变分原理与变分法
变分原理与变分法

变分原理与变分法变分原理是数学物理中的一种基本原理,用于描述自然界中的物理现象。
它是物理学中的最小作用量原理的数学表述。
变分原理与变分法密切相关,是变分法的基础。
变分原理是由欧拉-拉格朗日提出的,并以他们的名字命名。
它表明,自然界的真实运动是使作用量取极值的路径。
作用量是在一个过程中所有可能路径上对拉格朗日量(描述系统运动的函数)进行积分得到的。
换句话说,作用量是描述系统整体运动的一个量度。
在物理学中,拉格朗日函数常常由系统的动能和势能构成。
通过对动能和势能的定义,我们可以得到描述系统运动的拉格朗日方程。
拉格朗日方程是变分原理的数学表达式,它通过求解一组微分方程来描述系统的运动。
变分法是一种数学方法,用于求解泛函问题。
泛函是一个函数的函数,通常是由一个区间上的函数组成的。
在变分法中,我们通过将泛函写成一族函数的积分形式,并求解使得泛函取极值的函数。
这就涉及到求取泛函的变分(即导数)。
变分法的基本思想是将泛函中的函数进行微小的变化,然后求取这个变化对泛函的影响。
这个变化就是变分,通常用符号δ表示。
然后通过对泛函进行导数运算,得到变分后的泛函表达式。
最后,将变分的泛函表达式置于极值条件下,即求取变分后的泛函为零的解,就可以求得泛函的最优解。
在物理学中,变分法常常用于求解极值问题,如最小作用量问题、哈密顿原理以及量子力学中的路径积分等。
它为我们提供了一种强大的工具,用于描述和预测自然界中的物理现象。
总结起来,变分原理是描述自然界中物理现象的最小作用量原理的数学表述,而变分法是求解泛函问题的一种数学方法。
它们相互依存,变分原理提供了变分法的理论基础,而变分法为我们提供了一种强大的工具,用于求解各种物理问题。
变分原理与变分法的理论和应用涉及数学、物理、工程等多个领域,对于理解和研究复杂的物理现象具有重要的意义。
弹性力学的变分原理

(
f y '
)
0
f
y '
xa 0
f y '
xb 0
( •)
(•)称为自然边界条件
自变函数事先满足旳边界条件称为本质边 界条件。 实例
本章学习要点:建立力学概念
本章包括了非常多旳力学概念,这些概念是有限 元及其他力学分支中普遍用到旳,需对其内涵有 一定了解
公式推导较多、较繁,但
公式旳推导、证明过程了解思绪即可
注意到:
( y) y(x) y(x)
与(*)式比较,可见:
( y) (y)'
即:
(ddyx) ddx(y)
结论:导数旳变分等于变分旳导数,或变分
记号与求导记号能够互换。
三、泛函旳变分
一般情况下,泛函可写为:
b
I a f (x, y, y)dx
1、按照泰勒级数展开法则,被积函数 f 旳增 量能够写成
vε vc ijij
对于线弹性体
vε
vc
1 2
ijij
允 许 位 移
允 许 应 变
允 许 应 力
虚 位 移
虚 应 变
虚 应 力
§11-3 广义虚功原理
虚
虚
功
位
应
互
移
力
等
原
原
原
理
理
理
§11-3 广义虚功原理
一、真实位移、真实应力和真实应变
ui 真实位移,满足:
ij
1 2
(ui,
j
u j,i )
j
u
k j ,i
)
uik ui
x V x Su
k ij
变分原理与变分法

变分原理与变分法一、变分原理的基本概念变分原理是针对泛函的一种表述方式。
所谓泛函是指一类函数的函数,这类函数可以是数学上的对象,也可以是物理上的对象。
变分原理是以泛函的极值问题为基础,通过对泛函进行变分计算,求取泛函的极值。
在变分原理中,被考虑的对象是泛函数而不是函数。
二、变分原理的基本原理三、变分法的基本步骤变分法是通过对泛函的变分计算来解决极值问题。
它的基本步骤如下:1.建立泛函:根据具体的问题,建立一个泛函表达式,其中包含了待求函数及其导数。
2.变分计算:对建立的泛函进行变分计算,即对泛函中的待求函数及其导数进行变动,求出泛函的变分表达式。
3.边界条件:根据具体问题的边界条件,对变分表达式进行求解,得到泛函的变分解。
4.极值问题:根据泛函的变分解,通过进一步的计算确定泛函的极值。
四、变分原理和变分法的应用1.物理学中的应用:变分原理和变分法在物理学中有广泛的应用。
例如,拉格朗日方程和哈密顿方程可以通过变分原理推导出来。
此外,在量子力学和场论中,变分法也被用于求解相应的泛函积分方程。
2.工程学中的应用:在工程学中,变分原理和变分法常用于求解最优化问题。
例如,在结构力学中,通过变分法可以求解出构件的最优形状和尺寸。
在控制理论中,变分法可以用于求解最优控制问题。
3.数学学科中的应用:变分原理和变分法在数学学科中也有重要的应用。
例如,在函数极值问题中,变分法可以用于求解一类非线性偏微分方程的临界点。
总之,变分原理与变分法是一种强有力的数学工具,具有广泛的应用领域。
通过应用变分原理和变分法,可以更好地解决求极值问题,进而推导出物理方程、最优设计和数学方程等相关问题的解。
因此,深入理解变分原理和变分法对于数学、物理、工程等学科的研究和应用具有重要的意义。
变分原理与变分法

