第五章 测量误差及测量平差.
第五章 测量误差的基本知识
在测量工作中,如某个误差超过了容许误差,则相应 观测值应舍去重测。
3.相对误差
绝对误差值与观测值之比,称为相对误差。在某 些测量工作中,有时用中误差还不能完全反映测量精度, 例如测量某两段距离,一段长200m,另一段长100m, 它们的测量中误差均为±0.2m,为此用观测值的中误差 与观测值之比,并将其分子化为1,即用1/K表示,称为 相对误差。
180°00ˊ00"
0
0
179°59ˊ57"
-3
9
180°00ˊ01"
+1
1
24
130
m2
2 3.6 10
两组观测值的误差绝对值相等 m1 < m2,第一组的观测成果的精度高于第二组观测成
果的精度
2.容许误差
容许误差又称极限误差。根据误差理论及实践证明, 在大量同精度观测的一组误差中,绝对值大于两倍中误差 的偶然误差,其出现的可能性约为5%;大于三倍中误差 的偶然误差,其出现的可能性仅有3‰,且认为是不大可 能出现的。因此一般取三倍中误差作为偶然误差的极限误 差。
全微分
dZ Kdx
得中误差式 mZ K 2mx2 Kmx
例:量得 1:1000 地形图上两点间长度l =168.5mm0.2mm,
计算该两点实地距离S及其中误差ms: 解:列函数式 S 1000 l
求全微分 dS 1000dl
mS 1000ml 1000 0.2 200mm 0.2m
测量误差=观测值-真值
观测误差来源于仪器误差、人的感官能力和外界环境 (如温度、湿度、风力、大折光等)的影响,这三方面的 客观条件统称观测条件。
测量平差测量误差及其传播定律课件
地理信息获取
通过平差测量原理,获取高精度 地理信息数据,为地理信息系统
提供基础数据。
科学研究
在物理、化学、生物等领域,利 用平差测量原理对各种实验数据
进行处理和分析。
CHAPTER 03
误差传播定律
误差传播定律的定义
误差传播定律是测量平差中用来描述测量误差之间相互关系 的定律。它表明,当对一个或多个观测值进行数学运算时, 误差会按照一定的规律传播。
测量误差的来源
01
02
03
04
测量设备误差
设备精度、磨损、老化等因素 导致误差。
环境误差
温度、湿度、气压、风速等环 境因素影响测量结果。
操作误差
操作人员技能水平、操作习惯 等因素导致误差。
观测误差
观测过程中产生的随机误差和 系统误差。
测量误差的分类
系统误差
可预测且相对稳定的误差,如设 备误差。
随机误差
实例三:距离测量误差分析
总结词
距离测量误差主要来源于仪器误差、 人为误差和外界环境因素。
详细描述
仪器误差包括固定误差和比例误差; 人为误差包括读数误差和记录误差; 外界环境因素包括温度、气压和湿度 等气象因素的影响。
THANKS FOR WATCHING
感谢您的观看
总结词
水准测量误差主要来源于仪器误差、 人为误差和外界环境因素。
详细描述
仪器误差包括望远镜调焦误差、十字 丝分划板误差等;人为误差包括读数 误差和仪器对中误差;外界环境因素 包括大气折射和地球曲率的影响。
实例二:角度测量误差分析
总结词
角度测量误差主要来源于仪器误差、人为误差和目标偏心。
详细描述
5 测量误差的基本知识
l 2r 2 1.465 9.205m
ml 2 mr=2 2 = 4(mm) l 9.205m 4(mm)
例3:Z=X+Y,Y=2X, 试根据X、Y的 中误差计算函数Z的中误差。
m
2 z
m
2 x
m
2 y
解1: m
m
y 2 z
2m
小 结
一、已知真值X,则真误差 中误差 m
i li X
[ ] n
二、真值不知,则
x l n , vi l i x
中误差
[vv] m n 1
5.5 观测值函数的中误差
1.和差函数 z x1 x2 xn
m
的中误差为
2
m m
2 1
2 2
mn
2.倍数函数 z k x 的中误差
m
k mx z
3.线性函数 z k 1 x1 k 2 x2 k n xn 的中误差为
M z ( k1m1 ) ( k 2 m 2 ) ...... ( k n m n )
5.1.3
粗差
由于观测者或记录者疏忽大意造成,如测错目标、读 错大数、记错读数等.观测结果中不允许粗差的存在。
小测试:
下列表述中的误差不属于偶然误差的是 A.角度测量时,秒值的估读误差 B.水准测量中视线未精平引起的读数误差 C.角度测量时不同测回瞄准同一目标的照准误差 D.丈量距离时的估读误差 。
x 2 x
5m
z 3 x 解 2: mz 3mx
考虑哪种解法正确,为什么?
