六年级奥数定义新运算及答案

合集下载

六年级小升初常考奥数题型 第1讲定义新运算(例题和答案、讲解)

六年级小升初常考奥数题型 第1讲定义新运算(例题和答案、讲解)

第1讲 定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。

解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。

定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。

新定义的算式中有括号的,要先算括号里面的。

但它在没有转化前,是不适合于各种运算定律的。

二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。

练习1:1、将新运算“*”定义为:a*b=(a+b)×(a-b).。

求27*9。

2、设a*b=a 2+2b ,那么求10*6和5*(2*8)。

3、设a*b=3a -b ×1/2,求(25*12)*(10*5)。

【答案】1.648 2.112、65 3.193.25【例题2】设p 、q 是两个数,规定:p △q=4×q-(p+q)÷2。

求3△(4△6)。

练习2:1、设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。

2、设p 、q 是两个数,规定p △q =p2+(p -q )×2。

求30△(5△3)。

3、设M 、N 是两个数,规定M*N =M/N+N/M ,求10*20-1/4。

【答案】1.36 2.902 3.412【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。

练习3:1、如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,7*4=7+77+777+7777=8638210*2=210+210210=2104203*3=3+33+333,……那么4*4=________。

小学六年级奥数(A版) 第1周定义新运算~例1(含习题答案)

小学六年级奥数(A版)  第1周定义新运算~例1(含习题答案)

1
第一周 定义新运算
专题简析:
定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些特殊算式的一种运算。

解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。

定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、等,这是与四则运算中的“∆、#、*、·”不同的。

新定义的算式中有括号的,要先算括号里面的。

但它在没有转化前,是不适合于各种运算定律的。

例题1。

假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。

分析与解:
这题的新运算被定义为:a*b 等于a 和b 两数之和加上两数之差。

这里的“*”就代表一种新运算。

在定义新运算中同样规定了要先算小括号里的。

因此,在13*(5*4)中,就要先算小括号里的(5*4)。

练习1
1..将新运算“*”定义为:a*b=(a+b)×(a-b).求27*9。

3.设a*b=3a-1
2
×b,求(25*12)*(10*5)。

练习参考答案:
1..将新运算“*”定义为:a*b=(a+b)×(a-b).求27*9。

分析与解:
2
3
分析与解:
3.设a*b=3a -12
×b ,求(25*12)*(10*5)。

分析与解:。

奥数专题_定义新运算(带答案完美排版)

奥数专题_定义新运算(带答案完美排版)