变分原理与变分法在数学中,变分原理是由变分法所依赖的基本数学原理,它属于变分法的核心思想。
变分原理是这样一个原理:如果一个物理系统的运动方程可以通过一些函数的下极值原理来推导出来,那么这个物理系统的运动方程也可以通过其他的方法得到,比如经典的牛顿运动定律、拉格朗日方程或哈密顿方程等。
所以,变分原理可以看作是一种看待运动方程的新视角,它提供了一种新的方法来推导和解决运动方程。
变分法是以变分原理为基础的一种数学方法,通过对形式相对简单的函数进行一定的变分操作,使得问题的求解变得容易。
变分法的核心思想是将函数看作一个整体,而不是具体的数值,通过改变整体的形状,使其满足一定的条件,从而达到优化的目标。
在变分法中,我们将问题转化为一个泛函的极值问题,通过对泛函求导并使其为零,就可以得到满足条件的函数。
在最优控制问题中,变分法是一个常用的求解方法。
最优控制问题是研究如何通过调整一些输入信号,使得系统的性能达到最优,比如最小化成本、最大化效益等。
通过应用变分法,我们可以将最优控制问题转化为一个泛函的极值问题,通过对极值问题求解,可以得到最优的输入信号。
在极值问题中,变分法也有广泛的应用。
比如著名的布鲁诺-普恩哥雷极值问题,即求出一个连续函数,使得其在给定的边界条件下,一些泛函成为极值。
通过变分法,我们可以将这个极值问题转化为一个泛函的极值问题,通过求解极值问题,就可以得到满足要求的函数。
除了最优控制问题和极值问题,变分法在泛函分析和变分不等式研究中也有重要的应用。
在泛函分析中,变分法用于求解泛函的最小化问题,通过对泛函求导并使其为零,得到泛函的最小值。
而在变分不等式研究中,变分法用于构造适当的测试函数,将问题转化为一个较简单的形式,从而得到不等式的解析解或估计。
总结来说,变分原理与变分法是应用于最优控制问题、极值问题和泛函问题等研究领域中的基本数学工具。
通过将问题转化为泛函的极值问题,通过对泛函求导并使其为零,可以得到满足条件的函数。
变分法基本引理

变分法基本引理变分法是数学中一种重要的数学工具,广泛应用于物理学、工程学、经济学等领域。
其基本引理为变分法的核心思想,是变分法的基础和出发点。
本文将围绕变分法基本引理展开讨论,介绍其基本概念、原理和应用。
一、引言变分法是数学中研究变量函数的极值问题的一种方法。
其基本思想是通过将极值问题转化为一个函数的极值问题,从而求解原问题。
变分法的基本引理是变分法的基础,为后续的推导和应用提供了重要的理论支持。
二、变分法基本引理的概念变分法基本引理是对于函数的变分的一种数学表述。
它指出,如果函数在某一点处取得极值,那么在该点处的变分为零。
换言之,如果一个函数在某一点处的变分不为零,那么该点不是函数的极值点。
三、变分法基本引理的原理变分法基本引理可以通过泛函导数的概念来理解。
泛函导数是对函数的变分的一种推广,它表示函数在某一点处的变分相对于该点处的微小变动的比率。
根据变分法基本引理,如果一个函数在某一点处的泛函导数为零,那么该点是函数的极值点。
四、变分法基本引理的应用变分法基本引理在实际问题中有着广泛的应用。
以经济学为例,我们可以将经济系统的效用函数看作一个泛函,通过变分法求解该泛函的极值,得到最优的经济决策。
类似地,变分法在物理学中的应用也十分广泛,例如用于求解最短路径、最小作用量和最小曲面等问题。
五、变分法基本引理的思考虽然变分法基本引理在理论和应用上都具有重要的意义,但在实际问题中的应用也面临一定的挑战。
首先,变分法需要对变分进行严格的数学推导,这对于一些复杂的问题来说是一项困难的任务。
其次,变分法在求解极值问题时并不一定能得到全局最优解,而可能仅能得到局部最优解。
六、结论变分法基本引理是变分法的核心思想,是变分法的基础和出发点。
通过对变分法基本引理的理论分析和应用示例的介绍,我们可以看到变分法在实际问题中的重要性和应用价值。
在今后的研究和应用中,我们应进一步深化对变分法的理解,不断拓展其应用领域,为解决复杂问题提供更有效的数学工具。
变分法数值求解

(2)相应于本征态的本征能量取极小值
薛定谔方程
H n E n (7)
在归一化条件下 * d 1 (8)
对波函数作一微小的变动
n
n
n
,
* n
* n
* n
(9)
则归一化条件变为
(
* n
* n
)(
n
n )d
1
即
[ n* n
n
* n
]d
n
2
d
(10)
(2)相应于本征态的本征能量取极小值
那么具体是怎样选择试探波函数了?下面我们来分 析一下。
首先题中给出的势场V(x)=g|x|,满足
V(x)=V(-x),这样哈密顿量
H
2
2m
d2 dx2
|
x|
在宇称变换P下不变,一维定态问题的束缚态并不简
并,应有确定的宇称,其中基态无节点必为偶宇称
态。
再根据节点交错定理和宇称交错定理,第一激发态有一个节 点为奇宇称态。此外,由于势函数没有奇异性,束缚定态的 波函数还应该满足波函数以及一阶导数连续的条件。
2
E 2m
a
a
d 2
dx2
dx (7)
得
E()
3 4
112 36 60 2 8 28
2 ma 2
(8)
例题—无限深势阱
变分法求解
3、取极值 E() 0 ( 9)
得两根 1 1.2207500 , 2 8.317712
代入E得
E(1) 1.233719
2 ma 2
1.0000147
(1)薛定谔方程的变分原理
经典力学中
变分原理 => 哈密顿方程 S 0
函数的变分法与变分原理