小测试:
有函数z1 = x1 + x2,z2 = 2x3,若mx1 = mx2 = mx3 = m,且x1,x2,x3独立,则 A.mz1>mz2 C.mz1= mz2 B.mz1<mz2 D.不确定
第5章 测量误差的基本知识
结论
在观测过程中,系统误差和偶然误差往往是同时存在 的。当观测值中有显著的系统误差时,偶然误差就居 于次要地位,观测误差呈现出系统误差的性质;反之, 呈现出偶然误差的性质。因此,对一组剔除了粗差的 观测值,首先应寻找、判断和排除系统误差,或将其 控制在允许的范围内,然后根据偶然误差的特性对该 组观测值进行数学处理,求出最接近未知量真值的估 值,称为最或是值;同时,评定观测结果质量的优劣, 即评定精度。这项工作在测量上称为测量平差,简称 平差。
2 相对误差
对于衡量精度来说,有时单靠中误差还不能完全表达观 测结果的质量。 例如,测得某两段距离,一段长200m,另一段长1000m, 观测值的中误差均为±0.2m 。从表面上看,似乎二者精 度相同,但就单位长度来说,二者的精度并不相同。这 时应采用另一种衡量精度的标准,即相对误差。 相对误差:是中误差与观测值之比,是个无量纲数,在 测量上通常将其分子化为1。即用K=1/N的形式来表示。 上例前者的相对中误差为0.2/200=1/1000,后者为 0.2/1000=1/5000。显然,相对中误差愈小(分母愈 大),说明观测结果的精度愈高,反之愈低。
解:水准测量每一站高差: hi ai bi (i 1,2....,n)
则每站高差中误差
m站 m读 m读 m读 2
2 2 2.8m m
观测n站所得总高差 h h1 h2 hn 则n站总高差h的总误差
2
2
m总 m站 n 2.8 nmm
2
第二组观测 观测值 l Δ 0 180°00ˊ00" +1 159°59ˊ59" -7 180°00ˊ07" -2 180°00ˊ02" -1 180°00ˊ01" 179°59ˊ59" 179°59ˊ52" 180°00ˊ00" 179°59ˊ57" 180°00ˊ01" +1 +8 0 +3 -1 24
第五章误差基本知识
现在的位置:课程介绍 >> 理论部分 >> 电子讲稿第五章误差基本知识5.1误差的来源和分类一、定义:观测值与真值之差,记为:X为真值,即能代表某个客观事物真正大小的数值。
为观测值,即对某个客观事物观测得到的数值。
为观测误差,即真误差。
二、误差的来源1、测量仪器一是仪器本身的精度是有限的,不论精度多高的仪器,观测结果总是达不到真值的。
二是仪器在装配、使用的过程中,仪器部件老化、松动或装配不到位使得仪器存在着自身的误差。
如水准仪的水准管轴不平行视准轴,使得水准管气泡居中后,视线并不水平。
水准尺刻划不均匀使得读数不准确。
又如经纬仪的视准轴误差、横轴误差、竖盘指标差都是仪器本身的误差。
2、观测者是由于观测者自身的因素所带来的误差,如观测者的视力、观测者的经验甚至观测者的责任心都会影响到测量的结果。
举例:如水准尺倾斜、气泡未严格居中、估读不准确、未精确瞄准目标都是观测误差。
3、外界条件测量工作都是在一定的外界环境下进行的。
例如温度、风力、大气折光、地球曲率、仪器下沉都会对观测结果带来影响。
上述三项合称为观测条件a.等精度观测:在相同的观测条件下进行的一组观测。
b.不等精度观测:在不同的观测条件下进行的一组观测。
测量误差的分类根据测量误差表现形式不同,误差可分为系统误差、偶然误差和粗差。
1、系统误差定义:误差的符号和大小保持不变或者按一定规律变化,则称其为系统误差。
如:钢尺的尺长误差。
一把钢尺的名义长度为30m,实际长度为30.005m,那么用这把钢尺量距时每量一个整尺段距离就量短了5mm,也就是会带来-5mm的量距误差,而且量取的距离越长,尺长误差就会越大,因此系统误差具有累计性。
如:水准仪的i角误差,由于水准管轴与视准轴不平行,两者之间形成了夹角i,使得中丝在水准尺上的读数不准确。
如果水准仪离水准尺越远,i角误差就会越大。
由于i角误差是有规律的,因此它也是系统误差。
正是由于系统误差具有一定的规律性,因此只要找到这种规律性,就可以通过一定的方法来消除或减弱系统误差的影响。
05《工程测量》第五章测量误差的基本知识作业与习题答案
第五章 一、选择题
测量误差的基本知识作业与习题答案
1.设 n 个观测值的中误差均为 m,则 n 个观测值代数和的中误差为( A.
