金属的凝固资料
第五章 纯金属的凝固
r*
体积自由能
r
2 16 2Tm A* 4 (r*)2 2 Lm T 2
1 G * A * 3
2 16 3Tm 1 G* A 2 3( Lm T ) 3
说明:
① 形核功△G*与(△T )2成反比,△T↑,△G*↓; ② 形成临界晶核时自由能仍是增高的(△G*>0),其增 值相当于其表面能的1/3,即L→S体积自由能差值只补 偿形成临界晶核表面所需的能量的2/3,而不足的1/3则 另需他法;
(1)非均匀形核时的能量变化及形核功
设一曲率半径为r的球冠的晶胚依附于型壁W上形成。
接触角为θ (又称浸润角)。
G GVV A
GVV AL L AM ( M L M )
LM L cos M
AL 2r (1 cos )
非均匀形核的形核功:
* G非 2 16 3Tm * f ( ) =f ( )G均 3( Lm T ) 2
* G非
2 16 3Tm * f ( ) =f ( )G均 3( Lm T ) 2
讨论: ① θ=0°, f(θ)=0,ΔG*非=0,基底和晶核结构相同,直接 长大,称外延生长;杂质本身即为晶核;
undulation
液态的结构特征:原子排列长程无序,动态短程有序。
5.1.2 纯金属结晶的过冷现象
过冷:
(Supercooling或 Undercooling )
液态材料在理论结晶温度以下仍保持液 态的现象。
理论凝固温度Tm与实际开始凝固温度Tn 之差,即ΔT= Tm - Tn 。
过冷度 ΔT:
5.3.1 均匀形核(homogeneous nucleation)
第三章纯金属的凝固
3.3.1 均匀形核
均匀形核(均质形核)是指在均匀单一的母相中形 成新相结晶核心的过程。
1.均匀形核的能量条件
在过冷的液态金属中,晶胚形成的同时,体系自由 能的变化包括转变为固态的那部分体积引起的自由能下 降和形成晶胚新表面引起的自由能的增加。假设单位体
积自由能的下降为 ΔGv(ΔGv<0) ,比表面能为σ,晶 胚假设为球体,其半径为r ,则晶胚形成时体系自由能
3.2.2 结晶的热力学条件
根据液固金属自由能
G与温度关系曲线如图 3-3可知,GL=Gs 所对 应的温度Tm即理论平衡 结晶温度,当T<Tm时, Gs<GL两者之差值即为结
晶的驱动力。过冷度越 大,结晶的驱动力也越 大,过冷是结晶的热力 学条件。
第三节 形核规律
形核方式有两种:一种是均匀形核,即新 相晶核在母相内自发地形成;另一种是非均匀 形核,即新相晶核在母相与外来夹杂的相界面 处优先形成。工程实际中材料的凝固主要以非 均匀形核方式进行,但均匀形核的基本规律十 分重要,它不仅是研究晶体材料凝固问题的理 论基础,而且也是研究固态相变的基础。
假定固相晶胚α以球冠状形成于 基底B的平面上,如图3-8所示,设 固相晶核表面的曲率半径为r,晶
核与基体面的接触角为θ,球冠底
圆半径为R..
当晶核形成时,体系增加的表面能 为ΔGs ,
ΔGs=AαLσαL+AαwσαW-AαwσLW
式中 AαL,Aαw 分别为晶核α 与液相L 及B之间的界面积 ;σαL , σαW , σLW 分别为各相应界面的表面能,在其 相交点处,表面张力达到平衡。
3.1.2 纯金属的结晶过程
液态金属的结晶过程是一个形核及核长大的过程。 当液态金属冷却至熔点以下,经过一定时间的孕育,就 会涌现一批小晶核,随后这些晶核按原子规则排列的各 自取向长大,与此同时又有另一批小晶核生成和长大, 直至液体全部耗尽为止。
第四章纯金属的凝固
(二)临界晶核 设晶胚为半径r的球形,形核时总能量变化为: ΔG=-ΔG体积+ΔG表面 =-433GV42
ΔGV-单位体积自由能,σ-比表面能 ΔG是r的函数。
由 Gf(r) 的函数作图可知,在r=rc时△G取 得极大值。
讨论: 1.当r<rk则晶胚生长 ,将导致体系 ΔG ,晶胚重新熔化而消失。 2.若r>rk 晶胚r ,体系的ΔG,结晶 自发进行,此时的晶胚就成为晶核
2.金属熔化时的体积变化:大多数金属熔化时体积变化仅为
3%-5%,熔化前后原子间距变化不大,熔化前后原子间结 合力较为接近。
3.金属熔化熵值变化小:
金属熔化时结构变化小,只是相对“无序度”增加.
液态金属结构与固态相似存在近程有序,近程密堆, 远程无序.
