2015年浙江省台州市中考数学试题及答案(Word版)
2015年浙江省台州市中考数学试卷word解析版
浙江省台州市2015年中考数学试卷参考公式:抛物线2y ax bx c =++的顶点坐标为24,24b b ac a a ⎛⎫-- ⎪⎝⎭.一、选择题1.单项式2a 的系数是( )A.2B.2aC.1D.a2.下列四个几何体中,左视图为圆的是( )A B C D3.在下列调查中,适宜采用全面调查的是( )A.了解我省中学生视力情况B.了解九(1)班学生校服的尺码情况C.检测一批电灯泡的使用寿命D.调查台州《600全民新闻》栏目的收视率4.若反比例函数kyx的图象经过点(2,-1),则该反比例函数的图象在()A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限5.若一组数据3,x,4,5,6.,则这组数据的中位数为()A. 3B.4C.5D.66.把多项式228x -分解因式,结果正确的是( )A.22(8)x - B. 22(2)x - C. 2(2)(2)x x +- D. 42()x x x-7.设二次函数2(3)4y x =--图象的对称轴为直线L 上,则点M 的坐标可能是( ) A.(1,0) B.(3,0) C.(-3,0) D.(0,-4)8.如果将长为6cm ,宽为5cm 的长方形纸片折叠一次,那么这条折痕的长不可能是( ) A.8cm B.52cm C.5.5cm D.1cm9.如图,在菱形ABCD中,AB=8,点E、F分别在AB、AD上,且AE=AF,过点E作EG∥AD 交CD于点G,过点F作FH∥AB交BC于点H,EG与FH交于点O,当四边形AEOF与四边形CGOH的周长之差为12时,AE的值为()A.6.5B.6C.5.5D.510.某班有20位同学参加围棋、象棋比赛,甲说:“只参加一项的人数大于14人。
”乙说:“两项都参加的人数小于5人。
”对于甲、乙两人的说法,有下列四个命题,其中真命题的是()A.若甲对,则乙对;B.若乙对,则甲对;C.若乙错,则甲错;D.若甲粗,则乙对二.填空题x-≥的解集是11.不等式24012.有四张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是13.如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,DC=3,则点D到AB的距离是14.如图,这是台州市地图的一部分,分别以正东、正北方向为x 轴、y 轴的正方向建立直角 坐标系,规定一个单位长度表示1km ,甲、乙两人对着地图如下描述路桥区A 处的位置 甲:路桥区A 处的坐标是(2,0)乙:路桥区A 处在椒江区B 处南偏西30°方向,相距16km 则椒江区B 处的坐标是15.关于x 的方程210mx x m +-+=,有以下三个结论:①当m =0时,方程只有一个实数解②当0m ≠时,方程有两个不等的实数解③无论m 取何值,方程都有一个负数解,其中正确的是(填序号)16.如图,正方形ABCD的边长为1,中心为点O,有一边长大小不定的正六边形EFGHIJ绕点O可任意旋转,在旋转过程中,这个正六边形始终在正方形ABCD内(包括正方形的边),当这个六边形的边长最大时,AE的最小值为二、解答题17.计算:06(3)12015÷-+--18.先化简,再求值:211(1)a a a -++,其中21a =19.如图,这是一把可调节座椅的侧面示意图,已知头枕上的点到调节器点O处的距离为80cm,AO与地面垂直,现调整靠背,把OA绕点O旋转35°到OA’处,求调整后点A’比调整前点A的高度降低了多少cm?(结果取整数)?(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)20.图1中的摩天轮可抽象成一个圆,圆上一点离地面的高度y(m)与旋转时间x(min)之间的关系如图2所示(1)根据图2填表:x(min)0 3 6 8 12 …y(m)…(2)变量y是x的函数吗?为什么?(3)根据图中的信息,请写出摩天轮的直径21.某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分别直方图和扇形统计图:根据图中提供的信息,解答下列问题:(1)补全频数分布直方图(2)求扇形统计图中m的值和E组对应的圆心角度数(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数22.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC (1)若∠CBD=39°,求∠BAD的度数(2)求证:∠1=∠223.如图,在多边形ABCDE 中,∠A =∠AED =∠D =90°,AB =5,AE =2,ED =3,过点E 作EF ∥CB 交AB 于点F ,FB =1,过AE 上的点P 作PQ ∥AB 交线段EF 于点O ,交折线BCD 于点Q ,设AP =x ,PO .OQ =y(1)①延长BC 交ED 于点M ,则MD = ,DC =②求y 关于x 的函数解析式;(2)当1(0)2a x a ≤≤>时,96a yb ≤≤,求a ,b 的值; (3)当13y ≤≤时,请直接写出x 的取值范围24.定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点(1)已知点M,N是线段AB的勾股分割点,若AM=2,MN=3求BN的长;(2)如图2,在△ABC 中,FG 是中位线,点D ,E 是线段BC 的勾股分割点,且EC >DE ≥BD ,连接AD ,AE 分别交FG 于点M ,N ,求证:点M ,N 是线段FG 的勾股分割点(3)已知点C 是线段AB 上的一定点,其位置如图3所示,请在BC 上画一点D ,使C ,D 是线段AB 的勾股分割点(要求尺规作图,保留作图痕迹,画出一种情形即可)(4)如图4,已知点M ,N 是线段AB 的勾股分割点,MN >AM ≥BN ,△AMC ,△MND 和△NBM 均是等边三角形,AE 分别交CM ,DM ,DN 于点F ,G ,H ,若H 是DN 的中点,试探究AMF S ∆,BEN S ∆和MNHG S 四边形的数量关系,并说明理由。
中考数学——2015浙江中考汇编
2015年浙江省中考试卷汇编浙江省杭州市2015年中考数学试卷 (2)浙江省湖州市2015年中考数学试卷 ................................................................................................ 错误!未定义书签。
浙江省湖州市2015年中考数学试卷 ................................................................................................ 错误!未定义书签。
浙江省金华市2015年中考数学试卷 ................................................................................................ 错误!未定义书签。
浙江省金华市2015年中考数学试卷 ................................................................................................ 错误!未定义书签。
浙江省宁波市2015年中考数学试卷 ................................................................................................ 错误!未定义书签。
浙江省衢州市2015年中考数学试卷 ................................................................................................ 错误!未定义书签。
浙江省绍兴市2015年中考数学试卷 ................................................................................................ 错误!未定义书签。
【数学】2015学年浙江省台州市八年级下学期期中数学试卷带解析答案PDF
2014-2015学年浙江省台州市八年级(下)期中数学试卷一、选择题(本大题有10小题,每小题3分,共30分)1.(3分)二次根式的值是()A.3 B.3或﹣3 C.9 D.﹣32.(3分)方程(x﹣2)2=3(x﹣2)的根是()A.2 B.﹣2 C.2或﹣2 D.2或53.(3分)下面这几个车标中,是中心对称图形而不是轴对称图形的共有()A.1 B.2 C.3 D.44.(3分)已知(x﹣y+3)2+=0,则x+y的值为()A.0 B.﹣1 C.1 D.55.(3分)下列说法不正确的是()A.有两组对边分别平行的四边形是平行四边形B.平行四边形的对角线互相平分C.平行四边形的对角互补,邻角相等D.平行四边形的对边平行且相等6.(3分)体育课时,九年级乙班10位男生进行投篮练习,10次投篮投中的次数分别为:3,3,6,4,3,7,5,7,4,9,则这组数据的众数与中位数分别为()A.3与4.5 B.9与7 C.3与3 D.3与57.(3分)四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判断这个四边形是平行四边形的条件共有()A.1组 B.2组 C.3组 D.4组8.(3分)商场在促销活动中,将标价为200元的商品,在打a折的基础上再打a折销售,现该商品的售价为128元,则a的值是()A.0.64 B.0.8 C.8 D.6.49.(3分)用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应该假设这个三角形中()A.有一个内角小于60° B.每一个内角都小于60°C.有一个内角大于60°D.每一个内角都大于60°10.(3分)在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,作AF垂直于直线CD于点F,若AB=5,BC=6,则CE+CF的值为()A.11+B.11+或1+C.11+或11﹣D.11﹣二、填空题(本大题有8小题,每小题3分,共24分)11.(3分)如果有意义,那么x的取值范围是.12.(3分)一个多边形的内角和为1080°,则这个多边形的边数是.13.(3分)在▱ABCD中,若∠A+∠C=100°,则∠D=°.14.(3分)在Rt△ABC中,AB=3,BC=4,那么AC=.15.(3分)已知平行四边形ABCD中,AC,BD交于点O,若AB=6,AC=8,则BD的取值范围是.16.(3分)某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是.17.(3分)如图,△ACB和△ECD都是等腰直角三角形,△ACB的顶点A在△ECD 的斜边DE上,若,则=.18.(3分)在平面直角坐标系中,已知A(﹣2,1),B(﹣2,﹣1),O(0,0).若以A、B、C、O为顶点的四边形为平行四边形,那么点C的坐标是.三、计算题(共46分)19.(8分)计算:(1)﹣()﹣1+(﹣1)2013(2)+﹣+4.20.(12分)如图,M、N是平行四边形ABCD对角线BD上两点.(1)若BM=MN=DN,求证:四边形AMCN为平行四边形;(2)若M、N为对角线BD上的动点(均可与端点重合),设BD=12cm,点M 由点B向点D匀速运动,速度为2(cm/s),同时点N由点D向点B匀速运动,速度为a(cm/s),运动时间为t(s).若要使四边形AMCN为平行四边形,求a 的值及t的取值范围.21.(8分)如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.(1)求证:EB=GD;(2)判断EB与GD的位置关系,并说明理由;(3)若AB=2,AG=,求EB的长.22.(8分)已知:如图,平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别相交于点E、F.求证:四边形AFCE是菱形.23.(10分)如图,在▱ABCD中,BD=2AB,AC与BD相交于点O,点E、F、G 分别是OC、OB、AD的中点.求证:(1)DE⊥OC;(2)EG=EF.2014-2015学年浙江省台州市八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题有10小题,每小题3分,共30分)1.(3分)二次根式的值是()A.3 B.3或﹣3 C.9 D.﹣3【解答】解:原式==3.故选:A.2.(3分)方程(x﹣2)2=3(x﹣2)的根是()A.2 B.﹣2 C.2或﹣2 D.2或5【解答】解:(x﹣2)2=3(x﹣2)(x﹣2)2﹣3(x﹣2)=0∴(x﹣2)(x﹣2﹣3)=0∴x﹣2=0或x﹣5=0∴x1=2,x2=5故选:D.3.(3分)下面这几个车标中,是中心对称图形而不是轴对称图形的共有()A.1 B.2 C.3 D.4【解答】解:第一个图形,既是中心对称图形,又是轴对称图形,故选项错误;第二个图形,是轴对称图形,不是中心对称图形,故选项错误;第三个图形,是轴对称图形,不是中心对称图形,故选项错误;第四、五个是中心对称图形而不是轴对称图形,故选项正确.故选:B.4.(3分)已知(x﹣y+3)2+=0,则x+y的值为()A.0 B.﹣1 C.1 D.5【解答】解:∵(x﹣y+3)2+=0,∴,解得,∴x+y=﹣1+2=1.故选:C.5.(3分)下列说法不正确的是()A.有两组对边分别平行的四边形是平行四边形B.平行四边形的对角线互相平分C.平行四边形的对角互补,邻角相等D.平行四边形的对边平行且相等【解答】解:A、平行四边形的判定定理:有两组对边分别平行的四边形是平行四边形,故本选项正确;B、平行四边形的性质:平行四边形的对角线互相平分,故本选项正确;C、平行四边形的对角相等,邻角互补,故本选项错误;D、平行四边形的性质:平行四边形的对边平行且相等,故本选项正确;故选:C.6.(3分)体育课时,九年级乙班10位男生进行投篮练习,10次投篮投中的次数分别为:3,3,6,4,3,7,5,7,4,9,则这组数据的众数与中位数分别为()A.3与4.5 B.9与7 C.3与3 D.3与5【解答】解:从小到大排列此数据为:3、3、3、4、4、5、6、7、7、9,数据3出现了三次最多为众数;4处在第5位,5处在第6位,所以4.5为中位数.所以本题这组数据的中位数是4.5,众数是3.故选:A.7.(3分)四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判断这个四边形是平行四边形的条件共有()A.1组 B.2组 C.3组 D.4组【解答】解:①根据平行四边形的判定定理:两组对边分别平行的四边形是平行四边形,可知①能判断这个四边形是平行四边形;②根据平行四边形的判定定理:两组对边分别相等的四边形是平行四边形,可知②能判断这个四边形是平行四边形;③根据平行四边形的判定定理:两条对角线互相平分的四边形是平行四边形,可知③能判断这个四边形是平行四边形;④根据平行四边形的判定定理:一组对边平行且相等的四边形是平行四边形,可知④不能判断这个四边形是平行四边形;故给出下列四组条件中,①②③能判断这个四边形是平行四边形,故选:C.8.(3分)商场在促销活动中,将标价为200元的商品,在打a折的基础上再打a折销售,现该商品的售价为128元,则a的值是()A.0.64 B.0.8 C.8 D.6.4【解答】解:根据题意得:200××=128,即a 2=64,解得:a=8.故选:C.9.(3分)用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应该假设这个三角形中()A.有一个内角小于60° B.每一个内角都小于60°C.有一个内角大于60°D.每一个内角都大于60°【解答】解:用反证法证明“三角形中必有一个内角小于或等于60°”时,应先假设三角形中每一个内角都不小于或等于60°,即每一个内角都大于60°.故选:D.10.(3分)在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,作AF垂直于直线CD于点F,若AB=5,BC=6,则CE+CF的值为()A.11+B.11+或1+C.11+或11﹣D.11﹣【解答】解:∵四边形ABCD是平行四边形,∴AB=CD=5,BC=AD=6,①如图:由平行四边形面积公式得:BC×AE=CD×AF=15,求出AE=,AF=3,在Rt△ABE和Rt△ADF中,由勾股定理得:AB2=AE2+BE2,把AB=5,AE=代入求出BE=,同理DF=3>5,即F在DC的延长线上(如上图),∴CE=6﹣,CF=3﹣5,即CE+CF=1+,②如图:∵AB=5,AE=,在△ABE中,由勾股定理得:BE=,同理DF=3,由①知:CE=6+,CF=3+5,∴CE+CF=11+.故选:B.二、填空题(本大题有8小题,每小题3分,共24分)11.(3分)如果有意义,那么x的取值范围是x≥1.【解答】解:由题意得:x﹣1≥0,解得:x≥1,故答案为:x≥1.12.(3分)一个多边形的内角和为1080°,则这个多边形的边数是8.【解答】解:根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8.∴这个多边形的边数是8.故答案为:8.13.(3分)在▱ABCD中,若∠A+∠C=100°,则∠D=130°.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,AB∥CD,∵∠A+∠C=100°,∴∠A=50°,∴∠D=180°﹣∠A=130°.故答案为:130.14.(3分)在Rt△ABC中,AB=3,BC=4,那么AC=5或.【解答】(1)当AB、BC为直角边时,根据勾股定理得:AC===5,(2)当BC为斜边,AB为直角边时,根据勾股定理得:AC===,当答案为:5或.15.(3分)已知平行四边形ABCD中,AC,BD交于点O,若AB=6,AC=8,则BD的取值范围是4<BD<20.【解答】解:如图,过点C作CE∥BD,交AB的延长线于点E,∵四边形ABCD是平行四边形,∴AB∥CD,∴四边形BECD是平行四边形,∴CE=BD,BE=CD=AB=6,∴在△ACE中,AE=2AB=12,AC=8,AE﹣AC<CE<AE+AC,即12﹣8<BD<12+8,∴4<BD<20.故答案为:4<BD<20.16.(3分)某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是20%.【解答】解:设该药品平均每次降价的百分率为x,由题意可知经过连续两次降价,现在售价每盒16元,故25(1﹣x)2=16,解得x=0.2或1.8(不合题意,舍去),故该药品平均每次降价的百分率为20%.17.(3分)如图,△ACB和△ECD都是等腰直角三角形,△ACB的顶点A在△ECD的斜边DE上,若,则=:1.【解答】解:如图,连结BD.∵△ACB与△ECD都是等腰直角三角形,∴∠ECD=∠ACB=90°,∠E=∠ADC=∠CAB=45°,EC=DC,AC=BC,AC2+BC2=AB2,∴2AC2=AB2.∠ECD﹣ACD=∠ACB﹣∠ACD,∴∠ACE=∠BCD.在△AEC和△BDC中,,∴△AEC≌△BDC(SAS).∴AE=BD,∠E=∠BDC.∴∠BDC=45°,∴∠BDC+∠ADC=90°,即∠ADB=90°.∴AD2+BD2=AB2,∴AD2+AE2=2AC2.又∵,∴AD=3AE,∴10AE2=2AC2.∴=故答案是::1.18.(3分)在平面直角坐标系中,已知A(﹣2,1),B(﹣2,﹣1),O(0,0).若以A、B、C、O为顶点的四边形为平行四边形,那么点C的坐标是(0,2)或(0,﹣2)或(﹣4,0).【解答】解:如图,①当AB为该平行四边形的边时,AB=OC,∵A(﹣2,1),B(﹣2,﹣1),O(0,0).∴C(0,2)或(0,﹣2).②当AB为该平行四边形的对角线时,C(﹣4,0).综上所述,点C的坐标是(0,2)或(0,﹣2)或(﹣4,0).故答案是:(0,2)或(0,﹣2)或(﹣4,0).三、计算题(共46分)19.(8分)计算:(1)﹣()﹣1+(﹣1)2013(2)+﹣+4.【解答】解:(1)原式=4﹣2﹣1=1;(2)原式=2+3﹣2+4=5+2.20.(12分)如图,M、N是平行四边形ABCD对角线BD上两点.(1)若BM=MN=DN,求证:四边形AMCN为平行四边形;(2)若M、N为对角线BD上的动点(均可与端点重合),设BD=12cm,点M 由点B向点D匀速运动,速度为2(cm/s),同时点N由点D向点B匀速运动,速度为a(cm/s),运动时间为t(s).若要使四边形AMCN为平行四边形,求a 的值及t的取值范围.【解答】(1)证明:连接AC,交BD于点O,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BM=DN,∴OB﹣BM=OD﹣DN,∴OM=ON,∴四边形AMCN为平行四边形;(2)解:要使四边形AMCN为平行四边形,即OM=ON,∴a=2;∵当M、N重合于点O,即t===3时,则点A、M、C、N在同一直线上,不能组成四边形,且当点M由B运动到点D时,t=12÷2=6,∴当0≤t<3或3<t≤6时,四边形AMCN为平行四边形.21.(8分)如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.(1)求证:EB=GD;(2)判断EB与GD的位置关系,并说明理由;(3)若AB=2,AG=,求EB的长.【解答】(1)证明:在△GAD和△EAB中,∠GAD=90°+∠EAD,∠EAB=90°+∠EAD ∴∠GAD=∠EAB,∵四边形EFGA和四边形ABCD是正方形,∴AG=AE,AB=AD,在△GAD和△EAB中,,∴△GAD≌△EAB(SAS),∴EB=GD;(2)解:EB⊥GD.理由如下:∵四边形ABCD是正方形,∴∠DAB=90°,∴∠AMB+∠ABM=90°,又∵△AEB≌△AGD,∴∠GDA=∠EBA,∵∠HMD=∠AMB(对顶角相等),∴∠HDM+∠DMH=∠AMB+∠ABM=90°,∴∠DHM=180°﹣(∠HDM+∠DMH)=180°﹣90°=90°,∴EB⊥GD.(3)解:连接AC、BD,BD与AC交于点O,∵四边形ABCD是正方形,∵AB=AD=2,在Rt△ABD中,DB=,在Rt△AOB中,OA=OB,AB=2,由勾股定理得:2AO2=22,OA=,即OG=OA+AG=+=2,∴EB=GD=.22.(8分)已知:如图,平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别相交于点E、F.求证:四边形AFCE是菱形.【解答】证明:方法一:∵AE∥FC.∴∠EAC=∠FCA.∵在△AOE与△COF中,,∴△AOE≌△COF(ASA).∴四边形AFCE为平行四边形,又∵EF⊥AC,∴四边形AFCE为菱形;方法二:同方法一,证得△AOE≌△COF.∴AE=CF.∴四边形AFCE是平行四边形.又∵EF是AC的垂直平分线,∴EA=EC,∴四边形AFCE是菱形;23.(10分)如图,在▱ABCD中,BD=2AB,AC与BD相交于点O,点E、F、G 分别是OC、OB、AD的中点.求证:(1)DE⊥OC;(2)EG=EF.【解答】证明:(1)∵四边形ABCD是平行四边形,AC与BD相交于点O,∴BD=2OD,AB=CD,AD=BC.…(2分)∵BD=2AB,∴OD=AB=CD.…(1分)∵点E是OC的中点,∴DE⊥OC.…(2分)(2)∵DE⊥OC,点G是AD的中点,∴EG=AD;…(2分)∵点E、F分别是OC、OB的中点.∴EF=BC.…(2分)∵AD=BC,∴EG=EF.…(1分)。
2015年全国各地中考试题汇总2015年浙江省义乌市中考数学试卷解析