相对误差 =
误差的绝对值 1 = 观测值 T
式中当误差的绝对值为中误差 m 的绝对值时,K 称为相对中误差。 m 1 K= = D D m 极限误差 由偶然误差的特性一可知,在一定的观测条件下,偶然误差的绝对值不会超过一定的限值。这 个限值就是极限误差。 容许误差 在实际工作中,测量规范要求观测中不容许存在较大的误差,可由极限误差来确定测量误差的 容许值,称为容许误差 6.什么是极限误差?什么是相对误差? 极限误差 由偶然误差的特性一可知,在一定的观测条件下,偶然误差的绝对值不会超过一定的限值。这 个限值就是极限误差。 容许误差 在实际工作中,测量规范要求观测中不容许存在较大的误差,可由极限误差来确定测量误差的 容许值,称为容许误差 7.说明下列原因产生的误差的性质和消减方法 钢尺尺长不准,定线不准,温度变化,尺不抬平,拉力不均匀,读数误差,水准测量时气泡居
ˆ =± m = ±σ
[∆∆] n
相对误差 真误差和中误差都有符号,并且有与观测值相同的单位,它们被称为“绝对误差” 。绝对误差可 用于衡量那些诸如角度、方向等其误差与观测值大小无关的观测值的精度。但在某些测量工作中, 绝对误差不能完全反映出观测的质量。例如,用钢尺丈量长度分别为 100 m 和 200 m 的两段距离, 若观测值的中误差都是±2 cm,不能认为两者的精度相等,显然后者要比前者的精度高,这时采用 相对误差就比较合理。相对误差 K 等于误差的绝对值与相应观测值的比值。它是一个不名数,常用 分子为 1 的分式表示,即
误差基本知识
1.用真误差来确定中误差
在等精度观测条件下,对真值为X的某一量进行n 次观测,其观测值为L1,L2…Ln,相应的真误差为 1,2…n。取各真误差平方的平均值的平方根, 称为该量各观测值的中误差,以m表示,即:
Δi = X - L i
m =
2
i =1
n
n
2.用改正数来确定中误差
在实际工作中,未知量的真值往往不知道,真误差也无法 求得,所以常用最或是误差即改正数来确定中误差。
系统误差除可用改正数计算公式对观测 结果进行改正加以消除外,也可以用一 定的观测方法来消除其误差影响。
如经纬仪视准轴不垂直于横轴造成的误差,可以 用盘左、盘右观测角度,取其平均值的方法加以 消除;在水准测量中,采用前、后视距离相等来 消除水准仪的视准轴不平行于水准管轴造成的误 差。
由此可见,系统误差对观测结果影响较大,因此 必须采用各种方法加以消除或减少它的影响。比 如用改正数计算公式对丈量结果进行改正。
例四 某水准路线各测段高差的观测值中误差分别为h1 = 18.316 m ± 5 mm,h2 = 8.171 m ± 4 mm,h3 = 6.625 m ± 3 mm,试求总的高差及其中误差。 解:h = h1 + h2 + h3 = 15.316 + 8.171 6.625 = 16.862 (m)
1. 在一定的观测条件下,偶然误差的绝对值不 会超过一定的限值。 ………………….(有界性)
2. 绝对值小的误差比绝对值大的误差出现的机 会多。………………………………….(单峰性)
3.绝对值相等的正、负误差出现的机会基本相
等。 ………………………………次数的无限
容 = 2m 容 = 3m
第5章 测量误差理论的基础知识
5.1 测量误差概述 5.2 衡量精度的指标 5.3 误差传播定律及其应用 5.4 等精度直接观测平差 5.5 不等精度观测的最或然值及其中误差
§5.1 测量误差概述
大量实践表明,当对某一未知量进行多次 观测时,无论观测仪器多么精密,观测进行得
多么仔细,观测值之间总是存在着差异。例如,
2 2 2 2 mZ A12 m12 A2 m2 An mn
§5.3.2 误差传播定律的应用
例1 量得某圆形建筑物得直径 D=34.50m, 其中误差mD 0.01m,
求建筑物得圆周长及其中误差。
解:圆周长:
P D 3.1416 34.50 108.38 中误差:
将以上各式两边平方、取平均,可得
Z 2 x12 x22 xn 2 n f2 f 2 ... f 2 xi x j 1 fi f j k 1 2 n k k k k i, j
i j
因 x 的观测值 l 彼此独立,则 xi x j 在 i j 时亦为偶 i i 然误差。根据偶然误差第4特性,上式末项当 k 时趋近于 零,故:
测量某一平面三角形的三个内角,其观测值之
和常常不等于理论值180°。这说明测量结果
不可避免地存在误差。
§5.1.1 测量误差的来源
测量工作是在一定条件下进行的,外界环境、观 测者的技术水平和仪器本身构造的不完善等原因,都 可能导致测量误差的产生。通常把测量仪器、观测者 的技术水平和外界环境三个方面综合起来,称为观测 条件。观测条件不理想和不断变化,是产生测量误差 的根本原因。通常把观测条件相同的各次观测,称为 等精度观测;观测条件不同的各次观测,称为不等精 度观测。