二.材料凝固的过冷现象
过冷现象-实际结晶温度低于理论结 晶温度的现象。
假设:晶核是依附过冷液相现成基底B上形成晶核S;
设晶核为半径为r的球缺体;S1为球冠面积; S2为晶核与基底接触的面积; θ为晶核与基体的润湿角。
晶核形成稳定存在的瞬间(不 熔化、长大),三相交点处, 表面张力应达到平衡:
σLB=σSB+σLScosθ
非均匀形核示意图
σLB、σsB、σLs分别为L/B、S/B、L/S间的表面张力
均为自发过程.
结论:过冷是结晶的必要条件, 而 ΔT≥ΔTc是结晶的充分必要条件。
过冷度对临界晶核与 最大相起伏的影响
(五)临界晶核的形核功
ΔG=-ΔG体积+ΔG表面 =-433GV42
将
k
2 GV
代入上式可得:
3
2
G k4 3 L 2 m T T m G 4 L 2 m T T m 化简得
金属凝固理论
20、液态金属的热速处理:
21、模数:折算厚度R=V1/S1,R又称为模数。
22、理想液态金属:指没有任何杂质及缺陷的纯金属熔体。
23、流动性:液态金属本身的流动能力,称为“流正常偏析相反的溶质分布情况,当k0<1时,表面或底部含溶质元素多,而中心部分或上部含溶质较少,这种现象称为逆偏折。
15、动态晶粒细化:动态晶粒细化方法主要是采用机械力或电磁力引起固相发生相对运动,导致枝晶破碎或与从型壁脱落,在液相中形成大量的晶核,达到细化晶粒的目的。
16、铸造应力:铸件在凝固及冷却过程中,由于线收缩及固态相变会引起体积的收缩或膨胀,而这种变化往往受到外界的约束或铸件各部分之间的相互制约而不能自由地进行,于是在产生变形的同时还产生应力。
30、规则共晶合金:也称非小面--非小面共晶,多由金属--金属或金属--金属间化合物相组成,该类合金在结晶过程中,共晶两相均具有非小面生长的粗糙界面。
8、成分过冷:这种由溶质再分配导致界面前方熔体成分及其凝固温度发生变化而引起的过冷称为成分过冷.
9、枝晶间距::枝晶间距指的是相邻同次分枝之间的垂直距离,实际上则用金相视野下测得的各相邻同次分枝之间距离的统计平均值来表示。是树枝晶组织细化程度的表征,枝晶间距越小,组织就越细密,分布于其间的元素偏析范围也就越小。
25、密度偏析:密度偏析,也称重力偏析,是液体和固体共存或者是相互不混合的液相之间存在着密度差时产生的化学成分不均匀现象,一般形成于金属凝固前或刚刚开始凝固时。
26、变质处理:变质处理就是向金属液体中加入一些细小的形核剂(又称为孕育剂或变质剂),使它在金属液中形成大量分散的人工制造的非自发晶核,从而获得细小的铸造晶粒,达到提高材料性能的目的。变质是通过改变晶体的生长机理,从而影响晶体形貌。
《金属的凝固特点》课件
连铸工艺
连铸工艺是将液态金属通过连续浇注 的方式,在连铸机内冷却凝固成所需 形状和性能的金属制品的工艺方法。
连铸工艺的应用范围广泛,可生产各 种规格的钢材,如板材、管材、型材 等。
连铸工艺具有高效、节能、环保等优 点,是现代钢铁工业中的重要生产工 艺之一。
定向凝固工艺
定向凝固工艺是一种通过控制热 流方向,使液态金属在特定方向 上凝固,从而获得具有定向组织
结构的金属制品的工艺方法。
定向凝固工艺主要用于制备高性 能的金属材料,如高温合金、单
晶叶片等。
定向凝固工艺具有组织细密、力 学性能优异、耐高温等特点,广 泛应用于航空、航天、能源等领
域。
05
金属的凝固应用
在机械制造中的应用
01
02
03
零件制造
金属凝固后具有良好的强 度和耐久性,因此在机械 制造中广泛应用于制造各 种零件和工具。
金属的凝固速率
01
影响因素
冷却速率、金属的纯度和结晶温度。
02
规律
冷却速率越快,凝固速率越高;金属纯度越高, 凝固速率越高;结晶温度越高,凝固速率越高。
金属的凝固缺陷
01 凝固过程中由于各种原因导致金属内部结构的不 完善或异常。
02 主要类型:缩孔、疏松、偏析、裂纹等。
02 对金属的性能产生不良影响,如降低机械性能、 耐腐蚀性能等。
01 结晶温度
金属开始从液态向固态转变的温度点。
02 影响因素
金属的纯度、冷却速率和金属的种类。
03 规律