定义新运算我们学过的常用运算有:+、-、×、÷等.如:2+3=52×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.我们先通过具体的运算来了解和熟悉“定义新运算”.例1、设a、b都表示数,规定a△b=3×a-2×b,①求3△2,2△3;②这个运算“△”有交换律吗?③求(17△6)△2,17△(6△2);④这个运算“△”有结合律吗?⑤如果已知4△b=2,求b.分析:解定义新运算这类题的关键是抓住定义的本质,本题规定的运算的本质是:用运算符号前面的数的3倍减去符号后面的数的2倍.解:① 3△2=3×3-2×2=9-4=52△3=3×2-2×3=6-6=0.②由①的例子可知“△”没有交换律.③要计算(17△6)△2,先计算括号内的数,有:17△6=3×17-2×6=39;再计算第二步39△2=3 ×39-2×2=113,所以(17△6)△2=113.对于17△(6△2),同样先计算括号内的数,6△2=3×6-2×2=14,其次17△14=3×17-2×14=23,所以17△(6△2)=23.④由③的例子可知“△”也没有结合律.⑤因为4△b=3×4-2×b=12-2b,那么12-2b=2,解出b=5.例2、定义运算※为a※b=a×b-(a+b),①求5※7,7※5;②求12※(3※4),(12※3)※4;③这个运算“※”有交换律、结合律吗?④如果3※(5※x)=3,求x.解:① 5※7=5×7-(5+7)=35-12=23,7※ 5=7×5-(7+5)=35-12=23.②要计算12※(3※4),先计算括号内的数,有:3※4=3×4-(3+4)=5,再计算第二步12※5=12×5-(12+5)=43,所以12※(3※4)=43.对于(12※3)※4,同样先计算括号内的数,12※3=12×3-(12+3)=21,其次21※4=21×4-(21+4)=59,所以(12※ 3)※4=59.③由于a※b=a×b-(a+b);b※a=b×a-(b+a)=a×b-(a+b)(普通加法、乘法交换律)所以有a※b=b※a,因此“※”有交换律.由②的例子可知,运算“※”没有结合律.④5※x=5x-(5+x)=4x-5;3※(5※x)=3※(4x-5)=3(4x-5)-(3+4x-5)=12x-15-(4x-2)=8x-13那么8x-13=3 解出x=2.例3、定义新的运算a ⊕b=a×b+a+b.①求6 ⊕2,2 ⊕6;②求(1 ⊕2)⊕3,1 ⊕(2 ⊕3);③这个运算有交换律和结合律吗?解:① 6 ⊕2=6×2+6+2=20,2 ⊕6=2×6+2+6=20.②(1 ⊕2)⊕3=(1×2+1+2)⊕3=5 ⊕3=5×3+5+3=231 ⊕(2 ⊕3)=1 ⊕(2×3+2+3)=1 ⊕11=1×11+1+11=23.③先看“⊕”是否满足交换律:a ⊕b=a×b+a+bb ⊕a=b×a+b+a=a×b+a+b(普通加法与乘法的交换律)所以a ⊕b=b ⊕a,因此“⊕”满足交换律.再看“⊕”是否满足结合律:(a ⊕b)⊕c=(a×b+a+b)⊕c=(a×b+a+b)×c+a×b+a+b+c=abc+ac+bc+ab+a+b+c.a ⊕(b ⊕c)=a ⊕(b×c+b+c)=a×(b×c+b+c)+a+b×c+b+c=abc+ab+ac+a+bc+b+c=abc+ac+bc+ab+a+b+c.(普通加法的交换律)所以(a ⊕b)⊕c=a ⊕(b ⊕c),因此“⊕”满足结合律.说明:“⊕”对于普通的加法不满足分配律,看反例:1 ⊕(2+3)=1 ⊕ 5=1×5+1+5=11;1 ⊕ 2+1 ⊕ 3=1×2+1+2+1×3+1+3=5+7=12;因此1 ⊕(2+3)≠ 1 ⊕ 2+1 ⊕ 3.例4、有一个数学运算符号“⊗”,使下列算式成立:2⊗4=8,5⊗3=13,3⊗5=11,9⊗7=25,求7⊗3=?解:通过对2⊗4=8,5⊗3=13,3⊗5=11,9⊗7=25这几个算式的观察,找到规律:a ⊗b =2a +b ,因此7⊗3=2×7+3=17.例5、x 、y 表示两个数,规定新运算“*”及“△”如下:x *y=mx+ny ,x △y=kxy ,其中 m 、n 、k 均为自然数,已知 1*2=5,(2*3)△4=64,求(1△2)*3的值.分析:我们采用分析法,从要求的问题入手,题目要求1△2)*3的值,首先我们要计算1△2,根据“△”的定义:1△2=k ×1×2=2k ,由于k 的值不知道,所以首先要计算出k的值,k 值求出后,l △2的值也就计算出来了.我们设1△2=a , (1△2)*3=a *3,按“*”的定义: a *3=ma+3n ,在只有求出m 、n时,我们才能计算a *3的值.因此要计算(1△2)*3的值,我们就要先求出 k 、m 、n 的值.通过1*2 =5可以求出m 、n 的值,通过(2*3)△4=64求出 k 的值.解:因为1*2=m ×1+n ×2=m+2n ,所以有m+2n=5.又因为m 、n 均为自然数,所以解出:①当m=1,n=2时: (2*3)△4=(1×2+2×3)△4=8△4=k ×8×4=32k有32k=64,解出k=2.②当m=3,n=1时:(2*3)△4=(3×2+1×3)△4=9△4=k ×9×4=36k有36k=64,解出k=971,这与k 是自然数矛盾,因此m=3,n =1,k=971这组值应舍去.所以m=l ,n=2,k=2.(1△2)*3=(2×1×2)*3=4*3=1×4+2×3=10.在上面这一类定义新运算的问题中,关键的一条是:抓住定义这一点不放,在计算时,严格遵照规定的法则代入数值.还有一个值得注意的问题是:定义一个新运算,这个新运算常常不满足加法、乘法所满足的运算定律,因此在没有确定新运算是否具有这些性质之前,不能运用这些运算律来解题.m=1n =2 m=2 n =23(舍去)m=3 n =1课后习题1.a *b 表示a 的3倍减去b 的21,例如:1*2=1×3-2×21=2,根据以上的规定,计算:①10*6; ②7*(2*1).2.定义新运算为 a ㊀b =b 1a +, ①求2㊀(3㊀4)的值; ② 若x ㊀4=1.35,则x =?3.有一个数学运算符号○,使下列算式成立:21○32=63,54○97=4511,65○71=426,求113○54的值. 4.定义两种运算“⊕”、“⊗”,对于任意两个整数a 、b ,a ⊕b =a +b +1, a ⊗b=a ×b -1,①计算4⊗[(6⊕8)⊕(3⊕5)]的值;②若x ⊕(x ⊗4)=30,求x 的值.5.对于任意的整数x 、y ,定义新运算“△”,x △y=y×2x ×m y ×x ×6+(其中m 是一个确定的整数), 如果1△2=2,则2△9=?6.对于数a 、b 规定运算“▽”为a ▽b=(a +1)×(1-b ),若等式(a ▽a )▽(a +1)=(a +1)▽(a ▽a )成立,求a 的值.7.“*”表示一种运算符号,它的含义是:x *y=xy 1+))((A y 1x 1++, 已知2*1=1×21+))((A 1121++=32,求1998*1999的值. 8.a ※b=b÷a b a +,在x ※(5※1)=6中,求x 的值. 9.规定 a △b=a +(a +1)+(a +2)+…+(a +b -1),(a 、b 均为自然数,b>a )如果x △10=65,那么x=?10.我们规定:符号◇表示选择两数中较大数的运算,例如:5◇3=3◇5=5,符号△表示选择两数中较小数的运算,例如:5△3=3△5=3,计算:)25.2◇106237()9934△3.0()3323△625.0()2617◇6.0(++ =?课后习题解答1.2.3.所以有5x-2=30,解出x=6.4左边:8.解:由于9.解:按照规定的运算:x△10=x +(x+1)+(x+2)+…+(x+10-1)=10x +(1+2+3+⋯+9)=10x + 45 因此有10x + 45=65,解出x=2.定义新运算我们学过的常用运算有:+、-、×、÷等.如:2+3=52×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.我们先通过具体的运算来了解和熟悉“定义新运算”.例1、设a、b都表示数,规定a△b=3×a-2×b,①求3△2,2△3;②这个运算“△”有交换律吗?③求(17△6)△2,17△(6△2);④这个运算“△”有结合律吗?⑤如果已知4△b=2,求b.例2、定义运算※为a※b=a×b-(a+b),①求5※7,7※5;②求12※(3※4),(12※3)※4;③这个运算“※”有交换律、结合律吗?④如果3※(5※x)=3,求x.例3、定义新的运算a ⊕b=a×b+a+b.①求6 ⊕2,2 ⊕6;②求(1 ⊕2)⊕3,1 ⊕(2 ⊕3);③这个运算有交换律和结合律吗?例4、有一个数学运算符号“⊗”,使下列算式成立:2⊗4=8,5⊗3=13,3⊗5=11,9⊗7=25,求7⊗3=?例5、x、y表示两个数,规定新运算“*”及“△”如下:x*y=mx+ny,x△y=kxy,其中m、n、k均为自然数,已知1*2=5,(2*3)△4=64,求(1△2)*3的值.课后习题1.a *b 表示a 的3倍减去b 的21,例如:1*2=1×3-2×21=2,根据以上的规定,计算:①10*6; ②7*(2*1).2.定义新运算为 a ㊀b =b 1a , ①求2㊀(3㊀4)的值; ② 若x ㊀4=1.35,则x =?3.有一个数学运算符号○,使下列算式成立:21○32=63,54○97=4511,65○71=426,求113○54的值.4.定义两种运算“⊕”、“⊗”,对于任意两个整数a 、b ,a ⊕b =a +b +1, a ⊗b=a ×b -1,①计算4⊗[(6⊕8)⊕(3⊕5)]的值;②若x ⊕(x ⊗4)=30,求x 的值.5.对于任意的整数x 、y ,定义新运算“△”,x △y=y×2x ×m y ×x ×6+(其中m 是一个确定的整数), 如果1△2=2,则2△9=?6.对于数a 、b 规定运算“▽”为a ▽b=(a +1)×(1-b ),若等式(a ▽a )▽(a +1)=(a +1)▽(a ▽a )成立,求a 的值.7.“*”表示一种运算符号,它的含义是:x *y=xy 1+))((A y 1x 1++, 已知2*1=1×21+))((A 1121++=32,求1998*1999的值.8.a ※b=b ÷a ba +,在x ※(5※1)=6中,求x 的值.9.规定 a △b=a +(a +1)+(a +2)+…+(a +b -1),(a 、b 均为自然数,b>a )如果x △10=65,那么x=?10.我们规定:符号◇表示选择两数中较大数的运算,例如:5◇3=3◇5=5,符号△表示选择两数中较小数的运算,例如:5△3=3△5=3,计算:)25.2◇106237()9934△3.0()3323△625.0()2617◇6.0(++ =?。