第五章 测量误差
(2)水准路线高差的中误差
如果在这段水准路线当中一共观测了n站,则总高 差为: 设每站的高差中误差均为m站 ,则 mh = 取3倍中误差为限差,则普通水准路线的容许误差为: m容= 3
2.水平角观测的误差分析
用DJ6经纬仪进行测回法观测水平角,那么用盘左 盘右观测同一方向的中误差为±6” ,即 =±6”。 假设盘左瞄准A点时读数为A左,盘右瞄准A时读数 为A右,那么瞄准A方向一个测回的平均读数应为
求真误差的方差: 由方差的性质可得:
中误差为标准差σ的估计值,而标准差的平方就等 于方差,故
二、线性函数
1、倍数函数 设有函数 Z=Kx 式中 x—直接观测值,其中误差为mx; K—常数 Z—观测值x的函数 若对x作n次同精度观测,其真误差列为 设对应的函数的真误差列为 。 观测值与函数间的真误差关系式为:
三、非线性函数 设有非线性函数 z=f(x1、x2、…、xn) 式中,x1、x2、…、xn为独立观测值,其相应的中
误差分别为m1、m2、…、mn,对其全微分得到
四、误差传播定律的应用 1.水准测量的误差分析
(1)一个测站的高差中误差 每站的高差为:h=a-b;a、b为水准仪在前后水准 尺上的读数,读数的中误差m读,m读≈±3mm,则 每个测站的高差中误差为
二、中误差(均方差)
1.测量工作中,用标准差来衡量观测的精度,我 们称之为中误差,用m表示。 设在相同的观测条件下,对未知量进行重复独立 观测,观测值为:l1,l2,…,ln,其真误差为Δ 1,
Δ 2,…,Δ n ,则真误差的方差
式中当n→∞,E(Δ ) = 0 ,根据数学期望的定义 E(Δ 2)就是Δ 2的算术平均值。
将上式平方,得 按上式求和,并除以n,得
测量学 第五章 测量误差及测量平差
第五章 测量误差及测量平差§5.1 测量误差概述一、测量误差的概念某量的各测量值相互之间或观测值与理论值之间的往往存在着某些差异,说明观测中存在误差。
观测值与真值之差称为测量误差,也叫真误差。
X l i i -=∆ (i =1、2、……、n ) X 为真值。
二、研究测量误差的目的分析测量误差的产生原因、性质和积累规律;正确地处理测量成果,求出最可靠值;评定测量结果的精度;为选择合理的测量方法提供理论依据。
三、测量误差产生的原因1.测量仪器因素2.观测者的因素3.外界条件的因素测量观测条件——测量仪器、观测人员和外界条件这三方面的因素综合起来称为测量观测条件。
等精度观测——测量观测条件相同的各次观测称为等精度观测。
非等精度观测——测量观测条件不相同的各次观测称为非等精度观测。
四、测量误差的分类1.系统误差在相同的观测条件下对某量作一系列观测,如果误差的大小、符号表现出系统性,或按一定的规律变化,或保持不变,这种误差称为系统误差。
其特点:具有累积性,但可以采用适当的观测方法或加改正数来消除或减弱其影响。
2.偶然误差在相同的观测条件下对某量作一系列观测,如果误差的大小和符号不定,表面上没有规律性,但实际上服从于一定的统计规律性,这种误差称为偶然误差。
偶然误差单个的出现上没有规律性,不能采用适当的观测方法或加改正数来消除或减弱其影响。
因此,观测结果中偶然误差占据了主要地位,是偶然误差影响了观测结果的精确性。
五、减少测量误差的措施对系统误差,通常采用适当的观测方法或加改正数来消除或减弱其影响。
对偶然误差,通常采用多余观测来减少误差,提高观测成果的质量。
§5.2 偶然误差的特性一、精度的含义1.准确度准确度是指在对某一个量的多次观测中,观测值对该量真值的偏离程度。
2.精密度精密度是指在对某一个量的多次观测中,各观测值之间的离散程度。
3.精度精度也就是精确度,是评价观测成果优劣的准确度与精密度的总称,表示测量结果中系统误差与偶然误差的综合影响的程度。
第五章 测量误差基础知识
5.1.3
观测误差的分类及其处理方法
②找出产生系统误差的原因和规律,对观测值进行系统误差的 改正。如对距离观测值进行尺长改正、温度改正和倾斜改正,对竖 直角进行指标差改正等。 ③将系统误差限制在允许范围内。有的系统误差既不便计算改 正,又不能采用一定的观测方法加以消除,例如,经纬仪照准部管 水准器轴不垂直于仪器竖轴的误差对水平角的影响,对于这类系统 误差,则只能按规定的要求对仪器进行精确检校,并在观测中仔细 整平将其影响减小到允许范围内。
表5-1 误差绝对值 K K/n 91 0.254 81 0.226 66 0.184 44 0.123 33 0.092 26 0.073 11 0.031 6 0.017 0 0
正误差 K K/n 46 0.128 41 0.115 33 0.092 21 0.059 16 0.045 13 0.036 5 0.014 2 0.006 0 0