纯金属的结晶温度较高,合金的结晶温度较低; 冷却速率越大,结晶温度越高。
金属的凝固结构
金属的固态晶格结构。
影响因素:金属的原子半 径、晶体结构和化学键类 型。
金属凝固原理
金属凝固原理金属凝固是指金属从液态状态转变为固态状态的过程。
在金属凝固过程中,原子或离子以一定的方式排列组合,形成具有一定结构和性能的固态金属晶体。
而金属凝固原理则是指影响金属凝固过程的各种因素和规律。
了解金属凝固原理对于控制金属凝固过程、改善金属凝固组织和性能具有重要意义。
首先,金属凝固的原理主要包括凝固过程中的晶核形成和晶体生长。
在金属液体冷却过程中,当温度下降到一定程度时,金属液体中会出现微小的固态核,这些核心在金属液体中逐渐增多并长大,最终形成完整的晶体结构。
晶核形成和晶体生长是金属凝固的基本原理,也是金属凝固组织形成的基础。
其次,金属凝固的速度对凝固组织和性能有着重要影响。
一般来说,凝固速度越快,晶体的生长速度就越快,晶粒就越细小,晶界就越多,从而提高了金属的强度和韧性。
而凝固速度越慢,晶体生长速度就越慢,晶粒就越大,晶界就越少,金属的强度和韧性就会降低。
因此,控制金属凝固速度是影响金属凝固组织和性能的重要因素之一。
另外,金属凝固还受到金属成分、凝固条件、晶核形态等多种因素的影响。
金属成分的不同会导致晶体结构和性能的差异,凝固条件的改变也会影响金属凝固组织和性能的形成,而晶核形态的不同也会对晶体生长和晶粒形貌产生影响。
因此,在实际生产中,需要根据不同金属的特性和要求,合理控制金属凝固过程中的各种因素,以获得理想的凝固组织和性能。
总的来说,金属凝固原理是一个复杂而又重要的领域,它涉及到金属物理、金属化学、热力学等多个学科的知识。
只有深入理解金属凝固原理,才能更好地控制金属凝固过程,改善金属凝固组织和性能,提高金属制品的质量和性能。
因此,对于金属凝固原理的研究和应用具有重要的理论和实践意义,也是金属材料领域的一个热点和难点问题。
希望通过对金属凝固原理的深入研究,能够为金属材料的发展和应用提供更多的理论支持和技术保障。
纯金属的凝固(结晶)
纯金属的凝固(结晶)
1纯金属结晶的过程 1.1液态金属的结构
局部微小区域内,原子偶然地在某一瞬间内 出现规则的排列,然后又散开的现象导致了--液 态金属中原子集团的“近程有序”
这种近程有序的原子集团就是晶胚。
在具备一定条件时,大于一定尺寸的晶胚就 会成为可以长大的晶核。
GV
又因为 所以
GV
LmT Tm
r r * 2Tm 即 * 1
LmT
T
纯金属的凝固(结晶)
1均匀形核 1.形核时能量和临界晶核半径。
ΔT↑,r*↓,小尺寸的晶胚即可作为晶核而长大。
ΔT↑,r*↓,晶核数目越多,结晶后晶粒越细。
设ΔT*为临界过冷度:
当ΔT<ΔT*, rmax<r*---不能结晶 当ΔT>ΔT*, rmax>r* ---结晶 纯净金属:ΔT*=0.2Tm
ΔT 特 大 时 : 原 子 不 能 扩 散 , 不 结 晶 , 非 晶 态 (冷速107℃/s)
(N--ΔT的虚线部分很难达到:只有金属液滴骤
冷时才能达到)
∴可以说,ΔT越大, 形核率越高,结晶后 晶粒越细。增大过冷 度可细化晶粒。
纯金属的凝固(结晶) 3形核规律 2非均匀形核
实际金属结晶形核,多为非均匀形核 ∵①液态金属中存在高熔点杂质(可作为异 质晶核) ②液态金属与铸锭模壁接触。
N N1 N2
G* Q
Ke RT eRT
纯金属的凝固(结晶)
1均匀形核(2)形核率与过冷度的关系
①随ΔT↑,r*↓,ΔG*↓↓ ,
rmax↓,N1↑ ②随ΔT↑,原子扩散困难,N2↓,
金属凝固的知识
条 件
c 液相曲线斜率大于固相: 由一次导数大小确定。
二曲线相交于一点,即材料的熔点
Tm 。
△GB= GL - GS
12
第
三
第二节 金属结晶的基本条件
章 1 热力学条件Байду номын сангаас
(2)热力学条件
第
△GB=Lm△T/Tm
二 a △T>0, △GB > 0——过冷是结晶
节 的必要条件(之一)。
△GB= GL - GS
结
晶
规
律
5
第
三
第一节 金属结晶的基本规律