2015年浙江省义乌市中考数学试卷一、单项选择题(本大题有10小题;每小题3分,共30分;在每小题提供的四个选项中,只有一项符合题目的要求)1.(3分)(2015•义乌市)计算(﹣1)×3的结果是()A.﹣3B.﹣2C.2D.32.(3分)(2015•义乌市)据报道,2015年第一季度,义乌电商实现交易额约26000000000元,同比增长22%,将26000000000用科学记数法表示为()A.2.6×1010B.2.6×1011C.26×1010D.0.26×10113.(3分)(2015•义乌市)有6个相同的立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.4.(3分)(2015•义乌市)下面是一位同学做的四道题:①2a+3b=5ab;②(3a3)2=6a6;③a6÷a2=a3;④a2•a3=a5,其中做对的一道题的序号是()A.①B.②C.③D.④5.(3分)(2015•义乌市)在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是()A.B.C.D.6.(3分)(2015•义乌市)化简的结果是()A.x+1B.C.x﹣1D.7.(3分)(2015•义乌市)如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SAS B.ASA C.AAS D.SSS8.(3分)(2015•义乌市)如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则的长()A.B.πC.D.2π9.(3分)(2015•义乌市)如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换.已知抛物线经过两次简单变换后的一条抛物线是y=x2+1,则原抛物线的解析式不可能的是()A.y=x2﹣1B.y=x2+6x+5C.y=x2+4x+4D.y=x2+8x+17 10.(3分)(2015•义乌市)挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其它棒条压着时,就可以把它往上拿走.如图中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…,则第6次应拿走()A.②号棒B.⑦号棒C.⑧号棒D.⑩号棒二、填空题(本大题有6小题,每小题4分,共24分)11.(4分)(2015•义乌市)分解因式:x2﹣4=.12.(4分)(2015•义乌市)如图,已知点A(0,1),B(0,﹣1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则∠BAC等于度.13.(4分)(2015•义乌市)由于木质衣架没有柔性,在挂置衣服的时候不太方便操作.小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图1,衣架杆OA=OB=18cm,若衣架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是cm.14.(4分)(2015•义乌市)在Rt△ABC中,∠C=90°,BC=3,AC=4,点P在以C为圆心,5为半径的圆上,连结PA,PB.若PB=4,则PA的长为.15.(4分)(2015•义乌市)在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a).如图,若曲线与此正方形的边有交点,则a的取值范围是.16.(4分)(2015•义乌市)实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm高度处连通(即管子底离容器底5cm),现三个容器中,只有甲中有水,水位高1cm,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升cm.(1)开始注水1分钟,丙的水位上升cm.(2)开始注入分钟的水量后,乙的水位比甲高0.5cm.三、解答题(本大题有8小题,第1719小题每小题6分,第20、21小题每小题6分,第22、23小题每小题6分,第24小题12分,共66分)17.(6分)(2015•义乌市)(1)计算:;(2)解不等式:3x﹣5≤2(x+2)18.(6分)(2015•义乌市)小敏上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中.小敏离家的路程y(米)和所经过的时间x(分)之间的函数图象如图所示.请根据图象回答下列问题:(1)小敏去超市途中的速度是多少?在超市逗留了多少时间?(2)小敏几点几分返回到家?19.(6分)(2015•义乌市)为了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A,B,C,D四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图.根据以上信息,解答下列问题:(1)问这次被抽检的电动汽车共有几辆?并补全条形统计图;(2)估计这种电动汽车一次充电后行驶的平均里程数为多少千米?20.(8分)(2015•义乌市)如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.(1)求∠BPQ的度数;(2)求该电线杆PQ的高度(结果精确到1m).备用数据:,.21.(8分)(2015•义乌市)如果抛物线y=ax2+bx+c过定点M(1,1),则称次抛物线为定点抛物线.(1)张老师在投影屏幕上出示了一个题目:请你写出一条定点抛物线的一个解析式.小敏写出了一个答案:y=2x2+3x﹣4,请你写出一个不同于小敏的答案;(2)张老师又在投影屏幕上出示了一个思考题:已知定点抛物线y=﹣x2+2bx+c+1,求该抛物线顶点纵坐标的值最小时的解析式,请你解答.22.(10分)(2015•义乌市)某校规划在一块长AD为18m,宽AB为13m的长方形场地ABCD上,设计分别与AD,AB平行的横向通道和纵向通道,其余部分铺上草皮.(1)如图1,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM:AN=8:9,问通道的宽是多少?(2)为了建造花坛,要修改(1)中的方案,如图2,将三条通道改为两条通道,纵向的宽度改为横向宽度的2倍,其余四块草坪相同,且每一块草坪均有一边长为8m,这样能在这些草坪建造花坛.如图3,在草坪RPCQ中,已知RE⊥PQ于点E,CF⊥PQ于点F,求花坛RECF的面积.23.(10分)(2015•义乌市)正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG 绕点A按顺时针方向旋转,记旋转角∠DAG=α,其中0°≤α≤180°,连结DF,BF,如图.(1)若α=0°,则DF=BF,请加以证明;(2)试画一个图形(即反例),说明(1)中命题的逆命题是假命题;(3)对于(1)中命题的逆命题,如果能补充一个条件后能使该逆命题为真命题,请直接写出你认为需要补充的一个条件,不必说明理由.24.(12分)(2015•义乌市)在平面直角坐标系中,O为原点,四边形OABC的顶点A在x轴的正半轴上,OA=4,OC=2,点P,点Q分别是边BC,边AB上的点,连结AC,PQ,点B1是点B关于PQ的对称点.(1)若四边形PABC为矩形,如图1,①求点B的坐标;②若BQ:BP=1:2,且点B1落在OA上,求点B1的坐标;(2)若四边形OABC为平行四边形,如图2,且OC⊥AC,过点B1作B1F∥x轴,与对角线AC、边OC分别交于点E、点F.若B1E:B1F=1:3,点B1的横坐标为m,求点B1的纵坐标,并直接写出m的取值范围.2015年浙江省义乌市中考数学试卷参考答案与试题解析一、单项选择题(本大题有10小题;每小题3分,共30分;在每小题提供的四个选项中,只有一项符合题目的要求)1.(3分)(2015•义乌市)计算(﹣1)×3的结果是()A.﹣3B.﹣2C.2D.3考点:有理数的乘法.分析:根据有理数的乘法运算法则进行计算即可得解.解答:解:(﹣1)×3=﹣1×3=﹣3.故选A.点评:本题考查了有理数的乘法,是基础题,计算时要注意符号的处理.2.(3分)(2015•义乌市)据报道,2015年第一季度,义乌电商实现交易额约26000000000元,同比增长22%,将26000000000用科学记数法表示为()A.2.6×1010B.2.6×1011C.26×1010D.0.26×1011考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将26000000000用科学记数法表示为2.6×1010,故选:A.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2015•义乌市)有6个相同的立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据主视图是从正面看得到的图形,可得答案.解答:解:从正面看第一层三个小正方形,第二层左边一个小正方形,右边一个小正方形.故选:C.点评:本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.(3分)(2015•义乌市)下面是一位同学做的四道题:①2a+3b=5ab;②(3a3)2=6a6;③a6÷a2=a3;④a2•a3=a5,其中做对的一道题的序号是()A.①B.②C.③D.④考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:①根据合并同类项,可判断①,②根据积的乘方,可得答案;③根据同底数幂的除法,可得答案;④根据同底数幂的乘法,可得答案.解答:解:①不是同类项不能合并,故①错误;②积的乘方等于乘方的积,故②错误;③同底数幂的除法底数不变指数相减,故③错误;④同底数幂的乘法底数不变指数相加,故④正确;故选:D.点评:本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.5.(3分)(2015•义乌市)在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是()A.B.C.D.考点:概率公式.分析:由在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,直接利用概率公式求解即可求得答案.解答:解:∵在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,∴从中任意摸出一个球,则摸出白球的概率是:=.故选B.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.6.(3分)(2015•义乌市)化简的结果是()A.x+1B.C.x﹣1D.考点:分式的加减法.专题:计算题.分析:原式变形后,利用同分母分式的减法法则计算即可得到结果.解答:解:原式=﹣===x+1.故选A点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.7.(3分)(2015•义乌市)如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SAS B.ASA C.AAS D.SSS考点:全等三角形的应用.分析:在△ADC和△ABC中,由于AC为公共边,AB=AD,BC=DC,利用SSS定理可判定△ADC≌△ABC,进而得到∠DAC=∠BAC,即∠QAE=∠PAE.解答:解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,即∠QAE=∠PAE.故选:D.点评:本题考查了全等三角形的应用;这种设计,用SSS判断全等,再运用性质,是全等三角形判定及性质的综合运用,做题时要认真读题,充分理解题意.8.(3分)(2015•义乌市)如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则的长()B.πC.D.A.2π考点:弧长的计算;圆周角定理;圆内接四边形的性质.分析:连接OA、OC,然后根据圆周角定理求得∠AOC的度数,最后根据弧长公式求解.解答:解:连接OA、OC,∵∠B=135°,∴∠D=180°﹣135°=45°,∴∠AOC=90°,则的长==π.故选B.点评:本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式L=.9.(3分)(2015•义乌市)如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换.已知抛物线经过两次简单变换后的一条抛物线是y=x2+1,则原抛物线的解析式不可能的是()A.y=x2﹣1B.y=x2+6x+5C.y=x2+4x+4D.y=x2+8x+17考点:二次函数图象与几何变换.分析:根据图象左移加,右移减,图象上移加,下移减,可得答案.解答:解:A、y=x2﹣1,先向上平移1个单位得到y=x2,再向上平移1个单位可以得到y=x2+1,故A正确;B、y=x2+6x+5=(x+3)2﹣4,无法经两次简单变换得到y=x2+1,故B错误;C、y=x2+4x+4=(x+2)2,先向右平移2个单位得到y=(x+2﹣2)2=x2,再向上平移1个单位得到y=x2+1,故C正确;D、y=x2+8x+17=(x+4)2+1,先向右平移2个单位得到y=(x+4﹣2)2+1=(x+2)2+1,再向右平移2个单位得到y=x2+1,故D正确.故选:B.点评:本题考查了二次函数图象与几何变换,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式,注意由目标函数图象到原函数图象方向正好相反.10.(3分)(2015•义乌市)挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其它棒条压着时,就可以把它往上拿走.如图中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…,则第6次应拿走()A.②号棒B.⑦号棒C.⑧号棒D.⑩号棒考点:规律型:图形的变化类.分析:仔细观察图形,找到拿走后图形下面的游戏棒,从而确定正确的选项.解答:解:仔细观察图形发现:第1次应拿走⑨号棒,第2次应拿走⑤号棒,第3次应拿走⑥号棒,第4次应拿走②号棒,第5次应拿走⑧号棒,第6次应拿走⑩号棒,故选D.点评:本题考查了图形的变化类问题,解题的关键是仔细观察图形,锻炼了同学们的识图能力.二、填空题(本大题有6小题,每小题4分,共24分)11.(4分)(2015•义乌市)分解因式:x2﹣4=(x+2)(x﹣2).考点:因式分解-运用公式法.专题:因式分解.分析:直接利用平方差公式进行因式分解即可.解答:解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).点评:本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.12.(4分)(2015•义乌市)如图,已知点A(0,1),B(0,﹣1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则∠BAC等于60度.考点:垂径定理;坐标与图形性质;等边三角形的判定与性质;勾股定理.分析:求出OA、AC,通过余弦函数即可得出答案.解答:解:∵A(0,1),B(0,﹣1),∴AB=2,OA=1,∴AC=2,在Rt△AOC中,cos∠BAC==,∴∠BAC=60°,故答案为60.点评:本题考查了垂径定理的应用,关键是求出AC、OA的长.13.(4分)(2015•义乌市)由于木质衣架没有柔性,在挂置衣服的时候不太方便操作.小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图1,衣架杆OA=OB=18cm,若衣架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是18 cm.考点:等边三角形的判定与性质.专题:应用题.分析:根据有一个角是60°的等腰三角形的等边三角形进行解答即可.解答:解:∵OA=OB,∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=OB=18cm,故答案为:18点评:此题考查等边三角形问题,关键是根据有一个角是60°的等腰三角形的等边三角形进行分析.14.(4分)(2015•义乌市)在Rt△ABC中,∠C=90°,BC=3,AC=4,点P在以C为圆心,5为半径的圆上,连结PA,PB.若PB=4,则PA的长为3或.考点:点与圆的位置关系;勾股定理;垂径定理.专题:分类讨论.分析:连结CP,PB的延长线交⊙C于P′,如图,先计算出CB2+PB2=CP2,则根据勾股定理的逆定理得∠CBP=90°,再根据垂径定理得到PB=P′B=4,接着证明四边形ACBP为矩形,则PA=BC=3,然后在Rt△APP′中利用勾股定理计算出P′A=,从而得到满足条件的PA的长为3或.解答:解:连结CP,PB的延长线交⊙C于P′,如图,∵CP=5,CB=3,PB=4,∴CB2+PB2=CP2,∴△CPB为直角三角形,∠CBP=90°,∴CB⊥PB,∴PB=P′B=4,∵∠C=90°,∴PB∥AC,而PB=AC=4,∴四边形ACBP为矩形,∴PA=BC=3,在Rt△APP′中,∵PA=3,PP′=8,∴P′A==,∴PA的长为3或.故答案为3或.点评:本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.也考查了垂径定理和勾股定理.15.(4分)(2015•义乌市)在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a).如图,若曲线与此正方形的边有交点,则a的取值范围是≤a.考点:反比例函数图象上点的坐标特征.分析:根据题意得出C点的坐标(a﹣1,a﹣1),然后分别把A、C的坐标代入求得a的值,即可求得a的取值范围.解答:解:∵A点的坐标为(a,a).根据题意C(a﹣1,a﹣1),当A在双曲线时,则a﹣1=,解得a=+1,当C在双曲线时,则a=,解得a=,∴a的取值范围是≤a.故答案为≤a.点评:本题考查了反比例函数图象上点的坐标特征,点的坐标适合解析式是解题的关键.16.(4分)(2015•义乌市)实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm高度处连通(即管子底离容器底5cm),现三个容器中,只有甲中有水,水位高1cm,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升cm.(1)开始注水1分钟,丙的水位上升cm.(2)开始注入或分钟的水量后,乙的水位比甲高0.5cm.考点:一元一次方程的应用.分析:(1)由甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,注水1分钟,乙的水位上升cm,得到注水1分钟,丙的水位上升cm;(2)设开始注入t分钟的水量后,乙的水位比甲高0.5cm,有两种情况:①甲的水位不变时,②乙的水位到达管子底部,甲的水位上升时,分别列方程求解即可.解答:解:(1)∵甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,∵注水1分钟,乙的水位上升cm,∴得到注水1分钟,丙的水位上升cm;(2)设开始注入t分钟的水量后,乙的水位比甲高0.5cm,有两种情况:①甲的水位不变时;由题意得,t﹣1=0.5,解得:t=,∵×=6>5,∴此时丙容器已向甲容器溢水,∵5÷=分钟,×=,即经过分钟时容器的水到达管子底部,乙的水位上升,∴+2×(t﹣)﹣1=0.5,解得:t=;②当乙的水位到达管子底部,甲的水位上升时,∵乙的水位到达管子底部的时间为;+(5﹣)÷÷2=分钟,∴5﹣1﹣2×(t﹣)=0.5,解得:t=,综上所述开始注入或分钟的水量后,乙的水位比甲高0.5cm.故答案为cm;或.点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.三、解答题(本大题有8小题,第1719小题每小题6分,第20、21小题每小题6分,第22、23小题每小题6分,第24小题12分,共66分)17.(6分)(2015•义乌市)(1)计算:;(2)解不等式:3x﹣5≤2(x+2)考点:实数的运算;零指数幂;负整数指数幂;解一元一次不等式;特殊角的三角函数值.专题:计算题.分析:(1)原式第一项利用特殊角的三角函数值计算,第二项利用零指数幂法则计算,第三项利用算术平方根定义计算,最后一项利用负整数指数幂法则计算即可得到结果;(2)不等式去括号,移项合并,把x系数化为1,即可求出解.解答:解:(1)原式=2×﹣1++2=+;(2)去括号得:3x﹣5≤2x+4,移项合并得:x≤9.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)(2015•义乌市)小敏上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中.小敏离家的路程y(米)和所经过的时间x(分)之间的函数图象如图所示.请根据图象回答下列问题:(1)小敏去超市途中的速度是多少?在超市逗留了多少时间?(2)小敏几点几分返回到家?考点:一次函数的应用.分析:(1)根据观察横坐标,可得去超市的时间,根据观察纵坐标,可得去超市的路程,根据路程与时间的关系,可得答案;在超市逗留的时间即路程不变化所对应的时间段;(2)求出返回家时的函数解析式,当y=0时,求出x的值,即可解答.解答:解:(1)小敏去超市途中的速度是:3000÷10=300(米/分),在超市逗留了的时间为:40﹣10=30(分).(2)设返回家时,y与x的函数解析式为y=kx+b,把(40,3000),(45,2000)代入得:,解得:,∴函数解析式为y=﹣200x+11000,当y=0时,x=55,∴返回到家的时间为:8:55.点评:本题考查了一次函数的应用,观察函数图象获取信息是解题关键.19.(6分)(2015•义乌市)为了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A,B,C,D四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图.根据以上信息,解答下列问题:(1)问这次被抽检的电动汽车共有几辆?并补全条形统计图;(2)估计这种电动汽车一次充电后行驶的平均里程数为多少千米?考点:条形统计图;扇形统计图;加权平均数.分析:(1)根据条形统计图和扇形图可知,将一次充电后行驶的里程数分为B等级的有30辆电动汽车,所占的百分比为30%,用30÷30%即可求出电动汽车的总量;分别计算出C、D所占的百分比,即可得到A所占的百分比,即可求出A的电动汽车的辆数,即可补全统计图;(2)用总里程除以汽车总辆数,即可解答.解答:解:(1)这次被抽检的电动汽车共有:30÷30%=100(辆),C所占的百分比为:40÷100×100%=40%,D所占的百分比为:20÷100×100%=20%,A所占的百分比为:100%﹣40%﹣20%﹣30%=10%,A等级电动汽车的辆数为:100×10%=10(辆),补全统计图如图所示:(2)这种电动汽车一次充电后行驶的平均里程数为:230)=217(千米),∴估计这种电动汽车一次充电后行驶的平均里程数为217千米.点评:此题考查了条形统计图,以及扇形统计图,弄清题意是解本题的关键.20.(8分)(2015•义乌市)如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.(1)求∠BPQ的度数;(2)求该电线杆PQ的高度(结果精确到1m).备用数据:,.考点:解直角三角形的应用-仰角俯角问题.分析:(1)延长PQ交直线AB于点E,根据直角三角形两锐角互余求得即可;92)设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE﹣BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ的长度即可求解.解答:解:延长PQ交直线AB于点E,(1)∠BPQ=90°﹣60°=30°;(2)设PE=x米.在直角△APE中,∠A=45°,则AE=PE=x米;∵∠PBE=60°∴∠BPE=30°在直角△BPE中,BE=PE=x米,∵AB=AE﹣BE=6米,则x﹣x=6,解得:x=9+3.则BE=(3+3)米.在直角△BEQ中,QE=BE=(3+3)=(3+)米.∴PQ=PE﹣QE=9+3﹣(3+)=6+2≈9(米).答:电线杆PQ的高度约9米.点评:本题考查了仰角的定义,以及三角函数,正确求得PE的长度是关键.21.(8分)(2015•义乌市)如果抛物线y=ax2+bx+c过定点M(1,1),则称次抛物线为定点抛物线.(1)张老师在投影屏幕上出示了一个题目:请你写出一条定点抛物线的一个解析式.小敏写出了一个答案:y=2x2+3x﹣4,请你写出一个不同于小敏的答案;(2)张老师又在投影屏幕上出示了一个思考题:已知定点抛物线y=﹣x2+2bx+c+1,求该抛物线顶点纵坐标的值最小时的解析式,请你解答.考点:二次函数图象上点的坐标特征;二次函数的性质.分析:(1)根据顶点式的表示方法,结合题意写一个符合条件的表达式则可;(2)根据顶点纵坐标得出b=1,再利用最小值得出c=﹣1,进而得出抛物线的解析式.解答:解:(1)依题意,选择点(1,1)作为抛物线的顶点,二次项系数是1,根据顶点式得:y=x2﹣2x+2;(2)∵定点抛物线的顶点坐标为(b,c+b2+1),且﹣1+2b+c+1=1,∴c=1﹣2b,∵顶点纵坐标c+b2+1=2﹣2b+b2=(b﹣1)2+1,∴当b=1时,c+b2+1最小,抛物线顶点纵坐标的值最小,此时c=﹣1,∴抛物线的解析式为y=﹣x2+2x.点评:本题考查抛物线的形状与抛物线表达式系数的关系,首先利用顶点坐标式写出来,再化为一般形式.22.(10分)(2015•义乌市)某校规划在一块长AD为18m,宽AB为13m的长方形场地ABCD上,设计分别与AD,AB平行的横向通道和纵向通道,其余部分铺上草皮.(1)如图1,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM:AN=8:9,问通道的宽是多少?(2)为了建造花坛,要修改(1)中的方案,如图2,将三条通道改为两条通道,纵向的宽度改为横向宽度的2倍,其余四块草坪相同,且每一块草坪均有一边长为8m,这样能在这些草坪建造花坛.如图3,在草坪RPCQ中,已知RE⊥PQ于点E,CF⊥PQ于点F,求花坛RECF的面积.考点:二元一次方程组的应用;勾股定理的应用.分析:(1)利用AM:AN=8:9,设通道的宽为xm,AM=8ym,则AN=9y,进而利用AD 为18m,宽AB为13m得出等式求出即可;(2)根据题意得出纵向通道的宽为2m,横向通道的宽为1m,进而得出PQ,RE的长,即可得出PE、EF的长,进而求出花坛RECF的面积.解答:解:(1)设通道的宽为xm,AM=8ym,∵AM:AN=8:9,∴AN=9y,∴,解得:.答:通道的宽是1m;(2)∵四块相同草坪中的每一块,有一条边长为8m,若RP=8,则AB>13,不合题意,∴RQ=8,∴纵向通道的宽为2m,横向通道的宽为1m,∴RP=6,∵RE⊥PQ,四边形RPCQ是长方形,∴PQ=10,∴RE×PQ=PR×QR=6×8,∴RE=4.8,∵RP2=RE2+PE2,∴PE=3.6,同理可得:QF=3.6,∴EF=2.8,∴S四边形RECF=4.8×2.8=13.44,即花坛RECF的面积为13.44m2.,点评:此题主要考查了二元一次方程组的应用即四边形面积求法和三角形面积求法等知识,得出RP的长是解题关键.23.(10分)(2015•义乌市)正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG 绕点A按顺时针方向旋转,记旋转角∠DAG=α,其中0°≤α≤180°,连结DF,BF,如图.(1)若α=0°,则DF=BF,请加以证明;(2)试画一个图形(即反例),说明(1)中命题的逆命题是假命题;(3)对于(1)中命题的逆命题,如果能补充一个条件后能使该逆命题为真命题,请直接写出你认为需要补充的一个条件,不必说明理由.考点:正方形的性质;全等三角形的判定与性质;命题与定理;旋转的性质.分析:(1)利用正方形的性质证明△DGF≌△BEF即可;(2)当α=180°时,DF=BF.(3)利用正方形的性质和△DGF≌△BEF的性质即可证得是真命题.解答:(1)证明:如图1,∵四边形ABCD和四边形AEFG为正方形,。