[] X [l ] n n 根据偶然误差第(4)特性 [ ] 0 [l ] lim n n
lim
n
[l ] X n
n
x
27
§5-4 测量值的精度评定
若被观测对象的真值不知,则取平均数 l 为最优解x (最或然值) 改正值:
vi l li x li
标准差可按下式计算
2
v
i 1
n
2
i
n 1
m
白塞尔公式
v
i 1
n
2
i
n 1
28
证明:
1 X l1 2 X l2 n X ln
v1 x l1 v1 x l1 v1 x l1
容许误差
第五章测量平差系统的可靠性理论1
i
li 0
1
P
i
四、粗差的估计
1. 粗差的估计 设 gi 为第i个观测值的粗差估值 由式 则其粗差估值为: 2. 粗差估值的精度。
gi
v
* i
r
i
i
v r
i i
由误差传播定律有:
gi
li i
r
例:设:
v
则:求得
i
1cm,
li
1cm, ri 0.01
3. 1983年,Förstner第一次提出模型误差的可区分性,从 两个一维备选假设出发,由检验量之间的相关系数来区分模 型误差。 在单个粗差检测方面: ① Förstner, Koch 等导出了未知方差因子的t检验量。 ② Pope, Koch导出了τ检验量。 在多个粗差检验方面: ③ Förstner, Koch导出了F检验量。 4. 1984—1986年间,李德仁院士的博士论文。 从高斯—马尔科夫模型含两个多维备选假设出发,研究总体 相关和最大相关,并导出内部和外部可靠性理论,可发现与 可区分的模型误差的下界,及不可区分不可发现的模型误差 对平差的影响。
r
i
当
ri 0
,则意为该观测值为必要观测;
当
r 1
i
,则意为该观测值完全多余,即未参加平差,此时有:
由此式说明,多余观测分量代表观测差 i 反映在改正数 vi 中的百分比。 讨论: (1)、一般情况下,观测值误差只能部分反映在它的改正数中。
*
v
* i
r
i
i
(2)、当没有多余观测(r=0)时,所有多余观测分量
(整理)第5章,误差基本知识
第5章测量误差基本知识测量工作使用仪器进行测量,在测量过程中不可避免的出现误差,为了提高测量精度及精度评定,需要了解测量误差的来源,促进测量工作方法的改进,和测量精度的提高。
误差—在一定观测条件下,观测值与真值之差。
精度—观测误差的离散程度。
5-1 误差的基本概念讨论测量误差的目的:用误差理论分析,处理测量误差,评定测量成果的精度,指导测量工作的进行。
▼▼▼▼产生测量误差的原因,▼▼测量误差的分类和处理原则,▼▼偶然误差的特性一、测量误差的来源仪器原因:仪器精度的局限,轴系残余误差等。
人的原因:判别力和分辨率的限制,经验等。
外界影响:气象因素(温度变化,风、大气折光)等。
有关名词:观测条件,等精度观测:上述三大因素总称观测条件,在上述条件基本一致的情况下进行各次观测,称等精度观测。
结论:观测误差不可避免(粗差除外)二、测量误差的分类两类误差:系统误差偶然误差粗差(错误排除)1、系统误差-- 误差出现大小、符合相同,或按规律变化,具有积累性。
处理方法①检校仪器,把仪器的系统误差降到最小程度;②求改正数,对测量结果加改正数消除;③对称观测,使系统误差对观测成果的影响互为相反数,以便外业操作时抵消。
例:误差处理方法钢尺尺长误差△D K 计算改正钢尺温度误差△Dt 计算改正水准仪视准轴误差I 操作时抵消(前后视等距)经纬仪视准轴误差C 操作时抵消(盘左盘右取平均)●结论:系统误差可以消除。
2、偶然误差-- 误差出现的大小,符合各部相同,表面看无规律性。
例:估读误差—气泡居中判断,瞄准,对中等误差,导致观测值产生误差。
◎偶然误差:是由人力不能控制的因素所引起的误差。
◎特点:具有抵偿性。
◎处理原则:采用多余观测,减弱其影响,提高观测结果的精度。
3、粗差—指在一定的观测条件下超过规定限差值。
对于粗差,应当分析原因,通过补测等方法加以消除。
三、偶然误差的特性1、偶然误差的定义:设某量的真值X对该量进行n次观测得n次的观测值l1,l2,l3……l n则产生了n个真误差真误差:△I = X-l i2、偶然误差的特性☎当观测次数很多时,偶然误差的出现,呈现统计学上的规律性,偶然误差具有正态分布的特性。
第5章测量误差及测量平差ppt课件
2 系统误差
对系统误差,通常采用适当的观测方法或加改正数 来消除或减弱其影响。
例如:在水准测量中采用前后视距相等来消除 视准轴不平行横轴误差、地球曲率差和大气折光差;
在水平角观测中采用盘左盘右观测来消除 视准轴误差、横轴误差和照准部偏心差;
在钢尺量距时,加尺长改正来消除尺长误差, 加温度改正来消除温度影响, 加高差改正来消除钢尺倾斜的影响等。
.