定义新运算题目及答案解析-小学奥数

定义新运算题目及答案解析-小学奥数

专题定义新运算知识点1 直接运算型【基础训练】1、【★】设a,b都表示两个不同的数,规定:a△b=2×a+3×b,表示a的2倍加上b的3倍的和.(1)求4△7的值.(2)求2△3的值.【答案】(1)29;(2)13【解析】(1)找到a与b对应的数,根据定义的新运算,将算式中的a与b换成对应的数,再进行计算,即a=4,b=7,4△7=2×4+3×7=29;(2)方法同上,即a=2,b=3,2△3=2×2+3×3=13.2、【★★】设a、b都表示两个不同的数,规定:a▽b=a×b-(a+b).(1)求5▽6▽7的值.(2)求7▽(5▽4)的值.【答案】107;59【解析】(1)按照从左往右的顺序计算,①先算5▽6=5×6-(5+6)=30-11=19,②再算19▽7=19×7-(19+7)=133-26=107,所以5▽6▽7=107.(2)有括号的要先算括号里面的,①先算5▽4=5×4-(5+4)=20-9=11,②再算7▽11=7×11-(7+11)=77-18=59,所以7▽(5▽4)=59.3、【★★】x,y表示两个数,规定新运算“☆”及“○”如下:x☆y=2×x+3×y,x○y=6×x×y.(1)求10☆2的值.(2)求4○25的值.【答案】26;600【解析】(1)原式=2×10+3×2=26;(2)原式=6×4×25=600【拓展提升】1、【★★★】规定:a□b=a+(a+1)+(a+2)+…+(a+b-1),其中a、b表示自然数.求1□100的值.【答案】5050【解析】1□100=1+2+3+…+100=(1+100)×100÷2=50502、【★★★】已知x、y是任意有理数.我们规定:x☆y=x+y-1,x○y=x×y-2.(1)求10☆9.(2)求7○8.(3)求4○[(6☆8)☆(3○5)]的值.【答案】18;54;98【解析】(1)10☆9=10+9-1=18;(2)7○8=7×8-2=54(3)先算小括号里面的6☆8和3○5,6☆8=6+8-1=13,3○5=3×5-2=13.再计算中括号里面的13☆13=13+13-1=25.最后计算4○25=4×25-2=98.知识点2 反解未知型【拓展提升】1、【★★★】设x、y都表示两个不同的数,规定:x□y=x×y+2A,已知3□4=16.(1)求常数A是多少?(2)求3□(4□5)【答案】2;76【解析】(1)建立方程,3×4+2A=16,解得A=2.(2)先算括号里面的,①4□5=4×5+2×2=20+4=24,②再算3□24=3×24+2×2=72+4=762、【★★★★】规定:()()()121a b a a a a b ∆=+++++++-,其中a 、b 表示自然数. 已知1465x ∆∆=(),求x .【答案】x=2【解析】先求1△4=1+2+3+4=10,再算x △10=65,那么x+(x+1)+(x+2)+(x+3)+…+(x+9)=65,即10x+45=65,解得x=2知识点3 总结规律型【拓展提升】1、【★★★】已知:13123*=⨯⨯,242345*=⨯⨯⨯,4545678*=⨯⨯⨯⨯,…(1)求33*的值.(2)求25*的值.【答案】60;7202、【★★★】已知:12111∇=+,23222222∇=++,444444444444∇=+++,……(1)求73∇的值 。

六年级奥数定义新运算及答案

六年级奥数定义新运算及答案

定义新运算1.规定:a ※b=(b+a)×b,那么(2※3)※5= 。

2.如果a △b 表示b a ⨯-)2(,例如3△444)23(=⨯-=,那么,当a △5=30时, a= 。

3.定义运算“△”如下:对于两个自然数a 和b,它们的最大公约数与最小公倍数的和记为a △b.例如:4△6=(4,6)+[4,6]=2+12=14.根据上面定义的运算,18△12= 。

4.已知a,b 是任意有理数,我们规定: a ⊕b= a+b-1,2-=⊗ab b a ,那么[]=⊗⊕⊕⊗)53()86(4 。

5.x 为正数,<x>表示不超过x 的质数的个数,如<5.1>=3,即不超过5.1的质数有2,3,5共3个.那么<<19>+<93>+<4>×<1>×<8>>的值是 。

6.如果a ⊙b 表示b a 23-,例如4⊙5=3×4-2×5=2,那么,当x ⊙5比5⊙x 大5时, x= 。

7.如果1※4=1234,2※3=234,7※2=78,那么4※5= 。

8.规定一种新运算“※”: a ※b=)1()1(++⨯⋅⋅⋅⨯+⨯b a a a .如果(x ※3)※4=421200,那么x= 。

9.对于任意有理数x, y,定义一种运算“※”,规定:x ※y=cxy by ax -+,其中的c b a ,,表示已知数,等式右边是通常的加、减、乘运算.又知道1※2=3,2※3=4,x ※m=x(m ≠0),则m 的数值是 。

10.设a,b 为自然数,定义a △b ab b a -+=22。

(1)计算(4△3)+(8△5)的值;(2)计算(2△3)△4;(3)计算(2△5)△(3△4)。

11.设a ,b 为自然数,定义a ※b 如下:如果a ≥b ,定义a ※b=a-b ,如果a<b ,则定义a ※b= b-a 。

完整版)六年级奥数定义新运算及答案

完整版)六年级奥数定义新运算及答案

完整版)六年级奥数定义新运算及答案1.根据定义,(2※3)※5=(3+2)×3※5=5×15=75.2.根据定义,a△5=(a-2)×5=30,解得a=8.3.根据定义,(18,12)+[18,12]=6+36=42.4.先计算括号内的值:(68)(35)=(6+8-1)+(3×5-2)=(13)+(13)=26,再将4与26相乘,得到104.5.=8,=25,=2,因此++××>=+>=29.6.根据定义,x⊙5=3x-10,5⊙x=3×5-2x,因此有3x-10+5=2x+15,解得x=20.7.根据定义,a※b=(b+a)×b,因此4※5=(5+4)×5=45.8.根据定义,(x※3)※4=x(x+1)(x+2)(x+3)(x+4)(x+5)(x+6)(x+7),因此x=7.9.根据定义,1※2=a+b-c,2※3=2a+3b-6c,因此有a+b-c=3,2a+3b-6c=4,解得a=2,b=1,c=0,因此m的数值是0.10.(1) 根据定义,4△3=1,8△5=3,因此(4△3)+(8△5)=1+3=4;(2) 根据定义,2△3=-1,(-1)△4=3,因此(2△3)△4=3;(3) 根据定义,2△5=-3,3△4=1,因此(2△5)△(3△4)=-2.11.(1) 根据定义,3※4=1,1※9=8,因此(3※4)※9=8;(2) 这个运算不满足交换律,也不满足结合律,因为a※b的结果取决于a和b的大小关系。

12.(1) 根据定义,(2※3)※4=13,2※(3※4)=28;(2) 根据定义,a※3=(2a+3)/(2b+a),因此有2a+3=6,2b+a=9,解得a=3,b=3/2.13.根据定义,12⊙21=252-3=249,5⊙15=75-5=70.4⊗26。

4×26﹣2。

小学奥数:定义新运算.专项练习及答案解析

小学奥数:定义新运算.专项练习及答案解析

定义新运算这类题目是在考验我们的适应能力,我们大家都习惯四则运算,定义新运算就打破了运算规则,要求我们要严格按照题目的规定做题.新定义的运算符号,常见的如△、◎、※等等,这些特殊的运算符号,表示特定的意义,是人为设定的.解答这类题目的关键是理解新定义,严格按照新定义的式子代入数值,把定义的新运算转化成我们所熟悉的四则运算。

