经济数学--微积分期末测试及答案(A)
(完整word版)微积分期末试卷A及答案
共 4 页,第 1 页 学生答题注意:勿超黑线两端;注意字迹工整。
共 4页,第 2 页) ()f x 在x a =处可导; (B )()f x 在x a =处不连续; (C)。
lim ()x af x →不存在 ; (D ) ()f x 在x a =处没有定义。
、设lnsin y x =,则dy =( )(A) 1cos x ; (B ) 1cos dx x;(C) cot x dx -; (D) cot x dx 。
6. 若()f x 的一个原函数为2x ,则()f x dx '=⎰( ) (A)12x C + (B ) 2x C + (C) x C + (D ) 2C +7、 1dx =⎰( )(A ) 2; (B ) 2π-; (C ) 0; (D )。
8、对-p 级数∑∞=11n p n ,下列说法正确的是( )(A ) 收敛; (B ) 发散;(C ) 1≥p 时,级数收敛; (D) 级数的收敛与p 的取值范围有关。
9、二元函数在(,)xy f x y ye =点0(1,1)p 可微,则(,)xy f x y ye =在0p 的全微 )00)()limx x f x x→-- .cos x ,求它的微分共 4 页,第 5 页 学生答题注意:勿超黑线两端;注意字迹工整。
共 4页,第 6 页5、(10分)求微分方程()x xe y dx xdy +=在初始条件1|0x y ==下的特解;6、(12分)判断级数211ln(1)n n ∞=+∑的敛散性。
《微积分》课程期末考试试卷参考答案及评分标准(A 卷,考试)一、单项选择(在备选答案中选出一个正确答案,并将其号码填在题目后的括号内.每题3分,共30分)1、(C );2、(D );3、(B);4、(A );5、(D);6、(B);7、(A );8、(D );9、(A); 10、(D)。
二、填空(每题4分,共20分)1、 bx n e a b )ln (;2、 同阶无穷小;3、3- ;4、0;5、2。
微积分(上)期末考试试题A卷(附答案)
一、 选择题 (选出每小题的正确选项,每小题2分,共计10分)1.10lim 2xx -→=_________。
(A ) -∞ (B ) +∞ (C ) 0 (D ) 不存在 2.当0x →时,()x xf x x+=的极限为 _________。
(A ) 0 (B ) 1 (C )2 (D ) 不存在 3. 下列极限存在,则成立的是_________。
0()()()lim ()x f a x f a A f a x-∆→+∆-'=∆0()(0)()lim(0)x f tx f B tf x→-'=0000()()()lim2()t f x t f x t C f x t→+--'=0()()()lim()x f x f a D f a a x→-'=-4. 设f (x )有二阶连续导数,且()0()(0)0,lim1,0()_______x f x f f f x x→'''==则是的。
(A ) 极小值 (B )极大值( C )拐点 (D ) 不是极值点也不是拐点 5.若()(),f x g x ''=则下列各式 成立。
()()()0A f x x φ-=()()()B f x x C φ-=()()()C d f x d x φ=⎰⎰()()()d dD f x dx x dx dx dx φ=⎰⎰二、 填空题(每小题3分,共18分)1. 设0(2)()0(0)0,lim1sin x f x f x x f x→===-在处可导,且,那么曲线()y f x =在原点处的切线方程是__________。
2.函数()f x =[0,3]上满足罗尔定理,则定理中的ξ=。
3.设1(),()ln f x f x dx x'=⎰的一个原函数是那么 。
4.设(),xf x xe -=那么2阶导函数 ()___f x x ''=在点取得极_____值。
微积分下册期末试卷及答案
评 分
评 阅 人
14、用拉格朗日乘数法求 在满足条件 下的极值.
评 分
评 阅 人
15、计算.
评 分
评 阅 人
16、计算二重积分
,其中
是由
轴及圆周
所围成的在第一象限内的区域.
评 分
评 阅 人
17、解微分方程.
评 分
评 阅 人
18、判别级数的敛散性.
评 分
评 阅 人
19、将函数展开成的幂级数.
评 分
也收敛。
证:,
…(3分)
而由已知收敛,故由比较原则,也收敛。 …(5分)
2、设,其中为可导函数, 证明.
证明:因为,
…(2分)
…(4分)
所以.
…(5分)
评
阅
一、填空题(每小题3分,共15分) 分
卷 人
1、设
,且当
时,
,则
.
2、计算广义积分
.
3、设,则
. 4、微分方程具有
形式的特解.
5、级数的和为
.
的反函数为
。且时,。于是
12、求二重极限 .
解:原式
(3分)
(6分)
13、由确定,求.