一.中误差
拐m
中误差的几何意义为偶然误差分布曲线两个拐点的横坐标
.
二.相对误差
相对误差是中误差的绝对 值与观测值之比
化成分子为1的分数式
m k
D
1 D
m
例:用钢尺分别丈量了100米及200米两段距离, 观测值中误差均为±0.01米,则相对误差为
T1=
0—.0—1 100
= —1 — 10000
n
n n
.
第一节 测量误差概述
四.测量误差处理 y
3 偶然误差
正态分布曲线
yf()
1
2
e22
2
lim 2
n
n
-21 -15 -9 -3 +3 +9 +15 +21
x=
-24 -18 -12 -6 0 +6 +12 +18 +24
.
第二节 衡量观测值精度的标准
精度:是指在对某一量值的多次观测中,各个观测值之间的 离散程度。
偶然误差分别出现在一倍、二倍、三倍中误差区 间内的概率为:
大于一倍中误差的偶然误差出现的可能性为32% 大于两倍中误差的偶然误差出现的可能性为5% 大于三倍中误差的偶然误差出现的可能性为0.3%
第5章-测量误差
证明如下: [] [vv]
n n 1
证明两式根号内相 等
真误差:
11 Xl1 lX1 22 Xl2 lX2 nn Xln lXn
改正数: vv11 xx ll11 v2v2xx ll22 vnvnxx lnn
由上两式得
i vi x X i vi
对上式取n项旳平方和 n 2 2 v vv 其中:v nx l 0
图5-1 误差统计直方图
§5.2 算术平均值原理
一、算术平均值原理
在等精度观察条件下,对某量作一系列观察,取其观察值l i旳算 术平均值,做为真值X旳最可靠估值(最或是值)。
x l X
n
l l1 l2 ln
二、最或是误差(观察值旳改正数) 替代真误差
vi x li
v n x l n l l 0
• ±1、±2、 ±0、±√2
•研究观察值函数误差传播旳规律,称为误差 传播定律。
一、和差函数
•
设Z=X±Y (X、Y不有关)
有观察误差 Z Z ( X X ) (Y Y )
真误差
Z X Y
平方求和 ZZ XX YY 2XY
除以n
ZZ XX YY 2 XY
n
n
n
n
证明两式
根号内相
n 2 2 v vv n 2 vv
等
2
(x
X )2
l
n
nX n
2
l
X 2
n
2
n2
n
2 1 2 n 2 (21 22 2n ) 2i j i, j 1 i j
2
2
n2
n2 0
vv
n n2 n
vv
n n 1
测量平差方法及误差分析技巧
测量平差方法及误差分析技巧引言:测量平差在各个领域中都起到了至关重要的作用,无论是土地测量、工程测量还是地理测量都离不开精确的测量平差。
本文将介绍测量平差的基本原理、方法以及误差分析技巧,以帮助读者更好地理解和应用这些知识。
一、测量平差的基本原理1.1 测量平差的定义测量平差是指在测量中,通过对测量数据进行处理和分析,用数学方法将观测值修正为比较可靠的数值,并确定其精度和可靠度的过程。
1.2 测量平差的基本原理测量平差的基本原理是以观测数据为基础,通过适当的计算和修正方法,使测量结果达到满足一定精度要求的条件。
二、测量平差的方法2.1 误差的分类误差是指由于种种原因导致观测值与真值之间的差异。
根据产生误差的原因,可将误差分为系统误差和随机误差两类。
2.2 测量平差的方法2.2.1 最小二乘法最小二乘法是一种常用的测量平差方法,其基本原理是通过构建误差方程,使误差的平方和最小化,从而得到最优的修正数值。
2.2.2 加权最小二乘法加权最小二乘法是在最小二乘法的基础上,引入权重因子,对观测值进行加权处理,以更好地反映各个观测值的可靠性。
2.2.3 置信椭圆法置信椭圆法是一种通过误差椭圆的几何性质,结合观测弥散矩阵,进行测量平差的方法。
通过确定椭圆的长轴、短轴和倾斜角度,可对误差进行合理的修正和分析。
三、误差分析技巧3.1 误差的传递规律误差在测量过程中具有传递性,即观测结果的误差会随着计算过程的推进而逐渐增大。
因此,在进行误差分析时,需要考虑不同环节中误差的传递规律,以准确评估测量结果的可靠性。
3.2 概略误差与精确误差概略误差是指由于设备精度、人为操作等因素导致的测量误差,通过一些常见的公式和方法可以进行较为粗略的估计。
精确误差是在概略误差的基础上,通过更加精细的计算和分析得到的误差值,更贴近实际测量结果的误差。
3.3 误差理论和误差估计误差理论是关于误差发生的规律的理论体系,包括误差分类、误差分布等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• §5.1 测量误差概述 • §5.2 衡量测量精度的指标 • §5.3 误差传播定律
• §5.4 等精度观测的直接平差
§5.1 测量误差概述
一、误差的现象及定义 二、误差来源 三、误差的分类
误差现象
A
距离多次丈量 三角形内角和
l1≠ l2≠ l3 , … ∠A+∠B+∠C≠180°
例如:分别丈量两段不同距离,一段为100m,
一段为200m,中误差都是0.02m。此时是否能认
为两段距离观测结果的精度相同?