2015年中考数学试卷解析分类汇编(第1期)专题37_操作探究
精心整理操作探究一、选择题1.(2015?浙江宁波,第12题4分)如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形.若只知道原住房平面图长A.b,②③-①将a+将2c∴故选A.2.(2015?浙江省绍兴市,第10题,4分)挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其它棒条压着时,就可以把它往上拿走。
如图中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…,则第6次应拿走A.②号棒B.⑦号棒C.⑧号棒D.⑩号棒 考点:规律型:图形的变化类..分析:仔细观察图形,找到拿走后图形下面的游戏棒,从而确定正确的选项. 解答:解:仔细观察图形发现: 第1第2第3第4第5第6故选二.1.(中CD =_______________________________【答案】2或4+第16题【考点】剪纸问题;多边形内角和定理;轴对称的性质;菱形、矩形的判定和性质;含30度角直角三角形的性质;相似三角形的判定和性质;分类思想和方程思想的应用.【分析】∵四边形纸片ABCD 中,∠A =∠C =90°,∠B =150°,∴∠C =30°. 如答图,根据题意对折、裁剪、铺平后可有两种情况H ,设∴设在Rt 易证BCD EHB ∆∆∽,∴CD BCHB EH =,即1CD =∴224CD +==+综上所述,CD =2或4+2.(2015?浙江省绍兴市,第13题,5分)由于木质衣架没有柔性,在挂置衣服的时候不太方便操作。
小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可。
如图1,衣架杆OA=OB=18cm,若衣架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是▲cm考点:等边三角形的判定与性质..专题:应用题.∴△∴3.(t、t1等边三角型的边长为a≈2,等边三角形的周长为6;正方形的边长为b≈1.7,正方形的周长为1.7×4=6.8;圆的周长为3.14×2×1=6.28,∵6.8>6.28>6,∴t2>t3>t1.故答案为:t2>t3>t1.点评:本题考查了轨迹,利用相等的面积求出相应的周长是解题关键.4.(A与点出=2,则∴,∴=故=.故答案为:.点评:此题考查了翻折变换、勾股定理及矩形的性质,难度一般,解答本题的关键是判断出RT△AOE∽RT△ABC,利用相似三角形的性质得出OE的长.三.解答题1.(2015?浙江省台州市,第24题)定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点(1)已知点M,N是线段AB的勾股分割点,若AM=2,MN=3求BN的长;(2)如图2,在△ABC中,FG是中位线,点D,E是线段BC的勾股分割点,且段(3D(4,△和△H 是2.(的顶点形所(1)求点D的坐标(用含m的式子表示)(2)若点G的坐标为(0,-3),求该抛物线的解析式。
台州市黄岩区2015年中考第一次模拟考试数学试题及答案
(第6题)2015年中考模拟数学试卷一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符 合题意的正确选项,不选、多选、错选,均不给分) 1.2-的相反数是 ( ▲ ) A .2B .2-C .12D .12-2.用4个完全相同的小正方体组成如左下图所示的立体图形,那么它的主视图是( ▲ )AB C D3.小星同学参加体育测试的五次立定跳远的成绩(单位:米)是: 1.2,1.3,1.2,1.0,1.1.这组数据的众数是 ( ▲ )A .1.0B .1.1C .1.2D .1.3 4.中国航母辽宁舰(如图)是中国人民海军第一艘可以 搭载固定翼飞机的航空母舰,满载排水量为67500吨, 这个数据用科学记数法表示为 ( ▲ )A .6.75×103吨B .6.75×104吨C .6.75×105吨D .6.75×10-4吨5.掷一枚质地均匀的硬币10次,则下列说法正确的是 ( ▲ ) A .掷2次必有1次正面朝上 B .必有5次正面朝上 C .可能有5次正面朝上 D .不可能10次正面朝上6.如图,在地面上的点A 处测得树顶B 的仰角α=75º,若AC =6米,则树高BC 为 ( ▲ ) A .6 sin75º米 B . 6cos 75︒米C .6tan 75︒米 D .6 tan75º米7.某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的 百分率都为x ,那么x 满足的方程是 ( ▲ )A .81)1(1002=+xB . 81)1(1002=-xC .81)21(100=-xD . 811002=x8.已知一等腰三角形的腰长为5,底边长为4,底角为α.满足下列条件的 三角形与已知三角形不一定...全等的是( ▲ ) A .两个角是α,它们的夹边为4 B .三条边长分别是4,5,5 C .两条边长分别为4,5,它们的夹角为α D .两条边长是5,一个角是α9.学习了一次函数、二次函数、反比例函数后,爱钻研的小敏尝试用同样第4题的方法研究函数y=xx 13+,从而得出以下命题: (1)当x >0时,y 的值随着x 的增大而减小;(2)y 的值有可能等于3; (3)当x >0时,y 的值随着x 的增大越来越接近3; (4)当y >0时,0>x 或31-<x . 你认为真命题是 ( ▲ )A .(1)(3)B .(1)(4)C .(1)(3)(4)D .(2)(3)(4) 10.如图,边长为2的正方形ABCD 的顶点A 、B 在一个半径为2的圆上,顶点C 、D 在圆内,将正方形ABCD 沿圆的内壁作无滑动的滚动.当滚动一周回到原位置时,点C 运动的路径长为 ( ▲ ) A .π22 B .()π12+C .()π22+D .π⎪⎭⎫⎝⎛+1232二、填空题(本题有6小题,每小题5分,共30分) 11.分解因式:a 2﹣9= ▲ . 12.在函数2-=x y 中,自变量x 的取值范围是 ▲ .13.如图,l ∥m ,矩形ABCD 的顶点B 在直线m 上,则∠α= ▲ 度.14.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸取一个小球然后放回,再随机地摸出一个小球,则两次取出的小球的标号相同的概率是 ▲ . 15.已知函数222---=k x kx y 的图象与坐标轴...有两个交点,则k 的值 ABCD第10题第13题PODCB A第16题为 ▲ .16.如图,点O 为弧AB 所在圆的圆心,OA ⊥OB ,点P 在弧AB 上,AP 的延长线与OB 的延长线交于点C ,过点C 作CD ⊥OP 于D .若OP=3,PD=1,则OC= ▲ . 三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12 分,第24题14分,共80分)17.(1)计算:0)12(45sin 2--︒; (2)化简:2)2()2)(1(-++-x x x .18.图①、图②均为7×6的正方形网格,点A 、B 、C 在格点上.(1)在图①中确定格点D ,并画出以A 、B 、C 、D 为顶点的四边形, 使其为轴对称图形.(画一个即可)(2)在图②中确定格点E ,并画出以A 、B 、C 、E 为顶点的四边形, 使其为中心对称图形.(画一个即可)19.某中学为合理安排体育活动,在全校喜欢乒乓球、排球、羽毛球、足球、篮球五种球类运动的1000名学生中,随机抽取了若干名学生进行调查,了解学生最喜爱的球类运动,每人只能在这五种球类运动中选择一种,调查结果统计如图1、图2所示:解答下列问题: (1)求a 和b 的值;(2)试估计上述1000名学生中最喜欢羽毛球运动的人数.20.如图,已知在平面直角坐标系xOy 中,O 是坐标原点,点A (2,5)在反比例函数ky x=的图象上,过点A 的 直线b x y +=交x 轴于点B . (1)求k 和b 的值;球类名称 人数 乒乓球 a 排球 12 羽毛球 36 足球 18 篮球 b图2图1(2)求△OAB 的面积.21.如图,已知AB 是⊙O 的直径,直线CD 与⊙O 相切于点C ,AC 平 分∠DAB .(1)求证:AD ⊥CD ;(2)若AD =2,A C =5,求AB 的长.22.某工厂生产的某种产品按质量分为10个等级.第1级(最低级)产品每天能生产95件,每件利润6元.已知每提高一个级别,每件利润增加2元,但每天产量减少5件. (1)若生产第3级产品,则每天产量为 ▲ 件,每件利润为 ▲ 元;(2)若生产第x 级产品一天的总利润为y 元(其中x 为正整数,且1≤x ≤10),求出y 关于x 的函数解析式;(3)若生产第x 级的产品一天的总利润为1120元,求该产品的质量等级.23.如图,已知抛物线4732--=x x y 与x 轴交于A 、B 两点. (1)点A 的坐标是 ▲ ,点B 的坐标是 ▲ ,抛物线的对称轴是直线 ▲ ;(2)将抛物线向上平移m 个单位,与x 轴交于C 、D 两点(点C 在点D 的左边).若CD :AB=3:4,求m 的值;(3)点P 是(2)中平移后的抛物线上y 轴右侧部分的点,直线y=2x+b (b <0)与 x 、y 轴分别交于点E 、F .若以EF 为直角边 的三角形PEF 与△OEF 相似,直接写出点P 的坐标.· (第21题)ABCDO24. 定义:两组邻边分别相等的四边形叫做筝形.(1)请写出除定义外的性质和判定猜想各一条,并从定义出发证明你的判定猜想.(2)筝型ABCD 中,对角线AC ,BD 相交于点O . ①如图1,若BD=CO ,求tan ∠BCD 的值. ②如图2,若∠DA C=∠BCD=72º,求AD :CD 的值.(3)如图3,把△ABD 沿着对角线BD 翻折,A 点落在对角线AC 上的E 点.如果△AOD 中,一个内角是另一个内角的2倍,且阴影部 分图形的面积等于四边形ABED 的面积,直接写出CDAD的值.图2OBACD图1BA DO CEODBA C图3第23题数学参考答案和评分细则一、选择题(本题有10小题,每小题4分,共40分)二、填空题(本题有6小题,每小题5分,共30分)11. (3)(3)a a +- 12.2x ≥ 13. 20 14. 4115. 0或-1或-2 16. 23三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分) 17. 解: (1)0)12(45sin 2--︒解:原式 =2212⨯-……………………………………2分 =21- ……………………………………2分(2)2)2()2)(1(-++-x x x解:原式=222244x x x x x +--+-+ …………………2分 = 2232x x -+ ………………………2分18. 解:(1)略 ……………………4分(2)略 ……………………4分 19.解:(1)a=30 ……………………2分b=24 ……………………2分(2) 300120361000=⨯……………………4分 20.解:(1)把x =2,y =5代入ky x=,得 k =2×5=10 ……………2分把x =2,y =5代入b x y +=,得 3=b …………2分 (2)3+=x y∴当y =0时,x =-3,∴OB=3 ……………1分题号 1 2 3 4 5 6 7 8 9 10 答案ABCBC的BDCDS ∴=5321⨯⨯=7.5 ……………3分21.(1)证:连接OC∵OA=OC∴∠OAC=∠OCA ………………1分∵AC 平分∠DAB ∴∠OAC=∠DAC ∴∠OCA=∠DAC∴AD ∥OC …………………2分∵直线CD 与⊙O 相切 ∴OC ⊥CD …………………1分 ∴AD ⊥CD ………………1分 (2) 连接CB∵AB 是⊙O 直径∴∠ACB=090 …………………1分 由(1)知AD ⊥CD ∴∠ADC=090∴∠ADC=∠ACB ∵∠DAC=∠CAB∴△DAC ∽△CAB …………………2分 ∴ABACAC DA =∴AB552=…………………1分 ∴AB=2.5 …………………1分22.解:(1)10 85…………………2分(2)∵第一级的产品一天能生产95件,每件利润6元,每提高一个级别,每件利润加2元,但一天生产量减少5件.∴第x 级别,提高的级别是(x ﹣1)档. ∴y =[6+2(x ﹣1)][95﹣5(x ﹣1)],即y =﹣10x 2+180x +400(其中x 是正整数,且1≤x ≤10)…………………5分 (3)由题意可得:﹣10x 2+180x +400=1120整理得:x 2﹣18x +72=0 解得:x 1=6,x 2=12(舍去).· ABC D(第21题)O· ABCD(第21题) O答:该产品的质量级别为第6级.…………………5分23.解:(1)A (-21,0), B (27,0) 23=x …………………………3分(2)由(1)知,AB=4 ∵CD:AB=3:4 ∴CD=3∵个单位向上平移m x x y 4732--=∴C (0,0), D(3,0) …………………………3分x x y 32-=∴∴47=m …………………………2分 (3)⎪⎭⎫⎝⎛-45,21、⎪⎭⎫⎝⎛-1611,411、 ()2,2-、⎪⎭⎫⎝⎛-2526,513……4分24.(1)性质:①筝形有一组对角相等;…………………………………………… 1分②筝形有一条对角线垂直平分另一条对角线; ③筝形有一条对角线平分一组对角.判定:①有一条对角线垂直平分另一条对角线的四边形是筝形;②有一条对角线平分一组对角的四边形是筝形.……………………………1分证明略…………………………………………………………………………………4分 (2)①解:设OC=2OD=2OB=a ,则CD=BD =5a ,BCD 211S =CD CBsin 2211(5)sin 2222BCD BD COa BCD a a ∆⋅∠=⋅∴∠=⨯⨯可得:sin ∠BCD=45,即:tan ∠BCD=43.…………………………………………2分 第23(3)题第23(2)②作∠BCD的平分线交AC于点E. ∵∠BCD=72º,∴∠2=12∠BCD=36º,∵∠DAC=72º,∴∠ADC=72º,∠1=36º∴△DAE∽△CDA∴AD DCAE DA=, DC=AC,AE=AC-CE=CD-AD即:AD CDCD AD AD=-,去分母得:AD2+CD·AD-CD2=0,解得AD=,AD=(舍去),∴AD:CD分③或分。
2015年台州市中考数学试卷及答案
2015年台州市中考数学卷一、选择题1.单项式2a 的系数是( )A.2B.2aC.1D.a 2.下列四个几何体中,左视图为圆的是( )A B C D 3.在下列调查中,适宜采用全面调查的是( )A.了解我省中学生视力情况B.了解九(1)班学生校服的尺码情况C.检测一批电灯泡的使用寿命D.调查台州《600全民新闻》栏目的收视率 4.若反比例函数ky x=的图象经过点(2,-1),则该反比例函数的图象在( ) A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限 5.若一组数据3,x ,4,5,6.,则这组数据的中位数为( ) A. 3 B.4 C.5 D.6 6.把多项式228x -分解因式,结果正确的是( )A.22(8)x -B. 22(2)x - C. 2(2)(2)x x +- D. 42()x x x-7.设二次函数2(3)4y x =--图象的对称轴为直线L 上,则点M 的坐标可能是( ) A.(1,0) B.(3,0) C.(-3,0) D.(0,-4)8.如果将长为6cm ,宽为5cm 的长方形纸片折叠一次,那么这条折痕的长不可能是( )A.8cmB.C.5.5cmD.1cm9.如图,在菱形ABCD 中,AB =8,点E 、F 分别在AB 、AD 上,且AE =AF ,过点E 作EG ∥AD 交CD 于点G ,过点F 作FH ∥AB 交BC 于点H ,EG 与FH 交于点O ,当四边形AEOF与四边形CGOH 的周长之差为12时,AE 的值为( ) A.6.5 B.6 C.5.5 D.510.某班有20位同学参加围棋、象棋比赛,甲说:“只参加一项的人数大于14人。
”乙说:“两项都参加的人数小于5人。
”对于甲、乙两人的说法,有下列四个命题,其中真命题的是( )A.若甲对,则乙对;B.若乙对,则甲对;C.若乙错,则甲错;D.若甲粗,则乙对 二.填空题11.不等式240x -≥的解集是12.有四张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率 是13.如图,在Rt △ABC 中,∠C =90°,AD 是△ABC 的角平分线,DC =3,则点D 到AB 的距离是 14.如图,这是台州市地图的一部分,分别以正东、正北方向为x 轴、y 轴的正方向建立直角 坐标系,规定一个单位长度表示1km ,甲、乙两人对着地图如下描述路桥区A 处的位置 甲:路桥区A 处的坐标是(2,0)乙:路桥区A 处在椒江区B 处南偏西30°方向,相距16km 则椒江区B 处的坐标是15.关于x 的方程210mx x m +-+=,有以下三个结论:①当m =0时,方程只有一个实数解②当0m ≠时,方程有两个不等的实数解③无论m 取何值,方程都有一个负数解,其中正确的是 (填序号)16.如图,正方形ABCD 的边长为1,中心为点O ,有一边长大小不定的正六边形EFGHIJ 绕点O 可任意旋转,在旋转过程中,这个正六边形始终在正方形ABCD 内(包括正方形的边),当这个六边形的边长最大时,AE 的最小值为二、解答题17.计算:06(3)12015÷-+--18.先化简,再求值:211(1)aa a -++,其中1a =19.如图,这是一把可调节座椅的侧面示意图,已知头枕上的点到调节器点O处的距离为80cm,AO与地面垂直,现调整靠背,把OA绕点O旋转35°到OA’处,求调整后点A’比调整前点A的高度降低了多少cm?(结果取整数)?(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)20.图1中的摩天轮可抽象成一个圆,圆上一点离地面的高度y(m)与旋转时间x(min)之间的关系如图2所示(1)根据图2填表:(2)变量y是x的函数吗?为什么?(3)根据图中的信息,请写出摩天轮的直径21.某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分别直方图和扇形统计图:根据图中提供的信息,解答下列问题:(1)补全频数分布直方图(2)求扇形统计图中m的值和E组对应的圆心角度数(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数22.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC(1)若∠CBD=39°,求∠BAD的度数(2)求证:∠1=∠223.如图,在多边形ABCDE 中,∠A =∠AED =∠D =90°,AB =5,AE =2,ED =3,过点E 作EF ∥CB 交AB 于点F ,FB =1,过AE 上的点P 作PQ ∥AB 交线段EF 于点O ,交折线BCD 于点Q ,设AP =x ,PO .OQ =y (1)①延长BC 交ED 于点M ,则MD = ,DC =②求y 关于x 的函数解析式; (2)当1(0)2a x a ≤≤>时,96a y b ≤≤,求a ,b 的值; (3)当13y ≤≤时,请直接写出x 的取值范围24.定义:如图1,点M ,N 把线段AB 分割成AM ,MN 和BN ,若以AM ,MN ,BN 为边的三角形是一个直角三角形,则称点M ,N 是线段AB 的勾股分割点(1)已知点M ,N 是线段AB 的勾股分割点,若AM =2,MN =3求BN 的长;(2)如图2,在△ABC 中,FG 是中位线,点D ,E 是线段BC 的勾股分割点,且EC >DE ≥BD ,连接AD ,AE 分别交FG 于点M ,N ,求证:点M ,N 是线段FG 的勾股分割点(3)已知点C 是线段AB 上的一定点,其位置如图3所示,请在BC 上画一点D ,使C ,D 是线段AB 的勾股分割点(要求尺规作图,保留作图痕迹,画出一种情形即可)(4)如图4,已知点M ,N 是线段AB 的勾股分割点,MN >AM ≥BN ,△AMC ,△MND和△NBM 均是等边三角形,AE 分别交CM ,DM ,DN 于点F ,G ,H ,若H 是DN 的中点,试探究AMF S ∆,BEN S ∆和MNHG S 四边形的数量关系,并说明理由2015年浙江省初中学业水平考试(台州卷)数学参考答案和评分细则一、选择题(本题有10小题,每小题4分,共40分)二、填空题(本题有6小题,每小题5分,共30分) 11.2≥x 12.2113.3 14.(10,38) 15.①,③ 16.212- 三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(8分)解:020151)3(6--+-÷=112-+- ……………………………………6分=2-. ……………………………………………………2分18.(8分)解:211(1)a a a -++=22)1()1(1+-++a a a a …………………………………3分 22)1(1)1(1+=+-+=a a a a ………………………………3分当1a = 时,原式2)112(1+-=…………………………1分21)2(12==. …………………………1分19.(8分)解:如图,过点A '作OA H A ⊥'于点H ,由旋转可知,80=='OA A O , …………1分 在Rt △H A O '中,︒'=35cos A O OH …………3分6.6582.080=⨯≈. ………………2分∴4.146.6580=-=-=OH OA AH 14≈cm .…2分 答:调整后点'A 比调整前点A 的高度降低了14cm .20.(8分)解:(1)表格中分别填写:5,70,5,54,5. ……………………3分(2)变量y 是x 的函数. …………………………2分理由:因为在这个变化过程中,对于x 的每一个确定的值,y 都有唯一确定的值与其对应,所以变量y 是x 的函数. ………………………………1分(3)摩天轮的直径是65570=-m . ………………………………2分21.(10分)解:(1)补全频数分布直方图,如图所示. ……………………………4分(2)∵100%1010=÷,∴%4010040=÷,∴40=m . ……………1分 ∵%41004=÷, ………1分 ∴“E ”组对应的圆心角度数︒=︒⨯=4.14360%4.……1分(写成14.4,也给分)(3)870%)4%25(3000=+⨯人…………2分答:估计该校学生中每周的课外阅读时间不小于6小时的人数是870人.22.(12分)(1)解:∵DC BC =,∴BC DC =.∴CBD CAD BAC ∠=∠=∠. ……………4分 ∵︒=∠39CBD ,∴︒=∠=∠39CAD BAC . ……2分 ∴︒=∠+∠=∠78DAC BAC BAD . ……………1分 (2)证明:∵BC EC =,∴CEB CBE ∠=∠. …………………………………2分 ∵CBD CBE ∠+∠=∠1,BAC CEB ∠+∠=∠2,…………………1分 ∴BAC CBD ∠+∠=∠+∠21. ………………………………1分 又∵CBD BAC ∠=∠,(第22题)∴21∠=∠. …………………………………1分 (利用其他方法进行解答,酌情给分)23.(12分)解:(1)①2=MD , ……………………………………1分1=DC ; ………………………1分②∵x AP =,∴x EP -=2. 在Rt △AEF 中,224tan ===∠AE AF AEF , ∴tan 2(2)24PO PE AEF x x =∠=⨯-=-+. ………………………1分 ∵︒=∠=∠90AED A ,∴AB DE .∵PQAB ,∴PQ ED .当10≤<x 时,如图1所示, ∵EFCB ,PQ AB ,∴四边形OFBQ 是平行四边形.∴1==FB OQ . ∴(24)124y PO OQ x x ==-+⨯=-+. ………………………1分 当21≤<x 时,如图2所示, ∵︒=∠=∠90D AED ,∴AE CD .∵PQED ,∴四边形DEPQ 是矩形.∴12)42(3-=+--=x x OQ . ………………… 1分 ∴2(24)(21)4104y PO OQ x x x x ==-+⨯-=-+-. ……………1分∴⎩⎨⎧≤<-+-≤<+-=.21410410422x x x x x y ,,,(2)y 关于x 的函数图象如图3所示.当10≤<x 时,y 随着x 的增大而减小,所以⎩⎨⎧-==.246,39a b a ………………1分(第23题图1)M(第23题图2)解得⎪⎪⎩⎪⎪⎨⎧==.95,31b a ………………………2分(3)45521+≤≤x . ……………………………………………………2分 24.(14分)(1)解:当MN 为最大线段时,∵点M ,N 是线段AB 的勾股分割点, ∴54922=-=-=AM MN BN .当BN 为最大线段时,∵点M ,N 是线段AB 的勾股分割点, ∴134922=+=+=AM MN BN .综上,5=BN 或13. …………………………………3分 (2)证明:∵FG 是△ABC 的中位线,∴FG BC ∥. ∴1===GCAG NE AN MD AM . ∴点M ,N 分别是AD ,AE 的中点.∴FM BD 2=,MN DE 2=,NG EC 2=. …………………………2分 ∵点D ,E 是线段BC 的勾股分割点,且EC >DE ∴222DE BD EC +=.∴222)2()2()2(MN FM NG +=.∴222MN FM NG +=.∴点M ,N 是线段FG 的勾股分割点. …………………………2分 (3)用尺规画出图形,如图3所示. …………………………3分 (4)解:+AMF BEN MNHG S S S =△△四边形. …………………………………1分 理由:设a AM =,b BN =,c MN =, ∵H 是DN 的中点,∴c HN DH 21==. ∵△MND ,△BNE 均为等边三角形, ∴︒=∠=∠60DNE D .(第24题图3)(第24题图2)∵NHE DHG ∠=∠, ∴△DGH ≌△NEH .∴b EN DG ==.∴b c MG -=. ∵GM EN ∥,∴△AGM ∽△AEN . ∴ca ab bc +=-. ∴bc ac ab c +-=22.∵点M ,N 是线段AB 的勾股分割点, ∴222b a c +=. ∴c a b b a )()(2-=-,又∵c a b ≠-.∴b a =. …………………………………1分 在△DGH 和△CAF 中,C D ∠=∠,CA DG =,CAF DGH ∠=∠, ∴△DGH ≌△CAF .∴DGH CAF S S =△△. ……………………………………1分∵222b a c +=,∴222434343b a c +=. ∴DMN ACM ENB S S S =+△△△.∵DMN DGH MNHG S S S =+△△四边形,ACM CAF AMF S S S =+△△△,∴+AMF BEN MNHG S S S =△△四边形. ……………………………………1分。