解:设
,则
, ,
, (3分)
(6分) 14、用拉格朗日乘数法求 在条件下的极值. 解:
令 ,得 , , 为极小值点. (3分)
故 在 下的极小值点为
,极小值为
(6分)
15、计算. 解:
(6分)
16、计算二重积分 ,其中 是由 轴及圆周 所围成的在第一象限内的区域. 解: = =
分
评 分
评 阅 人
21、设级数
微积分期末考试试题及答案
微积分期末考试试题及答案一、选择题(每题2分,共20分)1. 函数 \( f(x) = x^2 \) 在 \( x = 0 \) 处的导数是()A. 0B. 1C. 2D. -1答案:A2. 曲线 \( y = x^3 - 2x^2 + x \) 在 \( x = 1 \) 处的切线斜率是()A. 0B. 1C. -1D. 2答案:B3. 函数 \( f(x) = \sin(x) \) 的原函数是()A. \( -\cos(x) \)B. \( \cos(x) \)C. \( x - \sin(x) \)D. \( x + \sin(x) \)答案:A4. 若 \( \int_{0}^{1} f(x) \, dx = 2 \),且 \( f(x) = 3x^2 +1 \),则 \( \int_{0}^{1} x f(x) \, dx \) 等于()A. 3B. 4C. 5D. 6答案:C5. 函数 \( g(x) = \ln(x) \) 在 \( x > 0 \) 时的反导数是()A. \( e^x \)B. \( x^e \)C. \( e^{\ln(x)} \)D. \( x \ln(x) - x \)答案:D6. 若 \( \lim_{x \to 0} \frac{\sin(x)}{x} = 1 \),则\( \lim_{x \to 0} \frac{\sin(2x)}{x} \) 等于()A. 2B. 1C. 4D. 0答案:A7. 函数 \( h(x) = e^x \) 的泰勒展开式在 \( x = 0 \) 处的前三项是()A. \( 1 + x + \frac{x^2}{2} \)B. \( 1 + x + \frac{x^2}{2!} \)C. \( 1 + x + \frac{x^3}{3!} \)D. \( 1 + x + \frac{x^2}{3!} \)答案:B8. 若 \( \frac{dy}{dx} = 2y \),且 \( y(0) = 1 \),则 \( y(x) \) 是()A. \( e^{2x} \)B. \( e^{-2x} \)C. \( 2^x \)D. \( 2^{-x} \)答案:A9. 函数 \( F(x) = \int_{0}^{x} e^t \, dt \) 的导数是()A. \( e^x \)B. \( e^0 \)C. \( x \cdot e^x \)D. \( e^0 \cdot x \)答案:A10. 曲线 \( y = x^2 + 3x \) 与直线 \( y = 6x \) 交点的横坐标是()A. 0B. 3C. -1D. 2答案:C二、填空题(每空3分,共15分)11. 若 \( f(x) = 2x - 1 \),则 \( f''(x) \) 等于 _________。
《微积分》课程期末考试试卷(A)及参考答案
3、若函数
f (x, y)
x y ,则
x y
f
(
1 x
,
y)
(
)
A、 x y
x y
B、 1 xy
1 xy
C、 1 xy
1 xy
4、设 D 由 y x, y 2x, y 1围成,则 dxdy ( )
D
A、 1
2
B、 1
4
C、1
5、( )是一阶微分方程
3x 2
3y2
(6
分)。
2、
z y
xy
ln
x (3
分);
2z y 2
xy
ln 2
x
(6
分)。
3、
f
1 x
(
x,
y)
1
x x2
y2
(5
分);
f
1 x
(3,4)
2 (6
5
分)。
4、
z x
y
1 y
,
z y
x
x y2
(4
分);
dz
(y
1 )dx y
(x
x y2
六、求方程 yy' x 的通解。(6 分)
七、判别级数 n1
2n n3n
的敛散性。(6
分)
《微积分》课程期末考试试卷(A)参考答案
一、 填空题(每题 3 分,共 36 分)。
1、
x3 y3
2x
xy y
3xy
2、 1
微积分复习试题及答案10套(大学期末复习资料)
微积分复习试题及答案10套(大学期末复习资料)习题一(A) 1、求下列函数的定义域:ln(4),x2(1) (2) (3) y,y,logarcsinxyx,,4a||2x,113y,,log(2x,3)(4) (5) yx,,,1arctanax,2x2、求下列函数的反函数及其定义域xx,32(1) (2) (3) yy,,yx,,,1ln(2)x2,1x,3x,,(4)yx,,,2sin,[,] 3223、将下列复合函分解成若干个基本初等函数2x(1) (2) (3) yx,lnlnlnyx,,(32ln)ye,,arcsin123(4) y,logcosxa4、求下列函数的解析式:112,求. (1)设fxx(),,,fx()2xx2(2)设,求 fgxgfx[()],[()]fxxgxx()1,()cos,,,5、用数列极限定义证明下列极限:1232n,1,,(1)lim(3)3 (2) lim, (3) ,lim0nn,,n,,n,,3353n,n6、用函数极限定义证明下列极限:x,31x,32lim(8)1x,,lim1,lim,(1) (2) (3) 23x,x,,x,,3xx,967、求下列数列极限22nn,,211020100nn,,3100n,limlimlim(1) (2) (3)32n,,n,,n,,54n,n,144nn,,,12n111,,,,?,lim,,lim,,,(4)? (5) ,,222,,x,,x,,1223n(n1),,,nnn,,,,1111,,k,0(6) (7)() lim,,,?lim,,2x,,x,,n,31541,,nknnkn,,,111,,,,?12n222lim(1)nnn,,(8) (9) limx,,x,,111,,,,?12n5558、用极限的定义说明下列极限不存在:1x,3limcosx(1) (2) (3) limsinlimx,,x,0x,3x|3|x,9、求下列函数极限:22xx,,56xx,,562(1) (2) (3) limlimlim(21)xx,,x,x,13x,3x,3x,2222256x,xx,,44()xx,,,(4) (5) (6) limlimlim2x,x,,,220xx,,21x,2,nx,1x,9x,1(7) (8) (9) limlimlimm3,1xx,9x,1x,1x,3x,1 