• 为了更客观地反映实际测量精度,必须引入 相对误差的概念。
三、相对误差
相对误差K:中误差的绝对值 m 与相应观测值 D 之比,通常以分母为 1 的分式来表示,称其为相对 (中)误差。即:
lt l0 l (t t 0 )l0
思考: 水准仪—— i角
分析产生的主要原因:是仪器设备制造不完善。
水准仪:视准轴不平行于水准管轴(i角)
hAB
i ( S后 S前)
结论:i角误差与前后视距差成正比。
注意:系统误差具有积累性,对测量成果影响较大。
消除和削弱的方法: (1)用计算的方法加以改正;
K m D 1 D m
一般情况,角度、高差的误差用 m表示,量距误 差用K表示。 与相对误差相对应,真误差、中误 差、容许误差称为绝对误差。
[ 例 ] 已 知 : D1=100m,
m2=±0.01m,求: K1, K2
m1=±0.01m , D2=200m,
解:
K1 m1 D1 0.01 1 100 10000
2 y
mZ m m
2 x
2 y
• 推广到n个独立观测值代数和差:
Z x1 x2 ..... xn
m m m ... m
2 Z 2 x1 2 x2 2 xn
• 当n个独立观测值是等精度观测时:
m nm
2 Z
2 x
mZ nmx
3624'31'' 2.1'' 5333'28'' 1.7''
Δ 2、…Δ n,则定义该组观测值的方差D为:
[ ] D lim n n
式中:[Δ Δ ]= Δ 12+ Δ 22+……. + Δ n2
Δ i=li-x(i=1、2、3、…….、n)
x为未知量的真值。
• 由于D=σ2,所以
D lim
n
n
σ称为中误差,在数理统计中称为标准偏差。 • 当n为有限时,σ的估值为
因其符合正态分布,也称为正态分布曲线。
密度函数法
正态分布曲线的数学方程式:
1 f () e 2 2
2 2 [ ] 2 ... 1 2 n lim lim n n n n 2 2
2
[ 2 ] lim n n
式中σ >0,表示与观测条件有关的参数。 观测质量的好坏用误差分布的密集和离散程度来表示。
求 ? m ?