函数的变分法与变分原理1. 函数的变分法函数的变分法是研究函数在微小变化时的变化率的方法。
它在数学分析、物理学和工程学等领域都有广泛的应用。
函数的变分法的基本思想是,对于一个给定的函数y=f(x),如果我们对自变量x 进行一个微小的变化δx,那么函数值y也将发生一个微小的变化δy。
这个微小的变化δy可以表示为:δy=f(x+δx)−f(x)函数的变分δy与自变量的变分δx的比值称为函数的变分导数,记为y′:y′=δy δx函数的变分导数表示函数在自变量发生微小变化时,函数值的变化率。
2. 变分原理变分原理是函数的变分法的一种特殊形式,它适用于某些特殊的函数,例如,泛函。
泛函是一个将函数映射到实数的函数。
泛函通常用J[y]表示,其中y是函数的自变量。
变分原理的基本思想是,对于一个给定的泛函J[y],如果我们对函数y进行一个微小的变化δy,那么泛函的值J[y]也将发生一个微小的变化δJ。
这个微小的变化δJ可以表示为:δJ=J[y+δy]−J[y]如果对于任何微小的变化δy,泛函的值δJ都为零,那么泛函J[y]就称为是极值的。
3. 变分法的应用变分法在数学分析、物理学和工程学等领域都有广泛的应用。
3.1 数学分析在数学分析中,变分法可以用来求解微分方程、积分方程和泛函方程等。
例如,欧拉-拉格朗日方程就是变分法的基本方程之一,它可以用来求解微分方程和泛函方程。
3.2 物理学在物理学中,变分法可以用来求解经典力学、电磁学和量子力学等领域中的方程。
例如,哈密顿原理就是变分原理在经典力学中的一个应用,它可以用来求解牛顿第二定律。
3.3 工程学在工程学中,变分法可以用来求解结构力学、流体力学和热力学等领域中的方程。
例如,最小作用量原理就是变分原理在结构力学中的一个应用,它可以用来求解梁和柱的变形问题。
4. 总结函数的变分法与变分原理是数学分析、物理学和工程学等领域的重要工具。
它们可以用来求解微分方程、积分方程和泛函方程等,并可以应用于经典力学、电磁学、量子力学和结构力学等领域。
数学物理中的变分方法

数学物理中的变分方法在数学和物理学中,变分方法是一种重要的数学工具,用于研究函数的极值问题。
它的基本思想是将问题转化为求解某个泛函的极值,通过变分运算来找到泛函的极值条件。
变分方法在许多领域中都具有广泛的应用,包括优化问题、微分方程、力学以及最优控制等。
本文将介绍数学物理中的变分方法的基本原理和应用。
1. 变分运算的基本概念变分运算是对函数进行微小改变,并计算这种改变对泛函的变化量。
我们考虑一个函数f(x),其中x是自变量。
对函数f进行微小变化,可以表示为f(x+δx),其中δx是一个无穷小量。
定义变分算子为∂/∂x,它表示对函数f进行微小的变化。
通过计算变分算子作用在函数f上的结果,可以得到泛函的变化量。
2. 泛函的极值条件对于一个泛函J[f],我们希望找到函数f的一个极值,使得J[f]取得最小或最大值。
为了得到这个极值条件,我们需要求解变分方程。
变分方程的一般形式为:δJ[f] = 0如果函数f满足这个方程,那么它就是泛函J的一个极值。
3. 单变量变分法单变量变分法是变分方法中最简单的一种形式。
它适用于只有一个自变量的函数。
假设我们有一个泛函J[f],其中f=f(x),x是自变量。
首先,我们引入辅助函数g(x),其中g(x)在与f(x)相等的区域内任意变化,在其他区域内为零。
然后,考虑泛函J的一个线性组合:J[f+εg] = J[f] + εJ[g] + O(ε^2)其中ε是一个无穷小量。
通过计算这个线性组合的变化量,并忽略高阶无穷小量,我们可以得到泛函J的变分:δJ = J[f+εg] - J[f] = εJ[g]现在,我们需要将这个变分等于零,得到一个变分方程:δJ = εJ[g] = 0通过求解这个变分方程,我们可以得到使得泛函J取得极值的函数f(x)。
4. 多变量变分法多变量变分法适用于有多个自变量的函数。
假设我们有一个函数f=f(x1,x2,...,xn),其中xi是自变量。
类似于单变量情况,我们引入辅助函数g(xi),并考虑泛函J的线性组合:J[f+εg] = J[f] + εJ[g] + O(ε^2)同样地,通过计算这个线性组合的变化量,并忽略高阶无穷小量,我们可以得到泛函J的变分:δJ = J[f+εg] - J[f] = εJ[g]类似于单变量情况,我们将这个变分等于零,得到一个变分方程:δJ = εJ[g] = 0通过求解这个变分方程,我们可以得到使得泛函J取得极值的函数f(x1,x2,...,xn)。
数学的变分法

数学的变分法数学的变分方法是一种研究函数变化的数学工具,被广泛应用于数学分析、物理学等领域。
它通过寻找函数的变化率最小值或最大值,揭示了许多自然界和社会现象的规律。
本文将介绍变分法的基本原理和主要应用,以及一些经典的变分问题。
一、变分法的基本原理在介绍变分法之前,我们需要先了解变分和变分算子的概念。
变分是指通过微小的函数偏移来研究一个函数的性质。
而变分算子是对这种微小的函数偏移进行数学上的描述。
变分法的基本思想是通过对一个函数进行变分,得到它的一阶变分和二阶变分,然后利用边界条件和变分的性质,求解出变分方程的解。
具体步骤如下:1. 假设函数的解是一个特定形式的函数表达式,其中包含一个或多个未知的参数。
2. 对这个函数进行变分,得到函数的一阶变分和二阶变分。
3. 将变分代入原方程,得到一个含有未知参数的函数方程。
4. 利用边界条件,求解出未知参数的值。
5. 将参数代入原方程,得到函数的解。
二、变分法的主要应用变分法具有非常广泛的应用领域,下面将介绍其中的几个重要应用。
1. 物理学中的作用量原理作用量原理是变分法在物理学中的重要应用之一。
它通过对作用量进行变分,得到物理系统的基本方程。
作用量原理在经典力学、电磁学、量子力学等领域均有广泛应用,是研究物理系统的基本工具。
2. 凸优化问题凸优化是变分法在应用数学领域的典型应用之一。
它研究如何寻找一个凸函数的最小值或最大值。
变分法可以帮助我们建立凸函数的变分问题,并通过求解变分问题来解决凸优化问题。
3. 经典的变分问题变分法在数学中的一个重要应用是解决一些经典的变分问题,比如著名的布拉赫罗恩极小曲面问题。
这个问题是在确定一个特定边界条件下,找到曲面的形状使其表面积最小。
三、经典的变分问题经典的变分问题是对变分法应用的经典案例,下面将介绍其中的两个。
1. 薛定谔方程薛定谔方程是量子力学中的一个基本方程,描述了微观粒子的运动行为。
通过对薛定谔方程进行变分,可以得到微观粒子的能量本征值和能量本征态。
变分法与变分方程的基本概念与应用