一 定义新运算 基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。

基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。

关键问题:正确理解定义的运算符号的意义。

注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。

②每个新定义的运算符号只能在本题中使用。

我们学过的常用运算有:+、-、×、÷等.如:2+3=5 2×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同. 二 定义新运算分类1.直接运算型2.反解未知数型3.观察规律型4.其他类型综合模块一、直接运算型 【例 1】 若*A B 表示()()3A B A B +⨯+,求5*7的值。

【考点】定义新运算之直接运算 【难度】2星 【题型】计算【解析】 A *B 是这样结果这样计算出来:先计算A +3B 的结果,再计算A +B 的结果,最后两个结果求乘积。

例题精讲知识点拨教学目标定义新运算由 A *B =(A +3B )×(A +B )可知: 5*7=(5+3×7)×(5+7) =(5+21)×12 = 26×12 = 312【答案】312【巩固】 定义新运算为a △b =(a +1)÷b ,求的值。

2022-2023学年小学六年级奥数典型题测评卷3《定义新运算》(解析版)

2022-2023学年小学六年级奥数典型题测评卷3《定义新运算》(解析版)

【六年级奥数举一反三—全国通用】测评卷3:定义新运算试卷满分:100分考试时间:100分钟;一.选择题(共5小题,满分20分,每小题4分)1.(4分)定义两种运算:ɑ⊕b=ɑ+b﹣1,ɑ⊗b=ɑb﹣1.如果4⊗[(6⊕x)⊕(3⊗5)]=79,则x等于()A.2B.1C.0D.3【分析】由所给算式得出新运算方法为:ɑ⊕b等于两个数的和减去1,ɑ⊗b等于两个数的乘积减去1,据此计算4⊗[(6⊕x)⊕(3⊗5)]=79即可解出x的值.【解答】解:4⊗[(6⊕x)⊕(3⊗5)]=794⊗[(6+x﹣1)⊕(3×5﹣1)]=794⊗[(5+x)⊕14]=794⊗[5+x+14﹣1]=794⊗[18+x]=794×(18+x)﹣1=7972+4x﹣1=794x=8x=2.故选:A.2.(4分)a*b表示a的3倍减去b的.例如,1*2=1×3﹣2×=2.根据以上的规定,l0*6应等于()A.13B.27C.33D.60【分析】根据已知的算式a*b=3a+b可得运算法则:计算结果等于*号前面数的3倍减去后面数的,求差是多少,即据此解答.【解答】解:根据分析可得,10*6,=10×3﹣6×,=30﹣3,=27;故选:B.3.(4分)定义:a*b=(a+b)÷(a×b),如2*5=(2+5)÷(2×5)=0.7,那么0.2*2.5=()A.2.7B.3.1C.4.8D.5.4【分析】0.2*2.5,那么a=0.2,b=2.5,由此代入a*b=(a+b)÷(a×b),计算即可.【解答】解:0.2*2.5,=(0.2+2.5)÷(0.2×2.5),=2.7÷0.5,=5.4;故选:D.4.(4分)对所有的数a,b,把运算a*b定义为a*b=ab﹣a+b,则方程5*x=17的解是()A.B.2C.3D.【分析】根据a*b=a*b=ab﹣a+b,先把5*x变成四则运算,再根据运用等式性质解方程的方法求解.【解答】解:5*x=175x﹣5+x=176x﹣5=176x﹣5+5=17+56x=226x÷6=22÷6x=3故选:D.5.(4分)如果P↑表示P+1,P↓表示P﹣1,则4↑×3↓等于()A.9↓B.10↓C.11↓D.12↑E.13↓【分析】根据定义的新运算,计算4↑×3↓的结果,再把结果用新运算表示即可.【解答】解:根据定义的新运算得,4↑×3↓=(4+1)×(3﹣1)=5×2=10,因为9↑=10或11↓=10,所以4↑×3↓=9↑=11↓.故选:C.二.填空题(共8小题,满分32分,每小题4分)6.(4分)定义a*b=a×b+a﹣2b,若3*m=17,则m=14.【分析】根据已知的算式a*b可得运算法则:计算结果等于*号前后两个数的积,加上前面的数,再减去后面的数的2倍,据此解答.【解答】解:3*m=173m+3﹣2m=17m+3=17m=14故答案为:14.7.(4分)A、B表示两个数,若规定A*B=A﹣B,那么12*6=5.【分析】新的运算法则是:A*B=A的减去B的,求出两个积,再相减即可.【解答】解:12*6=×12﹣×6=9﹣4=5故答案为:5.8.(4分)设a、b为自然数,定义a⊕b=4a+b+2,那么3⊕2=16.【分析】“⊕”这个运算法则可以表述为:第一个数的4倍,加上第二个数再加2.【解答】解:3⊕2=3×4+2+2=16故答案为:16.9.(4分)规定:a△b=2×a+3×b,则259△500=2018.【分析】根据所给出的等式a△b=2×a+3×b,找出新的运算方法,再根据新的运算方法解决问题即可.【解答】解:259△500=259×2+3×500=2018故答案为:2018.10.(4分)定义新运算“△“;a△b=a×b﹣(a﹣b),则19△11=201.【分析】根据所给出的等式a△b=a×b﹣(a﹣b),找出新的运算方法,再根据新的运算方法解决问题即可.【解答】解:19△11=19×11﹣(19﹣11)=201故答案为:201.11.(4分)我们规定a⊙b表示a,b两数的差(较大数减较小数),例如10⊙8=2,5⊙9=4等等,那么1⊙2⊙3…⊙99⊙100(运算顺序从左往右)的结果是50.【分析】按顺序计算,看看能发现什么规律,然后按照规律解题.【解答】解:1⊙2⊙3…⊙99⊙100=1⊙3…⊙99⊙100=2⊙4…⊙99⊙100=2⊙5…⊙99⊙100=3⊙6…⊙99⊙100=3⊙7…⊙99⊙100=4⊙8…⊙99⊙100=4⊙9…⊙99⊙100…=45⊙90…⊙99⊙100=45⊙91…⊙99⊙100…=49⊙98⊙99⊙100=49⊙99⊙100=50⊙100=50故填5012.(4分)定义新运算a⊙b=3a﹣b,例如2⊙3=3×2﹣3=3,那么2018⊙(4⊙5)=6047.【分析】根据所给出的等式a⊙b=3a﹣b,找出新的运算方法,再根据新的运算方法解决问题即可.【解答】解:4⊙5=3×4﹣5=72018⊙(4⊙5)=2018⊙7=3×2018﹣7故答案为:6047.13.(4分)如果规定a※b表示a×b﹣a+b,例如4※3=4×3﹣4+3=11.若X※9=121,那么Ⅹ=14.【分析】根据所给出的等式a※b=a×b﹣a+b,找出新的运算方法,再根据新的运算方法解决问题即可.【解答】解:X※9=1219X﹣X+9=1218X=112X=14故答案为:14.三.解答题(共10小题,满分48分)14.(4分)定义运算⊖为a⊖b=5×a×b﹣(a+b).求11⊖12.【分析】根据a⊖b=5×a×b﹣(a+b),找出新的运算方法,再根据新的运算方法,计算11⊖12即可.【解答】解:11⊖12=5×11×12﹣(11+12)=660﹣23=63715.(4分)设a,b表示两个不同的数,规定a△b=3a+4b.求(8△7)△6.【分析】根据所给出是等式,知道a△b等于3与a的积加4与b的积,由此求出(8△7)△6的值即可.【解答】解:8△7=3×8+4×7=24+28=5252△6=3×52+4×6=156+24=18016.(5分)定义两种运算“⊙”、“⊗”,对于任意两个整数a、b,a⊙b=a+b﹣1,a⊗b=a×b﹣1.(1)计算4⊗[(6⊙8)⊙(3⊙5)]的值;(2)若x⊙(x⊗4)=30,求x的值.【分析】根据a⊙b=a+b﹣1,a⊗b=a×b﹣2,得出新的运算方法,⊙表示两个数的和减1,⊗表示两个数的积减1,(1)据此运用新的运算方法计算4⊗[(6⊙8)⊙(3⊙5)]的值.(2)根据新运算的方法先求出括号里的值,再求x.【解答】解:(1)4⊗[(6⊙8)⊙(3⊙5)]=4⊗[(6+8﹣1)⊙(3+5﹣1)]=4⊗[13⊙7]=4⊗[13+7﹣1]=4⊗19=4×19﹣1=76﹣1=75(2)x⊙(x⊗4)=30x⊙(x×4﹣1)=30x+4x﹣1﹣1=305x﹣2=305x=32x=6.417.(5分)定义新运算⊕,它的运算规则是:a⊕6=a×b+2a,求2.5⊕9.6.【分析】根据所给出的等式a⊕6=a×b+2a,找出新的运算方法,再根据新的运算方法解决问题即可.【解答】解:2.5⊕9.6=2.5×9.6+2×2.5=24+5=2918.(5分)有两个数是A、B,A△B表示A与B的平均数.(1)已知A△6=17,求A.(2)已知4△B=2,求B.【分析】根据所给出的等式(A+B)÷2,找出新的运算方法,再根据新的运算方法解决问题即可.【解答】解:(1)因为A△6=17,(A+6)÷2=17解得:A=28.(2)因为4△B=2,(4+B)÷2=2解得:B=0.19.(5分)设A和B都表示数,规定A▽B=A×3﹣2×B,求3▽2和2▽3.【分析】根据题意,新定义的运算是A的3倍所得的积减去B的2倍所得的积,然后再进一步计算即可.【解答】解:根据题意可得:3▽2=3×3﹣2×2=9﹣4=5;2▽3=2×3﹣2×3=6﹣6=0.20.(5分)定义新运算为a△b=(a+1)÷b,求6△(3△4)的值.【分析】所求算式是两重运算,先计算括号,所得结果再计算,a△b=(a+1)÷b,表示的含义是第一个数加上1之后再除以第二个数.【解答】解:由a△b=(a+1)÷b得,3△4=(3+1)÷4=4÷4=1;6△(3△4),=6△1,=(6+1)÷1,=7;答:6△(3△4)的值是7.21.(5分)定义新运算a※b=a b+a+b(例如3※4=3×4+3+4=19).计算(4※5)※(5※6)=1259.【分析】根据“a※b=a b+a+b”可知运算规律:要运算的两个数等于这两个数的积加上这两个数的和,据此先分别计算式子(4※5)※(5※6)括号中的(4※5)和(5※6),然后再整体计算解答即可.【解答】解:根据分析列式为:4※5=4×5+4+5=29,5※6=5×6+5+6=41,(4※5)※(5※6),=29※41,=29×41+29+41,=1259;故答案为:1259.22.(5分)对于两个数a、b,规定a▽b=b×x﹣a×2,并且已知82▽65=31,计算:29▽57.【分析】根据所给出的等式,知道a▽b等于b与x的积减去2与a的积,由此根据82▽65=31的值,再求出x的值,进而求出29▽57的值.【解答】解:82▽65=3165x﹣2×82=3165x=195x=329▽57=3×57﹣29×2=171﹣58=11323.(5分)设a,b分别表示两个数,如果a•b表示,照这样的规则,3•[6•(8•5)]的结果是什么?【分析】根据所给出的等式,知道a•b等于a减去b的差再除以3,由此方法计算即可.【解答】解:3•[6•(8•5)]=3•[6•]=3•[6•1]=3•=3•=(3﹣)÷3=。