解:
B
8957'59''
m m m
n n n n
• 由于x、y是相互独立的,偶然误差x、 y出现正负符号
的机会相等,且正负符号互不相关,乘积x y也具有正
负机会相同的性质。根据偶然误差的第三、第四特性, 当n趋于无穷大时,第三项趋于零。即
x y 0 lim n n
• 所以
m m m
2 Z 2 x
(2)用一定的观测方法加以消除;
(3)将系统误差限制在允许范围内。(校正仪器)
2. 偶然误差
举例 :读数误差、瞄准误差
偶然误差:在相同的观测条件下,对某量进
行了一系列地观测,如果误差出现的大小和符号
均不定,称为偶然误差(随机误差)。
分析产生的主要原因: 观测者的技术水平,外界
环境的影响
三角形内角和误差分布表
Z 2 x2 y2 ................ Z n xn yn
Z1 x1 y1
• 将上述关系式平方、求和、除以n得:
Z Z x x y y 2 x y
三、测量误差的分类
测量误差按其产生的原因和对观测结果影响性质的 不同,可分为系统误差、偶然误差和粗差 。
粗差 系统误差 偶然误差
定义 特点 消除办法
1. 系统误差
系统误差:在相同的观测条件下,对某量进行 了一系列地观测,如果误差出现的大小和符号均相 同或按一定的规律变化。
举例 : 钢尺—— 尺长、温度、倾斜改正
K2
m2
D2
0.01
200
1
20000
K1>K2,说明: 第二组的量距精度高于第一组的精度。
或然误差:将一组误差按其绝对值的大小排序,
取居中的一个误差值作为精度指标,以表示。
平均误差:误差绝对值的平均值,用v表示。
[] v n 实践数据表明:
2 m v 4m 3 5 从数值大小看,或然误差和平均误差都小于 中误差,所以常用中误差来作为衡量精度的指标。
偶然误差的特性
• 有界性
• 密集性
• 对称性 • 抵偿性:即
注意:
• 就单个值而言,偶然误差在观测前不能预知其 大小和符号。
• 但就大量偶然误差总体来看,具有一定的统计
规律。随着观测次数的增多,统计规律越明显。
• 偶然误差不能消除,只能通过改善观测条件加
以控制。
频率直方图
0.45 0.4 0.35 0.3 -3.0以下 -3.0_-2.5 -2.5_-2.0 -2.0_-1.5 -1.5_-1.0 -1.0_-0.5 -0.5_0.0 0.0-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-2.5 2.5-3.0 3.0以上
解:第一组观测值的中误差:
02 (2)2 (1)2 32 (4)2 (3)2 22 12 (2) 2 42 m1 2.5 10
第二组观测值的中误差:
12 (2)2 62 02 12 (7)2 (1)2 02 32 12 m2 3.2 10
观测,各观测值之间的密集和离散程度。
在相同的观测条件下所进行的一组观测,由于它们 对应着同一种误差分布,因此,对于这一组中的每一个 观测值,都称为是同精度观测值。
中误差 评定精度的标准
极限误差
相对误差
一、中误差
• 设对某一未知量x进行了n次等精度的观测,其
观测值为l1、l2、……、ln,相应的真误差为Δ 1、
舍弃含有粗差的观测值,并重新进行观测。
2.系统误差: 按其产生的原因和规律加以改正、抵消和减弱。
(1)用计算的方法加以改正; (2)用一定的观测方法加以消除;
(3)将系统误差限制在允许范围内。(校正仪器)
3.偶然误差:根据误差特性合理的处理观测数据减少其影
响。 测量平差
§3.2 衡量精度的标准
• 精度:在相同的观测条件下,对一个量进行一组
n
在测量中常用m来代替中误差的估值,即
m
n
• 设有不同精度的两组观测值 m1=2.7,m2=3.6
1 f () e 2 2 2
• 结论:说明中误差值越小,观测精度越高。
例:试根据下表数据,分别计算各组观测值的中误差。
式中:
地平距SAB和中误差mSAB。
• 解:
S AB M Sab 500 23.4mm 11.7m
mSAB M mSab 500 (0.2mm) 0.1m
最后结果:
S AB 11.7m 0.1m
2. 和差函数
• 设有函数Z= x y,x、y是两个相互独立的观测 值,均作n次观测,中误差分别为mx和 my,真误 差关系式为
频率密度
0.25 0.2 0.15 0.1 0.05 0 真误差
•每一误差区间上的长方形面积表示误差在该区间出现的相对
个数(频率)。所有长方形面积之和等于1。
密度函数法
当 n 时,如果将误差区间 (d 0) 无限缩小, 则矩形上部的折线,就趋向于一条以纵轴对称的光滑 曲线,称为误差分布曲线。
二、极限误差
• 根据偶然误差的第一个特性,在一定观测 条件下,偶然误差的绝对值不会超过一定 的限值,该限值称为极限误差(限差、允 许误差)。
• 极限误差是偶然误差限制值,用作观测成 果取舍的标准。
1 2 2 e d 0.683 68.3% 2 2 1 2 2 2 P 2 2 e d 0.955 95.5% 2 2 2 3 1 2 2 P 3 3 e d 0.997 99.7% 3 2 P
§5.3 误差传播定律
直接观测的量,经过多次观测后,可通过真误差或 改正数(5.4节内容讲述)计算出观测值中误差,作为衡 量观测值精度的标准。
S
D S cos
概念
误差传播定律: 阐述观测值的中误差与观测值函数
中误差的关系的定律。
倍数函数 函数形式
和差函数
一般线性函数 非线性函数
一、线性函数
m1 m2 说明第一组的精度高于第二组的精度。
说明:中误差越小,观测精度越高。
• 用中误差作为衡量精度的指标,代表了观测值 的密集和离散程度。 • 相同观测条件下进行的一组观测,对应的是同 一种误差分布,即一组观测值中的每一个观测 值都具有相同的精度。 • 中误差不等于每个观测值的真误差,而是一组 真误差的代表值,代表了一组测量结果中任一 观测值的精度,通常把m称为观测值中误差或 一次观测中误差。