2nnxxx,,,,?13x,,12(10), (11)lim() (12)limlim33x,1,x1x,1xx,,111,xx,110、求下列函数极限:22xx,,56xx,,56 (2) (1)limlim2x,,x,,x,3x,3nn,1axaxaxa,,,,?011nn,lim(11)xx,,,(3) (4)lim,(,0)ab,00mm,1x,,x,,bxbxbxb,,,,?011mm,lim(11)xxx,,,(5) x,,11、求下列极限式中的参变量的值:2axbx,,6lim3,(1)设,求的值; ab,x,,23x,2xaxb,,lim5,,(2)设,求的值; ab,x,11x,22axbxc,,lim1,(3)设,求的值; abc,,x,,31x,12x,0arcsin~xxtan~xx1cos~,xx12、证明:当时,有:(1),(2) ,(3); 213、利用等价无穷小的性质,求下列极限:sin2xsin2xsecxlimlimlim(1) (2) (3) 2x,0x,0x,0,tan5x3x2x3sinx21111sin,,x,limlim()(4) (5)lim (6)x,0x,0x,0xxx,tansinxxtansin1cos,x14、利用重要极限的性质,求下列极限:sin2xsinsinxa,xxsin(1) (2) (3) limlimlimx,0xa,x,0,sin3xxa,1cos2x xsinxx,tan3sin2xx,4,,(4) (5) (6) limlimlim1,,,x,0x,0,,xsinxx,3xx,, xxx,3xk,21,,,,,,(7) (8) (9) limlim1,,lim1,,,,,,,,,,xxx,,xxxk,,,,,,, 1/x(10)lim12,x ,,,,x15、讨论下列函数的连续性:,,,xx1,,2fxxx()11,,,,(1) ,,211xx,,,x,x,0,sinx,x,0(2)若,在处连续,则为何值. fxax()0,,a,,1,1sin1,,xxx,x,e(0,x,1)(3) 为何值时函数f(x),在[0,2]上连续 a,a,x(1,x,2),53xx,,,52016、证明方程在区间上至少有一个根. (0,1)32x,0x,317、证明曲线在与之间至少与轴有一交点. xyxxx,,,,252(B)arccoslg(3,x)y,1、函数的定义域为 ( ) 228,3x,x(A) ,,,,,7,3 (B) (-7, 3) (C) ,7,2.9 (D) (-7, 2.9),1 2、若与互为反函数,则关系式( )成立。
《微积分》期末考试试卷附答案
《微积分》期末考试试卷附答案一、填空题(共5小题,每小题4分,共20分)1、已知2)(x e x f =,x x f -=1)]([ϕ,且0)(≥x ϕ,则=)(x ϕ2、已知a 为常数,1)12(lim 2=+-+∞→ax x x x ,则=a .3、已知2)1(='f ,则=+-+→xx f x f x )1()31(lim 0 . 4、函数)4)(3)(2)(1()(----=x x x x x f 的拐点数为 . 5、=⎰xx dx 22cos sin .二、选择题(共5小题,每小题4分,共20分)1、设)(x f 为偶函数,)(x ϕ为奇函数,且)]([x f ϕ有意义,则)]([x f ϕ是(A) 偶函数; (B) 奇函数;(C) 非奇非偶函数; (D) 可能奇函数也可能偶函数.2、0=x 是函数⎪⎩⎪⎨⎧=≠-=.0 ,0,0 ,cos 1)(2x x x x x f 的(A) 跳跃间断点; (B) 连续点; (C) 振荡间断点; (D) 可去间断点.3、若函数)(x f 在0x 处不可导,则下列说法正确的是(A) )(x f 在0x 处一定不连续; (B) )(x f 在0x 处一定不可微;(C) )(x f 在0x 处的左极限与右极限必有一个不存在;(D) )(x f 在0x 处的左导数与右导数必有一个不存在.4、仅考虑收益与成本的情况下,获得最大利润的必要条件是:(A) )()(Q C Q R ''>''; (B) )()(Q C Q R ''<''; (C) )()(Q C Q R ''='';(D) )()(Q C Q R '='.5、若函数)(x f '存在原函数,下列错误的等式是: (A) )()(x f dx x f dx d ⎰=; (B) )()(x f dx x f ⎰=';(C) dx x f dx x f d )()(⎰=; (D) C x f x df +=⎰)()(.三、计算题(共4小题,每小题15分,共60分)1、设x x f x x-=--422)2(,求)2(+x f .2、计算)1cos(lim n n n -+∞→.3、求极限)21(lim 222n n n n n n n n ++++++∞→ .4、求极限xx x x cos sec )1ln(lim 20-+→.微积分参考答案:一、填空1. 答案:)1ln(x -2. 答案:13. 答案:44. 答案:25. 答案:C x x +-cot tan二、选择1. A2. D3. B4. D5. B三、计算题1、设x x f x x -=--422)2(,求)2(+x f .答案:42)2(42--=++x x f xx解:令2-=x t ,则 2222)2(2)(48444)2(4)2(222--=+-=+-=---+++-+t t t t f t t t t t t ,于是 42422)2(2)2(44444)2(222--=--=-+-=++-++-+x x x x f x x x x x .2. 计算)1cos(lim n n n -+∞→. 答案:1 解:nn n n n n ++=-+∞→∞→11cos lim )1cos(lim 11010cos 1111cos lim =++=++=∞→nn n .3、求极限)21(lim 222n n n n n n n n ++++++∞→ . 答案:1解:由于1)21(2222222+≤++++++≤+n n n n n n n n n n n n , 而1111lim lim 22=+=+∞→∞→n n n n n n , 1111lim 1lim 222=+=+∞→∞→n n n n n , 所以1)21(lim 222=++++++∞→n n n n n n n n .4、求极限xx x x cos sec )1ln(lim 20-+→. 答案:1 解:x x x xx x x x x x x x x x cos sin 212lim sin )1ln(lim cos lim cos sec )1ln(lim 20220020+=+=-+→→→→ 1sin lim cos )1(1lim020=+=→→x x x x x x .。