2015年浙江省台州市中考一模数学试卷(解析版)
2015年浙江省台州市中考数学一模试卷一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.(4分)计算﹣4×2的结果是()A.﹣6B.﹣2C.8D.﹣82.(4分)据旅游局统计,2013年雁荡山风景区全年共接待国内外游客275.3万人次万.数据275.3万用科学记数法表示为()A.2753×106B.2.753×106C.2.753×107D.2.753×105 3.(4分)如图所示的几何体的左视图是()A.B.C.D.4.(4分)如图,a∥b,将三角尺的直角顶点放在直线a上,若∠1=50°,则∠2的度数为()A.30°B.40°C.50°D.60°5.(4分)两圆的半径分别为3和8,圆心距为10,则两圆的位置关系是()A.内切B.相交C.外切D.外离6.(4分)不等式组的解集在数轴上表示如图,则该不等式组是()A.B.C.D.7.(4分)如图,圆锥形烟囱帽的底面半径为15cm,母线长为20cm,制作这样一个烟囱帽所需要的铁皮面积至少是()A.150πcm2B.300πcm2C.450πcm2D.600πcm2 8.(4分)如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()A.y=(x﹣1)2+2B.y=(x+1)2+2C.y=x2+1D.y=x2+39.(4分)一张圆形纸片,小芳进行了如下连续操作:(1)将圆形纸片左右对折,折痕为AB,如图(2).(2)将圆形纸片上下折叠,使A、B两点重合,折痕CD与AB相交于M,如图(3).(3)将圆形纸片沿EF折叠,使B、M两点重合,折痕EF与AB相交于N,如图(4).(4)连结AE、AF、BE、BF,如图(5).经过以上操作,小芳得到了以下结论:①CD∥EF;②四边形MEBF是菱形;③△AEF为等边三角形;④S四边形AEBF:S扇形BEMF=3:π.以上结论正确的有()A.1个B.2个C.3个D.4个10.(4分)如图,Rt△OAB直角边OA在x轴正半轴上,∠AOB=60°,反比例函数y=的图象与Rt△OAB两边OB,AB分别交于点C,D.若点C是OB边的中点,则点D的坐标是()A.(1,)B.(,1)C.(2,)D.(4,)二、填空题(本题有6小题,每小题5分,共30分)11.(5分)分解因式:x2﹣9=.12.(5分)已知函数y=,则自变量x的取值范围是.13.(5分)如图,A,D,F,B在同一直线上,AE=BC,且AE∥BC.添加一个条件,使△AEF≌△BCD.14.(5分)为了估计县城空气质量情况,某同学在30天里做了如下记录:其中w<50时空气质量为优,50≤w≤100时空气质量为良,100<w≤150时空气质量为轻度污染,若1年按365天计算,请你估计该城市在一年中空气质量达到良以上(含良)的天数为天.15.(5分)将△ABC绕点A按逆时针方向旋转θ度,并将各边长变为原来的n倍得△AB′C′,即如图①,∠BAB′=θ,===n,我们将这种变换记为[θ,n].如图②,在△DEF中,∠DFE=90°,将△DEF 绕点D旋转,做变换[60°,n]得△DE′F′,如果点E、F、F′恰好在同一直线上,那么n=.16.(5分)如图,在平面直角坐标系中,矩形AOBC的顶点A,B的坐标分别是A(0,4),B(,0),作点A关于直线y=kx(k>0)的对称点P,△POB 为等腰三角形,则点P的坐标为.三、解答题(第17、18题,每题8分,第19、20、21、22题10分,第23、24题,每题12分共80分)17.(8分)计算:﹣3tan60°+|﹣3|.18.(8分)解不等式组并在所给的数轴上表示出其解集.19.(10分)如图,Rt△ABE与Rt△DCF关于直线m对称,若∠B=90°,∠C =90°,连结EF,AD,点B,E,F,C在同一条直线上.求证:四边形ABCD 是矩形.20.(10分)为了解某市今年九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分组(A:30分;B:29﹣27分;C:26﹣24分;D:23﹣18分;E:17﹣0分)统计如下:根据上面提供的信息,回答下列问题:(1)这次调查中,抽取的学生人数为多少?并将条形统计图补充完整;(2)如果把成绩在24分以上(含24分)定为优秀,估计该市今年6000名九年级学生中,体育成绩为优秀的学生人数有多少人?21.(10分)某商店第一次用600元购进某品牌的笔记本若干本,第二次又用600元购进同样品牌的笔记本,但这次每本的进价是第一次的,购进数量比第一次少了30本.(1)求第一次每本笔记本的进价是多少元?(2)商店以同一价格全部销售完毕后获利不低于420元,问每本笔记本的售价至少多少元?22.(10分)李明乘车从永康到某景区旅游,同时王红从该景区返回永康.线段OB表示李明离永康的路程S1(km)与时间t(h)的函数关系;线段AC表示王红离永康的路程S2(km)与时间t(h)的函数关系.行驶1小时,李明、王红离永康的路程分别为100km、280km,王红从景区返回永康用了 4.5小时.(假设两人所乘的车在同一线路上行驶)(1)分别求S1,S2关于t的函数表达式;(2)当t为何值时,他们乘坐的两车相遇;(3)当李明到达景区时,王红离永康还有多少千米?23.(12分)在平面直角坐标系中,抛物线y=ax2﹣x+2过点B(1,0).(1)求抛物线与y轴的交点C的坐标及与x轴的另一交点A的坐标;(2)以AC为边在第二象限画正方形ACPQ,求P、Q两点的坐标;(3)把(2)中的正方形ACPQ和抛物线沿射线AC一起运动,当运动到点Q 与y轴重合时,求运动后的抛物线的顶点坐标.24.(12分)已知△ABC的顶点A,B在抛物线y=x2+kx+5的对称轴l上,三个顶点坐标分别为A(3,5),B(3,1),C(7,5).点P从A出发,沿A→B →C→A运动一周,点P在AB或CA上运动时,运动速度为每秒2个单位;点P在BC上运动时,运动速度为每秒个单位.设运动时间为t秒,x轴与抛物线围成的封闭区域记作M(阴影部分,含边界).(1)求k的值及抛物线与x轴的交点坐标;(2)在点P的运动过程中,用含t的代数式表示点P的坐标;(3)如果在点P开始运动的同时,△ABC也开始沿对称轴l以每秒1个单位的速度向下平移(当点P停止运动时,△ABC也停止运动).经过几秒时,点P 第一次刚好进入区域M?并求出使点P在区域M的t的取值范围.2015年浙江省台州市中考数学一模试卷参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.(4分)计算﹣4×2的结果是()A.﹣6B.﹣2C.8D.﹣8【解答】解:原式=﹣(4×2)=﹣8,故选:D.2.(4分)据旅游局统计,2013年雁荡山风景区全年共接待国内外游客275.3万人次万.数据275.3万用科学记数法表示为()A.2753×106B.2.753×106C.2.753×107D.2.753×105【解答】解:将275.3万用科学记数法表示为:2.753×106.故选:B.3.(4分)如图所示的几何体的左视图是()A.B.C.D.【解答】解:从左向右看,得到的几何体的左视图是中间无线条的矩形.故选:D.4.(4分)如图,a∥b,将三角尺的直角顶点放在直线a上,若∠1=50°,则∠2的度数为()A.30°B.40°C.50°D.60°【解答】解:∵∠1=50°,∴∠3=90°﹣50=40°,∵直线a∥直线b,∴∠2=∠3=40°,故选:B.5.(4分)两圆的半径分别为3和8,圆心距为10,则两圆的位置关系是()A.内切B.相交C.外切D.外离【解答】解:∵两圆的半径分别为3和8,∴半径和为:11,半径差为7,∵圆心距为10,∴两圆的位置关系是:相交.故选:B.6.(4分)不等式组的解集在数轴上表示如图,则该不等式组是()A.B.C.D.【解答】解:由数周上表示的不等式的解集:﹣1<x≤2,故D符合题意;故选:D.7.(4分)如图,圆锥形烟囱帽的底面半径为15cm,母线长为20cm,制作这样一个烟囱帽所需要的铁皮面积至少是()A.150πcm2B.300πcm2C.450πcm2D.600πcm2【解答】解:烟囱帽所需要的铁皮面积=×20×2π×15=300π(cm2).故选:B.8.(4分)如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()A.y=(x﹣1)2+2B.y=(x+1)2+2C.y=x2+1D.y=x2+3【解答】解:∵抛物线y=x2+2向下平移1个单位,∴抛物线的解析式为y=x2+2﹣1,即y=x2+1.故选:C.9.(4分)一张圆形纸片,小芳进行了如下连续操作:(1)将圆形纸片左右对折,折痕为AB,如图(2).(2)将圆形纸片上下折叠,使A、B两点重合,折痕CD与AB相交于M,如图(3).(3)将圆形纸片沿EF折叠,使B、M两点重合,折痕EF与AB相交于N,如图(4).(4)连结AE、AF、BE、BF,如图(5).经过以上操作,小芳得到了以下结论:①CD∥EF;②四边形MEBF是菱形;③△AEF为等边三角形;④S四边形AEBF:S扇形BEMF=3:π.以上结论正确的有()A.1个B.2个C.3个D.4个【解答】解:∵纸片上下折叠A、B两点重合,∴∠BMD=90°,∵纸片沿EF折叠,B、M两点重合,∴∠BNF=90°,∴∠BMD=∠BNF=90°,∴CD∥EF,故①正确;根据垂径定理,BM垂直平分EF,又∵纸片沿EF折叠,B、M两点重合,∴BN=MN,∴BM、EF互相垂直平分,∴四边形MEBF是菱形,故②正确;∵ME=MB=2MN,∴∠MEN=30°,∴∠EMN=90°﹣30°=60°,又∵AM=ME(都是半径),∴∠AEM=∠EAM,∴∠AEM=∠EMN=×60°=30°,∴∠AEF=∠AEM+∠MEN=30°+30°=60°,同理可求∠AFE=60°,∴∠EAF=60°,∴△AEF是等边三角形,故③正确;设圆的半径为r,则EN=r,∴EF=2EN=r,∴S四边形AEBF :S扇形BEMF=(×r×2r):(πr2)=3:π,故④正确;综上所述,结论正确的是①②③④共4个.故选:C.10.(4分)如图,Rt△OAB直角边OA在x轴正半轴上,∠AOB=60°,反比例函数y=的图象与Rt△OAB两边OB,AB分别交于点C,D.若点C是OB边的中点,则点D的坐标是()A.(1,)B.(,1)C.(2,)D.(4,)【解答】解:设OA=a,∵∠AOB=60°,∴AB=a,∴B(a,a),∵点C是OB边的中点,∴C(,),∵点C在反比例函数y=上,∴=,解得a=2,∵点D在反比例函数y=上,∴当x=2时,y=,∴D(2,).故选:C.二、填空题(本题有6小题,每小题5分,共30分)11.(5分)分解因式:x2﹣9=(x+3)(x﹣3).【解答】解:x2﹣9=(x+3)(x﹣3).故答案为:(x+3)(x﹣3).12.(5分)已知函数y=,则自变量x的取值范围是x>1.【解答】解:由题意得,x﹣1>0,解得x>1.故答案为:x>1.13.(5分)如图,A,D,F,B在同一直线上,AE=BC,且AE∥BC.添加一个条件AF=DB,使△AEF≌△BCD.【解答】解:AF=DB,理由是:∵AE∥BC,∴∠A=∠B,在△AEF和△BCD中∴△AEF≌△BCD(SAS),故答案为:AF=DB.14.(5分)为了估计县城空气质量情况,某同学在30天里做了如下记录:其中w<50时空气质量为优,50≤w≤100时空气质量为良,100<w≤150时空气质量为轻度污染,若1年按365天计算,请你估计该城市在一年中空气质量达到良以上(含良)的天数为292天.【解答】解:该城市在一年中空气质量达到良以上(含良)的天数为:2+6+9+7=24,×365=292天.故答案为:292.15.(5分)将△ABC绕点A按逆时针方向旋转θ度,并将各边长变为原来的n倍得△AB′C′,即如图①,∠BAB′=θ,===n,我们将这种变换记为[θ,n].如图②,在△DEF中,∠DFE=90°,将△DEF 绕点D旋转,做变换[60°,n]得△DE′F′,如果点E、F、F′恰好在同一直线上,那么n=2.【解答】解:∵∠DFE=90°,将△DEF绕点D旋转,做变换[60°,n]得△DE′F′,∴∠DFF′=90°,θ=∠FDF′=60°,在Rt△FDF′中,∠DFF'=90°,∠FDF′=60°,∴∠DF′F=30°,∴n==2;故答案为:2.16.(5分)如图,在平面直角坐标系中,矩形AOBC的顶点A,B的坐标分别是A(0,4),B(,0),作点A关于直线y=kx(k>0)的对称点P,△POB为等腰三角形,则点P的坐标为(,),(,﹣),(2,﹣2)或(2,2).【解答】解:∵矩形AOBC的顶点A,B的坐标分别是A(0,4),B(,0),∴OA=4,OB=4,∵点P关于直线y=kx(k>0)与点A对称,∴OP=OA=4,∵△POB为等腰三角形∴BP=BO,OP=PB,OB=OP(不成立,因为OA=4,OB=4)当BP=BO=4时,如图,作PH⊥OB,BG⊥OP垂足分别为H、G,∴OG=PG=OP=2∴BG==2∵×OP×BG=×OB×PH即4×2=4×PH∴PH=∴OH==,∴点P坐标为(,),(,﹣),当OP=PB=4时,如图,作PF⊥OB垂足为F∴OF=FB=OB=2∴PF==2∴点P坐标为(2,2),(2,﹣2);综上所知点P坐标为(,),(,﹣),(2,﹣2)或(2,2).故答案为:(,),(,﹣),(2,﹣2)或(2,2).三、解答题(第17、18题,每题8分,第19、20、21、22题10分,第23、24题,每题12分共80分)17.(8分)计算:﹣3tan60°+|﹣3|.【解答】解:原式=2﹣3+3=3﹣.18.(8分)解不等式组并在所给的数轴上表示出其解集.【解答】解:解不等式3x﹣1<2(x+1),得x<3解不等式≥1,得x≥﹣1∴不等式组的解集为﹣1≤x<3.在数轴上表示解集如图:19.(10分)如图,Rt△ABE与Rt△DCF关于直线m对称,若∠B=90°,∠C =90°,连结EF,AD,点B,E,F,C在同一条直线上.求证:四边形ABCD 是矩形.【解答】证明:∵Rt△ABE与Rt△DCF关于直线m对称,∴AB=CD,∵∠B=90°,∠C=90°,点B,E,F,C在同一条直线上,∴AB∥CD,∴四边形ABCD是平行四边形,∵∠B=90°,∴平行四边形ABCD是矩形.20.(10分)为了解某市今年九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分组(A:30分;B:29﹣27分;C:26﹣24分;D:23﹣18分;E:17﹣0分)统计如下:根据上面提供的信息,回答下列问题:(1)这次调查中,抽取的学生人数为多少?并将条形统计图补充完整;(2)如果把成绩在24分以上(含24分)定为优秀,估计该市今年6000名九年级学生中,体育成绩为优秀的学生人数有多少人?【解答】解:(1)根据题意得:=200(人),则B组的人数是:200﹣70﹣40﹣30﹣10=50(人),补图如下:(2)根据题意得:×6000=4800(人),答:体育成绩为优秀的学生人数有4800人.21.(10分)某商店第一次用600元购进某品牌的笔记本若干本,第二次又用600元购进同样品牌的笔记本,但这次每本的进价是第一次的,购进数量比第一次少了30本.(1)求第一次每本笔记本的进价是多少元?(2)商店以同一价格全部销售完毕后获利不低于420元,问每本笔记本的售价至少多少元?【解答】解:(1)设第一次每本笔记本的进价为x元.根据题意得,,解得x=4,经检验x=4是原方程的解.答:第一次每本笔记本的进价为4元;(2)第一次买进笔记本150本,第二次买进笔记本120本,共270本.设每本笔记本的售价为y元,根据题意得,270y﹣600×2≥420,∴y≥6,答:每本笔记本的售价至少为6元.22.(10分)李明乘车从永康到某景区旅游,同时王红从该景区返回永康.线段OB表示李明离永康的路程S1(km)与时间t(h)的函数关系;线段AC表示王红离永康的路程S2(km)与时间t(h)的函数关系.行驶1小时,李明、王红离永康的路程分别为100km、280km,王红从景区返回永康用了 4.5小时.(假设两人所乘的车在同一线路上行驶)(1)分别求S1,S2关于t的函数表达式;(2)当t为何值时,他们乘坐的两车相遇;(3)当李明到达景区时,王红离永康还有多少千米?【解答】解:(1)设S1=k1t,代入点(1,100)解得k1=100,所以S1=100t;S2=k2t+b,代入点(1,280)、(4.5,0)得,,解得k2=﹣80,b=360所以S2=﹣80t+360;(2)由题意得100t=﹣80t+360解得t=2,当t=2时,两车相遇;(3)由S2=﹣80t+360可知从永康到某景区路程为360km,李明的速度100km/h,李明到达景区时的时间t=360÷100=3.6小时,当t=3.6时,王红离永康S2=﹣80t+360=72千米.23.(12分)在平面直角坐标系中,抛物线y=ax2﹣x+2过点B(1,0).(1)求抛物线与y轴的交点C的坐标及与x轴的另一交点A的坐标;(2)以AC为边在第二象限画正方形ACPQ,求P、Q两点的坐标;(3)把(2)中的正方形ACPQ和抛物线沿射线AC一起运动,当运动到点Q 与y轴重合时,求运动后的抛物线的顶点坐标.【解答】解:(1)把B(1,0)代入抛物线y=ax2﹣x+2,得a﹣+2=0,解得a=﹣.所以y=﹣x2﹣x+2,当x=0时,y=2,所以抛物线与y轴交点C的坐标为(0,2).当y=0时,﹣x2﹣x+2=0,解得x1=1,x2=﹣3,所以抛物线与x轴的另一个交点A的坐标为(﹣3,0);(2)过P点作PE⊥y轴于E,过点Q作QF⊥x轴于F.∵四边形ACPQ是正方形,∴AC=CP=AQ,∠QAC=∠ACP=90°,∴∠ACO+∠PCE=90°,∵∠AOC=90°,∴∠ACO+∠OAC=90°,∴∠OAC=∠PCE,在△AOC与△PCE中,,∴△AOC≌△PCE(AAS),∴PE=OC=2,CE=AO=3,∴OE=OC+CE=5,∴点P的坐标为(﹣2,5).同理△AOC≌△QF A,∴QF=AO=3,AF=OC=2,∴OF=AF+OA=5,∴点Q的坐标为(﹣5,3);(3)设直线PQ的解析式为y=kx+b把P(﹣2,5),Q(﹣5,3)代入y=kx+b得解,得.∴,∴当x=0时,∴直线PQ与y轴的交点Q′,∴点Q(﹣5,3)运动到点Q′.∴向右平移了5个单位长度,向上平移了个单位长度.∵抛物线的顶点为∴运动后的抛物线的顶点坐标为(4,6).24.(12分)已知△ABC的顶点A,B在抛物线y=x2+kx+5的对称轴l上,三个顶点坐标分别为A(3,5),B(3,1),C(7,5).点P从A出发,沿A→B →C→A运动一周,点P在AB或CA上运动时,运动速度为每秒2个单位;点P在BC上运动时,运动速度为每秒个单位.设运动时间为t秒,x轴与抛物线围成的封闭区域记作M(阴影部分,含边界).(1)求k的值及抛物线与x轴的交点坐标;(2)在点P的运动过程中,用含t的代数式表示点P的坐标;(3)如果在点P开始运动的同时,△ABC也开始沿对称轴l以每秒1个单位的速度向下平移(当点P停止运动时,△ABC也停止运动).经过几秒时,点P 第一次刚好进入区域M?并求出使点P在区域M的t的取值范围.【解答】解:(1)∵A(3,5),B(3,1),∴直线AB的方程为x=3,∵抛物线y=x2+kx+5的对称轴为x=﹣,∴﹣=3,∴k=﹣6,∴y=x2﹣6x+5,令y=0,x2﹣6x+5=0,解得x1=1,x2=5,∴抛物线与x轴的交点坐标为(1,0),(5,0);(2)设AB与x轴交于点Q.∵A(3,5),B(3,1),C(7,5),∴AB=AC=4,BC==4,∴∠BAC=90°,∠ACB=∠ABC=45°.①当点P在AB上运动时,0≤t≤2,∵P A=2t,A(3,5),∴PQ=AQ﹣AP=5﹣2t,∴此时点P的坐标(3,5﹣2t);②当点P在BC上运动时,2<t≤4,如图,过点P作PD⊥x轴于点D,PE⊥AB于点E.∵PB=2(t﹣2),∴PE=BE=2(t﹣2)=2t﹣4,∴OD=OQ+QD=OQ+PE=3+2t﹣4=2t﹣1,PD=EQ=BE+BQ=2t﹣4+1=2t﹣3,∴此时点P的坐标(2t﹣1,2t﹣3);③当点P在CA上运动时,4<t≤6时,∵CP=2(t﹣4)=2t﹣8,∴点P的横坐标=OQ+AP=OQ+AC﹣CP=3+4﹣(2t﹣8)=15﹣2t,点P的纵坐标=AQ=5,∴点P的坐标(15﹣2t,5);(3)设经过t秒时,点P运动到点Q,即第一次刚好进入区域M,由题意,得(2+1)t=5,解得t=,即当t=时,点P第一次刚好进入区域M;设抛物线与x轴的交点坐标为G(1,0),F(5,0),则QG=QF=2.分两种情况:①当点P在AB和BC上运动,从点P运动到Q点开始进入区域M,到运动到F点离开区域M.当△ABC平移到△A′B′C′的位置时,点P运动到F点,∵△PQB′是等腰直角三角形,∴QB′=PQ=2,∴t==1+2=3,∴≤t≤3;②当点P在CA上运动,从点P运动到F点开始进入区域M,一直到A点.当△ABC平移到△A″B″C″的位置时,点P运动到F点,∵A″P=QF=2,∴C″P=A″C″﹣A″P=4﹣2=2,∴t=4+=5,∴5≤t≤6.综上所述,符合条件的t值是≤t≤3或5≤t≤6.。
2015年浙江省绍兴市中考数学试卷(word解析版)