章 2 结晶过程(微观现象) (1)结晶的基本过程:形核-长大。(见示意图)
(2)描述结晶进程的两个参数 第 形核率N :单位时间、单位体积液体中形成的晶核数量。
一 长大速度G :晶核生长过程中,液固界面在垂直界面方向上
节 单位时间内迁移的距离。
结
晶
规
律
6
第
1. 冷却曲线上出现温度回升现象 在实际开始结晶温度,大量晶核形成释放的结晶潜热多
第 于金属向外界散失的热量,导致出现温度的回升。
一 2. 在纯金属的冷却曲线上出现
节 “平台”
结
液态金属在结晶过程中释放的 结晶潜热与金属向外界散失的热量
晶 达到平衡。
Tm: 理论结晶温度(熔 点)
Tn: 实际开始结晶温度
熵是表征系统中原子排列有序度的参数,恒为正值。 温度升高,熵值增加。液相的熵值比固相大。
11
第
三
第二节 金属结晶的基本条件
章 1 热力学条件
(1)G-T曲线 第 a 是下降曲线:由G-T函数的一次
导数(负)确定。 二
金属凝固原理
金属凝固原理
金属凝固原理是指金属从液态到固态的过程。
在金属熔化后,通过降低温度或进行其他处理,金属开始逐渐凝固。
凝固过程中,金属内部的原子或分子逐渐重新排列并结晶,形成有序的晶体结构,从而形成固态金属。
金属凝固原理基于凝固行为的研究,涉及到熔化、相变、晶体生长等多个方面。
首先,金属在熔化过程中,吸收热量使得金属内部的原子或分子运动加速,失去了原子之间的排列有序性,形成了液态金属。
当温度进一步降低时,金属开始进入凝固阶段。
在凝固的早期,金属内部出现一些微小的核心,这些核心是由一部分原子或分子聚集形成的。
这些核心吸引周围的原子或分子,从而导致晶体生长。
晶体生长过程中,较小的核心会扩大并联系在一起,形成更大的晶体。
在金属凝固过程中,晶体生长的速度取决于多种因素,包括温度、凝固速率、金属成分等。
高温下,原子或分子的运动速度较快,晶体生长速度较快;而低温下,晶体生长速度较慢。
凝固速率越快,金属内部的原子或分子越来越无序,晶体结构越复杂。
凝固过程中,金属的凝固形式也有多种,常见的有均匀凝固和偏析凝固。
均匀凝固指金属内部晶体结构均匀、成分均匀分布的凝固方式,一般适用于成分均匀的金属。
而偏析凝固则是指金属内部存在组分不均匀的现象,即某些金属元素或杂质在凝
固过程中会向其中心或表面区域富集。
综上所述,金属凝固原理是由金属熔化到固态的过程,涉及到熔化、相变、晶体生长等多个方面。
通过研究金属凝固原理,我们可以更好地理解金属的结构与性能,并可以针对不同的凝固条件来控制金属的制备过程。
纯金属的凝固
多数金属制品的生产都需要经历熔炼和铸造两 个工艺过程。熔炼是为了获得符合要求的液态 金属。铸造是将液态金属注入铸模中使之凝固 成一定形状,尺寸的固态金属件或金属锭。 结晶:液态金属转变为固态金属晶体的过程。 结晶是铸锭,铸件,金属焊接生产的主要过程。 是材料制备的最主要工艺。 广义结晶定义:聚集态,晶态,非晶态—晶体 的过程。
铸锭中产生收缩孔,分为五类:缩管,均匀收 缩,缩穴,分散缩孔,表面疏松(表面最后凝 固,或有气体疏松)
缩管
单向收缩
缩穴
分散疏松 表面疏松
气泡:一是脱溶出气泡,二是化学反应气泡 1,气泡长大速度比界面生长速度快,则长大 上浮. 2,气泡长大速度和界面生长速度相当则呈蜂 窝状气泡 3,气泡长大速度比界面生长速度慢,则成内 部气泡
1 1 P ( ) r1 r2
该压力会导致固溶体吉布斯自由能增加,
2 尔体积。 r1 r2 纯组元固液两相平衡时,两相的吉布斯自由能 差为: H T S 2 kV 0
S
k
1 1 G ' VS P VS ( ) 2k VS r1 r2 1 1 1
一,液态金属的某些模型
1,准晶体模型:接近熔点时,液态金属中部 分原子的排列方式与固体金属相似,有许多晶 态小集团,可以称为晶胚。大小不等,取向各 异,此起彼伏,瞬息万变,瞬时形成,又瞬时 散开,消失-称为近程排列组态。在液体中出 现的这种结构状态称为结构起伏。 2,非晶体模型:液体金属中的原子相当于紊 乱的密堆球,当中,有着被称为“伪晶核”的 高致密区--晶胚。 晶核:那些几何尺寸大到一定程度可以稳 定长大而不消失的晶胚。 第一个模型已被X射线衍射分析证实。