经济数学--微积分期末测试及答案(A)
经济数学--微积分期末测试第一学期期末考试试题 ( A )一.选择题(每小题只有一个正确答案,请把正确答案前的字母填入括号,每题2分,共30分) 1.函数()f x =A); ()(1,1)(1,)()(1,)()(1,)()(1,1)A B C D -+∞-+∞+∞-2.下列函数中,与3y x =关于直线y x =对称的函数是(A);33()()()()A y B x C y x D x y ===-=-3.函数214y x=-的渐近线有(A); 3(A )条(B )2条(C )1条(D )0条4.若函数()f x 在(,)-∞+∞有定义,下列函数中必是奇函数的是(B);32()()()()()()()()()A y f x B y x f x C y f x f x D y f x =--==+-=5.0x →时,下列函数中,与x 不是等价无穷小量的函数是(B)()sin ()sin ()tan ()ln(1)A xB x xC xD x ++6.若()f x =,则点2x =是函数()f x 的(B);()A 左连续点 ()B 右连续点 ()C 驻点 ()D 极值点7.当0x →时,下列函数极限不存在的是(C );1sin 11()()sin()()tan 1xxA B x C D x xxe +8.极限0limln x →=(C );()1()0()1()A B C D -不存在9.设函数()f x 在区间(1,2)内有二阶导数,且()()0xf x f x '''+>,若在(1,2)内()0f x '<,则函数()f x '在区间(1,2)内 (C )()A 单调不增 ()B 单调不减 ()C 单调增加 ()D 单调减少10.下列函数中在[-3,3]上满足罗尔定理条件的是(D );2221()()()(3)()2A x B C x D x x +-11.若函数()f x 在点0x 处可导,则极限000(3)()lim2x xf x x f x x x→+∆--∆∆=(D );00001()4()()3()()()()2()2A f xB f xC f xD f x ''''12.下列极限中,极限值为e 的是(D);11001()lim (1)()lim (1)()lim(1)()lim (1)xxxxx x x x A x B x C D x x+→∞→∞→→++++13.若ln xy x =,则dy =(D); 222ln 11ln ln 11ln ()()()()x xx xA B C dx D dx x x xx----14.函数2()f x x =,在区间[0,1]内,满足拉格朗日中值定理的条件,其中ξ=(D);1121()()()()4332A B C D 15.若函数()f x 在(,)-∞+∞内连续,则2()x f x dx '⎡⎤=⎣⎦⎰(D).2222()[2()()]()2()()()()()()A xf x x f x dx B xf x x f x C x f x dx D x f x ''++二.计算题(每小题7分,共56分)1. arccos y x x =,求y '解:122(arccos )[(1)]arccos arccos y x x x x x '''=--=+=2. 求2(cos sin 32)xx x x e dx -+++⎰6分7分解:原式=3sin cos 2xx x x e x c +++++(其中c 是任意常数)3. 求曲线51001y x x y -+= 在0x =对应的点处的切线方程.解:0x =时,代入方程得 1y =;方程两边对x 求导得4100599151000y x y x y y ''-++=,将01x y ==与代入,得011x y y =='=, 故所求的切线方程为1y x -=,即1y x =+4. 求极限011lim()1x x x e →-- 解:原式=000111lim()lim lim (1)12xxx x x x x x x x x x e x e e x e e xe e e xe →→→---===--+++5. 设函数221()1ax x f x x bx -≥⎧=⎨-<⎩ 在1x =处可导,求常数a 和b 解:由已知()f x 在1x =连续,且21111lim ()lim()1lim ()lim(2)2x x x x f x x b b f x ax a --++→→→→=-=-=-=- 可得3b a =- ①又因()f x 在1x =处可导,且221111232(1)lim lim lim 1211(2)2()lim 1x x x x x b a x a a f x x x ax a f x a x -+++-→→→+→--+-+-+'===+=----+'==-又得2a = 代入① 得1b =故21a b ==6. 求函数2ln(14)y x =+的上凸区间、下凸区间与拐点.解:222288(14)1,,0,14(14)2xx y y y x xx -'''''====±++令得7分5分 2分5分7分3分6分7分3分6分 7分0000列表讨论如下:7.求dx⎰1131222231221122112[(21)(21)(21)(21)][(21)(21)] 4431(21)(21)2dx dxx d x x d x x x c x x c-==+=+++++++++ ++++⎰⎰⎰⎰⎰解:=21=68.已知2xxe是(2)f x的一个原函数,求()2xxf e dx-⎰22222222222222(2)()2(12)()(1)()(1)22()(1)(1)2(1)22222[(1)()]2[(1)]2222(2)(4)2x x x xxux x xx xx x x xx xf x xe e xe e xx xf u e u f ex x x xf e dx e e dx e dx dex x xe e d e e cxe c x e c----------'==+=+∴=+∴=+∴=+=+=-+ =-++-=-+++=-++=-++⎰⎰⎰⎰⎰解:三.应用题(本题10分)某厂生产一种化工产品,每年生产x吨的总成本为2()4100000C x x=+百元,该产品的需求函数为2100050.001x x p+=+(其中x是需求量,单位:吨;p是价格,单位:百元);(1)该产品产量为多少时工厂的利润最大?