变分法与变分方程的基本概念与应用变分法和变分方程是数学中重要的概念和工具,在科学和工程领域中有着广泛的应用。
本文将介绍变分法和变分方程的基本概念,探讨其原理和应用,并列举一些实际问题中的案例。
一、变分法的基本概念1.1 变分的定义变分是函数对输入参数微小改变的响应,用于描述函数在其定义域上的变化情况。
1.2 变分的原理变分原理是变分法的核心思想,它基于极值原理,寻找函数使得变分为零的条件。
也就是说,通过变分法可以找到使得泛函(函数之间的映射)取得极值(最大值或最小值)的函数。
1.3 变分的求解变分的求解可以通过欧拉方程来实现,欧拉方程是变分法的求解工具。
通过求解欧拉方程,可以得到函数的极值条件。
二、变分方程的基本概念2.1 变分方程的定义变分方程是函数的导数方程,其中函数可以是标量函数、矢量函数或函数的集合。
变分方程描述了泛函的最小化问题,即在给定的约束下,找到使得泛函取得极值的函数。
2.2 变分方程的原理变分方程的原理是利用变分法求解方程,通过求解约束条件下使得泛函取得极值的函数,可以得到变分方程的解。
2.3 变分方程的求解变分方程的求解需要将方程转化成一个变分问题,然后使用变分法进行求解。
具体求解方法与问题的性质和约束条件有关。
三、变分法与变分方程的应用3.1 物理学中的应用在物理学中,变分法和变分方程有着广泛的应用。
例如,在经典力学中,变分法被用来推导和求解拉格朗日方程,描述物体在给定约束下的最小作用量原理。
此外,变分法还应用于量子力学、电磁学和热力学等领域。
3.2 工程学中的应用在工程学中,变分法和变分方程被广泛应用于结构力学、电子学和材料科学等领域。
例如,在结构力学中,变分法可以用于求解复杂结构下的应力和位移分布,以及优化设计问题。
3.3 经济学中的应用在经济学领域,变分法和变分方程也有一些应用。
例如,在经济学中,变分法可以用来优化生产函数和成本函数,以及求解最优控制问题。
四、变分法与变分方程的案例分析4.1 案例一:自然界的最小作用量原理自然界的很多现象都可以通过最小作用量原理进行解释。
结构化学-第三章介绍

第三章 双原子分子结构3.1 +2H 的结构及共价键的本质基本内容—、定核近似和+2H 的薛定谔方程A BRe r e r e m H b a 02020*******ˆπεπεπε+--∇-= 我们常采用原子单位:单位长度:Pm e m h a e 9177.524422200==ππε(玻尔半径)单位质量:me=9.1095×10-31Kg (电子质量) 单位电荷:e=1.60219×10-19C (电子电量) 单位能量:024a e πε=27.2116eV单位角动量: =1.0546×10-34 J.S 单位介电常数:04πε=1采用原子单位、+2H 的哈密顿算符为:Rr r Hba 11121ˆ2+--∇-=其薛定谔方程为:ψψE Rr r b a =+--∇-)11121(2,式中E 、ψ分别为+2H 的波函数和能量。
二、变分原理及性线变分法 1. 变分原理对于任意一个品优波函数ψ,用体系的Hˆ算符求得的能量平均值将大于或接近等于体系基态的能量E 0即:*ˆ*E d d H E ≥>=<⎰⎰τψψτψψ 据此原理,利用求极值方法调节参数,找出能量最低时对应的波函数,即为和体系基态相近似的波函数。
2. 线性变分法在量化计算中,广泛采用的是线性变分函数,它是满足体系边界条件的 个线性无关的函数m φφφ,,,21 的线性组合:m m C C C φφφψ+++= 2211采用线性变分函数的变分法叫线性变分法。
根据变分原理求得使E 最低的一组组合系数Ci⎰⎰++++++++++++=τφφφφφφτφφφφφφd C C C C C C d C C C H C C C E m m mm m m m m ))(()(ˆ)(2211***2*2*1*12211***2*2*1*1mC EC E C E ∂∂==∂∂=∂∂ 21=0 由此得一组求解Ci 的m 个联立方程称为久期方程,运用线性代数法求得m 套非零解,由其中与最低E 相对应的一套解C 1,C 2,……,C m 便可组成基态分子轨道波函数,所对应的E 便是基态能量近似值。
变分法

18
方法II 使用第二种试探波函数
( x ) Ae
x2
1. 对第二种试探波函数确定归一化系数:
1 ( x )* ( x )dx | A |
| A|
2
2
2
e
2
x2
dx | A |
2
2
2.求能量平均值
H( ) | A | | A |
2
ˆ * H dx
e e
x2
ˆ x 2 dx He [
2 d2 2 dx 2
2
x2
1 2
x ]e
2 2
x2
dx
2 1 2 1 2 8
19
3.变分求极值
dH ( ) 2 1 2 2 0 d 2 8
0 j j
I c* y* k k
k
ˆ G G c y d
j
ˆ = c* y* c j G G0 y j d k k
= c* c j G j G0 k
k j
j
y y d
* k j
= c* c j G j G0 kj k
1 2
1
2
代入上式得基态能量近似值为:
2 1 1 1 2 2 H 2 2 8 2
这正是精确的一维谐振子基态能量。这是因为若将 代入试探波函数,得:
( x ) Ae
x
2
1 2
9
变分基本知识及变分法