小学六年级奥数第一讲:定义新运算【附练习题】

小学六年级奥数第一讲:定义新运算【附练习题】

【导语】知⼰知彼,百战不殆,熟悉每⼀种题型的解法,这样才会对考试中不同形式的题⽬都应付⾃如。

⽆忧考准备了以下内容,供⼤家参考。

第1讲定义新运算 ⼀、知识要点 定义新运算是指运⽤某种特殊符号来表⽰特定的意义,从⽽解答某些算式的⼀种运算。

解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代⼊,转化为常规的四则运算算式进⾏计算。

定义新运算是⼀种⼈为的、临时性的运算形式,它使⽤的是⼀些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。

新定义的算式中有括号的,要先算括号⾥⾯的。

但它在没有转化前,是不适合于各种运算定律的。

⼆、精讲精练 【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。

【思路导航】这题的新运算被定义为:a*b等于a和b两数之和加上两数之差。

这⾥的“*”就代表⼀种新运算。

在定义新运算中同样规定了要先算⼩括号⾥的。

因此,在13*(5*4)中,就要先算⼩括号⾥的(5*4)。

练习1: 1.将新运算“*”定义为:a*b=(a+b)×(a-b).。

求27*9。

2.设a*b=a2+2b,那么求10*6和5*(2*8)。

3.设a*b=3a-b×1/2,求(25*12)*(10*5)。

【例题2】设p、q是两个数,规定:p△q=4×q-(p+q)÷2。

求3△(4△6)。

【思路导航】根据定义先算4△6。

在这⾥“△”是新的运算符号。

练习2: 1.设p、q是两个数,规定p△q=4×q-(p+q)÷2,求5△(6△4)。

2.设p、q是两个数,规定p△q=p2+(p-q)×2。

求30△(5△3)。

3.设M、N是两个数,规定M*N=M/N+N/M,求10*20-1/4。

【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。

六年级奥数定义新运算及答案

六年级奥数定义新运算及答案

定义新运算1.规定:玄※b=(b+a) Xb,那么(2探3)探5= _________ 。

2•如果a△)表示(a 2) b,例如3也(3 2) 4 4,那么,当a药=30时,a= _________ 。

3. 定义运算“△”如下:对于两个自然数a和b,它们的最大公约数与最小公倍数的和记为a△b.例如:4Z6=(4,6)+[4,6]=2+12=14. 根据上面定义的运算,18 42= ___________ 。