第五章 纯金属的凝固
非均匀形核的形核功:
* G非 2 16 3Tm * f ( ) =f ( )G均 3( Lm T ) 2
* G非
2 16 3Tm * f ( ) =f ( )G均 3( Lm T ) 2
讨论: ① θ=0°, f(θ)=0,ΔG*非=0,基底和晶核结构相同,直接 长大,称外延生长;杂质本身即为晶核;
(1)非均匀形核时的能量变化及形核功
设一曲率半径为r的球冠的晶胚依附于型壁W上形成。
接触角为θ (又称浸润角)。
G GVV A
GVV AL L AM ( M L M )
LM L cos M
AL 2r (1 cos )
第五章 纯金属的凝固
物质从液态到固态的转变过程。若凝固后的物 (solidification) 质为晶体,则称该过程为结晶(cystallization) 。 凝固: 铸造:将金属熔炼成符合要求的液体并浇进铸型,冷却凝固、 得到有预定形状、尺寸和性能的铸件的工艺过程。 ① 最早的成型手段; ② 生产的第一个环节;
Tk Tm Tk 0.15 ~ 0.25 Tm Tm
ΔTk称有效形核过冷度 ΔTk≈0.2Tm(Tm用绝对温度表示) 。 ② 对于高粘滞液体,均匀形核速率很 小,基本不存在有效形核温度。
图5-6 金属的形核率N与过冷度ΔT的关系
实验测得的成核温度
汞 锡 铅 铝 银 金 Tm/K 234.3 505.7 600.7 931.7 1233.7 1336 Tk/K 176.3 400.7 520.7 801.7 1006.7 1106
△Tk/Tm
0.247 0.208 0.133 0.140 0.184 0.172
铜 铁 铂 NaF NaCl
金属凝固理论重点总结
金属凝固理论复习资料一、名词解释1.能量起伏:金属晶体结构中每个原子的振动能量不是均等的,一些原子的能量超过原子的平均能量,有些原子的能量则远小于平均能量,这种能量的不均匀性称为“能量起伏”2.结构起伏:液态金属中的原子集团处于瞬息万变的状态,时而长大时而变小,时而产生时而消失,此起彼落,犹如在不停顿地游动。
这种结构的瞬息变化称为结构起伏。
3.浓度起伏:不同原子间结合力存在差别,在金属液原子团簇之间存在着成分差异。
这种成分的不均匀性称为浓度起伏。
4.熔化潜热:将金属加热到至熔点时,金属体积突然膨胀,等于固态金属从热力学温度零度加热到熔点的总膨胀量,金属的其他性质如电阻,粘性等发生突变,吸收的热能。
5.充型能力:液态金属充满铸型型腔,获得形状完整,轮廓清晰的铸件的能力。
6.成分过冷:由溶质再分配导致的界面前方熔体成分及其凝固温度发生变化而引起的过冷。
7.热过冷:仅由熔体实际温度分布所决定的过冷状态称为热过冷8.宏观偏析:又称长程偏析或区域偏析,指较大范围内的化学成分不均匀现象,表现为铸件各部位之间化学成分的差异。
9.微观偏析:微观偏析是指微小范围(约一个晶粒范围)内的化学成分不均匀现象,按位置不同可分为晶内偏析(枝晶偏析)和晶界偏析。
10.微观偏析(1)晶内偏析:在一个晶粒内出现的成分不均匀现象,常产生于有一定结晶温度范围、能够形成固溶体的合金中。
(2)晶界偏析:溶质元素和非金属夹杂物富集与晶界,使晶界和晶内的化学成分出现差异。
它会降低合金的塑性和高温性能,又会增加热裂倾向。
11.宏观偏析:(1)正常偏析:当合金溶质分配系数k<1时,凝固界面的液相中将有一部分被排出,随着温度的降低,溶质的浓度将逐渐增加,越是后来结晶的固相,溶质浓度越高,当k>1时相反。
正常偏析存在使铸件的性能不均匀,在随后的加工中难以消除。
(2)逆偏析:即k<1时,铸件表面或底部含溶质元素较多,而中心部分或上部分含溶质较少。
第三章 纯金属(晶体)的凝固
K为比例常数。
形核率与温度(或过冷度)之间的关系如图3-5所示。
过冷度较小时,形核率 主要受形核功因子控制; 当过冷度继续增大时, 形核率受扩散的几率因 子所控制。
图3-5 形核率与温度的关系
有效形核温度:
有些易流动的液体,形 核率随温度下降至某值T*突 然显著增大,该温度就称为 均匀形核的有效形核温度。