2015年浙江省绍兴市中考数学试卷解析(本试卷满分150分,考试时间120分钟)江苏泰州鸣午数学工作室 编辑一、选择题(本题有10小题,每小题4分,共40分) 1.(2015年浙江绍兴4分)计算3)1(⨯-的结果是【 】A. -3B.-2C. 2D. 3 【答案】A.【考点】有理数乘法法则【分析】根据“两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数与0相乘,积仍为0”的有理数乘法法则直接计算:(1)33-⨯=-,故选A.2.(2015年浙江绍兴4分)据中国电子商务研究中心监测数据显示,2015年第一季度中国轻纺城市场群的商品成交额达27 800 000 000元,将27 800 000 000用科学计数法表示为【 】A. 2.78×1010B. 2.78×1011C. 27.8×1010D. 0.278×1011【答案】A.【考点】科学记数法.【分析】根据科学记数法的定义,科学记数法的表示形式为a ×10n ,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 在确定n 的值时,看该数是大于或等于1还是小于1. 当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0). 因此,∵27 800 000 000一共11位,∴27 800 000 000= 2.78×1010. 故选A.3.(2015年浙江绍兴4分)有6个相同的立方体搭成的几何体如图所示,则它的主视图是【 】A.B. C. D.【答案】C.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可:从正面看易得有两层,上层左、右两边各有1个正方形,下层有3个正方形. 故选C.4.(2015年浙江绍兴4分)下面是一位同学做的四道题:①ab b a 532=+;②6236)3(a a =;③326a a a =÷;④532a a a =⋅,其中做对的一道题的序号是【 】【出处:21教育名师】A. ①B. ②C. ③D. ④ 【答案】D.【考点】合并同类项;幂的乘方和积的乘方;同底幂乘法和除法 .【分析】根据合并同类项,幂的乘方运算法则,同底幂乘法和除法逐一计算作出判断:A. 3a 与2b 不是同类项,不能合并,()22241122a a a a a +=+=≠,故本选项错误;B. 根据“幂的乘方,底数不变,指数相乘”的幂的乘方法则和“积的乘方等于每一个因数乘方的积” 的积的乘方法则得3223266(3)396a aa a ⨯==≠,故本选项错误;C. 根据“同底数幂相除,底数不变,指数相减”的同底幂除法法则得:626243a a a a a -÷==≠,故本选项错误;D. 根据“同底数幂相乘,底数不变,指数相加”的同底幂乘法法则得:2323a a a +⋅=5a =,故本选项正确. 故选D.5.(2015年浙江绍兴4分) 在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是【 】A.31 B. 52 C. 21 D. 53【答案】B. 【考点】概率.【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.因此,∵共有5个球,白球有些2个,∴从中任意摸出一个球,摸出白球的概率是25. 故选B.6.(2015年浙江绍兴4分)化简xx x -+-1112的结果是【 】A. 1+xB. 11+xC. 1-xD. 1-x x 【答案】A.【考点】分式的化简.【分析】通分后,约分化简:()()22111111111x x x x x x x x x +--+===+----. 故选A. 7.(2015年浙江绍兴4分)如图,小敏做了一个角平分仪ABCD ,其中AB=AD ,BC=DC ,将仪器上的点A 与∠PRQ 的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A ,C 画一条射线AE ,AE 就是∠PRQ 的平分线. 此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ADC ,这样就有∠QAE=∠PAE. 则说明这两个三角形全等的依据是【 】A. SASB. ASAC. AASD. SSS 【答案】D.【考点】全等三角形的判定.【分析】由已知,AB=AD ,BC=DC ,加上公共边AC=AC ,根据三边对应相等的两三角形全等的判定可得△ABC ≌△ADC ,则说明这两个三角形全等的依据是SSS. 故选D.8.(2015年浙江绍兴4分)如图,四边形ABCD 是⊙O 的内接四边形,⊙O 的半径为2,∠B=135°,则的长【 】A. π2B. πC. 2πD. 3π【答案】B.【考点】圆内接四边形的性质;圆周角定理;弧长的计算.【分析】如答图,连接AO ,CO ,∵四边形ABCD 是⊙O 的内接四边形,∠B=135°, ∴∠D=45°.∵∠D 和∠AOC 是同圆中同弧所对的圆周角和圆心角,∴∠AOC=90°.又∵⊙O 的半径为2,∴»902AC180ππ⋅⋅==.故选B.9. (2015年浙江绍兴4分)如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换. 已知抛物线经过两次简单变换后的一条抛物线是12+=x y ,则原抛物线的解析式不可能的是【 】A. 12-=x yB. 562++=x x y C. 442++=x x y D. 1782++=x x y 【答案】B.【考点】新定义;平移的性质;分类思想的应用.【分析】根据定义,抛物线经过两次简单变换后的一条抛物线是2y x 1=+,即将抛物线向右平移4个单位或向上平移2个单位或向右平移2个单位且向上平移1个单位,得到抛物线2y x 1=+.∵抛物线2y x 1=+向左平移4个单位得到()2241817y x x x =++=++;抛物线2y x 1=+向下平移2个单位得到22121y x x =+-=-;抛物线2y x 1=+向左平移2个单位且向下平移1个单位得到()2221144y x x x =++-=++,∴原抛物线的解析式不可能的是265y x x =++. 故选B.10.(2015年浙江绍兴4分)挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其它棒条压着时,就可以把它往上拿走. 如图中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…,则第6次应拿走【 】A. ②号棒B. ⑦号棒C. ⑧号棒D. ⑩号棒 【答案】D.【考点】探索规律题(图形变化类).【分析】当一根棒条没有被其它棒条压着时,就可以把它往上拿走. 如图中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,第3次应拿走⑥号棒,第4次应拿走②号棒,第5次应拿走⑧号棒,第6次应拿走⑩号棒,故选D.二、填空题(本题有6小题,每小题5分,共30分) 11. (2015年浙江绍兴5分)因式分解:42-x = ▲ 【答案】()()22x x +-. 【考点】应用公式法因式分解.【分析】因为22242x x -=-,所以直接应用平方差公式即可:()()2224222x x x x -=-=+-.12. (2015年浙江绍兴5分)如图,已知点A (0,1),B (0,-1),以点A 为圆心,AB 为半径作圆,交x 轴的正半轴于点C ,则∠BAC 等于 ▲ 度【答案】60.【考点】点的坐标;锐角三角函数定义;特殊角的三角函数值. 【分析】∵A (0,1),B (0,-1),∴AO=1,AC=AB=2. ∴AO 1cos BAC AC 2∠==. ∴∠BAC=60°.13. (2015年浙江绍兴5分) 由于木质衣架没有柔性,在挂置衣服的时候不太方便操作。
2015年台州市中考数学试卷及答案
2015年台州市中考数学卷一、选择题1.单项式2a 的系数是( )A.2B.2aC.1D.a 2.下列四个几何体中,左视图为圆的是( )A B C D 3.在下列调查中,适宜采用全面调查的是( )A.了解我省中学生视力情况B.了解九(1)班学生校服的尺码情况C.检测一批电灯泡的使用寿命D.调查台州《600全民新闻》栏目的收视率 4.若反比例函数ky x=的图象经过点(2,-1),则该反比例函数的图象在( ) A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限 5.若一组数据3,x ,4,5,6.,则这组数据的中位数为( ) A. 3 B.4 C.5 D.6 6.把多项式228x -分解因式,结果正确的是( )A.22(8)x - B. 22(2)x - C. 2(2)(2)x x +- D. 42()x x x-7.设二次函数2(3)4y x =--图象的对称轴为直线L 上,则点M 的坐标可能是( ) A.(1,0) B.(3,0) C.(-3,0) D.(0,-4)8.如果将长为6cm ,宽为5cm 的长方形纸片折叠一次,那么这条折痕的长不可能是( )A.8cmB.C.5.5cmD.1cm9.如图,在菱形ABCD 中,AB =8,点E 、F 分别在AB 、AD 上,且AE =AF ,过点E 作EG ∥AD 交CD 于点G ,过点F 作FH ∥AB 交BC 于点H ,EG 与FH 交于点O ,当四边形AEOF与四边形CGOH 的周长之差为12时,AE 的值为( ) A.6.5 B.6 C.5.5 D.510.某班有20位同学参加围棋、象棋比赛,甲说:“只参加一项的人数大于14人。
”乙说:“两项都参加的人数小于5人。
”对于甲、乙两人的说法,有下列四个命题,其中真命题的是( )A.若甲对,则乙对;B.若乙对,则甲对;C.若乙错,则甲错;D.若甲粗,则乙对 二.填空题11.不等式240x -≥的解集是12.有四张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率 是13.如图,在Rt △ABC 中,∠C =90°,AD 是△ABC 的角平分线,DC =3,则点D 到AB 的距离是 14.如图,这是台州市地图的一部分,分别以正东、正北方向为x 轴、y 轴的正方向建立直角 坐标系,规定一个单位长度表示1km ,甲、乙两人对着地图如下描述路桥区A 处的位置 甲:路桥区A 处的坐标是(2,0)乙:路桥区A 处在椒江区B 处南偏西30°方向,相距16km 则椒江区B 处的坐标是15.关于x 的方程210mx x m +-+=,有以下三个结论:①当m =0时,方程只有一个实数解②当0m ≠时,方程有两个不等的实数解③无论m 取何值,方程都有一个负数解,其中正确的是 (填序号)16.如图,正方形ABCD 的边长为1,中心为点O ,有一边长大小不定的正六边形EFGHIJ 绕点O 可任意旋转,在旋转过程中,这个正六边形始终在正方形ABCD 内(包括正方形的边),当这个六边形的边长最大时,AE 的最小值为二、解答题17.计算:06(3)12015÷-+--18.先化简,再求值:211(1)aa a -++,其中1a =19.如图,这是一把可调节座椅的侧面示意图,已知头枕上的点到调节器点O处的距离为80cm,AO与地面垂直,现调整靠背,把OA绕点O旋转35°到OA’处,求调整后点A’比调整前点A的高度降低了多少cm?(结果取整数)?(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)20.图1中的摩天轮可抽象成一个圆,圆上一点离地面的高度y(m)与旋转时间x(min)之间的关系如图2所示(1)根据图2填表:(2)变量y是x的函数吗?为什么?(3)根据图中的信息,请写出摩天轮的直径21.某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分别直方图和扇形统计图:根据图中提供的信息,解答下列问题:(1)补全频数分布直方图(2)求扇形统计图中m的值和E组对应的圆心角度数(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数22.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC(1)若∠CBD=39°,求∠BAD的度数(2)求证:∠1=∠223.如图,在多边形ABCDE 中,∠A =∠AED =∠D =90°,AB =5,AE =2,ED =3,过点E 作EF ∥CB 交AB 于点F ,FB =1,过AE 上的点P 作PQ ∥AB 交线段EF 于点O ,交折线BCD 于点Q ,设AP =x ,PO .OQ =y (1)①延长BC 交ED 于点M ,则MD = ,DC =②求y 关于x 的函数解析式; (2)当1(0)2a x a ≤≤>时,96a y b ≤≤,求a ,b 的值; (3)当13y ≤≤时,请直接写出x 的取值范围24.定义:如图1,点M ,N 把线段AB 分割成AM ,MN 和BN ,若以AM ,MN ,BN 为边的三角形是一个直角三角形,则称点M ,N 是线段AB 的勾股分割点(1)已知点M ,N 是线段AB 的勾股分割点,若AM =2,MN =3求BN 的长;(2)如图2,在△ABC 中,FG 是中位线,点D ,E 是线段BC 的勾股分割点,且EC >DE ≥BD ,连接AD ,AE 分别交FG 于点M ,N ,求证:点M ,N 是线段FG 的勾股分割点(3)已知点C 是线段AB 上的一定点,其位置如图3所示,请在BC 上画一点D ,使C ,D 是线段AB 的勾股分割点(要求尺规作图,保留作图痕迹,画出一种情形即可)(4)如图4,已知点M ,N 是线段AB 的勾股分割点,MN >AM ≥BN ,△AMC ,△MND和△NBM 均是等边三角形,AE 分别交CM ,DM ,DN 于点F ,G ,H ,若H 是DN 的中点,试探究AMF S ∆,BEN S ∆和MNHG S 四边形的数量关系,并说明理由2015年浙江省初中学业水平考试(台州卷)数学参考答案和评分细则一、选择题(本题有10小题,每小题4分,共40分)二、填空题(本题有6小题,每小题5分,共30分) 11.2≥x 12.2113.3 14.(10,38) 15.①,③ 16.212- 三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(8分)解:020151)3(6--+-÷=112-+- ……………………………………6分=2-. ……………………………………………………2分18.(8分)解:211(1)a a a -++=22)1()1(1+-++a a a a …………………………………3分 22)1(1)1(1+=+-+=a a a a ………………………………3分当1a =- 时,原式2)112(1+-=…………………………1分21)2(12==. …………………………1分19.(8分)解:如图,过点A '作OA H A ⊥'于点H ,由旋转可知,80=='OA A O , …………1分 在Rt △H A O '中,︒'=35cos A O OH …………3分6.6582.080=⨯≈. ………………2分∴4.146.6580=-=-=OH OA AH 14≈cm .…2分 答:调整后点'A 比调整前点A 的高度降低了14cm .20.(8分)解:(1)表格中分别填写:5,70,5,54,5. ……………………3分(2)变量y 是x 的函数. …………………………2分理由:因为在这个变化过程中,对于x 的每一个确定的值,y 都有唯一确定的值与其对应,所以变量y 是x 的函数. ………………………………1分(3)摩天轮的直径是65570=-m . ………………………………2分21.(10分)解:(1)补全频数分布直方图,如图所示. ……………………………4分(2)∵100%1010=÷,∴%4010040=÷,∴40=m . ……………1分 ∵%41004=÷, ………1分 ∴“E ”组对应的圆心角度数︒=︒⨯=4.14360%4.……1分(写成14.4,也给分)(3)870%)4%25(3000=+⨯人…………2分答:估计该校学生中每周的课外阅读时间不小于6小时的人数是870人.22.(12分)(1)解:∵DC BC =,∴BC DC =.∴CBD CAD BAC ∠=∠=∠. ……………4分 ∵︒=∠39CBD ,∴︒=∠=∠39CAD BAC . ……2分 ∴︒=∠+∠=∠78DAC BAC BAD . ……………1分 (2)证明:∵BC EC =,∴CEB CBE ∠=∠. …………………………………2分 ∵CBD CBE ∠+∠=∠1,BAC CEB ∠+∠=∠2,…………………1分 ∴BAC CBD ∠+∠=∠+∠21. ………………………………1分 又∵CBD BAC ∠=∠,(第22题)∴21∠=∠. …………………………………1分 (利用其他方法进行解答,酌情给分)23.(12分)解:(1)①2=MD , ……………………………………1分1=DC ; ………………………1分②∵x AP =,∴x EP -=2. 在Rt △AEF 中,224tan ===∠AE AF AEF , ∴tan 2(2)24PO PE AEF x x =∠=⨯-=-+. ………………………1分 ∵︒=∠=∠90AED A ,∴AB DE .∵PQAB ,∴PQ ED .当10≤<x 时,如图1所示, ∵EFCB ,PQ AB ,∴四边形OFBQ 是平行四边形.∴1==FB OQ . ∴(24)124y PO OQ x x ==-+⨯=-+. ………………………1分 当21≤<x 时,如图2所示, ∵︒=∠=∠90D AED ,∴AE CD .∵PQED ,∴四边形DEPQ 是矩形.∴12)42(3-=+--=x x OQ . ………………… 1分 ∴2(24)(21)4104y PO OQ x x x x ==-+⨯-=-+-. ……………1分∴⎩⎨⎧≤<-+-≤<+-=.21410410422x x x x x y ,,,(2)y 关于x 的函数图象如图3所示.当10≤<x 时,y 随着x 的增大而减小,所以⎩⎨⎧-==.246,39a b a ………………1分(第23题图1)M(第23题图2)解得⎪⎪⎩⎪⎪⎨⎧==.95,31b a ………………………2分(3)45521+≤≤x . ……………………………………………………2分 24.(14分)(1)解:当MN 为最大线段时,∵点M ,N 是线段AB 的勾股分割点, ∴54922=-=-=AM MN BN .当BN 为最大线段时,∵点M ,N 是线段AB 的勾股分割点, ∴134922=+=+=AM MN BN .综上,5=BN 或13. …………………………………3分(2)证明:∵FG 是△ABC 的中位线,∴FG BC ∥. ∴1===GCAG NE AN MD AM . ∴点M ,N 分别是AD ,AE 的中点.∴FM BD 2=,MN DE 2=,NG EC 2=. …………………………2分 ∵点D ,E 是线段BC 的勾股分割点,且EC >DE∴222DE BD EC +=.∴222)2()2()2(MN FM NG +=.∴222MN FM NG +=.∴点M ,N 是线段FG 的勾股分割点. …………………………2分 (3)用尺规画出图形,如图3所示. …………………………3分 (4)解:+AMF BEN MNHG S S S =△△四边形. …………………………………1分 理由:设a AM =,b BN =,c MN =, ∵H 是DN 的中点,∴c HN DH 21==. ∵△MND ,△BNE 均为等边三角形, ∴︒=∠=∠60DNE D .(第24题图3)(第24题图2)∵NHE DHG ∠=∠, ∴△DGH ≌△NEH .∴b EN DG ==.∴b c MG -=. ∵GM EN ∥,∴△AGM ∽△AEN . ∴ca ab bc +=-. ∴bc ac ab c +-=22.∵点M ,N 是线段AB 的勾股分割点, ∴222b a c +=. ∴c a b b a )()(2-=-,又∵c a b ≠-.∴b a =. …………………………………1分 在△DGH 和△CAF 中,C D ∠=∠,CA DG =,CAF DGH ∠=∠, ∴△DGH ≌△CAF .∴DGH CAF S S =△△. ……………………………………1分 ∵222b a c +=,∴222434343b a c +=. ∴DMN ACM ENB S S S =+△△△.∵DMN DGH MNHG S S S =+△△四边形,ACM CAF AMF S S S =+△△△,∴+AMF BEN MNHG S S S =△△四边形. ……………………………………1分。
【初中数学】浙江省11市2015年中考数学试题分类解析汇编:综合型问题 人教版
浙江省11市2015年中考数学试题分类解析汇编:综合型问题1. (2015年浙江杭州3分)如图,已知点A ,B ,C ,D ,E ,F 是边长为1的正六边形的顶点,】A.14 B. 25 C. 23 D. 59【答案】B.【考点】概率;正六边形的性质.【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,如答图,∵正六边形的顶点,连接任意两点可得15条线段,其中6条的连长AC 、AE 、BD 、BF 、CE 、DF ,∴所求概率为62155=. 故选B.2. (2015年浙江嘉兴4分) 如图,抛物线221y x x m =-+++交x 轴于点A (a ,0)和B (b , 0),交y 轴于点C ,抛物线的顶点为D .下列四个命题:①当>0x 时,>0y ;②若1a =-,则4b =;③抛物线上有两点P (1x ,1y )和Q (2x ,2y ),若12<1<x x ,且12>2x x +,则12>y y ;④点C 关于抛物线对称轴的对称点为E ,点G ,F 分别在x 轴和y 轴上,当2m =时,四边形EDFG 周长的最小值为其中真命题的序号是【 】A. ①B. ②C. ③D. ④【答案】C.【考点】真假命题的判断;二次函数的图象和性质;曲线上点的坐标与方程的关系;轴对称的应用(最短线路问题);勾股定理.【分析】根据二次函数的图象和性质对各结论进行分析作出判断:①从图象可知当>>0x b 时,<0y ,故命题“当>0x 时,>0y ”不是真命题; ②∵抛物线221y x x m =-+++的对称轴为212x =-=-,点A 和B 关于轴对称,∴若1a =-,则3b =,故命题“若1a =-,则4b =”不是真命题;③∵故抛物线上两点P (1x ,1y )和Q (2x ,2y )有12<1<x x ,且12>2x x +,∴211>1x x --,又∵抛物线221y x x m =-+++的对称轴为1x =,∴12>y y ,故命题“抛物线上有两点P (1x ,1y )和Q (2x ,2y ),若12<1<x x ,且12>2x x +,则12>y y ” 是真命题;④如答图,作点E 关于x 轴的对称点M ,作点D 关于y 轴的对称点N ,连接MN ,ME 和ND 的延长线交于点P ,则MN 与x 轴和y 轴的交点G ,F 即为使四边形EDFG 周长最小的点.∵2m =,∴223y x x =-++的顶点D 的坐标为(1,4),点C 的坐标为(0,3). ∵点C 关于抛物线对称轴的对称点为E ,∴点E 的坐标为(2,3). ∴点M 的坐标为()2,3- ,点N 的坐标为()1,4- ,点P 的坐标为(2,4).∴DE MN ==∴当2m =时,四边形EDFG 周长的最小值为DE MN +故命题“点C 关于抛物线对称轴的对称点为E ,点G ,F 分别在x 轴和y 轴上,当2m =时,四边形EDFG 周长的最小值为” 不是真命题.综上所述,真命题的序号是③. 故选C.3. (2015年浙江宁波4分)二次函数)0(4)4(2≠--=a x a y 的图象在2<x <3这一段位于x 轴的下方,在6<x <7这一段位于x 轴的上方,则a 的值为【 】A. 1B. -1C. 2D. -2 【答案】A.【考点】二次函数的性质;解一元一次不等式组;特殊元素法的应用.【分析】∵二次函数2(4)4(0)y a x a =--≠的图象在2<x <3这一段位于x 轴的下方,在6<x <7这一段位于x 轴的上方,∴当52x =时,二次函数2(4)4(0)y a x a =--≠的图象位于x 轴的下方;当132x =时,二次函数2(4)4(0)y a x a =--≠的图象位于x 轴的上方.∴22165<(4)4<0161692<<1316259(4)4>0>225a a a a a ⎧⎧--⎪⎪⎪⎪⇒⇒⎨⎨⎪⎪--⎪⎪⎩⎩.∴a 的值为1. 故选A.4. (2015年浙江衢州3分)如图,已知等腰,ABC AB BC ∆= ,以AB 为直径的圆交AC 于点D ,过点D 的O e 的切线交BC 于点E ,若5,4CD CE == ,则O e 的半径是【 】A. 3B. 4C. 256D. 258【答案】D .【考点】等腰三角形的性质;切线的性质;平行的判定和性质;矩形的判定和性质;勾股定理;方程思想的应用.【分析】如答图,连接OD ,过点B 作BF OD ⊥于点F ,∵AB BC =,∴A C ∠=∠.∵AO DO =,∴A ADO ∠=∠.∴C ADO ∠=∠.∴//OD BC . ∵DE 是O e 的切线,∴DE OD ⊥.∴DE BC ⊥.∴90CED ∠=︒,且四边形DEBF 是矩形. ∵5,4CD CE == ,∴由勾股定理,得3DE =. 设O e 的半径是x ,则(),3,244OB x BF OF x BE x x x ===-=--=- .∴由勾股定理,得222OB OF BF =+,即()22234x x =+-,解得258x =. ∴O e 的半径是258. 故选D .5. (2015年浙江温州4分)如图,点A 的坐标是(2,0),△ABO 是等边三角形,点B 在第一象限. 若反比例函数xky =的图象经过点B ,则k 的值是【 】A. 1B. 2C. 3D. 32【答案】C.【考点】反比例函数综合题;曲线上点的坐标与方程的关系;等边三角形的性质;勾股定理. 【分析】如答图,过点B 作BD ⊥x 于点D ,∵点A 的坐标是(2,0),△ABO 是等边三角形,∴OB=OA=2,OD=1.∴由勾股定理得,∵点B 在第一象限,∴点B 的坐标是1,∵反比例函数k y x =的图象经过点B 1kk ⇒=故选C.6. (2015年浙江温州4分)如图,C 是以AB 为直径的半圆O 上一点,连结AC ,BC ,分别以AC ,BC 为边向外作正方形ACDE ,BCFG ,DE ,FG ,»»AC BC,的中点分别是M ,N ,P ,Q. 若MP+NQ=14,AC+BC=18,则AB 的长是【 】A. 29B. 790C. 13D. 16 【答案】C.【考点】正方形的性质;垂径定理;梯形的中位线定理;方程思想、转换思想和整体思想的应用.【分析】如答图,连接OP 、OQ ,∵DE ,FG ,»»AC BC,的中点分别是M ,N ,P ,Q , ∴点O 、P 、M 三点共线,点O 、Q 、N 三点共线. ∵ACDE ,BCFG 是正方形, ∴AE=CD=AC ,BG=CF=BC.设AB=2r ,则,OM MP r ON NQ r =+=+ . ∵点O 、M 分别是AB 、ED 的中点, ∴OM 是梯形ABDE 的中位线. ∴()()()1112222OM AE BD AE CD BC AC BC =+=++=+,即()122M P rACBC+=+.同理,得()122NQ r BC AC +=+. 两式相加,得()322MP NQ r AC BC ++=+.