4. 已知a,b是任意有理数,我们规定:a ®b= a+b-1, a b ab 2,那么4 (6 8) (3 5) _________ 。

5. x为正数,<x>表示不超过x的质数的个数,如<5.1>=3,即不超过5.1的质数有2,3,5共3个.那么<<19>+<93>+<4> X<1> X<8>> 的值是__________ 。

6. 如果a O b 表示3a 2b ,例如4 O 5=3 X4-2 X5=2,那么,当x O 5 比5 O x 大5 时,x= ________ 。

7. 如果1 探4=1234,2 ※^3=234,7 ※^2=78,那么4 探5= _____ 。

8. 规定一种新运算“※”:a探b= a (a 1) (a b 1).如果(x※可^4=421200,那么x= ___________ 。

9. 对于任意有理数x, y,定义一种运算"※”,规定:x※尸ax by cxy ,其中的a,b,c表示已知数,等式右边是通常的加、减、乘运算.又知道1沁=3,2探3=4,x※口=x(m工0),则m的数值2 210. 设a,b为自然数,定义a△)a b ab。

(1)计算(4 43)+(8 △的值;⑵计算(2△ 44;⑶计算(2 45) A(3 △!)。

11. 设a, b为自然数,定义a※匕如下:如果a >b,定义a探b=a-b,如果a<b,则定义a探b= b-a 。

小学六年级奥数第1讲 定义新运算(含答案分析)

小学六年级奥数第1讲 定义新运算(含答案分析)

第1讲定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。

解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。

定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。

新定义的算式中有括号的,要先算括号里面的。

但它在没有转化前,是不适合于各种运算定律的。

二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。

练习1:1、将新运算“*”定义为:a*b=(a+b)×(a-b).。

求27*9。

2、设a*b=a2+2b,那么求10*6和5*(2*8)。

【例题2】设p、q是两个数,规定:p△q=4×q-(p+q)÷2。

求3△(4△6)。

练习2:1、设p、q是两个数,规定p△q=4×q-(p+q)÷2,求5△(6△4)。

2、设p、q是两个数,规定p△q=p2+(p-q)×2。

求30△(5△3)。

【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。

练习3:1、如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,……那么4*4=________。

2、规定,那么8*5=________。

【例题4】规定②=1×2×3,③=2×3×4 ,④=3×4×5,⑤=4×5×6,……如果1/⑥-1/⑦ =1/⑦×A,那么,A是几?练习4:1、规定:②=1×2×3,③=2×3×4,④=3×4×5,⑤=4×5×6,……如果1/⑧-1/⑨=1/⑨×A,那么A=________。

小学六年级奥数题:定义新运算(A)---习题详解

小学六年级奥数题:定义新运算(A)---习题详解

小学六年级奥数题:定义新运算(A)---习题详解三、定义新运算(一)1.规定新运算$a☉b=$2.规定“※”为一种运算,对任意两数$a,b$,有$a※b=$3.设$a,b,c,d$是自然数,定义$\langle a,b,c,XXX则$\langle\langle 1,2,3,4\rangle,\langle 4,1,2,3\rangle,\langle3,4,1,2\rangle,\langle 2,3,4,1\rangle\rangle=$4.$[A]$表示自然数$A$的约数的个数。

例如,4有1,2,4三个约数,可以表示成$[4]=3$。

计算:$([18]+[22])÷[7]=$5.规定新运算※:$a※b=3a-2b$。

若$x※(4※1)=7$,则$x=$6.两个整数$a$和$b$,$a$除以$b$的余数记为$a☆b$。

例如,$13☆5=3$,$5☆13=5$,$12☆4=0$。

根据这样定义的运算,$(26☆9)☆4=$7.对于数$a,b,c,d$,规定$\langle a,b,c,d\rangle=2ab-c+d$。

如果$\langle 1,3,5,x\rangle=7$,那么$x=$8.规定:$6※2=6+66=72$,$2※3=2+22+222=246$,$1※4=1+11+111+1111=1234$。

$7※5=$9.规定:符号“△”为选择两数中较大数,“☉”为选择两数中较小数。

例如:$3△5=5$,$3☉5=3$。

那么,$[(7☉3)△5]×[5☉(3△7)]= $10.假设式子$a\#a\times b$表示经过计算后,$a$的值变为原来$a$与$b$的值的积,而式子$b\#a-b$表示经过计算后,$b$的值为原来$a$与$b$的值的差。

设开始时$a=2$,$b=2$,依次进行计算$a\#a\times b$,$b\#a-b$,$a\#a\times b$,$b\#a-b$,则计算结束时,$a$与$b$的和为$\frac{a+b}{ab}-$,则$2☉(5☉3)$之值为$.$ 若$6※x=33$,则$x=$二、解答题11.设$a,b,c,d$是自然数,对每两个数组$(a,b)$,$(c,d)$,我们定义运算※如下:$(a,b)※(c,d)=(a+c,b+d)$;又定义运算△如下:$(a,b)△(c,d)=(ac+bd,ad+bc)$。

(完整版)六年级奥数定义新运算及答案(2)

(完整版)六年级奥数定义新运算及答案(2)

定义新运算1.规定:a ※b=(b+a)×b,那么(2※3)※5= 。

2.如果a △b 表示b a ⨯-)2(,例如3△444)23(=⨯-=,那么,当a △5=30时, a= 。

3.定义运算“△”如下:对于两个自然数a 和b,它们的最大公约数与最小公倍数的和记为a △b.例如:4△6=(4,6)+[4,6]=2+12=14.根据上面定义的运算,18△12= 。

4.已知a,b 是任意有理数,我们规定: a ⊕b= a+b-1,2-=⊗ab b a ,那么[]=⊗⊕⊕⊗)53()86(4 。

5.x 为正数,<x>表示不超过x 的质数的个数,如<5.1>=3,即不超过5.1的质数有2,3,5共3个.那么<<19>+<93>+<4>×<1>×<8>>的值是 。

6.如果a ⊙b 表示b a 23-,例如4⊙5=3×4-2×5=2,那么,当x ⊙5比5⊙x 大5时, x= 。

7.如果1※4=1234,2※3=234,7※2=78,那么4※5= 。

8.规定一种新运算“※”: a ※b=)1()1(++⨯⋅⋅⋅⨯+⨯b a a a .如果(x ※3)※4=421200,那么x= 。

9.对于任意有理数x, y,定义一种运算“※”,规定:x ※y=cxy by ax -+,其中的c b a ,,表示已知数,等式右边是通常的加、减、乘运算.又知道1※2=3,2※3=4,x ※m=x(m ≠0),则m 的数值是 。