a.连续长大 粗糙界面,由于界面上约有一半的原子位置空着,
故液相的原子可以进入这些位置与晶体结合起来,晶体 便连续地向液相中生长,这种生长方式为垂直生长。垂 直生长的生长速率较高。
图3-10’ 粗糙界面
b. 二维形核 二维晶核是指一定大小的单分子或单原子的平面薄
层。如图3-11所示。这种生长机制主要是在光滑界面上进 行。形成二维晶核需要形核功,这种机制下晶体的生长 速率很慢。a.swf
实验结果表明,有效形
核过冷度△T*≈0.2 Tm(Tm用 绝 对 温 度 表 示 , △ T* = Tm-
T*),如图3-6表示。
图3-6 金属的形核率N与过 冷度△T的关系。
二、 非均匀形核 除非在特殊的试验条件下,液态金属的凝固大都是非
均匀形核。
非均匀形核体系自由能的变化也由体积自由能和表面 自由能两部分组成。如图3-7所示。
图3-12 螺型位错台阶机制 示意图
图3-13 螺型位错台阶机制示意图
三、纯金属的生长形态
纯金属凝固时的生长形态不仅与液-固界面的微观结 构有关,而且取决于界面前沿液相中的温度分布情况,温 度分布可有两种情况:正的温度梯度和负的温度梯度。
a.在正的温度梯度下 dT/dx>0,结晶潜热只能通过固相而散出,相界面的
金属凝固原理
金属凝固原理金属凝固是指金属从熔化状态向固态转变的过程。
金属凝固是金属加工和制造中的关键工艺之一,对于金属材料的性能和结构具有重要影响。
金属凝固有两种基本模式,分别是平衡凝固和非平衡凝固。
平衡凝固是在金属熔体达到热力学平衡条件下进行的凝固过程。
在平衡凝固过程中,金属熔体的凝固速度较慢,使得晶体有足够的时间进行有序排列,形成结晶的晶格结构。
这种凝固方式下得到的晶体结构一般是均匀、致密的。
而非平衡凝固则是在金属熔体未达到热力学平衡条件下进行的凝固过程,通常是由于快速冷却或其他条件的限制。
非平衡凝固下得到的金属结构通常不具备完整的晶格结构,其中可能包含一些缺陷,如晶界、孪生晶和扩散限制。
金属凝固的主要原理包括热力学原理和动力学原理。
热力学原理研究的是金属凝固的平衡过程和热力学参数,如凝固温度、凝固速度等。
相变热是研究金属凝固的重要参数之一,它是单位质量金属从液态到固态过程中释放或吸收的热量。
相变热的大小直接影响到金属凝固过程的温度和能量交换。
动力学原理研究的是金属凝固的凝固速率和晶体生长行为。
凝固速率与温度梯度成正比,与金属的热导率和定向凝固度有关。
晶体生长通常是以晶核为起点,通过界面扩散分子在凝固过程中不断形成新的晶核,最终形成完整的晶体结构。
在金属凝固中,晶体生长过程是一个重要环节。
晶体生长可以分为表面扩散和体内扩散两种方式。
表面扩散是指晶体表面上的原子或离子通过空间的跳跃来进行扩散,而体内扩散则是指晶体内部的原子或离子通过晶面间的空隙进行扩散。
晶体生长的速度与扩散速率和扩散路径有关,因此扩散是影响金属凝固过程的重要因素之一温度梯度和凝固界面形貌也是金属凝固的关键因素。
温度梯度会导致凝固界面的变形和变动,从而影响到晶体生长和凝固速率。
凝固界面的形貌也对凝固过程有重要影响。
对于非平衡凝固,凝固界面通常是不规则的,形成了一些晶界、孪生晶和其他缺陷。
这些缺陷会影响金属的性能和结构。
除了热力学和动力学原理外,还有其他一些因素也会影响金属凝固的过程。
金属凝固的概念
金属凝固的概念金属凝固是指金属从液态转变为固态的过程。
在凝固过程中,金属的原子或离子通过相互吸引力逐渐排列有序,形成晶体结构。
金属凝固是金属冶金学中的重要过程,对于金属的性能和应用具有重要影响。
金属凝固的基本过程可以分为两个阶段:核化和晶体生长。
核化是指在过冷液体中形成初生晶核的过程,晶体生长则是指这些初生晶核逐渐增长、连接到一起并形成完整的晶体。
这两个过程是金属凝固的关键步骤,也是决定金属凝固结构和性能的重要因素。
核化过程在金属凝固中首先发生。
当金属冷却至过冷液态时,由于存在过饱和现象,晶体的核心形成了一个临界尺寸的“种子”。
这些种子成为晶体生长的基础,进一步生成整个晶体。
