3.晶体定向及晶面符号概述
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例:立方体:(100)、(T00)、(010)、(0T0)、(001)、00T)
(3)单形的种类 p.28 146种结晶单形→ 47种几何单形
① 描述方法:几何单形中,同形等大的晶面的数目、形 状、相互关系,晶面与对称要素的相对位置、单形的 横断面形状等; ② 47种几何单形名称及描述: p.29表3-2
3、尽量选择轴单位相等或趋于相等的行列作为晶轴 即: 尽量使 a=b=c
各晶系的晶体定向举例:
★ 等轴晶系:3L4、或3Li4、或 3L2 → X、Y、Z 轴 ★ 六方晶系:L6 或 Li6 → Z轴,3L2或3P⊥或棱→ X、Y、U轴 ★ 三方晶系:L3 → Z轴, 3L2或P⊥或棱 → X、Y、 U 轴 ★ 四方晶系:L4 或 Li4 →Z轴,2L2或2P⊥或晶棱 → X、Y轴
(1)三斜晶系 (2)单斜晶系 (3)斜方晶系 (4)四方晶系 (5)等轴晶系
r
2、四轴系统:适用以下2个晶系:
(1)三方晶系: X 、Y、U、Z (2)六方晶系: X 、Y、U、Z
一
晶 轴: X 、Y、Z 轴单位: a、b、c
(三、六方晶系中: X、Y、U 等效)
∨∨
γ β
轴角:α、β、γ
r
α
第二节、单形和聚形
1、单形
(1)概念
由对称要素联系起来的一组晶面的总合。
八面体
菱形十二面体
(2)特点
①. 在理想情况下, 同一单形各晶面 ②. 在实际晶体上, 同一单形各晶面 同形等大; 性质相同;
性质:(晶面花纹;蚀象;物性:光、力、电等; ) ③ 通过对称要素的作用,各晶面可以 相互重合;
④ 一个单形的晶面符号中,晶面指数(绝对值)相同
面 -----单面 1、平行双面1、反映双面及轴双面1 。
柱 ----(单柱 4 、复柱3) 锥 ----(单锥7、双锥 7) 体 ------ 23
低级晶族的单形
平行双面
轴双面
斜方单锥
斜方四面体
斜方双锥
斜方柱
中级晶族的单形
三方单锥
六方单锥
四方单锥
复三方单锥
复六方单锥
复四方单锥
三方双锥
六方双锥
Hale Waihona Puke Baidu四方双锥
∨
(三)、晶体定向原则
1、选择晶体中的对称要素或晶棱作为坐标轴 晶体中的对称要素:Ln 、Li n、P 的法线、晶棱,必须 按下列顺序选择晶轴:Ⅰ轴、Ⅱ面、Ⅲ 晶棱。
(1)、先确定Z轴(单斜晶系先确定 Y ★ 等轴晶系: L4、或Li4、或L2 ★ 六方晶系: L6、或Li6 ★ 三方晶系: L3 ★ 四方晶系: L4、或Li4 ★ 斜方晶系: L2 ★ 单斜晶系: 晶棱 ★ 三斜晶系: 晶棱
★ 斜方晶系:3L2 或3P⊥或 棱 → X、Y、Z轴
★ 单斜晶系:L2或P⊥→ Y轴, 2个晶棱 → X、Z轴 ★ 三斜晶系:3条晶棱 → X、Y、 Z轴
二、晶面符号
1、概念:表示晶面空间方位的符号------晶面符号 米氏符号 ----- (英国 W.H.Miller 1839)。 2、表示方法
复三方双锥
复六方双锥
复四方双锥
三方柱
六方柱
四方柱
复三方柱
复六方柱
复四方柱
四方四面体
菱面体
复四方偏三角面体
复三方偏三角面体
斜方四面体
三方偏方面体 三方偏方面体
六方偏方面体 六方偏方面体
四方偏方面体
高级晶族的单形
四面体
八面体 偏方复十 二面体
立方体
四六面体
左形-----右形: 互为镜像,但不能以旋转或反伸操作 使之重合的两个图形。其对称型为:只有三方偏方面体 的左,右形在石英晶体上常出现。
轴) → Z轴 → Z轴 → Z轴 → Z轴 → Z轴 → Z轴 → Z轴
(2)再确定 X、Y、U(三、六方晶系) 轴
应尽量选择X、Y、或U轴所在平面且与z轴垂直。
2、应尽量使X、Y、Z 轴相互垂直或趋于垂直, 或互成120° (三、六方晶系)。 即: 尽量使 α= β= r = 90o 三、六方晶系 r =120o
晶体的定向和晶面符号 单形和聚形 晶体的规则连生
第一节、 晶体定向及晶面符号
一、晶体定向
(一)、概念 晶体定向 —— 在晶体中确定一个坐标系统; 1、晶轴 ------ 晶体中的坐标轴; 2、轴单位---- 各晶轴上的量度单位:a、b、c
(二)晶轴的安置
晶轴----晶体中的坐标轴;是交晶体中心一点的 三条或四条直线。(内部构造的三条或四条行 列的方向) 1、三轴系统:X 、Y、Z:适用以下5个晶系:
晶面符号举例!