10.设a,b 为自然数,定义a △b ab b a -+=22。

(1)计算(4△3)+(8△5)的值;(2)计算(2△3)△4;(3)计算(2△5)△(3△4)。

11.设a ,b 为自然数,定义a ※b 如下:如果a ≥b ,定义a ※b=a-b ,如果a<b ,则定义a ※b= b-a 。

小学六年级奥数定义新运算

小学六年级奥数定义新运算
二、精讲精练
• 【例题1】假设a*b=(a+b)+(a-b),求13*5和13* (5*4)。
• 【思路导航】这题的新运算被定义为:a*b等于a和 b两数之和加上两数之差。这里的“*”就代表一种 新运算。在定义新运算中同样规定了要先算小括号 里的。因此,在13*(5*4)中,就要先算小括号里 的(5*4)
• 【思路导航】经过观察,可以发现本题的新运算“*” 被定义为。因此 • 因此 7*4=7+77+777+7777=8638 210*2=210+210210=210420
第6页/共12页
练习3:
• 1.如果1*5=1+11+111+1111+11111, 2*4=2+22+222+2222,3*3=3+33+333,…… 那么4*4=________。
• 4⊙1=4×4-2×1+1/2×4×1=16
• x⊙16=4x-2×16+1/2×x×16
• =12x-32
• 12x-32 = 34
• 12x= 66
• x=5.5
第10页/共12页
练习5:
• 1.设a⊙b=3a-2b,已知x⊙(4⊙1)=7求x。 • 2.对两个整数a和b定义新运算“△”:a△b= ,求6△4+9△8。 • 3.对任意两个整数x和y定于新运算,“*”:x*y= (其中m是一个确定
练习2:
• 1.设p、q是两个数,规定p△q=4×q-(p+q)÷2,求5△(6△4)。 • 2.设p、q是两个数,规定p△q=p2+(p-q)×2。求30△(5△3)。 • 3.设M、N是两个数,规定M*N=M/N+N/M,求10*20-1/4。

(完整版)六年级奥数定义新运算及答案

(完整版)六年级奥数定义新运算及答案

定义新运算1.规定:a ※b=(b+a)×b,那么(2※3)※5= 。

2.如果a △b 表示b a ⨯-)2(,例如3△444)23(=⨯-=,那么,当a △5=30时, a= 。

3.定义运算“△”如下:对于两个自然数a 和b,它们的最大公约数与最小公倍数的和记为a △b.例如:4△6=(4,6)+[4,6]=2+12=14.根据上面定义的运算,18△12= 。

4.已知a,b 是任意有理数,我们规定: a ⊕b= a+b-1,2-=⊗ab b a ,那么[]=⊗⊕⊕⊗)53()86(4 。

5.x 为正数,<x>表示不超过x 的质数的个数,如<5.1>=3,即不超过5.1的质数有2,3,5共3个.那么<<19>+<93>+<4>×<1>×<8>>的值是 。

6.如果a ⊙b 表示b a 23-,例如4⊙5=3×4-2×5=2,那么,当x ⊙5比5⊙x 大5时, x= 。

7.如果1※4=1234,2※3=234,7※2=78,那么4※5= 。

8.规定一种新运算“※”: a ※b=)1()1(++⨯⋅⋅⋅⨯+⨯b a a a .如果(x ※3)※4=421200,那么x= 。

9.对于任意有理数x, y,定义一种运算“※”,规定:x ※y=cxy by ax -+,其中的c b a ,,表示已知数,等式右边是通常的加、减、乘运算.又知道1※2=3,2※3=4,x ※m=x(m ≠0),则m 的数值是 。

10.设a,b 为自然数,定义a △b ab b a -+=22。

(1)计算(4△3)+(8△5)的值;(2)计算(2△3)△4;(3)计算(2△5)△(3△4)。

11.设a ,b 为自然数,定义a ※b 如下:如果a ≥b ,定义a ※b=a-b ,如果a<b ,则定义a ※b= b-a 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定义新运算1.规定:a ※b=(b+a)×b,那么(2※3)※5= 。

2.如果a △b 表示b a ⨯-)2(,例如3△444)23(=⨯-=,那么,当a △5=30时, a= 。

3.定义运算“△”如下:对于两个自然数a 和b,它们的最大公约数与最小公倍数的和记为a △b.例如:4△6=(4,6)+[4,6]=2+12=14.根据上面定义的运算,18△12= 。

4.已知a,b 是任意有理数,我们规定: a ⊕b= a+b-1,2-=⊗ab b a ,那么[]=⊗⊕⊕⊗)53()86(4 。

5.x 为正数,<x>表示不超过x 的质数的个数,如<5.1>=3,即不超过5.1的质数有2,3,5共3个.那么<<19>+<93>+<4>×<1>×<8>>的值是 。

6.如果a ⊙b 表示b a 23-,例如4⊙5=3×4-2×5=2,那么,当x ⊙5比5⊙x 大5时, x= 。

7.如果1※4=1234,2※3=234,7※2=78,那么4※5= 。

8.规定一种新运算“※”: a ※b=)1()1(++⨯⋅⋅⋅⨯+⨯b a a a .如果(x ※3)※4=421200,那么x= 。

9.对于任意有理数x, y,定义一种运算“※”,规定:x ※y=cxy by ax -+,其中的c b a ,,表示已知数,等式右边是通常的加、减、乘运算.又知道1※2=3,2※3=4,x ※m=x(m ≠0),则m 的数值是 。

10.设a,b 为自然数,定义a △b ab b a -+=22。

(1)计算(4△3)+(8△5)的值;(2)计算(2△3)△4;(3)计算(2△5)△(3△4)。

11.设a ,b 为自然数,定义a ※b 如下:如果a ≥b ,定义a ※b=a-b ,如果a<b ,则定义a ※b= b-a 。

(1)计算:(3※4)※9;(2)这个运算满足交换律吗?满足结合律吗?也是就是说,下面两式是否成立?①a ※b= b ※a;②(a ※b)※c= a ※(b ※c)。

12.设a,b 是两个非零的数,定义a ※b ab b a +=。

(1)计算(2※3)※4与2※(3※4)。

(2)如果已知a是一个自然数,且a※3=2,试求出a的值。

13.定义运算“⊙”如下:对于两个自然数a和b,它们的最大公约数与最小公倍数的差记为a ⊙b。

比如:10和14,最小公倍数为70,最大公约数为2,则10⊙14=70-2=68。

(1)求12⊙21,5⊙15;(2)说明,如果c整除a和b,则c也整除a⊙b;如果c整除a和a⊙b,则c也整除b;(3)已知6⊙x=27,求x的值。

答案一、填空题(共10小题,每小题3分,满分30分)1.(3分)规定:a※b=(b+a)×b,那么(2※3)※5=100.考点:定义新运算。

分析:根据a※b=(b+a)×b,得出新的运算方法,再根据新的运算方法解答(2※3)※5的值.解答:解:因为,2※3=(3+2)×3=15,所以,(2※3)※5=15※5=(5+15)×5=100,故答案为:100.点评:解答此题的关键是,根据所给的等式,找出新的运算方法,再运用新的运算方法,解答出要求式子的值.2.(3分)如果a△b表示(a﹣2)×b,例如3△4=(3﹣2)×4=4,那么,当a△5=30时,a=8.考点:定义新运算。

分析:根据“a△b表示(a﹣2)×b,3△4=(3﹣2)×4=4,”得出新的运算方法,再用新的运算方法计算a△5=30,即可写成方程的形式,解此方程得出a的值.解答:解:因为,a△5=30,所以,(a﹣2)×5=30,5a﹣10=30,5a=40,a=8,故答案为:8.点评:解答此题的关键是根据题意找出新运算方法,再根据新运算方法解答即可.3.(3分)定义运算“△”如下:对于两个自然数a和b,它们的最大公约数与最小公倍数的和记为a△b.例如:4△6=(4,6)+[4,6]=2+12=14.根据上面定义的运算,18△12=42.考点:定义新运算。