∵MP+NQ=14,AC+BC=18,∴3142182132r r +=⨯⇒=.故选C.7. (2015年浙江舟山3分) 如图,抛物线221y x x m =-+++交x 轴于点A (a ,0)和B (b , 0),交y 轴于点C ,抛物线的顶点为D .下列四个命题:①当>0x 时,>0y ;②若1a =-,则4b =;③抛物线上有两点P (1x ,1y )和Q (2x ,2y ),若12<1<x x ,且12>2x x +,则12>y y ;④点C 关于抛物线对称轴的对称点为E ,点G ,F 分别在x 轴和y 轴上,当2m =时,四边形EDFG 周长的最小值为其中真命题的序号是【 】A. ①B. ②C. ③D. ④ 【答案】C.【考点】真假命题的判断;二次函数的图象和性质;曲线上点的坐标与方程的关系;轴对称的应用(最短线路问题);勾股定理.【分析】根据二次函数的图象和性质对各结论进行分析作出判断:①从图象可知当>>0x b 时,<0y ,故命题“当>0x 时,>0y ”不是真命题; ②∵抛物线221y x x m =-+++的对称轴为212x =-=-,点A 和B 关于轴对称,∴若1a =-,则3b =,故命题“若1a =-,则4b =”不是真命题;③∵故抛物线上两点P (1x ,1y )和Q (2x ,2y )有12<1<x x ,且12>2x x +,∴211>1x x --,又∵抛物线221y x x m =-+++的对称轴为1x =,∴12>y y ,故命题“抛物线上有两点P (1x ,1y )和Q (2x ,2y ),若12<1<x x ,且12>2x x +,则12>y y ” 是真命题;④如答图,作点E 关于x 轴的对称点M ,作点D 关于y 轴的对称点N ,连接MN ,ME 和ND 的延长线交于点P ,则MN 与x 轴和y 轴的交点G ,F 即为使四边形EDFG 周长最小的点.∵2m =,∴223y x x =-++的顶点D 的坐标为(1,4),点C 的坐标为(0,3). ∵点C 关于抛物线对称轴的对称点为E ,∴点E 的坐标为(2,3). ∴点M 的坐标为()2,3- ,点N 的坐标为()1,4- ,点P 的坐标为(2,4).∴DE MN ==∴当2m =时,四边形EDFG 周长的最小值为DE MN +故命题“点C 关于抛物线对称轴的对称点为E ,点G ,F 分别在x 轴和y 轴上,当2m =时,四边形EDFG 周长的最小值为” 不是真命题.综上所述,真命题的序号是③. 故选C.1. (2015年浙江杭州4分)在平面直角坐标系中,O 为坐标原点,设点P (1,t )在反比例函数2y x =的图象上,过点P 作直线l 与x 轴平行,点Q 在直线l 上,满足QP =OP ,若反比例函数ky x=的图象经过点Q ,则k = ▲【答案】2+或2-【考点】反比例函数的性质;曲线上点的坐标与方程的关系;勾股定理;分类思想的应用. 【分析】∵点P (1,t )在反比例函数2y x =的图象上,∴221t ==.∴P (1,2).∴OP ∵过点P 作直线l 与x 轴平行,点Q 在直线l 上,满足QP =OP ,∴Q ()12或Q ()12-. ∵反比例函数ky x =的图象经过点Q ,∴当Q()12+时,(1225k =⋅=;Q()12-时,(1225k =⋅=2. (2015年浙江湖州4分)已知正方形ABC 1D 1的边长为1,延长C 1D 1到A 1,以A 1C 1为边向右作正方形A 1C 1C 2D 2,延长C 2D 2到A 2,以A 2C 2为边向右作正方形A 2C 2C 3D 3(如图所示),以此类推⋯,若A 1C 1=2,且点A ,D 2, D 3,⋯,D 10都在同一直线上,则正方形A 9C 9C 10D 10的边长是 ▲【答案】8732.【考点】探索规律题(图形的变化);正方形的性质;相似三角形的判定和性质. 【分析】如答图,设AD 10与A 1C 1相交于点E ,则121AD E D A E ∆∆∽,∴11211AD D ED A A E=. 设1A E x =,∵AD 1=1,A 1C 1=2,∴2112,1D A D E x ==- . ∴11223x x x -=⇒=. 易得21322D A E D A D ∆∆∽,∴2113222D A A ED A A D =. 设32D A y =,则222A D y =-,∴22332y y y =⇒=-即21323222332C C D A --===. 同理可得,31414354324233,,22C C C C ----==⋅⋅⋅∴正方形A 9C 9C 10D 10的边长是9181099273322C C --==.3. (2015年浙江嘉兴5分)如图,在直角坐标系xOy 中,已知点A (0,1),点P 在线段OA 上,以AP 为半径的⊙P 周长为1. 点M 从A 开始沿⊙P 按逆时针方向转动,射线AM 交x 轴于点N (n ,0). 设点M 转过的路程为m (0<<1m ).(1)当14m =时,n = ▲ ; (2)随着点M 的转动,当m 从13变化到23时,点N 相应移动的路径长为 ▲【答案】(1)1-;(2. 【考点】单点和线动旋转问题;圆周角定理;等腰直角三角形的判定和性质;等边三角形的判定和性质;含30度直角三角形的性质.【分析】(1)当14m =时,090APM ∠=,∴045NAO ∠=. ∵A (0,1),∴1ON OA ==.∴1n =-. (2)∵以AP 为半径的⊙P 周长为1,∴当m 从13变化到23时,点M 转动的圆心角为120°,即圆周角为60°. ∴根据对称性,当点M 转动的圆心角为120°时,点N 相应移动的路径起点和终点关于y 轴对称.∴此时构成等边三角形,且030OAN ∠=.∵点A (0,1),即OA =1,∴ON ==∴当m 从13变化到23时,点N 相应移动的路径长为2=. 4. (2015年浙江金华4分)如图,在平面直角坐标系中,菱形OBCD 的边OB 在x 轴正半轴上,反比例函数ky (x 0)x=>的图象经过该菱形对角线的交点A ,且与边BC 交于点F. 若点D 的坐标为(6,8),则点F 的坐标是 ▲【答案】8123⎛⎫ ⎪⎝⎭,.【考点】反比例函数综合题;曲线上点的坐标与方程的关系;待定系数法的应用;菱形的性质;中点坐标;方程思想的应用.【分析】∵菱形OBCD 的边OB 在x 轴正半轴上,点D 的坐标为(6,8),∴OD DC OD 10==.∴点B 的坐标为(10,0),点C 的坐标为(16,8).∵菱形的对角线的交点为点A ,∴点A 的坐标为(8,4).∵反比例函数ky (x 0)x =>的图象经过点A ,∴k 8432=⋅=. ∴反比例函数为32y x=.设直线BC 的解析式为y mx n =+,∴4m 16m n 8310m n 040n 3⎧=⎪+=⎧⎪⇒⎨⎨+=⎩⎪=-⎪⎩. ∴直线BC 的解析式为440y x 33=-.联立440x 12y x 33832y y 3x ⎧==-⎧⎪⎪⎪⇒⎨⎨=⎪⎪=⎩⎪⎩.∴点F 的坐标是8123⎛⎫ ⎪⎝⎭,.5. (2015年浙江丽水4分)如图,反比例函数xky =的图象经过点(-1,22-),点A 是该图象第一象限分支上的动点,连结AO 并延长交另一支于点B ,以AB 为斜边作等腰直角三角形ABC ,顶点C 在第四象限,AC 与x 轴交于点P ,连结BP . (1)k 的值为 ▲ .(2)在点A 运动过程中,当BP 平分∠ABC 时,点C 的坐标是 ▲.【答案】(1)k = ;(2)(2,.【考点】反比例函数综合题;曲线上点的坐标与方程的关系;勾股定理;等腰直角三角形的性质;角平分线的性质;相似、全等三角形的判定和性质;方程思想的应用.【分析】(1)∵反比例函数ky x=的图象经过点(-1,-,∴1kk -⇒=-(2)如答图1,过点P 作PM ⊥AB 于点M ,过B 点作BN ⊥x 轴于点N ,设,A x ⎛ ⎝⎭,则,B x ⎛- ⎝⎭.∴AB = ∵△ABC是等腰直角三角形,∴BC AC ==,∠BAC =45°.∵BP 平分∠ABC ,∴()BPM BPC AAS ∆∆≌.∴BM BC ==∴(2AM AB BM =-=∴(2PM AM ==又∵OB =1OM BM OB =-=. 易证OBN OPM ∆∆∽,∴ON BN OBOM PM OP==. 由ON BNOM PM=x ⎛---=解得x =∴)2A,()2B .如答图2,过点C 作EF ⊥x 轴,过点A 作AF ⊥EF 于点F ,过B 点作BE ⊥EF 于点E ,易知,()BCE CAFHL ∆∆≌,∴设CE AF y ==.又∵BC BE y ==,∴根据勾股定理,得222BC BE CE =+,即(()222yy =+.∴220y +-=,解得2y =2y =(舍去).∴由)2A,()2B 可得(2,C .6. (2015年浙江绍兴5分)在平面直角坐标系的第一象限内,边长为1的正方形ABCD 的边均平行于坐标轴,A 点的坐标为(a ,a ).如图,若曲线3(0)=>y x x与此正方形的边有交点,则a 的取值范围是 ▲1≤≤a 【考点】反比例函数的性质;正方形的性质;曲线上点的坐标与方程的关系;分类思想和数形结合思想的应用.【分析】根据题意,当点A 在曲线3(0)=>y x x上时,a 取得最大值;当点C 在曲线3(0)=>y x x上时,a 取得最小值.当点A 在曲线3(0)=>y x x 上时,233=⇒=⇒=a a a a (舍去负值).当点C 在曲线3(0)=>y x x 上时,易得C 点的坐标为()11++a a ,,∴()23113111+=⇒+=⇒+=⇒=-±+a a a a a . ∴若曲线3(0)=>y x x与正方形的边有ABCD 交点,a 的取值范围是1≤≤a .7. (2015年浙江义乌4分)在平面直角坐标系的第一象限内,边长为1的正方形ABCD 的边均平行于坐标轴,A 点的坐标为(a ,a ).如图,若曲线3(0)=>y x x与此正方形的边有交点,则a 的取值范围是 ▲1≤≤a 【考点】反比例函数的性质;正方形的性质;曲线上点的坐标与方程的关系;分类思想和数形结合思想的应用.【分析】根据题意,当点A 在曲线3(0)=>y x x上时,a 取得最大值;当点C 在曲线3(0)=>y x x上时,a 取得最小值.当点A 在曲线3(0)=>y x x 上时,233=⇒=⇒=a a a a (舍去负值).当点C 在曲线3(0)=>y x x 上时,易得C 点的坐标为()11++a a ,,∴()23113111+=⇒+=⇒+=⇒=-±+a a a a a . ∴若曲线3(0)=>y x x与正方形的边有ABCD 交点,a 的取值范围是1≤≤a .8. (2015年浙江舟山4分)如图,在直角坐标系xOy 中,已知点A (0,1),点P 在线段OA 上,以AP 为半径的⊙P 周长为1. 点M 从A 开始沿⊙P 按逆时针方向转动,射线AM 交x 轴于点N (n ,0). 设点M 转过的路程为m (0<<1m ). 随着点M 的转动,当m 从13变化到23时,点N 相应移动的路径长为 ▲【考点】单点和线动旋转问题;圆周角定理;等边三角形的判定和性质;含30度直角三角形的性质.【分析】∵以AP 为半径的⊙P 周长为1,∴当m 从13变化到23时,点M 转动的圆心角为120°,即圆周角为60°. ∴根据对称性,当点M 转动的圆心角为120°时,点N 相应移动的路径起点和终点关于y 轴对称.∴此时构成等边三角形,且030OAN ∠=. ∵点A (0,1),即OA =1,∴ON ==∴当m 从13变化到23时,点N相应移动的路径长为2=.1. (2015年浙江杭州12分)方成同学看到一则材料,甲开汽车,乙骑自行车从M 地出发沿一条公路匀速前往N 地,设乙行驶的时间为t (h ),甲乙两人之间的距离为y (km ),y 与t 的函数关系如图1所示,方成思考后发现了图1的部分正确信息,乙先出发1h ,甲出发0.5小时与乙相遇,⋯⋯,请你帮助方成同学解决以下问题: (1)分别求出线段BC ,CD 所在直线的函数表达式; (2)当20<y <30时,求t 的取值范围;(3)分别求出甲、乙行驶的路程S 甲、S 乙与时间t 的函数表达式,并在图2所给的直角坐标系中分别画出它们的图象;(4)丙骑摩托车与乙同时出发,从N 地沿同一条公路匀速前往M 地,若丙经过h 与乙相遇,问丙出发后多少时间与甲相遇.图2图13)【答案】解:(1)设线段BC 所在直线的函数表达式为11y k t b =+,∵37100,0,,233B C ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭ ,∴1111302710033k b k b ⎧+=⎪⎪⎨⎪+=⎪⎩,解得114060k b =⎧⎨=-⎩. ∴线段BC 所在直线的函数表达式为4060y t =-. 设线段CD 所在直线的函数表达式为22y k t b =+,∵()7100,,4,033C D ⎛⎫⎪⎝⎭ ,∴221171003340k b k b ⎧+=⎪⎨⎪+=⎩,解得222080k b =-⎧⎨=⎩. ∴线段BC 所在直线的函数表达式为2080y t =-+.(2)∵线段OA 所在直线的函数表达式为()2001y t t =≤≤,∴点A 的纵坐标为20.当20<<30y 时,即20<4060<30t -或20<20800<30t -+, 解得92<<4t 或5<<32t . ∴当20<<30y 时, t 的取值范围为92<<4t 或5<<32t . (3)()60601<3S t t =-≤甲,()201<4S t t =≤乙.所画图形如答图:(4)当43t =0时,803S =乙,∴丙距M 地的路程S 丙与时间t 的函数关系式为()408002S t t =-+≤≤丙. 联立6064080S t S t =-⎧⎨=-+⎩,解得()60601<3S t t =-≤甲与()408002S t t =-+≤≤丙图象交点的横坐标为75,∴丙出发后75h 与甲相遇.【考点】一次函数的图象和性质;待定系数法的应用;直线上点的坐标与方程的关系;解方程组和不等式组;分类思想的应用.【分析】(1)应用待定系数法即可求得线段BC,CD所在直线的函数表达式.(2)求出点A的纵坐标,确定适用的函数,解不等式组求解即可.(3)求函数表达式画图即可.(4)求出S丙与时间t的函数关系式,与()60601<3S t t=-≤甲联立求解.2. (2015年浙江嘉兴12分)某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元. 为按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x满足如下关系式:()() 5005301205<15x xyx x⎧≤≤⎪=⎨+≤⎪⎩.(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画. 若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大值是多少元(利润=出厂价-成本)?【答案】解:(1)设李明第n天生产的粽子数量为420只,根据题意,得30120420n+=,解得10n=.答:李明第10天生产的粽子数量为420只.(2)由图象可知,当0<9x ≤时, 4.1p =;当915x ≤≤时,设p kx b =+,把点(9,4.1),(15,4.7)代入止式,得9 4.115 4.7k b k b +=⎧⎨+=⎩,解得0.13.2k b =⎧⎨=⎩.∴0.1 3.2p x =+.①05x ≤≤时,()6 4.154102.6w x x =-⋅=,当5x =时,513w =最大(元); ②5<<9x 时,()()6 4.130********w x x =-⋅+=+, ∵x 是整数,∴当8x =时,684w =最大(元); ③915x ≤≤时,()()()2260.13.w xx x x=--⋅+, ∵3<0-,∴当12x =时,768w =最大(元).综上所述,w 与x 之间的函数表达式为()()()2102.605572285<<9372336915x x w x x x x x ⎧≤≤⎪=+⎨⎪-++≤≤⎩,第12天的利润最大,最大值是768元.【考点】一元一次方程、一次函数和二次函数的综合应用;分类思想的应用.【分析】(1)方程的应用解题关键是找出等量关系,列出方程求解. 本题设李明第n 天生产的粽子数量为420只,等量关系为:“第n 天生产的粽子数量等于420只”.(2)先求出p 与x 之间的关系式,分05x ≤≤,5<<9x ,915x ≤≤三种情况求解即可.3. (2015年浙江金华10分)图1,图2为同一长方体房间的示意图,图2为该长方体的表面展开图.(1)蜘蛛在顶点A'处①苍蝇在顶点B 处时,试在图1中画出蜘蛛为捉住苍蝇,沿墙面爬行的最近路线;②苍蝇在顶点C 处时,图2中画出了蜘蛛捉住苍蝇的两条路线,往天花板ABCD 爬行的最近路线A 'GC 和往墙面BB'C'C 爬行的最近路线A 'HC ,试通过计算判断哪条路线更近?(2)在图3中,半径为10dm 的⊙M 与D 'C '相切,圆心M 到边CC'的距离为15dm ,蜘蛛P 在线段AB 上,苍蝇Q 在⊙M 的圆周上,线段PQ 为蜘蛛爬行路线。
浙江省中考数学试题附答案
浙江省2015年中考数学试题(附答案)浙江省2015年中考数学试题(附答案)满分150分,考试时间120分钟一、选择题(本题有10小题,每小题4分,共40分)1.计算的结果是A.-3B.-2C.2D.32.据中国电子商务研究中心监测数据显示,2015年第一季度中国轻纺城市场群的商品成交额达27800000000元,将27800000000用科学计数法表示为A.2.78×1010B.2.78×1011C.27.8×1010D.0.278×10113.有6个相同的立方体搭成的几何体如图所示,则它的主视图是4.下面是一位同学做的四道题:①;②;③;④,其中做对的一道题的序号是A.①B.②C.③D.④5.在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是A.B.C.D.6.化简的结果是A.B.C.D.7.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB 和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线。
此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE。
则说明这两个三角形全等的依据是A.S8.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则的长A.B.C.D.9.如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换。
已知抛物线经过两次简单变换后的一条抛物线是,则原抛物线的解析式不可能的是A.B.C.D.10.挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其它棒条压着时,就可以把它往上拿走。
如图中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…,则第6次应拿走A.②号棒B.⑦号棒C.⑧号棒D.⑩号棒二、填空题(本题有6小题,每小题5分,共30分)11.因式分解:=▲12.如图,已知点A(0,1),B(0,-1),以点A为圆心,AB为半径作圆,交轴的正半轴于点C,则∠BAC等于▲度13.由于木质衣架没有柔性,在挂置衣服的时候不太方便操作。
浙江省11市2015年中考数学试题分类解析汇编 专题12 圆的问题
专题12:圆的问题1. (2015年浙江杭州3分)圆内接四边形ABCD 中,已知∠A =70°,则∠C =【 】A. 20°B. 30°C. 70°D. 110° 【答案】D .【考点】圆内接四边形的性质.【分析】∵圆内接四边形ABCD 中,已知∠A =70°,∴根据圆内接四边形互补的性质,得∠C =110°. 故选D .2. (2015年浙江湖州3分)若一个圆锥的侧面展开图是半径为18cm ,圆心角为240°的扇形,则这个圆锥的底面半径长是【 】A. 6cmB. 9cmC. 12cmD. 18cm 【答案】C.【考点】圆锥和扇形的计算.【分析】∵圆锥的侧面展开后所得扇形的半径为18cm ,圆心角为240°,∴根据扇形的弧长公式,侧面展开后所得扇形的弧长为24018=24180ππ⋅⋅.∵圆锥的底面周长等于它的侧面展开图的弧长,∴根据圆的周长公式,得2=24r ππ,解得()=12r cm . 故选C.3. (2015年浙江湖州3分)如图,以点O 为圆心的两个圆中,大圆的弦AB 切小圆于点C ,OA 交小圆于点D ,若OD =2,tan ∠OAB =12,则AB 的长是【 】A.4B.2343 【答案】C.【考点】切线的性质;垂径定理;锐角三角函数定义. 【分析】如答图,连接OC ,∵弦AB 切小圆于点C ,∴OC AB ⊥.∴由垂径定理得AC BC =. ∵tan ∠OAB =12,∴12OC AC =. ∵OD =2,∴OC =2. ∴24AC OC ==.∴28AB AC ==. 故选C.4. (2015年浙江嘉兴4分) 如图,在△AB C 中,AB =5,BC =3,AC =4,以点C 为圆心的圆与AB 相切,则⊙O 的半径为【 】A. 2.3B. 2.4C. 2.5D. 2.6 【答案】B.【考点】切线的性质;勾股定理逆定理;相似三角形的判定和性质. 【分析】如答图,设⊙O 与AB 相切于点D ,连接CD ,∵AB =5,BC =3,AC =4,∴222AB BC AC =+. ∴△AB C 是直角坐标三角形,且090ACB ∠=.∵⊙O 与AB 相切于点D ,∴CD AB ⊥,即090ACD ∠=. ∴易证ABC ACD ∆∆∽.∴AC CD AB BC =. ∴4 2.453CDCD =⇒=.∴⊙O 的半径为2.4. 故选B.5. (2015年浙江金华3分)如图,正方形ABCD 和正三角形AEF 都内接于⊙O ,EF 与BC ,CD 分别相交于点G ,H ,则EFGH的值是【 】A.26B. 2C. 3D. 2 【答案】C.【考点】正方形和等边三角形的性质;圆周角定理;锐角三角函数定义;特殊角的三角函数值;等腰直角三角形的判定和性质,特殊元素法的应用.【分析】如答图,连接AC,EC ,AC 与EF 交于点M .则根据对称性质,AC 经过圆心O ,∴AC 垂直 平分EF ,01EAC FAC EAF 302∠=∠=∠=. 不妨设正方形ABCD 的边长为2,则AC 22=. ∵AC 是⊙O 的直径,∴0AEC 90∠=. 在Rt ACE ∆中,3AE AC cos EAC 226=⋅∠=⋅=, 1CE AC sin EAC 2222=⋅∠=⋅=.在Rt MCE ∆中,∵0FEC FAC 30∠=∠=,∴12CM CE sin EAC 222=⋅∠=⋅=. 易知GCH ∆是等腰直角三角形,∴GF 2CM 2==. 又∵AEF ∆是等边三角形,∴EF AE 6==.∴EF 63GH 2==. 故选C.6. (2015年浙江宁波4分) 如图,⊙O 为△ABC 的外接圆,∠A =72°,则∠BCO 的度数为【 】A. 15°B. 18°C. 20°D. 28° 【答案】B.【考点】圆周角定理;等腰三角形的性质;三角形内角和定理. 【分析】如答图,连接OB ,∵∠A 和∠BOC 是同圆中同弧BC 所对的圆周角和圆心角, ∴2BOC A ∠=∠.∵∠A =72°,∴∠BOC =144°.∵OB=OC ,∴CBO BCO ∠=∠.∴180144182CBO ︒-︒∠==︒. 故选B.7. (2015年浙江宁波4分)如图,用一个半径为30cm ,面积为π300cm 2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r 为【 】A. 5cmB. 10cmC. 20cmD. π5cm 【答案】B.【考点】圆锥的计算.【分析】∵扇形的半径为30cm ,面积为300πcm 2,∴扇形的圆心角为230036012030ππ⋅=︒⋅.∴扇形的弧长为()1203020180cm ππ⋅⋅=.∵圆锥的底面周长等于它的侧面展开图的弧长, ∴根据圆的周长公式,得220r ππ=,解得()10r cm =. ∴圆锥的底面半径为10cm .故选B.8. (2015年浙江衢州3分)数学课上,老师让学生尺规作图画Rt ABC ∆,使其斜边AB c = ,一条直角边BC a =.小明的作法如图所示,你认为这种作法中判断ACB ∠是直角的依据是【 】A .勾股定理B .直径所对的圆周角是直角C .勾股定理的逆定理D .90°的圆周角所对的弦是直径 【答案】B .【考点】尺规作图(复杂作图);圆周角定理.【分析】小明的作法是:①取AB c =,作AB 的垂直平分线交AB 于点O ;②以点O 为圆心,OB 长为半径画圆;③以点B 为圆心,a 长为半径画弧,与O 交于点C ; ④连接,BC AC . 则Rt ABC ∆即为所求.从以上作法可知,ACB ∠是直角的依据是:直径所对的圆周角是直角. 故选B .9. (2015年浙江衢州3分)如图,已知等腰,ABC AB BC ∆= ,以AB 为直径的圆交AC 于点D ,过点D 的O 的切线交BC 于点E ,若5,4CD CE == ,则O 的半径是【 】A. 3B. 4C. 256D. 258【答案】D .【考点】等腰三角形的性质;切线的性质;平行的判定和性质;矩形的判定和性质;勾股定理;方程思想的应用.【分析】如答图,连接OD ,过点B 作BF OD ⊥于点F ,∵AB BC =,∴A C ∠=∠.∵AO DO =,∴A ADO ∠=∠.∴C ADO ∠=∠.∴//OD BC . ∵DE 是O 的切线,∴DE OD ⊥.∴DE BC ⊥. ∴90CED ∠=︒,且四边形DEBF 是矩形. ∵5,4CD CE == ,∴由勾股定理,得3DE =. 设O 的半径是x ,则(),3,244OB x BF OF x BE x x x ===-=--=- .