初生晶核在液态金属中具有高自由能,因此会通过吸收金属离子或原子来增长尺寸。
一旦形成了初生晶核,晶体生长过程就开始了。
晶体的生长受到两种力的影响:金属内部原子或离子之间的相互吸引力和外部界面力。
内部相互吸引力使得金属原子在晶体内部沿着特定的晶格方向有序排列,形成晶体结构。
外部界面力则是晶体与其周围物质的相互作用力,它们影响晶体生长速率和晶体形态。
晶体生长过程分为两种类型:平面生长和体积生长。
对于平面生长,晶体通过界面和周围液体接触,逐层增长。
这种生长方式通常发生在高温、高过冷度下。
对于体积生长,晶体通过从液态中吸收原子或离子进行增长。
这种生长方式通常发生在低温、低过冷度下。
平面生长和体积生长的比例取决于温度、过冷度和金属的性质。
金属凝固的速率和过程也与一些因素有关。
温度是影响金属凝固速率的重要因素之一。
温度越低,金属原子或离子的热运动越小,凝固速率越快。
过冷度也会影响金属凝固速率。
过冷度越大,晶体生长的驱动力越大,凝固速率越快。
此外,金属的成分和纯度、形态和尺寸等也会对金属凝固过程和结构产生影响。
金属凝固结构的形成受到物理学、热力学和晶体学的影响。
物理学原理解释了金属原子或离子的行为和相互作用力。
热力学原理通过研究凝固时的能量变化和平衡条件,揭示了凝固过程的驱动力。
2.金属的凝固
形核率受两个相互矛盾的因素控制: ① Cn受控于形核功因子,正比于 exp(ΔG*/kT), 故随着过冷度增大 而 增大; Gk:形核功 k:玻尔兹曼常数 ② dn/dt受控于原子扩散因子,正比 于exp(ΔGA/kT),故随过冷度的增大 而减少。 ΔG 扩散激活能
形成,瞬时消失。 r> rk时,随晶胚长大,系统自由能降低,凝固过程自动进行。 r= rk时,可能长大,也可能熔化,两种趋势都是使自由能降低的过 程,将rk的晶胚称为临界晶核,只有那些略大于临界半径的晶核,才 能作为稳定晶核而长大,所以金属凝固时,晶核必须要求等于或大于 临界晶核。
极值点处
• •
d ( G ) 4r 2 GV 8r 0 dr
1) 结构 气态:原子随机分布 固态:原子规则、有序分布 液态:短程有序长程无序 2)性质
液态金属原子间距比固态稍大
液态金属配位数比固态小,非密排金属比固态大,如Bi、 Ga,凝固时体积膨胀。 液态金属原子排列的规则性降低。
二、 金属凝固时的过冷现象和凝固过程
结晶过程的分析方法------热分析
1、 金属熔液凝固时的过冷现象 过冷:金属的实际开始凝固温度Tn总是低于理论凝固 度Tm的现象. 温
4 3 2 3 cos cos3 (7) 2 G' ( r GV 4r L )( ) 3 4
• 按处理均匀形核同样的方法可求出非均匀形核的临 界半径和形核功 r* 2 G * G * 2 3 cos cos
GV
非 均
4
不均匀形核时,临界球冠的曲率半径与均匀形核时 球形晶核的半径是相等的。 0 ΔG*不均匀=0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)冷裂纹 低温形成的裂纹为冷裂。 A、特征:裂纹细小 呈连续直线状 有时缝内呈轻微氧化色
B、冷裂纹产生的条件 ★ 脆性大、塑性差的合金 ★ 大型复杂铸铁件也易产生冷裂纹
★ 铸件受拉应力的部位,特别是应力集中的部位
C、冷裂纹的防止方法:
减小铸造内应力和降低合金的脆性。 ★ 铸件壁厚要均匀; ★ 增加型砂和芯砂的退让性; ★ 降低钢和铸铁中的磷含量,因为磷能显著 降低合金的冲击韧度,使钢产生冷脆。 如铸钢的磷含量大于0.1%、铸铁的磷含量大 于0.5%时,因冲击韧度急剧下降,冷裂倾向明 显增加。
★ 对铸件进行时效处理
二、铸件的变形与防止 1)、铸件的变形
当残余铸造应力值超过铸件材料的屈服极 限时,铸件将发生塑性变形。
应力框铸件变形示意图 T形梁铸钢件变形示意图
导轨面正确位置 模样反挠度 床身导轨面的挠曲变形
三、铸件的裂纹与防止
当铸造应力值超过铸件材料的强度极限时, 铸件将产生裂纹。
按裂纹形成的温度范围可分为: 1.热裂纹 高温下形成
第四节 铸件中的气孔
一、析出性气孔
因金属原因
氢气在铝合金中易形成针孔,除气处理