1. 等轴晶系:立方体、八面体 2. 四方晶系:四方柱、四方双锥 3. 六方晶系:六方柱 4. 三方晶系:菱面体 5. 斜方晶系:斜方双锥 6. 单斜晶系:石膏单晶
3、简整指数定律: 晶面在晶轴上的截距系数之比,往往为简单的整数比。 (1)简单?见P.38 图4-8 网面密度:a1b1 > a1b2 > a1b3 > a1b4 > ……a1bx 晶面在x、y、轴上的截距系数之比: b1 b2 b3 b4 b5 b6 bx a1b1 = 1:1 Z Y a1b2 = 1:2 a1b3 = 1:3 a1 a1b4 = 1:4 …… a2 a1bx= 1: x 网面密度越大、晶面在 X 晶轴上的截距系数之比 网面密度与截距系数比的关系 越简单。布拉维法则: 实际晶体往往被网面密度较大的晶面所包围。
将晶面在晶轴 上的截距系数的倒 数比化简后,去掉 比例符号,加圆括 号括起来。 三轴定向:一般式 用(hkl)表示; 四轴定向:一般式 用(hkil)表示, 且 h+k+i=0
z
C 例:晶面ABC c a b A
x
B
y
晶 轴: X Y Z 轴单位: a b c 截距长度: 2a 3b 6c 截距系数: 2 3 6 截距系数倒数比: 1/2 : 1/3 : 1/6 化简去掉比例符号: 321 加上圆括号: (321) 一般形式: (hkl)
(2)整数?(见P.38 图4-7 ) 把平行于晶胞的三个行列 作为晶轴,用该行列上的结 点间距作为轴单位。晶轴相 应于行列,晶面相应于面网, 晶面截晶轴于结点(a1b2), 或者晶面平移后截晶轴于结 点(kb5→a2b4),故晶面在 晶轴上的截距系数之比必为 一整数比。
(a1b2:x=1a ,y= 2b :即1: 2) (a2b4:x=2a ,y= 4b :即2: 4)
(3)单形的种类 p.28 146种结晶单形→ 47种几何单形
① 描述方法:几何单形中,同形等大的晶面的数目、形 状、相互关系,晶面与对称要素的相对位置、单形的 横断面形状等; ② 47种几何单形名称及描述: p.29表3-2
3、尽量选择轴单位相等或趋于相等的行列作为晶轴 即: 尽量使 a=b=c
各晶系的晶体定向举例:
★ 等轴晶系:3L4、或3Li4、或 3L2 → X、Y、Z 轴 ★ 六方晶系:L6 或 Li6 → Z轴,3L2或3P⊥或棱→ X、Y、U轴 ★ 三方晶系:L3 → Z轴, 3L2或P⊥或棱 → X、Y、 U 轴 ★ 四方晶系:L4 或 Li4 →Z轴,2L2或2P⊥或晶棱 → X、Y轴
(1)三斜晶系 (2)单斜晶系 (3)斜方晶系 (4)四方晶系 (5)等轴晶系
r
2、四轴系统:适用以下2个晶系:
(1)三方晶系: X 、Y、U、Z (2)六方晶系: X 、Y、U、Z
一
晶 轴: X 、Y、Z 轴单位: a、b、c
(三、六方晶系中: X、Y、U 等效)
∨∨
γ β
轴角:α、β、γ
r
α
第二节、单形和聚形
1、单形
(1)概念
由对称要素联系起来的一组晶面的总合。
八面体
菱形十二面体
(2)特点
①. 在理想情况下, 同一单形各晶面 ②. 在实际晶体上, 同一单形各晶面 同形等大; 性质相同;
性质:(晶面花纹;蚀象;物性:光、力、电等; ) ③ 通过对称要素的作用,各晶面可以 相互重合;
④ 一个单形的晶面符号中,晶面指数(绝对值)相同
面 -----单面 1、平行双面1、反映双面及轴双面1 。
柱 ----(单柱 4 、复柱3) 锥 ----(单锥7、双锥 7) 体 ------ 23
低级晶族的单形
平行双面
轴双面
斜方单锥
斜方四面体
斜方双锥
斜方柱
中级晶族的单形
三方单锥
六方单锥
四方单锥
复三方单锥
复六方单锥
复四方单锥
三方双锥
六方双锥
Hale Waihona Puke Baidu四方双锥
∨
(三)、晶体定向原则
1、选择晶体中的对称要素或晶棱作为坐标轴 晶体中的对称要素:Ln 、Li n、P 的法线、晶棱,必须 按下列顺序选择晶轴:Ⅰ轴、Ⅱ面、Ⅲ 晶棱。