第一章 变分原理与变分法1.1 关于变分原理与变分法(物质世界存在的基本守恒法则)一、 大自然总是以可能最好的方式安排一切,似乎存在着各种安排原理:昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理;对运动事物:能量守恒,动量(矩)守恒,熵增原理等。
变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,获称最小作用原理。
Examples :① 光线最短路径传播;② 光线入射角等于反射角,光线在反射中也是光传播最短路径(Heron );③CB AC EB AE +>+Summary : 实际上光的传播遵循最小能量原理;在静力学中的稳定平衡本质上是势能最小的原理。
二、变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方法),是计算泛函驻值的数学理论数学上的泛函定义定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间的(映射)关系特征描述法:{ J :R x R D X ∈=→⊂r J )(|}Examples :① 矩阵范数:线性算子(矩阵)空间 数域‖A ‖1 = ∑=ni ij ja 1max ;∑=∞=nj ij ia A 1max;21)(1122∑∑===n j ni ij a A② 函数的积分: 函数空间数域 D ⊂=⎰n ba n f dxx f J )(Note : 泛函的自变量是集合中的元素(定义域);值域是实数域。
Discussion :① 判定下列那些是泛函:)(max x f f b x a <<=;x y x f ∂∂),(; 3x+5y=2; ⎰+∞∞-=-)()()(00x f dx x f x x δ ② 试举另一泛函例子。
物理问题中的泛函举例① 弹性地基梁的系统势能i. 梁的弯曲应变能: ⎰=∏l b dx dxw d EJ 0222)(21ii. 弹性地基贮存的能量: dx kw l f ⎰=∏0221 iii. 外力位能: ⎰-=∏l l qwdx 0iv. 系统总的势能:000;})({221222021===-+=∏⎰dxdww x dx qw kw dxw d EJ l泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系统势能。
偏微分方程求解技巧

偏微分方程求解技巧偏微分方程是数学中一个重要的分支,广泛应用于自然科学、工程技术等领域。
求解偏微分方程是一项非常有挑战性的任务,需要熟练的理论知识和计算方法。
本文将介绍一些偏微分方程求解的技巧和方法。
一、运用变量分离法变量分离法是解常微分方程常用的方法,同样适用于偏微分方程。
其基本思想是将方程中的多个变量分开作为单独的一部分,再按其各自的变化规律进行积分。
例如,对于拉普拉斯方程,我们可以采用变量分离法,将其分解为两个单元方程,分别求解,再将其合并作为原方程的解。
二、运用线性化方法在许多实际应用中,偏微分方程的解是非线性的,难以直接求解。
这时,我们可以采用线性化方法解决问题。
例如,当偏微分方程为二阶非线性方程时,我们可以通过相应的变换将其化为一阶线性方程,再采用标准的线性方程求解技巧求解。
三、运用变分法变分法是一种利用极值原理求解偏微分方程的方法。
其基本思想是将偏微分方程转化为极值问题,并通过极值原理求得方程的解。
其中,变分原理是变分法的基础,它提供了求解极值问题的基本思路和方法,是变分法求解偏微分方程的核心。
四、运用数值方法数值方法是一种通过数值计算求解偏微分方程的方法。
其基本思想是将偏微分方程转化为差分方程,通过计算机程序对差分方程进行离散化处理,然后得到偏微分方程的数值解。
数值方法适用于一些无法用解析方法求解的复杂偏微分方程问题,并且便于在计算机程序中实现。
五、运用对称性分析对称性分析是一种运用对称性理论对偏微分方程进行分析和求解的方法。
其基本思想是通过对偏微分方程的对称性进行分析,找到方程的一些特殊性质,并据此求解方程。
例如,对称性可以帮助我们判断方程的解的形式和性质,提高求解的效率和准确性。
在偏微分方程求解的过程中,不同的问题需要采用不同的方法和技巧,需要根据具体情况进行选择。
同时,求解偏微分方程需要充分理解数学理论,加强数学应用能力,这是一个极具挑战性的学科,需要付出持续的努力和学习。
微分方程中的泛函变分与变分法

微分方程中的泛函变分与变分法微分方程是许多科学领域中常见的数学工具,用于描述自然界中的各种物理现象和现象。
变分法是一种求解微分方程的有效方法,它使用变分运算符来找到一个函数使得泛函取极值。
在本文中,我们将探讨微分方程中的泛函变分与变分法。
一、泛函变分的基本概念在微分方程中,泛函是一个函数到实数集的映射。
它通常涉及到函数的积分或导数,例如能量泛函、作用量泛函等。
泛函变分是指对泛函进行微小变化,并通过求取变分导数来确定其极值。
二、变分法的基本原理变分法基于计算泛函的极值。
具体而言,我们可以通过泛函的欧拉-拉格朗日方程来推导出变分方程。
对于给定的泛函J[y],我们希望找到一个函数y使得J[y]取极值。
根据欧拉-拉格朗日方程,变分方程可以写为:δJ[y] = 0其中δ表示变分运算符,即对函数y进行微小变化。
三、求解变分方程的步骤通过变分法求解微分方程的一般步骤如下:1. 确定泛函J[y],并计算其变分。
2. 将变分代入泛函,得到关于变分的表达式。
3. 求取变分导数,并令其为零。
4. 解变分方程,得到函数y的表达式。
5. 检验解是否满足边界条件和附加条件。
四、应用示例:最小作用量原理最小作用量原理是变分法在经典力学中的一个重要应用。
它指出,在受力作用下,质点的路径使得作用量达到极小值。
作用量定义为质点的能量与时间的积分。
我们以一个简单的例子来说明最小作用量原理的应用。
考虑一个质点在无外力作用下的自由落体运动。
根据牛顿第二定律,我们可以得到该质点的运动方程。
然而,通过最小作用量原理,我们可以用变分法来求解该自由落体问题。
1. 确定泛函J[y],即作用量的表达式。
J[y] = ∫(L - mgy)dt其中L是质点的拉格朗日函数,m是质点的质量,g是重力加速度,y是质点的位置函数。
2. 将变分代入泛函,得到关于变分的表达式。
δJ[y] = ∫(δL - mgδy)dt3. 求取变分导数,并令其为零。
δJ[y] = ∫(∂L/∂y - mg)δy dt = 04. 解变分方程,得到y的表达式。
求解高等数学常见的变分法问题