二、浸入性气孔 三、反应性气孔
因铸型原因
因金属与铸 型反应原因
1.皮下气孔 2.冷铁气孔
人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大自己的知识面。 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。
(2) 实现“同时凝固” ; (3) 加压补缩;
顺序凝固 加冷铁
第三节 铸造内应力、变形和裂纹
一、内应力的形成 1.热应力
残余应 力
2.机械应力
临时应 力
机械应力的形成
3) 防止和消除铸造应力的措施
★ 合理的设计铸件的结构 ★ 尽量选用线收缩率小、弹性模量小的合金
★ 采用同时凝固的工艺
自然时效、热时效和 振动时效
合金的铸造性:合金在铸造成形是获得外形准确、 内部健全铸件的能力。
包括:流动性、凝固特性、收缩性、吸气性等。
第一节 液态合金的充型
充型能力:液态合金充满铸型型腔,获得形状 准确、轮廓清晰铸件的能力。
影响充型能力的因素: 一、合金的流动性 液态合金本身的流动能力称为合金的流动性。 熔融合金自身的流动能力 液态金属固有的属性
★ 决定合金流动性的因素
(1)合金的种类 (2)合金的成分 (3)杂质与含气量
二、浇注条件
1. 浇注温度 2. 充型压力
三、 铸型条件
1. 铸型蓄热能力 2 .铸型温度 3. 铸型中的气体 4. 铸件结构
常用合金的浇注温度: 铸 钢:1520~1620℃; 铸 铁:1230~1450℃; 铝合金:680~780℃。
金属型铸造 压力铸造
连续铸造 离心铸造 低压铸造
Байду номын сангаас
三、铸造特点
1、优点
★ 适应性广,工艺灵活性大 ★ 适合形状复杂件的铸造 ★ 成本较低,材料利用率高
2、缺点
※ 组织疏松,晶粒粗大 ※ 内部易产生缩松、缩孔、气孔等缺陷 ※ 工序多、精度难控制、质量不够稳定 ※ 生产条件差、工人劳动强度高
第一章 铸造工艺基础
铸钢的收缩率最大,灰铸铁最小
★ 合金收缩的三个阶段
液态收缩 凝固收缩 固态收缩
三、铸件中的缩孔和缩松
1.缩孔和缩松的形成
缩孔:集中在铸件上部或最后凝固部位、容积较 大的孔洞。
外形特征:缩孔多呈倒圆锥形,内表面粗糙 形成原因:液态收缩和凝固收缩 形成条件:合金在恒温或在很小的温度范围内结
晶,铸件壁以逐层凝固的方式进行凝固。
缩松:分散在铸件某些区域内的细小缩孔 宏观缩松:多分布在铸件最后凝固的部位 显微缩松:则是存在于在晶粒之间的微小孔洞
形成原因:液态收缩和凝固收缩所致 形成条件:合金的结晶温度范围宽,以糊状凝
固的方式凝固的合金或厚壁铸件中。
2)、缩孔和缩松的防止
(1) 实现“顺序凝固” ;
◆ 合理的确定浇注位置 ◆ 合理的确定内浇道位置 ◆ 选用不同的浇注系统 ◆ 采用冷铁或其他激冷材料
第二节 铸件的凝固与收缩
一、铸件的凝固方式
逐层凝固 中间凝固
糊状凝固
凝固区域结构示意图
二、铸造合金的收缩
液态合金在凝固和冷却过程中,体积和尺寸减 小的现象称为合金的收缩。
体收缩率 单位体积收缩量εv 线收缩率 单位长度上的收缩量εl 影响收缩的因素:合金的种类、化学成分、
浇注温度、铸件结构、铸型条件
A、特征: ★ 尺寸较短 ★ 缝隙较宽 ★ 形状曲折 ★ 缝内呈严重的氧化色
B、影响热裂因素: (1)合金性质 (2)铸型阻力
合金的结晶特 点和化学成分
铸型、型芯的 退让性
C、防止热裂的方法: ☆ 合理的铸件结构; ☆ 型砂和芯砂的退让性; ☆ 严格限制钢和铸铁中硫的含量等。
特别是后者,因为硫能增加钢和铸铁的热脆 性,使合金的高温强度降低。
第二篇 铸 造
铸造:
将液态金属浇注到与零件形状、尺寸相适 应的铸型型腔中,待其冷却凝固后,获得一定 形状的毛坯或零件的方法。
铸造的实质是液态金属逐步冷却凝固而成形,
也称为金属液态成形。
二、铸造种类
1、普通砂型铸造
型砂
湿型砂 粘土砂
干型砂
水玻璃砂
树脂自硬砂
2、特种铸造 天然矿产砂石
造型材料
金
属
熔模铸造 泥型铸造 壳型铸造 负压铸造 陶瓷型铸造 实型铸造