分析:根据新运算知道,求18△12,就是求18和12的最大公约数与最小公倍数的和,由此即可解答.解答:解:因为,18和12的最大公约数是6,最小公倍数是36,所以,18△12=(18,12)+[18,12]=6+36=42;故答案为:42.点评:解答此题的关键是,根据定义的新运算,找出运算方法,列式解答即可.4.(3分)已知a,b是任意有理数,我们规定:a⊕b=a+b﹣1,a⊗b=ab﹣2,那么4⊗[(6⊕8)⊕(3⊗5)]=98.考点:定义新运算。

分析:根据a⊕b=a+b﹣1,a⊗b=ab﹣2,得出新的运算方法,再运用新的运算方法计算4⊗[(6⊕8)⊕(3⊗5)]的值.解答:解:4⊗[(6⊕8)⊕(3⊗5)],=4⊗[(6+8﹣1)⊕(3×5﹣2)],=4⊗[13⊕13],=4⊗[13+13﹣1],=4⊗25,=4×25﹣2,=98,故答案为:98.点评:解答此题的关键是根据给出的式子,找出新的运算方法,用新运算方法解答即可.5.(3分)x为正数,<x>表示不超过x的质数的个数,如<5.1>=3,即不超过5.1的质数有2,3,5共3个.那么<<19>+<93>+<4>×<1>×<8>>的值是11.考点:定义新运算。

分析:根据题意,先求出不超过19的质数的个数,再求出不超过93的质数的个数,而不超过1的质数的个数是0,所以<4>×<1>×<8>的值是0,因此即可求出要求的答案.解答:解:因为,<19>为不超过19的质数,有2,3,5,7,11,13,17,19共8个,<93>为不超过的质数,共24个,并且,<1>=0,所以,<<19>+<93>+<4>×<1>×<8>>,=<<19>+<93>>,=<8+24>,=<32>,=11,故答案为:11.点评:解答此题的关键是,根据题意,找出新的符号表示的意义,再根据定义的新运算,找出对应量,解答即可.6.(3分)如果a⊙b表示3a﹣2b,例如4⊙5=3×4﹣2×5=2,那么,当x⊙5比5⊙x大5时,x=6.考点:定义新运算。

分析:根据所给的运算方法,将x⊙5比5⊙x大5写成方程的形式,解答方程即可.解答:解:由x⊙5﹣5⊙x=5,可得:(3x﹣2×5)﹣(3×5﹣2x)=5,5x﹣25=5,x=6,故答案为:6.点评:解答此题的关键是,根据题意找出新的运算方法,再根据新的运算方法,列式解答即可.7.(3分)如果1※4=1234,2※3=234,7※2=78,那么4※5=45678.考点:定义新运算。

分析:根据“1※4=1234,2※3=234,7※2=78”,得出新的运算方法:※的前一个数字是等号后面数的第一个数字,※后面的数字表示连续数的个数,是从※前面的数开始连续,然后运用新的运算方法计算4※5的值即可.解答:解:由于1※4=1234,2※3=234,7※2=78,所以4※5=45678;故答案为:45678.点评:解答此题的关键是,根据所给出的式子,找出新的运算方法,再利用新的运算方法解答即可.8.(3分)我们规定:符号○表示选择两数中较大数的运算,例如:5○3=3○5=5,符号△表示选择两数中较小数的运算,例如:5△3=3△5=3.请计算:=.考点:定义新运算。

分析:根据符号○表示选择两数中较大数的运算,符号△表示选择两数中较小数的运算,得出新的运算方法,用新的运算方法,计算所给出的式子,即可得出答案.解答:解:○=○=,0.625△=△=,△=△=,О2.25=О=,所以:==;故答案为:.点评:解答此题的关键是,根据题意找出新的运算方法,再根据新的运算方法,解答即可.9.(3分)规定一种新运算“※”:a※b=a×(a+1)×…×(a+b﹣1).如果(x※3)※4=421200,那么x=2.考点:定义新运算。

分析:先根据“a※b=a×(a+1)×…×(a+b+1)”,知道新运算“※”的运算方法,由于(x※3)※4=421200,这个式子里有两步新运算,所以令其中的一步运算式子为y,再根据新的运算方法,由此即可求出要求的答案.解答:解:令x※3=y,则y※4=421200,又因为,421200=24×34×52×13=24×25×26×27,所以,y=24,即x※3=24,又因为,24=23×3=2×3×4,所以,x=2;故答案为:2.点评:解答此题的关键是,根据新运算方法的特点,只要将整数写成几个自然数连乘的形式,即可得出答案.10.(3分)对于任意有理数x,y,定义一种运算“※”,规定:x※y=ax+by﹣cxy,其中的a,b,c表示已知数,等式右边是通常的加、减、乘运算.又知道1※2=3,2※3=4,x※m=x (m≠0),则m的数值是4.考点:定义新运算。

分析:根据x※y=ax+by﹣cxy,找出新的运算方法,根据新的运算方法,将1※2=3,2※3=4,x※m=x写成方程的形式,即可解答.解答:解:由题设的等式x※y=ax+by﹣cxy及x※m=x(m≠0),得a•0+bm﹣c•0•m=0,所以bm=0,又m≠0,故b=0,因此x※y=ax﹣cxy,由1※2=3,2※3=4,得,解得a=5,c=1,所以x※y=5x﹣xy,令x=1,y=m,得5﹣m=1,故m=4;故答案为:4.点评:解答此题的关键是,根据题意找出新的运算方法,再根据新的运算方法,列式解答即可.二、解答题(共4小题,满分0分)11.设a,b为自然数,定义a△b=a2+b2﹣ab.(1)计算(4△3)+(8△5)的值;(2)计算(2△3)△4;(3)计算(2△5)△(3△4).考点:定义新运算。

分析:根据“a△b=a2+b2﹣ab”得出新的运算方法,然后运用新的运算方法进行计算即可.解答:解:(1)(4△3)+(8△5),=(42+32﹣4×3)+(82+52﹣8×5),=1++49,=62;(2)(2△3)△4,=(22+32﹣2×3)△4,=7△4,=72+42﹣7×4,=37;(3)(2△5)△(3△4),=(22+52﹣2×5)△(32+42﹣3×4),=19△13,=192+132﹣19×13,=283;答:(1)62,(2)37,(3)283.点评:解答此题的关键是,根据所给出的式子,找出新的运算方法,再利用新的运算方法解答即可.12.设a,b为自然数,定义a※b如下:如果a≥b,定义a※b=a﹣b,如果a<b,则定义a※b=b ﹣a.(1)计算:(3※4)※9;(2)这个运算满足交换律吗?满足结合律吗?也是就是说,下面两式是否成立?①a※b=b※a;②(a※b)※c=a※(b※c).考点:定义新运算。

相关文档
最新文档