求解高等数学常见的变分法问题在高等数学中,变分法是一个极为重要的工具。
在求解有关泛函、微积分、微分方程等等的问题时,也需要用到这种方法。
但对于大部分学生来说,面对变分法的问题时,会感到畏惧和无从下手。
因此,本文将详细地探讨求解高等数学常见的变分法问题的方法和技巧。
一、变分法的定义及原理变分法是处理问题时用到的一种数学方法,它是数学、物理、工程、经济等领域中的一种常用工具。
所谓变分法,简单来说,就是研究某个函数的性质时,通过对这个函数进行变化,从而获得其性质的方法。
比如,对于某个函数,我们可以通过对它进行微小的变化,从而求出其最小值或最大值。
变分法的原理基于泛函的极值问题。
泛函是一种映射,用于将函数的集合映射到实数集上。
在变分法中,我们需要寻找一个函数,使得其在给定的条件下可以使泛函达到最小值或最大值。
这种方法被广泛应用于很多领域,例如物理学、建筑学、工程学等等。
二、常见的变分法问题以下是一些常见的变分法问题:1. 求解最速降线问题:对于两个点,通过曲线连接它们,使得路径的长度最短。
2. 求解布尔诺利问题:对于液压机械,如何使得机械的液压能最大化。
3. 求解拉盖朗日问题:根据给定的约束条件,如何使得泛函的极值最小。
4. 求解哈密顿问题:对于系统的某些能量和约束的变化,如何寻找系统的变化量。
5. 求解凸性问题:研究某种特殊的函数,寻找其函数图像的性质。
这些问题是变分法的经典问题,它们在高等数学中被广泛地讨论。
三、求解变分法问题的方法对于上述这些变分法问题,求解的方法总体上可以分为以下几个步骤:1. 确定泛函及函数空间:首先需要确定泛函的形式以及函数属于哪个函数空间。
2. 利用欧拉-拉格朗日方程:此方程是变分法求解问题的关键,它可以将泛函最佳化问题转换成求解常微分方程问题。
3. 求解常微分方程:根据欧拉-拉格朗日方程构造一个常微分方程,并利用一系列技巧求解该方程。
4. 求解极值:将所求得的解代入泛函中,最终得到泛函的极值。
变分法原理与技术

变分法原理与技术变分法是一种在数学和物理学中常用的技术和原理,用来找到函数的最值或满足一定条件的函数。
它的思想是将寻找特定函数的问题转化为寻找一个函数空间中的曲线的问题,通过求取曲线的极值来获得原函数的特定性质。
在变分法中,首先要定义一个函数空间,通常是一组满足其中一种条件的函数。
然后,我们尝试找到在这个函数空间中的函数,使其使得一些泛函(函数的函数)取得极值。
泛函是一个把函数映射到实数的函数,它可以表示函数的其中一种性质,比如能量、曲线长度等。
变分法的关键是求解函数的变分,即函数在无穷小变换下的改变量。
这个变分可以表示为δf,其中δ表示无穷小变分符号。
利用变分法,我们可以得到一个关于δf的表达式,套用极值条件,即δf=0,从而求解出δf=0时的函数f。
变分法的实际应用非常广泛,特别是在物理学领域中。
例如,著名的欧拉-拉格朗日方程就是通过变分法得到的。
欧拉-拉格朗日方程描述了物体在作用力下运动的运动方程,它将物体的能量表示为运动路径的积分,并通过求解能量的变分获得运动路径。
另一个常见的应用是最小作用量原理,它是变分法在经典力学中的一种应用,描述了物体在满足作用力的条件下,其运动路径满足使作用量取得极小值的原则。
最小作用量原理是描述了自然界运动的基本规律之一,并被广泛用于描述多种物理现象,比如光学、电磁学等。
除了在物理学领域,变分法还广泛应用于数学的分析和控制论中。
在数学分析中,变分法常用于函数空间中的极值问题,比如计算函数的最大值、最小值等。
在控制论中,变分法常用于描述动态系统中的最优控制问题,通过设定控制函数的变分和系统的动力学方程,可以得到满足一定约束条件下的最优控制函数。
总结来说,变分法是一种求解函数最值或满足一定条件的函数的一种技术和原理。
它通过在函数空间中寻找使泛函取得极值的函数,从而求解出满足特定条件的函数。
变分法在数学和物理学中有广泛的应用,是研究和解决复杂函数问题的重要工具之一。
偏微分方程的变分法

偏微分方程的变分法偏微分方程(Partial Differential Equations,简称PDE)作为数学中重要的一部分,在自然科学、工程学、经济学等领域都有广泛的应用。
但是,解决PDE问题一直是学术圈中的难题之一。
变分法(variational method)是一种常用的PDE求解方法,而在变分法中,极小极大值是非常重要的概念。
在此,我们将介绍偏微分方程的变分法。
一、基本概念变分法是应用泛函分析的一种方法,它将偏微分方程问题转化为极值问题。
我们假设函数$f(x)$是定义在区间[a,b]上的可积函数,则其变分(variation)$\delta f$定义为:$\delta f=\lim_{t\rightarrow 0}\frac{f(x+t)-f(x)}{t}=\frac{df}{dx}(x)\delta x$。
其中,$\deltax$是一个无穷小的实数变量。
我们知道,一个函数具有极小值的必要条件是其函数导数为零,即$f'(x_0)=0$。
而在变分中,我们定义了一个变分概念,即$f$在$x=x_0$处的变分为零。
因此,我们可以得出一个结论:$f$的变分为零是其极小值的必要条件。
二、变分法原理和应用基于上述结论,我们可以考虑将求解PDE问题转化为极值问题。
根据变分的定义和导数的性质,我们有:$$\delta\int_a^bF(x,y,y')dx=\int_a^b[\frac{\partial F}{\partialy}\delta y+\frac{\partial F}{\partial y'}\delta y']dx $$$$=\int_a^b[\frac{\partial F}{\partial y}-\frac{d}{dx}(\frac{\partial F}{\partial y'})]\delta ydx $$其中,$F$是一个关于$x,y,y'$的连续可微函数。
偏微分方程中的变分法与变分原理