(1)、先确定Z轴(单斜晶系先确定 Y ★ 等轴晶系: L4、或Li4、或L2 ★ 六方晶系: L6、或Li6 ★ 三方晶系: L3 ★ 四方晶系: L4、或Li4 ★ 斜方晶系: L2 ★ 单斜晶系: 晶棱 ★ 三斜晶系: 晶棱
★ 斜方晶系:3L2 或3P⊥或 棱 → X、Y、Z轴
★ 单斜晶系:L2或P⊥→ Y轴, 2个晶棱 → X、Z轴 ★ 三斜晶系:3条晶棱 → X、Y、 Z轴
二、晶面符号
1、概念:表示晶面空间方位的符号------晶面符号 米氏符号 ----- (英国 W.H.Miller 1839)。 2、表示方法
复三方双锥
复六方双锥
复四方双锥
三方柱
六方柱
四方柱
复三方柱
复六方柱
复四方柱
四方四面体
菱面体
复四方偏三角面体
复三方偏三角面体
斜方四面体
三方偏方面体 三方偏方面体
六方偏方面体 六方偏方面体
四方偏方面体
高级晶族的单形
四面体
八面体 偏方复十 二面体
立方体
四六面体
左形-----右形: 互为镜像,但不能以旋转或反伸操作 使之重合的两个图形。其对称型为:只有三方偏方面体 的左,右形在石英晶体上常出现。
轴) → Z轴 → Z轴 → Z轴 → Z轴 → Z轴 → Z轴 → Z轴
(2)再确定 X、Y、U(三、六方晶系) 轴
应尽量选择X、Y、或U轴所在平面且与z轴垂直。
2、应尽量使X、Y、Z 轴相互垂直或趋于垂直, 或互成120° (三、六方晶系)。 即: 尽量使 α= β= r = 90o 三、六方晶系 r =120o
晶体的定向和晶面符号 单形和聚形 晶体的规则连生
第一节、 晶体定向及晶面符号
一、晶体定向
(一)、概念 晶体定向 —— 在晶体中确定一个坐标系统; 1、晶轴 ------ 晶体中的坐标轴; 2、轴单位---- 各晶轴上的量度单位:a、b、c
(二)晶轴的安置
晶轴----晶体中的坐标轴;是交晶体中心一点的 三条或四条直线。(内部构造的三条或四条行 列的方向) 1、三轴系统:X 、Y、Z:适用以下5个晶系:
晶面符号举例!
1. 等轴晶系:立方体、八面体 2. 四方晶系:四方柱、四方双锥 3. 六方晶系:六方柱 4. 三方晶系:菱面体 5. 斜方晶系:斜方双锥 6. 单斜晶系:石膏单晶
3、简整指数定律: 晶面在晶轴上的截距系数之比,往往为简单的整数比。 (1)简单?见P.38 图4-8 网面密度:a1b1 > a1b2 > a1b3 > a1b4 > ……a1bx 晶面在x、y、轴上的截距系数之比: b1 b2 b3 b4 b5 b6 bx a1b1 = 1:1 Z Y a1b2 = 1:2 a1b3 = 1:3 a1 a1b4 = 1:4 …… a2 a1bx= 1: x 网面密度越大、晶面在 X 晶轴上的截距系数之比 网面密度与截距系数比的关系 越简单。布拉维法则: 实际晶体往往被网面密度较大的晶面所包围。
将晶面在晶轴 上的截距系数的倒 数比化简后,去掉 比例符号,加圆括 号括起来。 三轴定向:一般式 用(hkl)表示; 四轴定向:一般式 用(hkil)表示, 且 h+k+i=0
z
C 例:晶面ABC c a b A
x
B
y
晶 轴: X Y Z 轴单位: a b c 截距长度: 2a 3b 6c 截距系数: 2 3 6 截距系数倒数比: 1/2 : 1/3 : 1/6 化简去掉比例符号: 321 加上圆括号: (321) 一般形式: (hkl)
(2)整数?(见P.38 图4-7 ) 把平行于晶胞的三个行列 作为晶轴,用该行列上的结 点间距作为轴单位。晶轴相 应于行列,晶面相应于面网, 晶面截晶轴于结点(a1b2), 或者晶面平移后截晶轴于结 点(kb5→a2b4),故晶面在 晶轴上的截距系数之比必为 一整数比。
(a1b2:x=1a ,y= 2b :即1: 2) (a2b4:x=2a ,y= 4b :即2: 4)