最大利润是多少?(2)该产品获得最大利润时的边际成本和边际收入各是多少?解:(1)2100050.001p x x=+-2分7分4分6分7分6分32()()0.0011000100000L x x p c x x x x =-=-++-令 2()0.003210000L x x x '=-++=得驻点1000x =(1000)40L ''=-< 且驻点唯一又32(1000)(0.0011000100000)9000001000L x x x x =-++-== (百元)故产量为1000吨时工厂利润最大,且最大利润为9000万元;(2) 因产品获得最大利润时,边际成本和边际收入相等,又(1000)8000C '= (百元/吨)故获得最大利润时,该产品的边际成本和边际收入均为8000(百元/吨).四.证明题(本题4分)设函数()f x 在区间[0,]c 上连续,其导数()f x '在(0,)c 内存在且单调减少,又(0)0f =,证明不等式:()()()f a b f a f b +≤+(其中,a b 是常数且满足:0a b a b c ≤≤≤+≤)证明:0a =时,(0)0f = ()()()()f a b f b f a f b ∴+==+时,在区间[0,]a 和[,]b a b +上,()f x 满足拉格朗日定理条件,1122()(0)()()((0,)()()()()()((,)f a f f a f a a af b a f b f b a f b f b a b b a b aξξξξ-'∴==∈+-+-'==∈++-有有又()f x 在[0,]c 上单调减少,而12ξξ<21()()f f ξξ''∴<即()()()f b a f b f a a a+-<故有 ()()()f a b f a f b +≤+(其中,a b 是常数且满足:0a b a b c ≤≤≤+≤)2分4分3分8分10分6分。
微积分试卷及标准答案6套
微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1.已知则对于,总存在δ>0,使得当,)(lim 1A x f x =+→0>∀ε时,恒有│ƒ(x )─A│< ε。
2.已知,则a = ,b =2235lim 2=-++∞→n bn an n 。
3.若当时,α与β 是等价无穷小量,则 。
0x x →=-→ββα0limx x 4.若f (x )在点x = a 处连续,则 。
=→)(lim x f ax 5.的连续区间是 。
)ln(arcsin )(x x f =6.设函数y =ƒ(x )在x 0点可导,则______________。
=-+→hx f h x f h )()3(lim0007.曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。
8. 。
='⎰))((dx x f x d 9.设总收益函数和总成本函数分别为,,则当利润最大时产2224Q Q R -=52+=Q C 量是。
Q 二. 单项选择题 (每小题2分,共18分)1.若数列{x n }在a 的ε 邻域(a -ε,a +ε)内有无穷多个点,则()。
(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在2.设则为函数的( )。
11)(-=x arctg x f 1=x )(x f(A) 可去间断点(B) 跳跃间断点 (C) 无穷型间断点(D) 连续点3.( )。
=+-∞→13)11(lim x x x(A) 1 (B) ∞(C)(D) 2e 3e4.对需求函数,需求价格弹性。
当价格( )时,5p eQ -=5pE d -==p 需求量减少的幅度小于价格提高的幅度。
(A) 3 (B) 5 (C) 6(D) 105.假设在点的某邻域内(可以除外)存)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→得0x 0x 在,又a 是常数,则下列结论正确的是( )。
2021微积分A期末试题及答案
2021⭌᮶㢔⫕➶᮷ᱤAᱥᱤ㔋ᱥ⒴㋜ㄯⶌ㗎㗎㝘(2022年1⽉3⽇,⽤时120分钟)专业班级学号姓名题号⼀⼆三四总分分数㮥ᮢ㫍㵗㝘(ょ㝘4➶ᱨ⤎16➶)阅卷⼈得分1.下列说法正确的是(D)A.有界数列⼀定收敛;B.有限区间上的连续函数⼀定⼀致连续;C.函数f在R上处处可导,它的导函数f1⼀定是连续的;D.有界数集⼀定存在上确界。
2.下列哪个极限不存在(B)A.limxÑ0x sin1xB.limxÑ0D(x),其中D(x)是Dirichlet函数C.limxÑ0|sgn(x)|D.limnÑ+8(1+122+¨¨¨+1n2)3.当xÑ0时,下⾯哪个函数不是与y=x等阶的⽆穷⼩(D)A.sin xB.arcsin xC.ln(1+x)D.1´cos x4.函数f(x)定义在R上,在x0处可导⽽且f(x0)ą0。
下列说法错误的是(A)A.函数f(x)在x0处的微分是f1(x0);B.函数f(x)在x0处连续;C.存在x0的⼀个邻域U(x0),使得在该邻域内f(x)ą0;D.当xÑx0时,f(x)=f(x0)+o(1)。
✠ᮢ㝤ⶥ㝘(ょ㝘4➶ᱨ⤎20➶)阅卷⼈得分5.集合A=t(1+1n)n|n P N,ną0u,那么inf A=2,sup A=e。
6.函数φ(t),ψ(t)在R上⼆阶可导,⽽且φ1(t)‰0。
由参数⽅程x=φ(t),y=ψ(t)确定了函数关系y=y(x)。
那么d yd x =ψ1(t)/φ1(t),d2yd x2=ψ2(t)φ1(t)´ψ1(t)φ2(t)φ13(t)。
7.函数y=2x3+3x2´12x+18在区间[´3,3]上的最⼤值是63,最⼩值是11。
8.函数y=x4+8x3+1图像的垂直渐近线是x=´1,斜渐近线是y=x。
9.函数f(x)在R上的连续,F(x)=şxf(x+t)dt,那么F1(x)=2f(2x)´f(x)。
期末模拟试题二参考答案_经济数学-微积分习题解答_[共3页]
;(8分),因为lim犳(狓)=lim
狓→∞
狓→∞
4(狓狓+21)-2
=
-2,水平渐近线为狔=-2,无斜渐近线。
[ ] lim犳(狓)=lim
狓→0
狓→0
4(狓狓+21)-2
=∞,垂直渐近线为狓=0。(10分)
五 证明题(5分)。
证明:设 犉(狓)=e-狓犳(狓),犉′(狓)=e-狓[犳′(狓)-犳(狓)]。(2分)
则犉(狓)在闭区间[0,1]上连续,在开区间(0,1)内可导,且 犉(0)=犉(1)=0,由罗尔定理可知:在