∴由勾股定理,得222OB OF BF =+,即()22234x x =+-,解得258x =. ∴O 的半径是258. 故选D .10. (2015年浙江绍兴4分)如图,四边形ABCD 是⊙O 的内接四边形,⊙O 的半径为2,∠B=135°,则的长【 】A. π2B. πC. 2πD. 3π 【答案】B.【考点】圆内接四边形的性质;圆周角定理;弧长的计算. 【分析】如答图,连接AO ,CO ,∵四边形ABCD 是⊙O 的内接四边形,∠B=135°,∴∠D=45°.∵∠D 和∠AOC 是同圆中同弧所对的圆周角和圆心角,∴∠AOC=90°. 又∵⊙O 的半径为2,∴902AC 180ππ⋅⋅==.故选B.11. (2015年浙江温州4分)如图,C 是以AB 为直径的半圆O 上一点,连结AC ,BC ,分别以AC ,BC 为边向外作正方形ACDE ,BCFG ,DE ,FG ,AC BC ,的中点分别是M ,N ,P ,Q. 若MP+NQ=14,AC+BC=18,则AB 的长是【 】A. 29B. 790C. 13D. 16 【答案】C.【考点】正方形的性质;垂径定理;梯形的中位线定理;方程思想、转换思想和整体思想的应用. 【分析】如答图,连接OP 、OQ ,∵DE ,FG ,AC BC ,的中点分别是M ,N ,P ,Q , ∴点O 、P 、M 三点共线,点O 、Q 、N 三点共线. ∵ACDE ,BCFG 是正方形, ∴AE=CD=AC ,BG=CF=BC.设AB=2r ,则,OM MP r ON NQ r =+=+ . ∵点O 、M 分别是AB 、ED 的中点, ∴OM 是梯形ABDE 的中位线.∴()()()1112222OM AE BD AE CD BC AC BC =+=++=+,即()122MP r AC BC +=+. 同理,得()122NQ r BC AC +=+.两式相加,得()322MP NQ r AC BC ++=+ .∵MP+NQ=14,AC+BC=18,∴3142182132r r +=⨯⇒=.故选C.12. (2015年浙江义乌3分)如图,四边形ABCD 是⊙O 的内接四边形,⊙O 的半径为2,∠B=135°,则的长【 】A. π2B. πC. 2πD. 3π 【答案】B.【考点】圆内接四边形的性质;圆周角定理;弧长的计算. 【分析】如答图,连接AO ,CO ,∵四边形ABCD 是⊙O 的内接四边形,∠B=135°, ∴∠D=45°.∵∠D 和∠AOC 是同圆中同弧所对的圆周角和圆心角,∴∠AOC=90°. 又∵⊙O 的半径为2,∴902AC 180ππ⋅⋅==.故选B.13. (2015年浙江舟山3分) 如图,在△AB C 中,AB =5,BC =3,AC =4,以点C 为圆心的圆与AB 相切,则⊙O 的半径为【 】A. 2.3B. 2.4C. 2.5D. 2.6 【答案】B.【考点】切线的性质;勾股定理逆定理;相似三角形的判定和性质.【分析】如答图,设⊙O 与AB 相切于点D ,连接CD ,∵AB =5,BC =3,AC =4,∴222AB BC AC =+. ∴△AB C 是直角坐标三角形,且090ACB ∠=.∵⊙O 与AB 相切于点D ,∴CD AB ⊥,即090ACD ∠=. ∴易证ABC ACD ∆∆∽.∴AC CD AB BC =. ∴4 2.453CDCD =⇒=.∴⊙O 的半径为2.4. 故选B.1. (2015年浙江湖州4分)如图,已知C ,D 是以AB 为直径的半圆周上的两点,O 是圆心,半径OA =2,∠COD =120°,则图中阴影部分的面积等于 ▲【答案】23π.【考点】扇形面积的计算;转换思想的应用.【分析】∵C ,D 是以AB 为直径的半圆周上的两点,O 是圆心,半径OA =2,∠COD =120°,∴22112022223603OCDS S S πππ⋅⋅=-=⋅⋅-=阴影半圆扇形. 2. (2015年浙江丽水4分)如图,圆心角∠AOB =20°,将AB 旋转n ︒得到CD ,则CD 的度数是 ▲ 度【答案】20.【考点】旋转的性质;圆周角定理. 【分析】如答图,∵将AB 旋转n ︒得到CD ,∴根据旋转的性质,得CD AB =. ∵∠AOB =20°,∴∠COD =20°. ∴CD 的度数是20°.3. (2015年浙江宁波4分)如图,在矩形ABCD 中,AB =8,AD =12,过点A ,D 两点的⊙O 与BC 边相切于点E ,则⊙O 的半径为 ▲【答案】254. 【考点】矩形的性质;垂径定理;勾股定理;方程思想的应用. 【分析】如答图,连接EO 并延长交AD 于点H ,连接AO ,∵四边形ABCD 是矩形,⊙O 与BC 边相切于点E , ∴EH ⊥BC ,即EH ⊥AD. ∴根据垂径定理,AH=DH. ∵AB =8,AD =12,∴AH=6,HE=8.设⊙O 的半径为r ,则AO=r ,8OH r =-.在Rt OAH ∆中,由勾股定理得()22286r r -+=,解得254r =. ∴⊙O 的半径为254. 4. (2015年浙江衢州4分) 一条排水管的截面如图所示,已知排水管的半径1OA m =,水面宽 1.2AB m =,某天下雨后,水管水面上升了0.2m ,则此时排水管水面宽CD 等于 ▲ m .【答案】1.6.【考点】垂径定理;勾股定理..【分析】如答图,连接OC ,过点O 作OE AB ⊥于点E ,交CD 于点F ,则,,OE CD AE BE CF DF ⊥== .∵1, 1.2OA m AB m == ,∴()221.210.82OE m ⎛⎫=-= ⎪⎝⎭.∵下雨后,水管水面上升了0.2m ,即0.2EF m =,∴0.6OF m =. ∴()222210.60.8CF OC OE m =-=-=.∴()2 1.6CD CF m ==.5. (2015年浙江绍兴5分) 在Rt△ABC 中,∠C=90°,BC=3,AC=4,点P 在以C 为圆心,5为半径的圆上,连结PA ,PB. 若PB=4,则PA 的长为 ▲ 【答案】3或73.【考点】矩形的判定和性质;勾股定理;分类思想的应用. 【分析】如答图,分两种情况:当点P 与点A 在BC 同侧时,BACP 1是矩形,P 1A=BC=3;当点P 与点A 在BC 异侧时,P 2EAP 1是矩形,P 1A=223873+=. ∴PA 的长为3或73.6. (2015年浙江温州5分) 已知扇形的圆心角为120°,弧长为π2,则它的半径为 ▲ 【答案】3.【考点】弧长的计算.【分析】运用弧长计算公式,将其变形即可求出扇形的半径:由弧长公式得1202180rππ⋅⋅=,解得:3r=.7. (2015年浙江温州5分)图甲是小明设计的带图案的花边作品,该作品由形如图乙的矩形图案拼接而成(不重叠,无缝隙). 图乙中,76=BCAB,EF=4cm,上下两个阴影三角形的面积之和为54cm2,其内部菱形由两组距离相等的平行线交叉得到,则该菱形的周长为▲ cm【答案】503.【考点】菱形和平行四边形的性质;三角形和梯形面积的应用;相似判定和性质;待定系数法、方程思想数形结合思想和整体思想的应用.【分析】如答图,连接MN、PQ,设MN=2x,PQ=2y,∵67ABBC=,∴可设AB=()6>0k k,BC=7k.∵上下两个阴影三角形的面积之和为54,∴272354672x kk k k+⋅⋅+=⋅,即()22735442x k k k+⋅+=①.∵四边形DEMN、AFMN是平行四边形,∴DE=AF=MN=2x.∵EF=4,∴447x k+=,即7422kx-=②.将②代入①得,2747354422kk k k-⎛⎫+⋅+=⎪⎝⎭,化简,得274360k k+-=.解得12182,7k k==-(舍去).∴AB=12,BC=14,MN=5,52x=.易证△MCD∽△MPQ,∴145122522y-=,解得103y=.∴PM=222510025496x y+=+=.∴菱形MPNQ的周长为2550463⨯=1. (2015年浙江杭州8分)如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′•OP=r2,则称点P′是点P关于⊙O的“反演点”,如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′、B′分别是点A,B关于⊙O的反演点,求A′B′的长.图2图1ABOP'PO【答案】解:∵⊙O的半径为4,点A′、B′分别是点A,B关于⊙O的反演点,点B在⊙O上, OA=8,∴224,4OA OA OB OB'⋅='⋅=,即2284,44OA OB'⋅='⋅=.∴2,4OA OB'='=.∴点B的反演点B′与点B重合.如答图,设OA交⊙O于点M,连接B′M,∵OM=O B′,∠BOA=60°,∴△O B′M是等边三角形.∵2OA A M'='=,∴B′M⊥OM.∴在'Rt OB M∆中,由勾股定理得22224223A B OB OA''='-=-=.【考点】新定义;等边三角形的判定和性质;勾股定理.【分析】先根据定义求出2,4OA OB'='=,再作辅助线:连接点B′与OA和⊙O的交点M,由已知∠BOA=60°判定△O B′M是等边三角形,从而在'Rt OB M∆中,由勾股定理求得A′B′的长.2. (2015年浙江湖州8分)如图,已知BC是⊙O的直径,AC切⊙O于点C,AB交⊙O于点D,E为AC的中点,连结DE.(1)若AD=DB,OC=5,求切线AC的长;(2)求证:ED是⊙O的切线.【答案】解:(1)如答图,连接CD ,∵BC 是⊙O 的直径,∴090BDC ∠=,即CD AB ⊥. ∵AD =DB ,OC =5,∴210AC BC OC ===. (2)证明:如答图,连接OD ,∵090ADC ∠=,E 为AC 的中点, ∴12DE EC AC ==.∴12∠=∠. ∵OD OC =.∴34∠=∠. ∵AC 是⊙O 的切线,∴AC OC ⊥. ∴0132490∠+∠=∠+∠=,即DE OD ⊥. ∴ED 是⊙O 的切线.【考点】圆周角定理;等腰三角形的判定和性质;切线的判定和性质.【分析】(1)作辅助线:连接CD ,由BC 是⊙O 的直径,根据直径所对的圆周角是直角的性质得到CD AB ⊥,,从而易得210AC BC OC ===.(2)作辅助线:连接OD ,一方面,根据等腰三角形等边对等角的性质得到ODE OCE ∠=∠,另一方面,由AC 是⊙O 的切线,根据切线的性质得到AC OC ⊥,从而得到证明.3. (2015年浙江金华10分)图1,图2为同一长方体房间的示意图,图2为该长方体的表面展开图.(1)蜘蛛在顶点A'处①苍蝇在顶点B 处时,试在图1中画出蜘蛛为捉住苍蝇,沿墙面爬行的最近路线;②苍蝇在顶点C 处时,图2中画出了蜘蛛捉住苍蝇的两条路线,往天花板ABCD 爬行的最近路线A'GC 和往墙面BB'C'C 爬行的最近路线A'HC ,试通过计算判断哪条路线更近?(2)在图3中,半径为10dm 的⊙M 与D'C'相切,圆心M 到边CC'的距离为15dm ,蜘蛛P 在线段AB 上,苍蝇Q 在⊙M 的圆周上,线段PQ 为蜘蛛爬行路线。
2015年浙江省台州市天台县中考数学模拟试卷和答案
2015年浙江省台州市天台县中考数学模拟试卷一、选择题(共10小题,每小题4分,满分40分)1.(4分)与2互为相反数的是()A.﹣2 B.2 C.D.﹣2.(4分)如图,下列水平放置的几何体中,主视图是三角形的是()A. B.C.D.3.(4分)分式方程的解是()A.x=0 B.x=1 C.x=2 D.x=34.(4分)若一批学生的年龄(单位:岁)分别是14,15,16,16,17,17,则这批学生年龄的中位数是()A.14 B.15 C.16 D.175.(4分)下列四个图形中,∠α的度数等于50°的图形个数是()A.1个 B.2个 C.3个 D.4个6.(4分)△ABC是一个任意三角形,用直尺和圆规作出∠A、∠B的平分线,如果两条平分线交于点O,那么下列选项中不正确的是()A.点O一定在△ABC的内部B.∠C的平分线一定经过点OC.点O到△ABC的三边距离一定相等D.点O到△ABC三顶点的距离一定相等7.(4分)为鼓励市民绿色低碳方式出行,县政府开通了公共自行车出租服务,每次租车1个小时内免费,若超过1小时,将按以下标准收费:第一个小时为1元,第二个小时为2元,第三个小时及以上,按每小时3元计费,不足1小时按1小时计算,一天收取的费用最高不超过10元.如果小明上午9:00租车,当天11:30还车,那么小明应付租车费()A.1元 B.2元 C.3元 D.6元8.(4分)如图,二次函数y=﹣x2+2x+3的图象与x轴交于点A和点B,顶点为C,则sin∠ABC=()A.B.C.2 D.9.(4分)如图,PA,PB分别与⊙O相切于A、B,点C在劣弧AB上(不与A,B重合),若∠APB=70°,则∠ACB=()A.140°B.145°C.110° D.125°10.(4分)如图,矩形ABCD中,BC=1,连接AC与BD交于点E1,过E1作E1F1⊥BC于F1,连接AF1交BD于E2,过E2作E2F2⊥BC于F2,连接AF2交BD于E3,过E3作E3F3⊥BC于F3,…,以此类推,则BF n(其中n为正整数)的长为()A. B. C. D.二、填空题(共6小题,每小题5分,满分30分)11.(5分)不等式组的解集为.12.(5分)如果一个扇形的弧长为2,半径为1,则这个扇形的面积为.13.(5分)将分式化为最简分式,所得结果是.14.(5分)如图,一次函数y=x+1的图象与x轴交于点A,与y轴交于点B,与反比例函数y=(x>0)的图象交于点C,O为坐标原点,连接OC.若△AOC 的面积为1,则k的值为.15.(5分)如图,正六边形ABCDEF的边长为2,它的中心与坐标原点O重合,对角线BE在x轴上,若抛物线y=ax2+bx+c(a>0,b>0)经过正六边形的三个顶点,则该抛物线的解析式为.16.(5分)如图,在正方形ABCD中,边AD绕点A顺时针旋转角度m(0°<m <360°),得到线段AP,连接PB,PC.当△BPC是等腰三角形时,m的值为.三、解答题(共8小题,第17-20题每题8分,第21题10分,第22,23题每题12分,第24题14分,满分80分)17.(8分)计算:﹣|﹣2|+()﹣1﹣20150.18.(8分)如图,抛物线y1=x2+mx+n与直线y2=x﹣1交于点A(a,﹣2)和B(b,2).(1)求a,b的值;(2)观察图象,直接写出当y1<y2时x的取值范围.19.(8分)如图,AB∥CD∥EF,DE∥BC∥AG,FG⊥AG,已知BC=3cm,DE=2cm,AG=12cm,∠BAG=35°,求FG的长.(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)20.(8分)2015年体育中考作出新规定:考试须从“力量素质类”和“运动技能类”中各选考一项,其中“力量素质类”包括掷实心球和立定跳远,“运动技能类”包括篮球运动投篮和排球垫球,我们将掷实心球、立定跳远、篮球运动投篮和排球垫球分别记为A、B、C、D.(1)如果考生随机选考,共有几种不同的选考结果,请一一列举出来;(2)如果考生甲随机选考,求恰好选中掷实心球和篮球运球投篮的概率;(3)若甲、乙两个考生都进行随机选考,请利用树形图法或列表法,求甲、乙两个考生选考结果完全相同的概率.21.(10分)如图,在△ABC中,AB=AC=13,BC=10,以AC为直径画⊙O交BC 于点D,交AB于点E,连接CE.(1)求证:BD=CD;(2)求CE的长.22.(12分)甲乙两家商场以同样的价格出售相同的商品,为了促销,现在两家商场都让利酬宾,其中甲商场所有商品按9折出售,乙商场对一次购物超过200元后的部分打8折.(1)用x(单位:元)表示促销前的商品总价,y(单位:元)表示促销后的购物总金额,就甲乙两家商场的让利方式分别求出y关于x的函数关系式.(2)促销前,小明的妈妈在两家商场的购物原价总和为1000元,若促销后购物金额总和为870元,求促销前小明的妈妈在甲乙两家商场购物的商品原价分别是多少?23.(12分)如果三角形的三条边长中存在一边是另一边两倍关系,则称这样的三角形为“倍边三角形”.例如:边长为a=2,b=3,c=4的三角形就是一个倍边三角形.(1)如果一个倍边三角形的两边长为6和8,那么第三边长所有可能的值有;(2)图1和图2中,△ABC都是倍边三角形,且AB=AC,BC=2,请在图中画出分割线(画图工具不限,标注出每个小三角形的边长,不写画法,不需证明,每个图形画出一种情形即可)①请在图1中画一条分割线,把△ABC分成两个小三角形,使每个小三角形都是倍边三角形;②请在图2中画两条分割线,把△ABC分成三个小三角形,使每个小三角形都是倍边三角形.(3)如图3,半圆O的直径AB=12,点C在半圆O上,OC⊥AB,P是直径AB 上的动点(不与点O重合),连接CO,CP.随着点P的运动,如果△POC是倍边三角形,求AP的长.24.(14分)如图,在△ABC中,AB=AC=2,BC=4,P是AB边上的动点(不与A,B重合),过P作PE∥BC交AC于E,作PF⊥BC,垂足为F,连接EF,M 是EF上的点,且EM=2FM,设BF=m.(1)直接写出△EMP与△FMP的面积的数量关系;(2)①求PE,PF的长(分别用含m的代数式表示);②设△PEM的面积为S,求S与m的函数关系式,并求S的最大值;③△PEM能否成为等腰三角形?若能,求出相应的m的值;若不能,请说明理由;(3)直接写出PM长度的最小值.2015年浙江省台州市天台县中考数学模拟试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分)与2互为相反数的是()A.﹣2 B.2 C.D.﹣【分析】根据只有符号不同的两数叫做互为相反数解答.【解答】解:与2互为相反数的是﹣2,故选:A.2.(4分)如图,下列水平放置的几何体中,主视图是三角形的是()A. B.C.D.【分析】找到从正面看所得到的图形是三角形即可.【解答】解:A、主视图为长方形,故本选项错误;B、主视图为三角形,故本选项错误;C、主视图为长方形,故本选项错误;D、主视图为长方形,故本选项错误.故选:B.3.(4分)分式方程的解是()A.x=0 B.x=1 C.x=2 D.x=3【分析】本题考查解分式方程的能力,观察方程可得最简公分母为2x(x+3),把分式方程化成整式方程.【解答】解:去分母得x+3=2•2x,解得x=1,将x=1代入2x(x+3)=8≠0,所以方程的解为:x=1.故选:B.4.(4分)若一批学生的年龄(单位:岁)分别是14,15,16,16,17,17,则这批学生年龄的中位数是()A.14 B.15 C.16 D.17【分析】排序后找到中间位置的两数,然后求其平均数即可.【解答】解:观察发现位于中间的两数为16,16,故中位数为16.故选:C.5.(4分)下列四个图形中,∠α的度数等于50°的图形个数是()A.1个 B.2个 C.3个 D.4个【分析】根据对顶角相等队第1个图进行判断;根据三角形外角性质对第2个图进行判断;根据圆周角定理对第3个图进行判断;根据圆内接四边形对第4个图进行判断.【解答】解:在第1个图中,∵对顶角行等,∴∠α=50°;在第2个图中,∵三角形的一个外角等于和它不相邻的两个内角的和,∴∠α+70°=130°,∴∠α=60°;在第3个图中,∵在同圆或等圆中,同弧或等弧所对的圆周角相等,∴∠α=50°;在第4个图中,∵圆内接四边形的对角互补,∴∠α+130°=180°,∴∠α=50°,∴∠α的度数等于50°的图形个数是3个,故选:C.6.(4分)△ABC是一个任意三角形,用直尺和圆规作出∠A、∠B的平分线,如果两条平分线交于点O,那么下列选项中不正确的是()A.点O一定在△ABC的内部B.∠C的平分线一定经过点OC.点O到△ABC的三边距离一定相等D.点O到△ABC三顶点的距离一定相等【分析】根据角平分线的定义与性质即可判断.【解答】解:∵三角形角平分线的性质为:三角形的三条角平分线在三角形内部且相交于一点,到三角形三条边的距离相等,∴A、B、C三个选项均正确,D选项错误.故选:D.7.(4分)为鼓励市民绿色低碳方式出行,县政府开通了公共自行车出租服务,每次租车1个小时内免费,若超过1小时,将按以下标准收费:第一个小时为1元,第二个小时为2元,第三个小时及以上,按每小时3元计费,不足1小时按1小时计算,一天收取的费用最高不超过10元.如果小明上午9:00租车,当天11:30还车,那么小明应付租车费()A.1元 B.2元 C.3元 D.6元【分析】根据题意可知,早上9:00到当天11:30一共是2.5个小时,则收费为1+2+3=6元.【解答】解:由题意得:11:30﹣9:00=2.5小时,故第一个小时为1元,第二个小时为2元,第三个不足1小时按1小时计算应该交3元,故小明应付租车费为:1+2+3=6元,故选:D.8.(4分)如图,二次函数y=﹣x2+2x+3的图象与x轴交于点A和点B,顶点为C,则sin∠ABC=()A.B.C.2 D.【分析】过C点作对称轴交x轴于D,根据题意求得AC=BC,根据解析式求得A、B、C的坐标,进而求得CD、BD,然后根据勾股定理求得BC,即可求得sin∠ABC 的值.【解答】解:令y=0,则﹣x2+2x+3=0,解得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点C(1,4),∵二次函数y=﹣x2+2x+3的图象与x轴交于点A和点B,顶点为C,∴AC=BC,过C点作对称轴交x轴于D,∴CD⊥x轴,CD=4,BD=2,∴BC==2,∴sin∠ABC===.故选:A.9.(4分)如图,PA,PB分别与⊙O相切于A、B,点C在劣弧AB上(不与A,B重合),若∠APB=70°,则∠ACB=()A.140°B.145°C.110° D.125°【分析】连结OA、OB,∠ADB为弧AB所对的圆周角,如图,根据切线的性质得∠OAP=∠OBP=90°,再利用四边形内角和可计算出∠AOB=110°,接着根据圆周角定理得到∠D=∠AOB=55°,然后根据圆内接四边形的性质计算∠ACB的度数.【解答】解:连结OB,∠ADB为弧AB所对的圆周角,如图∵PA,PB分别与⊙O相切于A,B两点,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°,∴∠AOB+∠P=180°,∴∠AOB=180°﹣70°=110°,∴∠D=∠AOB=55°,∴∠ACB=180°﹣∠D=125°.故选:D.10.(4分)如图,矩形ABCD中,BC=1,连接AC与BD交于点E1,过E1作E1F1⊥BC于F1,连接AF1交BD于E2,过E2作E2F2⊥BC于F2,连接AF2交BD于E3,过E3作E3F3⊥BC于F3,…,以此类推,则BF n(其中n为正整数)的长为()A. B. C. D.【分析】此题分别运用矩形的性质和平行线分线段长比例定理,得到BF1、BF2、BF3的长;根据求得的线段的长,发现规律,即可求得BF n(其中n为正整数)的长.【解答】解:∵四边形ABCD是矩形,∴AC、BD相等且互相平分,∴AE1=E1C,∵E1F1⊥BC,∴E1F1∥DC∥AB,∴===∵BC=1,∴BF1=BC=,∴==,∵E2F2⊥BC,∴E2F2∥DC∥AB∥E1F1,∴===,∴BF2=同理求得BF3=,…,以此类推,则BF n=;故选:B.二、填空题(共6小题,每小题5分,满分30分)11.(5分)不等式组的解集为x>2.【分析】大大取大即解集为x>2【解答】解:根据大大取大的原则可知:x>2.故填x>2.12.(5分)如果一个扇形的弧长为2,半径为1,则这个扇形的面积为1.【分析】根据扇形的面积公式S=lR即可得出答案.扇形=lR【解答】解:S扇形=×2×1=1.故答案为:1.13.(5分)将分式化为最简分式,所得结果是.【分析】根据平方差公式和完全平方公式把分子、分母因式分解,再进行约分即可.【解答】解:==;故答案为:.14.(5分)如图,一次函数y=x+1的图象与x轴交于点A,与y轴交于点B,与反比例函数y=(x>0)的图象交于点C,O为坐标原点,连接OC.若△AOC 的面积为1,则k的值为2.【分析】根据直线的解析式求得A点的坐标,根据三角形的面积求得C的纵坐标,代入直线解析式即可求得坐标,然后根据待定系数法求得即可.【解答】解:由一次函数y=x+1可知,A(﹣1,0),B(0,1),∴OA=1,=1,∵S△AOC∴OA•|y C|=1,∴y C=2,代入y=x+1得2=x+1,解得x=1,∴C(1,2),∵C点在反比例函数y=(x>0)的图象上,∴2=,解得k=2.故答案为2.15.(5分)如图,正六边形ABCDEF的边长为2,它的中心与坐标原点O重合,对角线BE在x轴上,若抛物线y=ax2+bx+c(a>0,b>0)经过正六边形的三个顶点,则该抛物线的解析式为y=x2+x﹣.【分析】连接OC,过点C作CH⊥x轴,垂足为H,易知CG=OH=1,在Rt△COH 中,由正六边形的性质可得∠COH=60°,通过解直角三角形即可求得CH的长,也就得到了C点的坐标;同理可求得B、F的坐标,根据题意抛物线y=ax2+bx+c (a>0,b>0)经过正六边形的B、C、F三个顶点,然后用待定系数法即可求得该抛物线的解析式.【解答】解:设CD与y轴交于点G,连接OC,过点C作CH⊥x轴,垂足为H;由已知CD=2,得CG=1,CH=,∠COH=60°(正六边形的性质),∴C(﹣1,﹣);同理F(1,),B(﹣2,0);∵抛物线y=ax2+bx+c(a>0,b>0)经过正六边形的三个顶点,∴抛物线y=ax2+bx+c(a>0,b>0)经过正六边形的B、C、F三个顶点,∴,解此方程组,得;因此所求二次函数解析式是y=x2+x﹣.故答案为y=x2+x﹣.16.(5分)如图,在正方形ABCD中,边AD绕点A顺时针旋转角度m(0°<m <360°),得到线段AP,连接PB,PC.当△BPC是等腰三角形时,m的值为30°或60°或150°或300°.【分析】分别画出m=30°或60°或150°或300°时的图形,根据图形即可得到答案.