偏微分方程中的变分法与变分原理在解决偏微分方程(Partial Differential Equations, PDEs)的过程中,常常会用到变分法(Calculus of Variations)与变分原理(Variational Principle)。
变分法是一种利用函数的微小变动来求解极值问题的数学工具,而变分原理则是基于最小作用量原理,将物理系统的行为描述为使作用量函数达到极小值的过程。
本文将就偏微分方程中的变分法与变分原理进行介绍。
一、变分法的基本概念及应用变分法是一种将极值问题转化为函数的变分问题的数学方法,其基本思想是考虑函数的微小变动对于整体函数值的影响。
在应用变分法求解偏微分方程时,我们首先构造一个泛函(Functional),即将函数映射到实数的映射关系。
例如,考虑一个二阶偏微分方程:\[F\left(y(x), y'(x), y''(x), x\right) = 0\]其中,y(x)是我们要求解的未知函数,y'(x)和y''(x)分别表示y(x)的一阶和二阶导数。
我们的目标是找到满足该方程的y(x)。
为了应用变分法,我们首先定义一个泛函J,即:\[J\left(y\right) = \int_{a}^{b} L\left(y, y', x\right)dx\]其中,L\left(y, y', x\right)为Lagrange函数,a和b是区间的端点。
我们将寻找一个函数y(x),使得泛函J取得极值。
根据Euler-Lagrange方程,我们有:\[\frac{\partial L}{\partial y} - \frac{d}{dx} \left(\frac{\partialL}{\partial y'}\right) = 0\]这个方程称为变分问题的欧拉-拉格朗日方程,它给出了取极值的函数y(x)必须满足的条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 变分原理与变分法1.1 关于变分原理与变分法(物质世界存在的基本守恒法则)一、 大自然总是以可能最好的方式安排一切,似乎存在着各种安排原理:昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理;对运动事物:能量守恒,动量(矩)守恒,熵增原理等。
变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,获称最小作用原理。
Examples :① 光线最短路径传播;② 光线入射角等于反射角,光线在反射中也是光传播最短路径(Heron ); ③CB AC EB AE +>+Summary : 实际上光的传播遵循最小能量原理;在静力学中的稳定平衡本质上是势能最小的原理。
二、变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方法),是计算泛函驻值的数学理论数学上的泛函定义定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间的(映射)关系特征描述法:{ J :R x R D X ∈=→⊂r J )(|}Examples :① 矩阵范数:线性算子(矩阵)空间数域‖A ‖1 = ∑=ni ij ja 1max ;∑=∞=nj ij ia A 1max;21)(1122∑∑===nj ni ij a A② 函数的积分: 函数空间数域D ⊂=⎰n ban f dxx f J )(Note : 泛函的自变量是集合中的元素(定义域);值域是实数域。
Discussion :① 判定下列那些是泛函:)(max x f f b x a <<=;x y x f ∂∂),(; 3x+5y=2; ⎰+∞∞-=-)()()(00x f dx x f x x δ ② 试举另一泛函例子。
物理问题中的泛函举例① 弹性地基梁的系统势能i. 梁的弯曲应变能: ⎰=∏l b dx dxw d EJ 0222)(21ii. 弹性地基贮存的能量: dx kw lf⎰=∏0221 iii. 外力位能: ⎰-=∏l l qwdx 0iv. 系统总的势能:000;})({221222021===-+=∏⎰dxdww x dx qw kw dxw d EJ l 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系统势能。
泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个w (x ),使系统势能泛函取最小值。
② 最速降线问题问题:已知空间两点A 和B ,A 高于B ,要求在两点间连接一条曲线,使得有重物从A 沿此曲线自由下滑时,从A 到B 所需时间最短(忽略摩擦力)。
作法:i. 通过A 和B 作一垂直于水平面的平面,取坐标系如图。
B 点坐标(a , b ),设曲线为y = y (x ),并已知:x = 0,y = 0;x = a ,y = b ii. 建立泛函:x设P (x , y )是曲线上的点,P 点的速度由能量守恒定律求得:gy v mgy mv 2221=⇒= 命ds 为曲线弧长的微分,有:dx gy y gy dsdt gy v dt ds 2'1222+==⇒== 重物从A 点滑到B 点的总时间:T =dx gyy a⎰+022'1泛函驻值提法:在0≤x ≤a 的区间内找一个函数y (x )使其满足端点几何条件并使T 取最小值。
③ 圆周问题问题:在长度一定的闭曲线中,什么曲线所围成的面积最大。
作法:i. 假设所考虑的曲线用参数形式表示: x = x (s ), y = y (s )s 为参数。
取s 1为曲线上的某一定点,则坐标表示x 1=x (s 1),y 1=y (s 1),因曲线是封闭的,必存在一个s 2点使x 2 = x (s 2),y 2 = y (s 2)与点s 1(x 1,y 1)重合。