(0,1)内至少存在一点ξ使得 犉′(ξ)=0, 即犳′(ξ)=犳(ξ)。(5分)
期末模拟试题二参考答案
一 填空题(每题2分,共10分)。 1.[2,4] 2.狔=e狓+1 3.犽>2 4.0<犽≤1 5.410arctan狓104+2+犆
犫=-1 。(8分)
( ) 2. 成本函数为:犆(狓)=犚(狓)-犔(狓)=500狓- 300狓-4狓02-25000
=200狓+4狓02+25000,平均成本犆(狓)=犆狓(狓)=200+410狓+25狓000(3分)
犆′(狓)=410-25狓0200,令犆′(狓)=0得唯一驻点:狓=1000(6分)
又因为犆″(狓)=50狓0300,犆″(1000)>0,所以狓=1000是极小值点,也是最小值点,故产量为1000
件时平均成本最小,此时获利犔(1000)=250000元。(8分)
3.犇犳=(-∞,0)∪(0,+∞),(1分)狔′=-4(狓狓+32),狔″=8(狓狓+43),
令狔′=0,得驻点狓=-2,令狔″=0,得狓=-3 (4分)
经济数学———微积分习题解答
=(槡2狓+1-1)e槡2狓+1+犆(7分) 四 应用题(1、2题每题8分,第3题10分,共26分)。
《微积分》期末考试试卷(含ABC三套)
四、计算题 1、求极限 lim
x 。 (6 分) x 0 2 4 x
B、 lim f (0 x) f (0)
x 0
f (x) f (0) x
)
D、 lim
x 0
f ( x x) f ( x) x
4、 (ln x)dx =( A、 ln x
2
B、 ln x C )
C、
2
1 x
1 D、 C x
5、定积分为零的是( A、 ( x 3 x 5 )dx
四、计算题 1、求极限 lim
1 cos x 。 (6 分) x 0 x2
2、 y ln( x x 2 a 2 ), 求y 。 (8 分)
3、 y cos x , 求dy 。 (8 分)
4、求 arctan xdx 。 (10 分)
2 sin 3 xdx 。 5、求 (10 分) 2
sin x A、 lim 1 x x
2
sin
B、 lim
x 0
1 x
1 x 1
C、 lim
x
2
tan x 1 x
D、 lim x sin
x
1 1 x
)
3、若函数 y f ( x) 在点 x=0 处可导,则 f (0) =( A、 f (0) C、 lim
x 0
2 2
B、 ( x 3 x 5 1)dx
2 2
C、 x sin xdx
2
D、 x 2 cos xdx
2
二、填空题(每空 3 分,共 18 分) 1、若函数 y f ( x) 在点 x。连续,则 lim f ( x) f ( x0 ) =
微积分期末试题及答案
微积分期末试题及答案(正文开始)第一部分:选择题(共20题,每题5分,共100分)1. 设函数 f(x) = x^3 - 2x + 1,求 f'(x)。
2. 求函数 f(x) = e^x 的不定积分。
3. 将函数 f(x) = sin(x) 在区间[0, π] 上进行定积分,求结果。
4. 设函数 f(x) = ln(x),求 f'(x)。
5. 求函数 f(x) = 2x^2 + 3x + 1 的定积分,其中积分区间为 [-1, 2]。
6. 设函数f(x) = √(x^2 + 1),求 f'(x)。
7. 求函数 f(x) = 3x^2 - 6 的不定积分。
8. 计算定积分∫(0 to π/2) cos(x) dx 的值。
9. 设函数 f(x) = e^(2x),求 f'(x)。
10. 求函数 f(x) = x^3 - 4x^2 + 5x - 2 的不定积分。
11. 计算定积分∫(0 to 1) x^2 dx 的值。
12. 设函数 f(x) = (sinx + cosx)^2,求 f'(x)。
13. 求函数 f(x) = 2e^x 的不定积分。
14. 计算定积分∫(1 to e) ln(x) dx 的值。
15. 设函数 f(x) = x^2e^x,求 f'(x)。
16. 求函数 f(x) = ln(2x + 1) 的不定积分。
17. 求函数 f(x) = sin^2(x) 在区间[0, π/2] 上的定积分。
18. 设函数 f(x) = e^(3x),求 f'(x)。
19. 求函数f(x) = ∫(1 to x) t^2 dt 的不定积分。
20. 计算定积分∫(0 to π) sin^2(x) dx 的值。
第二部分:计算题(共4题,每题25分,共100分)1. 计算函数f(x) = ∫(0 to x^2) (2t + 1) dt 在区间 [-1, 1] 上的定积分。
微积分期末试题及答案
微积分期末试题及答案一、选择题1.微积分的概念是由谁提出的?A.牛顿B.莱布尼茨C.高斯D.欧拉答案:B2.一个物体在 t 秒后的位移函数为 s(t) = 4t^3 - 2t^2 + 5t + 1。
求该物体在 t = 2 秒时的速度。
A.10B.23C.35D.49答案:C3.定义在[a,b]上的函数 f(x) 满足f(x) ≥ 0,对于任意 x ∈ [a,b] 都有∫[a,b] f(x) dx = 0,则 f(x) =A.常数函数B.0C.连续函数D.不满足条件,不存在这样的函数答案:B4.若函数 f 在区间 [a,b] 上连续,则在区间内至少存在一个数 c,使得A.∫[a,b] f(x) dx = 0B.∫[a,b] f(x) dx = f(c)C.∫[a,b] f'(x) dx = f(b) - f(a)D.∫[a,b] f(x) dx = F(b) - F(a),其中 F 为 f 的不定积分答案:D5.已知函数 f(x) = x^2,求在点 x = 2 处的切线方程。
A.y = 2x - 2B.y = 2x + 2C.y = -2x + 2D.y = -2x - 2答案:A二、计算题1.计算∫(2x - 1) dx。
解:∫(2x - 1) dx = x^2 - x + C。
2.计算极限lim(x→∞) (3x^2 - 4x + 2)。
解:lim(x→∞) (3x^2 - 4x + 2) = ∞。
3.计算导数 dy/dx,其中 y = 5x^3 - 2x^2 + 7x - 1。
解:dy/dx = 15x^2 - 4x + 7。
4.计算函数 f(x) = x^3 + 2x^2 - 5x + 3 的驻点。
解:驻点为 f'(x) = 0 的解。
f'(x) = 3x^2 + 4x - 5 = 0,解得 x = -1 或 x = 5/3。
5.计算定积分∫[0,π/2] sin(x) dx。
微积分期末测试题及答案
