长江大学物理习题册练习1-7答案

合集下载

《工程流体力学》课后习题答案

《工程流体力学》课后习题答案

pB 水 H B p A 水 H A Hg h pB p A 水 H A H B Hg h
pBA 水 H Hg h 9800 0.5 13.6 9800 0.5 71540 Pa 0.73at
2-10. 欲测输油管上 A、B 两点的压差,使用 U 形管压差计,内装水银,若读数 h=360mm, 油的相对密度 0.78,则 pA-pB=? 解:
p A 油hA pB 油hB Hg h p A pB Hg h 油 hB hA p A pB Hg h 油h 13.6 水 h 0.78 水 h 13.6 0.78 9800 360 10 3 45228.96 Pa 0.46at
题 2-4
4
2-5.
油罐内装相对密度 0.8 的油品,下有底水,为测 定油深及油面上的压力, 装置如图所示的 U 形管 水银压力计,测得各液面位置如图。试确定油面 高度 H 及液面压力 p0。 解:13.6×0.5-0.8=6mH2O 6-1.6=6-0.4-d 油 H H=(1.6-0.4)/d 油=1.5m P0=6-1.6mH2O=4.4mH2O=0.44at=4.312×104Pa (表压) 题 2-5 图
μ=νρ=0.4×10-4×890=3.56×10-2 Pa·s 1-8. 图示一平板在油面上作水平运动,已知运动速度 u=1m/s,板与固定边界 的距离δ=1,油的动力粘度μ=1.147Pa·s,由平板所带动的油层的运动 速度呈直线分布,求作用在平板单位面积上的粘性阻力为多少?
2
解: 1-9. 题
E
1-5.
1
p

