示。
工件表面轮廓如图4-1a,测量信号 如图4-1b,b中不仅包含反映工件 表面轮廓的粗糙度信号,还包含 反映工件表面几何形状误差和波 度的低频信号以及电气干扰产生 的高频噪声。利用滤波器,滤去 误差及高频噪声,即可实现对粗 糙度的测量,如图4-1c所示。
阻尼系数是表征滤波器对角频率为ω0信号的阻
尼作用,是滤波器中表示能量衰耗的一项指标。
阻尼系数的倒数称为品质因数,是评价带通与
带阻滤波器频率选择特性的一个重要指标,Q=
ω0/△ω。式中的△ω为带通或带阻滤波器的3dB带
宽, ω0为中心频率,在很多情况下中心频率与固
有频率相等。
4. 灵敏度
滤波电路由许多元件构成,每个元件参数值
d)
4-2 各种滤波器频率特性示意图
4.1.2 模拟滤波器的传递函数与频率特性
一、模拟滤波器的传递函数 模拟滤波电路的特性可由传递函数来描述。 传递函数是输出与输入信号电压或电流拉氏变 换之比。
U 0 ( s) bm s m bm 1s m 1 b1s1 b0 H (s) n n 1 1 U i ( s ) an s an 1s a1s a0 n m, n称为网络阶数,即滤波 器的阶数。
在设计切比雪夫滤波器时,需指定通带内的纹波 值 和决定阶次n的衰减要求,低通切比雪夫滤波器 传递函数可写为:
A0 A( S ) n S an1 S n1 a1 S a0
多项式系数 次n查表得到 。 可根据不同的 和阶
n阶切比雪夫低通滤波器的传函为
二、模拟滤波器的频率特性
模拟滤波器的传递函数H(s)表达了滤波器的输 入与输出间的传递关系。若滤波器的输入信号Ui是 角频率为ω的单位信号,滤波器的输出 Uo(jω)=H(jω)表达了在单位信号输入情况下的输出 信号随频率变化的关系,称为滤波器的频率特性 函数,简称频率特性。
频率特性H(jω)是一个复函数,幅值 A() H ( j) 称为幅频特性,滤波器的选频特性主要由幅频特 性决定。其幅角 ( ) arctanH ( j ) 表示输出 信号的相位相对于输入信号相位的变化,称为相 频特性。
Q值越大,相对带宽越小 ,选频性能越强。
5. 二阶带阻滤波器 二阶带阻滤波器的传递函数的一般形式为
K P ( s 0 ) H ( s) 2 ,Q 1 2 s (0 Q) s 0
2 2
其幅频特性与相频特性为
二阶带阻滤波器在品质因数不同时的幅频 特性与相频特性曲线如下图所示。
4.1.1 滤波器的功能和类型
1. 功能:滤波器是具有频率选择作用的电路或运算处理系 统,具有滤除噪声和分离各种不同信号的功能。 2. 类型:
按处理方法分:硬件滤波和软件滤波。 按处理信号形式分:模拟滤波器和数字滤波器。 按功能分:低通、高通、带通、带阻滤波器,如图4-2所示。
按电路组成分:LC无源、RC无源、由特殊元件构成的无源
A0 A0 A(S ) n B(S ) S an1 S n1 a1 S a0
jw B ( S ) 为巴特沃思多项式; S 为归一化复频率 S ; wc
an1 , a1 , a0
为多项式系数
n阶巴特沃斯低通滤波器的传递函数为
基本滤波器幅 频和相频特性 表达式一览表 见P107
4.1.4 滤波器特性的逼近
理想滤波器要求幅频特性A(ω)在通带内为一 常数,在阻带内为零,没有过渡带,还要求群延 时函数在通带内为一常量,这在物理上是无法实 现的。实践中往往选择适当逼近方法,实现对理 想滤波器的最佳逼近。 测控系统中常用的三种逼近方法为:
4-1 粗糙度的测量
c)粗糙度波形
b)测量信号
4.1 滤波器的基本知识
滤波器广泛应用于信号处理和电子线路抗干扰技 术中,是具有频率选择作用的电路或运算处理系统, 可利用模拟电路实现,也可由数字电路实现。现代数 字电路发展很快,许多模拟信号处理已被数字电路取 代,数字滤波也是如此,但数字滤波不能完全取代模 拟滤波。例如,信号在A/D采样前应保证信号带宽不超 过采样频率的1/2,必须通过模拟滤波器滤去高频成分。 此外模拟滤波器在响应速度、实时性和经济性等方面 仍具有相当的优势。 滤波器的工作原理是当信号与噪声分布在不同频 段时可在频域内实现信号分离。
三、滤波器的主要特性指标 1. 特征频率: ①通带截频fp=ωp/(2)为通带与过渡带边界点的频率, 在该点信号增益下降到一个人为规定的下限。 ②阻带截频fr=ωr/(2)为阻带与过渡带边界点的频率, 在该点信号衰耗(增益的倒数)下降到一人为规定的 下限。 ③转折频率fc=ωc/(2)为信号功率衰减到1/2(约3dB)时 的频率,在很多情况下,常以fc作为通带或阻带截 频。 ④固有频率f0=ω0/(2)为电路没有损耗时,滤波器的 谐振频率,复杂电路往往有多个固有频率。
20lgA/dB
二阶
带阻 滤波 器在 不同
0
-1
0
1
lg(ω/ω0)
a) 幅频特性
-20
Q=0.1 Q=0.2
-40 Q=0.5 -60 Q=1 Q=2.5 Q=5
品质
因数 时的
/(°) 90o -1 Q=5 Q=2.5 0
频率
特性 曲线
0o -90o
1
lg(ω/ω0)
b) 相频特性
Q=1 Q=0.5 Q=0.2 Q=0.1
α=0.2
α=0.33 α=0.5 lg(ω/ω0) 1
通滤波 器在阻 尼系数 不同时 的幅频 特性与
0
0 -1 α=2.5 α=1.67 α=1.25 α=0.8
-20
a) 幅频特性
-40
-60 /(°) 0° α=2.5 -90o α=1.67 α=1.25 α=0.8 -180o
相频特
性曲线 如图所 示。
的变化都会影响滤波器的性能。滤波器某一性能
指标y对某一元件参数 x变化的灵敏度记作Sxy,定
义为: Sxy=(dy/y)/(dx/x)。
该灵敏度与测量仪器或电路系统灵敏度不是
一个概念,该灵敏度越小,标志着电路容错能力
越强,稳定性也越高。
5. 群时延函数
当滤波器幅频特性满足设计要求时,为保证输
出信号失真度不超过允许范围,对其相频特性
-1
0
α=0.1
1
lg(ω/ω0)
α=0.2 α=0.33
α=0.5
b) 相频特性
3. 二阶高通滤波器 二阶高通滤波器的传递函数的一般形式为
KP s2 H ( s) 2 2 s 0 s 0
相关文档
最新文档