微积分期末测试题及答案 Prepared on 22 November 2020一 单项选择题(每小题3分,共15分)1.设lim ()x af x k →=,那么点x =a 是f (x )的( ). ①连续点 ②可去间断点 ③跳跃间断点 ④以上结论都不对2.设f (x )在点x =a 处可导,那么0()(2)limh f a h f a h h→+--=( ). ①3()f a ' ②2()f a ' ③()f a ' ④1()3f a ' 3.设函数f (x )的定义域为[-1,1],则复合函数f (sinx )的定义域为( ).①(-1,1) ②,22ππ⎡⎤-⎢⎥⎣⎦③(0,+∞) ④(-∞,+∞) 4.设2()()lim 1()x a f x f a x a →-=-,那么f (x )在a 处( ). ①导数存在,但()0f a '≠ ②取得极大值 ③取得极小值 ④导数不存在5.已知0lim ()0x x f x →=及( ),则0lim ()()0x x f x g x →=. ①g (x )为任意函数时 ②当g (x )为有界函数时③仅当0lim ()0x x g x →=时 ④仅当0lim ()x x g x →存在时 二 填空题(每小题5分,共15分)sin lim sin x x x x x→∞-=+. 31lim(1)x x x+→∞+=.3.()f x =那么左导数(0)f -'=____________,右导数(0)f +'=____________.三 计算题(1-4题各5分,5-6题各10分,共40分) 1.111lim()ln 1x x x →-- 2.t t x e y te ⎧=⎨=⎩,求22d y dx3.ln(y x =,求dy 和22d y dx .4.由方程0x y e xy +-=确定隐函数y =f (x ) ,求dy dx . 5.设1111,11n n n x x x x --==++,求lim n x x →∞.6.lim(32x x →∞=,求常数a ,b . 四 证明题(每小题10分,共30分)1.设f (x )在(-∞,+∞)上连续,且()()lim lim 0x x f x f x x x→+∞→-∞==,证明:存在(,)ξ∈-∞+∞,使 ()0f ξξ+= .2.若函数f (x )在[a ,+∞]上可导,对任意x ∈(a,+∞),有()f x M '≤,M 是常数,则2()lim 0x f x x→+∞=. 3.证明函数1sin y x=在(c ,1)内一致连续,但在(0,1)内非一致连续. 答案一 单项选择题(每小题3分,共15分)1.④2.①3.④4.③5.②二 填空题(每小题5分,共15分)sin lim sin x x x x x→∞-=+ . 2.31lim(1)x x x+→∞+= __e_.3.()f x =那么左导数(0)f -'=__-1__,右导数(0)f +'=__1__.三 计算题(1-4题各5分,5-6题各10分,共40分)2.t t x e y te⎧=⎨=⎩,求22d y dx3.ln(y x =,求dy 和22d y dx .4.由方程0x y e xy +-=确定隐函数y =f (x ) ,求dy dx. 5.设1111,11n n n x x x x --==++,求lim n x x →∞.6.lim(32x x →∞=,求常数a ,b . 四 证明题(每小题10分,共30分)1.设f (x )在(-∞,+∞)上连续,且()()lim lim 0x x f x f x x x→+∞→-∞==,证明:存在(,)ξ∈-∞+∞,使 ()0f ξξ+= .2.若函数f (x )在[a ,+∞]上可导,对任意x ∈(a,+∞),有()f x M '≤,M 是常数,则2()lim 0x f x x →+∞=. 3.证明函数1sin y x=在(c ,1)内一致连续,但在(0,1)内非一致连续.。
A2及答案微积分期末复习卷
3. 计算dx x xdy y ⎰⎰-22411ln解:原式=dy x xdx x ⎰⎰-212211ln =dx x xy x 212121ln ⎰-=⎰21ln xdx =⎰-2121ln dx x x =12ln 2-4.某厂生产两种产品,总收入R 和两种产品的产量y x ,的关系是22(,)12014022R x y x y x xy y =+---。
总成本C 与y x ,的关系是y x y x C 6020700),(++= (1) 在产量x 与y 不受限制的情况下,如何安排生产,才能获得最大利润,这时最大利润是多少?(2) 在产量x 和y 不受限制的情况下,该厂应如何规定这两种产品的产量,方可获得最大利润,最大利润是多少?解:(1)()222270080100),(),(,y xy x y x y x C y x R y x L ----+=-=令022********=--='=--='y x L y x L yx , 解得3010==y x 又2,2,4-=''-=''-=''yy xy XX L L L ,于是()()()0242,0422<----=-<-=AC B A ,可知(10,30)是利润函数的极大值点,也是实际问题的最大值点,此时最大值为1000.(3) 方法1配方法22)30()30(202700)30(80100),(x x x x x y x L -------+==22)10(90020800--=-+x x x ,所以,当20,10==y x 时,利润达到最大值为900方法2用拉格朗日数法(,,)(,)(30)F x y L x y x y λλ=++-3002280024100=-+='=+--='=+--='y x F y x F y x F y x λλλ,解得唯一驻点(10,20) 且实际问题存在最大值,故20,10==y x 时取得最大利润900)20,10(=L。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