ii. 该封闭曲线的周长: L =ds dsdy ds dx s s⎰+2122)()(该曲线所围成的面积:R = ⎰⎰Ωdxdyiii. 转换R 的表达式 由Green 公式:⎰⎰⎰+=∂∂-∂∂21)(s s Qdy Pdx dxdy yP x Q Ω取P =-2y ,Q =2x, 则:1=∂∂-∂∂yP x Q ∴⎰⎰-=-=2121))(')('(2121sss sds s yx s xy ydx xdy R泛函驻值的提法:等周问题即是在满足端点条件x (s 1) = x (s 2), y (s 1) = y (s 2)及周长一定L s s dsdy ds dx =+⎰2122)()( 条件下,寻找一个曲线函数⎩⎨⎧)()(s y s x 使泛函R 取驻值。
④ Discussion悬索线问题:已知空间中A ,B 两点及一条长度L >AB 的悬索,单位长的质量为m 。
假设绳索的长度是不变的,并忽略绳索的弯曲刚度,把此绳索的两端挂在A ,B 两点,求在平衡状态下绳索的形状。
要求:列出悬索线应满足的泛函式及泛函驻值提法。
提示:绳索在平衡状态下,其势能应为最小值。
1.2 变分法(泛函驻值的计算方法)● 关于计算固体力学中的泛函、泛函极值的提法① 这里所研究的泛函一般用积分显式表达,并不等于所有泛函都能用显式积分表达。
② 所要研究的泛函都可表示成在一定区间或一定区域内的函数及其导数(或偏导数)的积分形式,即: a. ⎰=ba dx x x f x f x f F ));("),('),((1∏b. ⎰⎰=Ω∏dxdy y x y x f y x f y x f F y x ),);,(),,(),,((2c. 泛函中的可变化函数称为自变函数,或称宗量(argument ),x 或y 仅是积分变量,是被积函数的定义域。
(被积函数是复合函数概念的推广)③ 要说清楚一个泛函的极值问题,应注意: a. 应把泛函本身讲清楚(即写出它的形式); b. 还必须讲明白自变函数的性质,如:- 独立的自变函数的个数(导函数并不独立); - 每个自变函数定义的区间/区域;- 这些自变函数应满足的条件(如:边界条件及其受约束的条件等)。
c. 除了个别特殊情况外,一般情况下增加一个条件会使泛函极值及相应的自变函数变化性质发生变化。
如:极小值可能变大;极大值可能变小;非极值的驻值可能成为极值。
●若干背景知识① 泛函的驻值问题可以转化为等价的微分方程问题,变分法的理论计算就是完成这类工作。
本章内容沿袭此方法,是要把问题的理论基础讲明确。
② 从近似解的角度出发,直接求解泛函的驻值,比解微分方程更加方便,也更为实用。
特别计算机技术的发展,带来了大规模数值计算的可能性(有限元的思想基础)。
③ 经Euler ,Lagrange ,Dirichlet ,Hilbert ,Bernoulli 等数学先驱的卓越工作,完成了①的系统方法。
④ 但把微分方程问题转换为泛函问题还很不成熟。
在物理、力学中,即先猜想一个泛函的驻值问题,再校对是否与原微分方程问题等价。
⑤ 泛函驻值的计算(数值)先驱工作中以Ritz ,Galerkin ,Treft 著名。
关于变分法的一个预备定理 若f (x )在[a ,b ]上连续,若对任意满足 ϕ(a )= ϕ(b )=0 的连续函数ϕ(x ),都有:⎰=ba dx x x f 0)()(ϕ则 f (x )在[a ,b ]上处处为零。
反证法:设x 0为[a ,b ]中的点,在x 0点f (x 0)≠0,可取f (x 0)>0,∵ f (x )在区间上连续,必存在x 0的一个充分小邻域上f (x )>0, x 0-ε<x<x 0+ε 又∵ ϕ(x )为任意连续函数(满足边界条件),可取ϕ(x )也在该邻域内大于零,而在该邻域外恒等于零。
所以有⎰>badx x x f 0)()(ϕ矛盾!即)(x f 必须为零;同理可证小于零情况。
该定理可推广多元变量的函数问题。
1.2.1 定积分⎰'ba dx y y x F ),,(的驻值(变分)问题目的:通过简单泛函的极值分析,获得建立变分法的基本概念、 计算步骤(把变分解转化成微分方程)问题:在自变量x 的区间[ a ,b ]内决定一个函数y (x ),使它满足边界条件:a x y ==|α ,b x y ==|β 并使泛函:⎰'=badx y y x F V ),,( 取极值。
计算V δ方法1:先用变分观点解释G .H 曲线的增量x● 设想已取得了一条曲线GACH 方程为:y= y (x )●在GACH 附近另取一条曲线GBDH ,令该曲线无限接近GACH ,其方程为:)()()(1x y x y x y δ+=●)(x y δ是一个无穷小量,称为自变函数的变分(若x 不变,即为曲线纵坐标的增量)(注意与函数微分的区别,这里函数的变分仍然是一个函数) ●相应两条曲线,获得两个泛函值:dx y y x F V ba ⎰'=),,(⎰'+'+=∆+badx y y y y x F V V ),,(δδ●基本引理: y y '='δδ)(证: y x y x y y x y x y x y '≡'-'='⇒-=δδδ)()()()()()(11 推广: y y ''=''δδ)(另一条认识y y '='δδ)(的思路:C A →: dx y x y x y A C '+=)()( B A →: A A B y x y x y δ+=)()(1D C →: C C D y x y x y δ+=)()(1D B →: dx y x y x y B D 111)()('+= y y y δ+=1 dx y y dx y y 11;'='=⇔δδ )('⇒y δ=y y y dxyy '='-'=-δδδ11 ⎰'-'+'+=∆badx y y x F y y y y x F V )},,(),,({δδ因为),,(y y x F '是y y x ',,的连续可导函数(工程上一般如此),故y y 'δδ及很小时,V ∆也很小,即 0,→'y y δδ 0→∆V 取等式两端的一阶无穷小量,即:dx y yFy y F V ba][''∂∂+∂∂=⎰δδδ (可以从Tailor 展开式去理解)●V δ称为泛函V 的一阶变分,简称变分,即泛函的一阶变分是泛函增量中的一阶小量部分(把自变函数的变分y δ作为一阶小量)所以,变分的运算服从无穷小量的运算规则。