【解答】解:如图1,当m=30°时,BP=BC,△BPC是等腰三角形;如图2,当m=60°时,PB=PC,△BPC是等腰三角形;如图3,当m=150°时,PB=BC,△BPC是等腰三角形;如图4,当m=300°时,PB=PC,△BPC是等腰三角形;综上所述,m的值为30°或60°或150°或300°,故答案为30°或60°或150°或300°.三、解答题(共8小题,第17-20题每题8分,第21题10分,第22,23题每题12分,第24题14分,满分80分)17.(8分)计算:﹣|﹣2|+()﹣1﹣20150.【分析】首先分别求出、|﹣2|、()﹣1、20150的值各是多少;然后根据实数的运算顺序,从左向右依次计算,求出算式﹣|﹣2|+()﹣1﹣20150的值是多少即可.【解答】解:﹣|﹣2|+()﹣1﹣20150=2﹣2+2﹣1=118.(8分)如图,抛物线y1=x2+mx+n与直线y2=x﹣1交于点A(a,﹣2)和B(b,2).(1)求a,b的值;(2)观察图象,直接写出当y1<y2时x的取值范围.【分析】(1)将点A、B的坐标代入直线解析式求解即可;(2)根据函数图象写出抛物线在直线的下方部分的x的取值范围即可.【解答】解:(1)由﹣2=a﹣1得,a=﹣1,由2=b﹣1得,b=3;(2)由图可知,y1<y2时x的取值范围﹣1<x<3.19.(8分)如图,AB∥CD∥EF,DE∥BC∥AG,FG⊥AG,已知BC=3cm,DE=2cm,AG=12cm,∠BAG=35°,求FG的长.(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)【分析】延长DC交AG于M,延长FE交AG于N,如图,易得AM=BC=3,MN=DE=2,则GN=AG﹣AM﹣MN=7,然后在Rt△FGN中,利用正切的定义求解.【解答】解:延长DC交AG于M,延长FE交AG于N,如图,∵AB∥CD∥EF,DE∥BC∥AG,∴四边形ABCM、四边形DENM都是平行四边形,∴AM=BC=3,MN=DE=2,∴GN=AG﹣AM﹣MN=12﹣3﹣2=7,∵FG⊥AG,∴∠NGF=90°,∴EN∥AB,∴∠FNG=∠BAG=35°,在Rt△FGN中,∵tan∠FNG=,∴FG=7tan35°≈7×0.70=4.90(cm).20.(8分)2015年体育中考作出新规定:考试须从“力量素质类”和“运动技能类”中各选考一项,其中“力量素质类”包括掷实心球和立定跳远,“运动技能类”包括篮球运动投篮和排球垫球,我们将掷实心球、立定跳远、篮球运动投篮和排球垫球分别记为A、B、C、D.(1)如果考生随机选考,共有几种不同的选考结果,请一一列举出来;(2)如果考生甲随机选考,求恰好选中掷实心球和篮球运球投篮的概率;(3)若甲、乙两个考生都进行随机选考,请利用树形图法或列表法,求甲、乙两个考生选考结果完全相同的概率.【分析】(1)用完全列举法得到选考结果为AC,AD,BC,BD;(2)根据概率公式求解;(3)用1、2、3、4分别表示AC、AD、BC、BD,先利用树状图法展示所有16种等可能的结果数,找出甲、乙两个考生选考结果完全相同的结果数,然后根据概率公式求解.【解答】解:(1)如果考生随机选考,共有4种不同的选考结果,它们是AC,AD,BC,BD;(2)恰好选中掷实心球和篮球运球投篮的概率,即P(AC)=;(3)用1、2、3、4分别表示AC、AD、BC、BD,画树状图为:共有16种等可能的结果数,其中甲、乙两个考生选考结果完全相同的占4种,所以甲、乙两个考生选考结果完全相同的概率==.21.(10分)如图,在△ABC中,AB=AC=13,BC=10,以AC为直径画⊙O交BC 于点D,交AB于点E,连接CE.(1)求证:BD=CD;(2)求CE的长.【分析】(1)连结AD,如图,根据圆周角定理得到∠ADC=90°,而AB=AC,则根据等腰三角形的性质可得BD=CD;(2)先利用勾股定理计算出AD=12,然后利用面积法计算CE的长.【解答】(1)证明:连结AD,如图,∵AC为直径,∴∠ADC=90°,∴AD⊥BC,∵AB=AC,∴BD=CD;(2)解:在Rt△ADC中,∵AC=13,CD=BC=5,∴AD==12,∵AC为直径,∴∠AEC=90°,∴CE•AB=AD•BC,∴CE==.22.(12分)甲乙两家商场以同样的价格出售相同的商品,为了促销,现在两家商场都让利酬宾,其中甲商场所有商品按9折出售,乙商场对一次购物超过200元后的部分打8折.(1)用x(单位:元)表示促销前的商品总价,y(单位:元)表示促销后的购物总金额,就甲乙两家商场的让利方式分别求出y关于x的函数关系式.(2)促销前,小明的妈妈在两家商场的购物原价总和为1000元,若促销后购物金额总和为870元,求促销前小明的妈妈在甲乙两家商场购物的商品原价分别是多少?【分析】(1)根据单价乘以数量,可得函数解析式;(2)设在甲商场购物的商品原价为x,乙的为(1000﹣x),列出方程解答即可.【解答】解;(1)甲商场写出y关于x的函数解析式y1=0.9x,乙商场写出y关于x的函数解析式y2=0.8(x﹣200)+200=0.8x+40;(2)设在甲商场购物的商品原价为x,乙的为(1000﹣x),可得:0.9x+0.8(1000﹣x)+40=870,解得:x=300,1000﹣x=700.答:促销前小明的妈妈在甲乙两家商场购物的商品原价分别是300元,700元.23.(12分)如果三角形的三条边长中存在一边是另一边两倍关系,则称这样的三角形为“倍边三角形”.例如:边长为a=2,b=3,c=4的三角形就是一个倍边三角形.(1)如果一个倍边三角形的两边长为6和8,那么第三边长所有可能的值有3,4,12;(2)图1和图2中,△ABC都是倍边三角形,且AB=AC,BC=2,请在图中画出分割线(画图工具不限,标注出每个小三角形的边长,不写画法,不需证明,每个图形画出一种情形即可)①请在图1中画一条分割线,把△ABC分成两个小三角形,使每个小三角形都是倍边三角形;②请在图2中画两条分割线,把△ABC分成三个小三角形,使每个小三角形都是倍边三角形.(3)如图3,半圆O的直径AB=12,点C在半圆O上,OC⊥AB,P是直径AB上的动点(不与点O重合),连接CO,CP.随着点P的运动,如果△POC是倍边三角形,求AP的长.【分析】(1)根据倍边三角形的意义求出符合条件的所有情况,再根据三角形三边关系定理判断即可;(2)①根据倍边三角形的意义画出即可;②根据倍边三角形的意义画出即可;(3)分为两种情况:当点P在OA上和点P在OB上,有PC=2OP和CO=OP两种情况,根据勾股定理求出OP,即可求出答案.【解答】解:(1)一个倍边三角形的两边长为6和8,那么第三边长所有可能的值有3,4,12,故答案为:3,4,12;(2)①如图所示:;②如图所示:;(3)∵半圆O的直径AB=12,点C在半圆O上,OC⊥AB,∴OC=6,∠AOC=90°,①当点P在AO上时,若PC=2PO,∵OC=6,由勾股定理得:(2OP)2=OP2+62,解得:OP=2,∴AP=6﹣2;若OC=2OP时,∵OC=6,∴OP=3,∴AP=6﹣3=3;②当点P在BO上时,同法可求OP=2或3,即AP=3+6=9或AP=6+2;综合上述:AP的长是3或9或6﹣2或6+2.24.(14分)如图,在△ABC中,AB=AC=2,BC=4,P是AB边上的动点(不与A,B重合),过P作PE∥BC交AC于E,作PF⊥BC,垂足为F,连接EF,M 是EF上的点,且EM=2FM,设BF=m.(1)直接写出△EMP与△FMP的面积的数量关系;(2)①求PE,PF的长(分别用含m的代数式表示);②设△PEM的面积为S,求S与m的函数关系式,并求S的最大值;③△PEM能否成为等腰三角形?若能,求出相应的m的值;若不能,请说明理由;(3)直接写出PM长度的最小值.【分析】(1)如图1,过点P作PK⊥EF,垂足为K.,根据三角形的面积公式可=2S△PMF;知:,,又因为EM=2FM,故此S△EMP(2)①过点A作AG⊥BC于G,交PE于H,则BG=GC=2,AG=4,由PF∥AG,得,可知PF=2m,由PE∥BC得,可知:PE=4﹣2m;②S==﹣,利用二次函数的性质求得最值即可;③能成为等腰三角形.当PM=ME时,则M为EF的中点,与已知ME=2MF 矛盾;当PE=ME,则,所以,可求得m=10﹣4;若PM=ME,过点P作PK⊥EF与K,则K为ME的中点,故此.,由相似三角形的面积比等于相似比的平方得:,即:,解得m=4﹣2,综上所述可求得△PEM为等腰三角形时m的值;(3)如图3所示:过点A作AG⊥BC于G,交PE于H,连接PG,首先证明点P、M、G在一条直线上,然后由PE∥FG,可知,即PM=PG,故此当GP⊥AB时,PM有最小值,先证明△PBG∽△GBA,从而可求得PG=,所以PM=.【解答】解:(1)如图1,过点P作PK⊥EF,垂足为K.,,又∵EM=2FM.=2S△PMF;∴S△EMP(2)如图2所示.①过点A作AG⊥BC于G,交PE于H,则BG=GC=2,AG=.由PF∥AG,得,∴.∴PF=2m.由PE∥BC得,∴.∴PE=4﹣2m.②∵EM=2FM,∴S=2S△PMF.△EMP∴S==﹣.∵,∴S有最大值,最大值为.③能成为等腰三角形.当PM=ME时,则M为EF的中点,与已知ME=2MF矛盾;若PE=ME,则,∴,即.解得:m=10﹣4.若PM=PE,过点P作PK⊥EF与K,则K为ME的中点,∴.∵△PFK∽△EPK,由相似三角形的面积比等于相似比的平方得:,即:,∴m=4﹣2或m=4+2.∵BC=4,∴m≤4.∴m=4﹣2.综上所述,当m=10﹣4或m=4﹣2时,△PEM为等腰三角形;(3)如图3所示:过点A作AG⊥BC于G,交PE于H,连接PG.∵PE∥BC,AG⊥BC,∴AG⊥PE.∴∠PHG=90°.∴∠HGP+∠HPG=90°.∵AG⊥BC,PF⊥BC,∴PF∥AG.∴∠HGP=∠GPF.∴∠HPG+∠GPG=90°.又∵∠HPG+MPF=90°,∴∠MPF=∠GPF.∴点P、M、G在一条直线上.∵PE∥FG,∴.∴,即PM=PG.∴当GP⊥AB时,PG有最小值,即PM有最小值.∵∠B=∠B,∠BGA=∠BPG,∴△PBG∽△GBA.∴,即.∴PG=.∴PM=.赠送初中数学几何模型【模型一】“一线三等角”模型:图形特征:运用举例:1.如图,若点B在x轴正半轴上,点A(4,4)、C(1,-1),且AB=BC,AB⊥BC,求点B的坐标;xyBCAO2.如图,在直线l上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S、2S、3S、4S,则14S S+=.ls4s3s2s13213. 如图,Rt△ABC中,∠BAC=90°,AB=AC=2,点D在BC上运动(不与点B,C重合),过D作∠ADE=45°,DE交AC于E.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式,并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.B4.如图,已知直线112y x=+与y轴交于点A,与x轴交于点D,抛物线212y x bx c=++与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0)。
2015年浙江省台州市黄岩区中考数学一模试卷带解析答案
20. (8 分)如图,已知在平面直角坐标系 xOy 中,O 是坐标原点,点 A(2,5) 在反比例函数 y= 的图象上,过点 A 的直线 y=x+b 交 x 轴于点 B. (1)求 k 和 b 的值;
第 4 页(共 26 页)
(2)求△OAB 的面积.
21. (10 分)如图,已知 AB 是⊙O 的直径,直线 CD 与⊙O 相切于点 C,AC 平 分∠DAB. (1)求证:AD⊥Dቤተ መጻሕፍቲ ባይዱ; (2)若 AD=2,AC= ,求 AB 的长.
2. (4 分)用 4 个完全相同的小正方体组成如左下图所示的立体图形,那么它的 主视图是( )
A.
B.
C.
D.
3. (4 分)小星同学参加体育测试的五次立定跳远的成绩(单位:米)是:1.2, 1.3,1.2,1.0,1.1.这组数据的众数是( A.1.0 B.1.1 C.1.2 ) D.1.3
4. (4 分)中国航母辽宁舰(如图)是中国人民海军第一艘可以搭载固定翼飞机 的航空母舰,满载排水量为 67500 吨,这个数据用科学记数法表示为( )
22. (12 分)某工厂生产的某种产品按质量分为 10 个等级.第 1 级(最低级) 产品每天能生产 95 件,每件利润 6 元.已知每提高一个级别,每件利润增加 2 元,但每天产量减少 5 件. (1)若生产第 3 级产品,则每天产量为 件,每件利润为 元;
(1)当 x>0 时,y 的值随着 x 的增大而减小; (2)y 的值有可能等于 3; (3)当 x>0 时,y 的值随着 x 的增大越来越接近 3; (4)当 y>0 时,x>0 或 x<﹣ . 你认为真命题是( A. (1) (3) ) B. (1) (4) C. (1) (3) (4) D. (2) (3) (4)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年台州市中考数学卷一、选择题1.单项式2a 的系数是( )A.2B.2aC.1D.a 2.下列四个几何体中,左视图为圆的是( )A B C D 3.在下列调查中,适宜采用全面调查的是( )A.了解我省中学生视力情况B.了解九(1)班学生校服的尺码情况C.检测一批电灯泡的使用寿命D.调查台州《600全民新闻》栏目的收视率 4.若反比例函数ky x=的图象经过点(2,-1),则该反比例函数的图象在( ) A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限 5.若一组数据3,x ,4,5,6.,则这组数据的中位数为( ) A. 3 B.4 C.5 D.6 6.把多项式228x -分解因式,结果正确的是( )A.22(8)x - B. 22(2)x - C. 2(2)(2)x x +- D. 42()x x x-7.设二次函数2(3)4y x =--图象的对称轴为直线L 上,则点M 的坐标可能是( ) A.(1,0) B.(3,0) C.(-3,0) D.(0,-4)8.如果将长为6cm ,宽为5cm 的长方形纸片折叠一次,那么这条折痕的长不可能是( ) A.8cm B.529.如图,在菱形ABCD 中,AB =8,点E 、F 分别在AB 、AD 上,且AE =AF ,过点E 作EG ∥AD 交CD 于点G ,过点F 作FH ∥AB 交BC 于点H ,EG 与FH 交于点O ,当四边形AEOF 与四边形CGOH 的周长之差为12时,AE 的值为( )A.6.5B.6C.5.5D.510.某班有20位同学参加围棋、象棋比赛,甲说:“只参加一项的人数大于14人。
”乙说:“两项都参A.若甲对,则乙对;B.若乙对,则甲对;C.若乙错,则甲错;D.若甲粗,则乙对 二.填空题11.不等式240x -≥的解集是12.有四张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率 是13.如图,在Rt △ABC 中,∠C =90°,AD 是△ABC 的角平分线,DC =3,则点D 到AB 的距离是 14.如图,这是台州市地图的一部分,分别以正东、正北方向为x 轴、y 轴的正方向建立直角 坐标系,规定一个单位长度表示1km ,甲、乙两人对着地图如下描述路桥区A 处的位置 甲:路桥区A 处的坐标是(2,0)乙:路桥区A 处在椒江区B 处南偏西30°方向,相距16km 则椒江区B 处的坐标是15.关于x 的方程210mx x m +-+=,有以下三个结论:①当m =0时,方程只有一个实数解②当0m ≠时,方程有两个不等的实数解③无论m 取何值,方程都有一个负数解,其中正确的是 (填序号) 16.如图,正方形ABCD 的边长为1,中心为点O ,有一边长大小不定的正六边形EFGHIJ 绕点O 可任意旋转,在旋转过程中,这个正六边形始终在正方形ABCD 内(包括正方形的边),当这个六边形的边长最大时,AE 的最小值为二、解答题17.计算:06(3)12015÷-+--18.先化简,再求值:211(1)aa a -++,其中21a =19.如图,这是一把可调节座椅的侧面示意图,已知头枕上的点到调节器点O处的距离为80cm,AO与地面垂直,现调整靠背,把OA绕点O旋转35°到OA’处,求调整后点A’比调整前点A的高度降低了多少cm?(结果取整数)?(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)20.图1中的摩天轮可抽象成一个圆,圆上一点离地面的高度y(m)与旋转时间x(min)之间的关系如图2所示(1)根据图2填表:x(min)036812…y(m)…(2)变量y是x的函数吗?为什么?(3)根据图中的信息,请写出摩天轮的直径21.某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分别直方图和扇形统计图:根据图中提供的信息,解答下列问题:(1)补全频数分布直方图(2)求扇形统计图中m的值和E组对应的圆心角度数(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数22.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC(1)若∠CBD=39°,求∠BAD的度数(2)求证:∠1=∠223.如图,在多边形ABCDE 中,∠A =∠AED =∠D =90°,AB =5,AE =2,ED =3,过点E 作EF ∥CB 交AB 于点F ,FB =1,过AE 上的点P 作PQ ∥AB 交线段EF 于点O ,交折线BCD 于点Q ,设AP =x ,PO .OQ =y(1)①延长BC 交ED 于点M ,则MD = ,DC =②求y 关于x 的函数解析式; (2)当1(0)2a x a ≤≤>时,96a y b ≤≤,求a ,b 的值; (3)当13y ≤≤时,请直接写出x 的取值范围24.定义:如图1,点M ,N 把线段AB 分割成AM ,MN 和BN ,若以AM ,MN ,BN 为边的三角形是一个直角三角形,则称点M ,N 是线段AB 的勾股分割点(1)已知点M ,N 是线段AB 的勾股分割点,若AM =2,MN =3求BN 的长;(2)如图2,在△ABC 中,FG 是中位线,点D ,E 是线段BC 的勾股分割点,且EC >DE ≥BD ,连接AD ,AE 分别交FG 于点M ,N ,求证:点M ,N 是线段FG 的勾股分割点(3)已知点C 是线段AB 上的一定点,其位置如图3所示,请在BC 上画一点D ,使C ,D 是线段AB 的勾股分割点(要求尺规作图,保留作图痕迹,画出一种情形即可)(4)如图4,已知点M ,N 是线段AB 的勾股分割点,MN >AM ≥BN ,△AMC ,△MND和△NBM 均是等边三角形,AE 分别交CM ,DM ,DN 于点F ,G ,H ,若H 是DN 的中点,试探究AMF S ∆,BEN S ∆和MNHG S 四边形的数量关系,并说明理由2015年浙江省初中学业水平考试(台州卷)数学参考答案和评分细则一、选择题(本题有10小题,每小题4分,共40分)二、填空题(本题有6小题,每小题5分,共30分) 11.2≥x 12.2113.3 14.(10,38) 15.①,③ 16.212- 三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(8分)解:020151)3(6--+-÷=112-+- ……………………………………6分=2-. ……………………………………………………2分18.(8分)解:211(1)aa a -++=22)1()1(1+-++a a a a …………………………………3分 22)1(1)1(1+=+-+=a a a a ………………………………3分当1a =时,原式2)112(1+-=…………………………1分21)2(12==. …………………………1分 19.(8分)解:如图,过点A '作OA H A ⊥'于点H ,由旋转可知,80=='OA A O , …………1分 在Rt △H A O '中,︒'=35cos A O OH …………3分6.6582.080=⨯≈. ………………2分∴4.146.6580=-=-=OH OA AH 14≈cm .…2分 答:调整后点'A 比调整前点A 的高度降低了14cm .20.(8分)解:(1)表格中分别填写:5,70,5,54,5. ……………………3分(2)变量y 是x 的函数. …………………………2分理由:因为在这个变化过程中,对于x 的每一个确定的值,y 都有唯一确定的值与其对应,所以变量y 是x 的函数. ………………………………1分(第19题)(3)摩天轮的直径是65570=-m . ………………………………2分21.(10分)解:(1)补全频数分布直方图,如图所示. ……………………………4分(2)∵100%1010=÷,∴%4010040=÷,∴40=m . ……………1分 ∵%41004=÷, ………1分 ∴“E ”组对应的圆心角度数︒=︒⨯=4.14360%4.……1分(写成14.4,也给分)(3)870%)4%25(3000=+⨯人…………2分答:估计该校学生中每周的课外阅读时间不小于6小时的人数是870人.22.(12分)(1)解:∵DC BC =,∴BC DC =.∴CBD CAD BAC ∠=∠=∠. ……………4分 ∵︒=∠39CBD ,∴︒=∠=∠39CAD BAC . ……2分 ∴︒=∠+∠=∠78DAC BAC BAD . ……………1分 (2)证明:∵BC EC =,∴CEB CBE ∠=∠. …………………………………2分 ∵CBD CBE ∠+∠=∠1,BAC CEB ∠+∠=∠2,…………………1分 ∴BAC CBD ∠+∠=∠+∠21. ………………………………1分 又∵CBD BAC ∠=∠,∴21∠=∠. …………………………………1分 (利用其他方法进行解答,酌情给分)(第22题)23.(12分)解:(1)①2=MD , ……………………………………1分1=DC ; ………………………1分②∵x AP =,∴x EP -=2. 在Rt △AEF 中,224tan ===∠AE AF AEF , ∴tan 2(2)24PO PE AEF x x =∠=⨯-=-+. ………………………1分 ∵︒=∠=∠90AED A ,∴AB DE .∵PQAB ,∴PQ ED .当10≤<x 时,如图1所示, ∵EFCB ,PQ AB ,∴四边形OFBQ 是平行四边形.∴1==FB OQ . ∴(24)124y PO OQ x x ==-+⨯=-+. ………………………1分 当21≤<x 时,如图2所示, ∵︒=∠=∠90D AED ,∴AE CD .∵PQED ,∴四边形DEPQ 是矩形.∴12)42(3-=+--=x x OQ . ………………… 1分 ∴2(24)(21)4104y PO OQ x x x x ==-+⨯-=-+-. ……………1分 ∴⎩⎨⎧≤<-+-≤<+-=.21410410422x x x x x y ,,,(2)y 关于x 的函数图象如图3所示.当10≤<x 时,y 随着x 的增大而减小, ………………… 1分所以⎩⎨⎧-==.246,39a b a ………………1分解得⎪⎪⎩⎪⎪⎨⎧==.95,31b a ………………………2分551+(第23题图1)M(第23题图2)Q OCDM (第23题图3)x y 4-2a 5+54945412–112–11234O a24.(14分)(1)解:当MN 为最大线段时,∵点M ,N 是线段AB 的勾股分割点, ∴54922=-=-=AM MN BN .当BN 为最大线段时,∵点M ,N 是线段AB 的勾股分割点, ∴134922=+=+=AM MN BN .综上,5=BN 或13. …………………………………3分(2)证明:∵FG 是△ABC 的中位线,∴FG BC ∥. ∴1===GCAGNE AN MD AM . ∴点M ,N 分别是AD ,AE 的中点.∴FM BD 2=,MN DE 2=,NG EC 2=. …………………………2分 ∵点D ,E 是线段BC 的勾股分割点,且EC >DE∴222DE BD EC +=.∴222)2()2()2(MN FM NG +=.∴222MN FM NG +=.∴点M ,N 是线段FG 的勾股分割点. …………………………2分 (3)用尺规画出图形,如图3所示. …………………………3分 (4)解:+AMFBEN MNHG S S S =△△四边形. …………………………………1分 理由:设a AM =,b BN =,c MN =, ∵H 是DN 的中点,∴c HN DH 21==. ∵△MND ,△BNE 均为等边三角形, ∴︒=∠=∠60DNE D . ∵NHE DHG ∠=∠, ∴△DGH ≌△NEH .∴b EN DG ==.∴b c MG -=. ∵GM EN ∥,∴△AGM ∽△AEN . ∴ab c =-. (第24题图3)(第24题图2)(第24题图4)∴bc ac ab c +-=22.∵点M ,N 是线段AB 的勾股分割点, ∴222b a c +=. ∴c a b b a )()(2-=-,又∵c a b ≠-.∴b a =. …………………………………1分 在△DGH 和△CAF 中,C D ∠=∠,CA DG =,CAF DGH ∠=∠, ∴△DGH ≌△CAF .∴DGH CAF S S =△△. ……………………………………1分 ∵222b a c +=,∴222434343b a c +=. ∴DMN ACM ENB S S S =+△△△.∵DMN DGH MNHG S S S =+△△四边形,ACM CAF AMF S S S =+△△△,∴+AMF BEN MNHG S S S =△△四边形. ……………………………………1分。