经济数学--微积分期末测试及答案(A)经济数学--微积分期末测试第一学期期末考试试题 ( A )一.选择题(每小题只有一个正确答案,请把正确答案前的字母填入括号,每题2分,共30分)1.函数1()x f x +=A);()(1,1)(1,)()(1,)()(1,)()(1,1)A B C D -+∞-+∞+∞-U2.下列函数中,与3y x =关于直线y x =对称的函数是(A);3333()()()()A y x B x yC y xD x y ===-=-3.函数214y x =-的渐近线有(A);3(A )条(B )2条(C )1条(D )0条4.若函数()f x 在(,)-∞+∞有定义,下列函数中必是奇函数的是(B);32()()()()()()()()()A y f xB y x f xC y f x f xD y f x =--==+-=5.0x →时,下列函数中,与x 不是等价无穷小量的试题号 一 二三四 总分 考 分 阅卷人11001()lim (1)()lim (1)()lim(1)()lim (1)xxxxx x x x A x B x C D x x+→∞→∞→→++++13.若ln x y x=,则dy =(D);222ln 11ln ln 11ln ()()()()x xx xA B C dx D dx xx xx----14.函数2()f x x =,在区间[0,1]内,满足拉格朗日中值定理的条件,其中ξ=(D);1121()()()()4332A B C D15.若函数()f x 在(,)-∞+∞内连续,则2()x f x dx '⎡⎤=⎣⎦⎰(D).2222()[2()()]()2()()()()()()A xf x x f x dxB xf x x f xC x f x dxD x f x ''++二.计算题(每小题7分,共56分)1. 2arccos 1y x x x =-y '解:12222(arccos )[(1)]arccos arccos 121y x x x x xxx'''=--==--2. 求2(cos sin 32)x x x x e dx -+++⎰解:原式=3sin cos 2x x x xe x c+++++(其中c 是任意常数) 3.求曲线51001y x x y -+= 在0x =对应的点处的切线方程.解:0x =时,代入方程得1y =;方程两边对x 求导6775得 4100599151000y x y x y y ''-++=, 将01x y ==与代入,得011x y y =='=, 故所求的切线方程为1y x -=,即1y x =+4. 求极限011lim()1xx x e →-- 解:原式=000111lim()lim lim (1)12x x x x x x x x x x x x e x e e x e e xe e e xe →→→---===--+++5.设函数221()1ax x f x x bx -≥⎧=⎨-<⎩在1x =处可导,求常数a和b解:由已知()f x 在1x =连续,且21111lim ()lim()1lim ()lim(2)2x x x x f x x b b f x ax a --++→→→→=-=-=-=- 可得3b a =- ①又因()f x 在1x =处可导,且221111232(1)lim lim lim 1211(2)2()lim 1x x x x x b a x a a f x x x ax a f x ax -+++-→→→+→--+-+-+'===+=----+'==-又得2a = 代入① 得1b =故21a b ==25736736700006. 求函数2ln(14)y x =+的上凸区间、下凸区间与拐点.解:222288(14)1,,0,14(14)2xx y y y x x x -'''''====±++令得列表讨论如下:x 1(,)2-∞- 12- 11(,)22-121(,)2+∞y ''_ 0+ -0 _ y I 拐点1(,ln 2)2- U 拐点1(,ln 2)2I7. 求21dx x +⎰11312222312211(2122212121112[(21)(21)(21)(21)][(21)(21)]4431(21)(21)2dx dx x dxx x x x d x x d x x x c x x c -==+++++=+++++++++++++⎰⎰⎰⎰⎰解:=21=68.已知2xxe 是(2)f x 的一个原函数,求()2x x f e dx -⎰22222222222222(2)()2(12)()(1)()(1)22()(1)(1)2(1)22222[(1)()]2[(1)]2222(2)(4)2x x x x xux x xx xx x x xx xf x xe e xe e x x xf u e u f e x x x x f e dx e e dx e dx de x x xe e d e e cx e c x e c----------'==+=+∴=+∴=+∴=+=+=-+=-++-=-+++=-++=-++⎰⎰⎰⎰⎰解:27466三.应用题(本题10分)某厂生产一种化工产品,每年生产x 吨的总成本为2()4100000C x x=+百元,该产品的需求函数为2100050.001x x p+=+(其中x 是需求量,单位:吨;p 是价格,单位:百元);(1) 该产品产量为多少时工厂的利润最大?最大利润是多少?(2)该产品获得最大利润时的边际成本和边际收入各是多少? 解:(1) 2100050.001p x x =+-32()()0.0011000100000L x x p c x x x x =-=-++-g令2()0.003210000L x x x '=-++=得驻点1000x =(1000)40L ''=-<且驻点唯一又32(1000)(0.0011000100000)9000001000L xx x x =-++-== (百元) 故产量为1000吨时工厂利润最大,且最大利润为9000万元;(2) 因产品获得最大利润时,边际成本和边际收入相等,又(1000)8000C '= (百元/吨)故获得最大利润时,该产品的边际成本和边际收入均为8000(百元/吨).38106四.证明题(本题4分)设函数()f x 在区间[0,]c 上连续,其导数()f x '在(0,)c 内存在且单调减少,又(0)0f =,证明不等式:()()()f a b f a f b +≤+ (其中,a b 是常数且满足:0a b a b c≤≤≤+≤)证明:0a =Q 时,(0)0f = ()()()()f a b f b f a f b ∴+==+ 0a > 时,在区间[0,]a 和[,]b a b +上,()f x 满足拉格朗日定理条件,1122()(0)()()((0,)()()()()()((,)f a f f a f a a af b a f b f b a f b f b a b b a b aξξξξ-'∴==∈+-+-'==∈++-有有又()f x 在[0,]c 上单调减少,而12ξξ<21()()f f ξξ''∴<即()()()f b a f b f a a a+-< 故有()()()f a b f a f b +≤+(其中,a b 是常数且满足:0a b a b c≤≤≤+≤)24。