1 4 108 Pa 9 2.5 10

长江大学物理习题集下学期答案

长江大学物理习题集下学期答案

答案练习1 库伦定律 电场强度 一、选择题 C B A C D二、填空题 1. λ1d/(λ1+λ2).2. 2qy j /[4πε0 (a 2+y 2)3/2] , ±a/21/2.3. M/(E sin θ).三、计算题1. 取环带微元 d q =σd S=σ2π(R sin θ)R d θ =2πσR 2sin θd θd E =d qx/[4πε0(r 2+x 2)3/2]=()3024cos d sin 2RR R πεθθθπσ =σsin θcos θd θ/(2ε0)()()0/204/2d cos sin εσεθθθσπ==⎰E方向x 轴正向.2.取园弧微元d q=λd l =[Q/(πR )]R d θ=Q d θ/π d E =d q/(4πε0r 2)=Q d θ/(4π2ε0R 2)d E x =d E cos(θ+π) =-d E cos θ d E y =d E sin(θ+π) =-d E sin θE x =()⎰⎰-=2/32/2024d cos d ππεπθθR Q E x=Q/(2π2ε0R 2)E y =⎰d E y ()⎰-2/32/2024d sin ππεπθθR Q =0方向沿x 轴正向.练习2 电场强度(续)一、选择题 D C D B A 二、填空题1. 2p/(4πε0x 3), -p/(4πε0y 3).2. λ/(πε0a ), 03. 5.14⨯105.三、计算题1. 取无限长窄条电荷元d x ,电荷线密度λ'=λd x/a它在P 点产生的电场强度为 d E=λ'/(2πε0r )=λd x/(2πε0a 22xb +)d E x =d E cos α=-λx d x/[2πε0a (b 2+x 2)]d E y =d E sin α=λb d x/[2πε0a (b 2+x2)]E x =()⎰⎰-+=2/2/2202a a x xb a xdxdE πελ=()04ln 2/2/022=+-a a a x b πελ E y =()⎰⎰-+=2/2/2202a a y xb a bdxdE πελbaa bx b a b a a 2arctan arctan 1202/2/0πελπελ=⋅=-2. 取窄条面元d S=a d x ,该处电场强度为 E=λ/(2πε0r ) 过面元的电通量为 d Φe =E ⋅d S=[λ/(2πε0r )]a d x cos θ =λac d x/[2πε0(c 2+x 2)]Φe =⎰d Φ()⎰-+=2/2/2202b b x c acdxπελ2/2/0arctan 12b b c x c ac -⋅=πελ =λa arctan[b /(2c )]/(πε0)练习3 高斯定理 一、选择题 D A D C B二、填空题1. σ/(2ε0),向左;3σ/(2ε0),向左;σ/(2ε0),向右. 2 -Q/ε0, -2Q r 0/(9πε0R 2),-Q r 0/(2πε0R 2).3 (q 1+ q 4)/ε0, q 1、q 2、q 3、q 4, 矢量和三、计算题 1 因电荷分布以中心面面对称,故电场强度方向垂直于平板,距离中心相等处场强大小相等.取如图所示的柱形高斯面:两底面∆S 以平板中心面对称,侧面与平板垂直.=⋅⎰S E d SQ /ε0左边=⎰⋅左底S E d +⎰⋅右底S E d +⎰⋅侧面S E d =2∆SE (1) 板内|x |<aQ=()[]⎰-∆xx Sdx a x 2cos 0πρ=()()[]xx a x S a -∆2sin 20ππρ=4ρ0(a /π)∆S sin[πx /(2a )] 得E={2ρ0a sin[πx /(2a )]}/(πε0) (2)板外|x |>aQ=()[]⎰-∆aa Sdx a x 2cos 0πρ=()()[]aa a x S a -∆2sin 20ππρ=4ρ0(a /π)∆S得 E=2ρ0a /(πε0)当x >0方向向右, 当x <0方向向左.2. 球形空腔无限长圆柱带电体可认为是均匀带正电(体电荷密度为ρ)无限长圆柱体与均匀带负电(体电荷密度为-ρ)球体组成.分别用高斯定理求无限长均匀带电圆柱体激发的电场E 1与均匀带电球体激发的电场E 2.为求E 1,在柱体内作同轴的圆柱形高斯面,有=⋅⎰S E d S02102ερπεπl r Q rlE ==E 1=ρr 1/(2ε0)方向垂直于轴指向外;为求E 2,在球体内外作同心的球形高斯面,有=⋅⎰S E d S0224επQ E r = 球内r<a Q=-ρ4πr 23/3 E 2=-πr 2/(3ε0) 球外r>a Q=-ρ4πa 3/3E 2=-πa 3/(3ε0r 22)负号表示方向指向球心.对于O 点 E 1=ρd/(2ε0), E 2=-πr 2/(3ε0)=0(因r 2=0)得 E O =ρa/(2ε0) 方向向右; 对于P 点E 1=ρd/(2ε0), E 2=-πa 3/(12ε0d 2) 得E P =ρd/(2ε0)-πa 3/(12ε0d 2) 方向向左.练习4 静电场的环路定理 电势一、选择题 A C B D D二、填空题 1.)222(812310q q q R++πε.2 Ed cos α.3 .-q/(6πε0R )三、计算题1.解:设球层电荷密度为ρ.ρ=Q/(4πR 23/3-4πR 13/3)=3Q/[4π(R23-R 13)]球内,球层中,球外电场为 E 1=0, E 2=ρ(r 3-R 13)/(3ε0r 2) , E 3=ρ(R 23-R 13)/(3ε0r 2) 故⎰⎰⎰∞+=⋅=rR R R r211d d d 21r E r E r E ϕ⎰∞+2d 3R r E=0+{ρ(R 22-R 12)/(6ε0)+[ρR 13/(3ε0)(1/R 2-1/R 1)]}+ ρ(R 23-R 13)/(3ε0R 2) =ρ(R 22-R 12)/(2ε0)=3Q (R 22-R 12)/[8πε0(R 23-R 13)] 2.(1)⎰⋅=-212d 2r r r r U U 1l E =⎰2102r r dr rπελ=(λ/2πε0)ln(r 2/r 1)(2)无限长带电直线不能选取无限远为势能零点,因为此时带电直线已不是无限长了,公式E=λ/(2πε0r )不再适用.练习5 静电场中的导体 一、选择题 A A C D B二、填空题1. 2U 0/3+2Qd/(9ε0S ).2. 会, 矢量.3. 是, 是, 垂直, 等于.三、计算题 1. E x =-∂U/∂x=-C [1/(x 2+y 2)3/2+x (-3/2)2x /(x 2+y 2)5/2]= (2x 2-y 2)C /(x 2+y 2)5/2 E y =-∂U/∂y=-Cx (-3/2)2y /(x 2+y 2)5/2=3Cxy /(x 2+y 2)5/2x轴上点(y =0)E x =2Cx 2/x 5=2C /x 3 E y =0E =2C i /x 3y轴上点(x =0)E x =-Cy 2/y 5=-C /y 3 E y =0E =-C i /y 32. B 球接地,有 U B =U ∞=0, U A =U ABU A =(-Q+Q B )/(4πε0R 3)U AB=[Q B/(4πε0)](1/R2-1/R1) 得Q B=QR1R2/(R1R2+R2R3-R1R3)U A=[Q/(4πε0R3)][-1+R1R2/(R1R2+R2R3-R1R3)]=-Q(R2-R1)/[4πε0(R1R2+R2R3-R1R3)]练习6 静电场中的电介质一、选择题 D D B A C二、填空题1.非极性, 极性.2.取向, 取向; 位移, 位移.3.-Q/(2S), -Q/(S)三、计算题1. 在A板体内取一点A, B板体内取一点B,它们的电场强度是四个表面的电荷产生的,应为零,有E A=σ1/(2ε0)-σ2/(2ε0)-σ3/(2ε0)-σ4/(2ε0)=0E A=σ1/(2ε0)+σ2/(2ε0)+σ3/(2ε0)-σ4/(2ε0)=0而S(σ1+σ2)=Q1 S(σ3+σ4)=Q2有σ1-σ2-σ3-σ4=0σ1+σ2+σ3-σ4=0σ1+σ2=Q1/Sσ3+σ4=Q2/S解得σ1=σ4=(Q1+Q2)/(2S)=2.66⨯10-8C/ m2σ2=-σ3=(Q1-Q2)/(2S)=0.89⨯10-8C/m2两板间的场强E=σ2/ε0=(Q1-Q2)/(2ε0S)V=U A -U B ⎰⋅=BA l E d =Ed=(Q 1-Q 2)d /(2ε0S )=1000V四、证明题 1. 设在同一导体上有从正感应电荷出发,终止于负感应电荷的电场线.沿电场线ACB 作环路ACBA ,导体内直线BA 的场强为零,ACB 的电场与环路同向于是有=⋅⎰l E d l+⋅⎰ACBl E d ⎰⋅ABl E d 2=⎰⋅ACBl E d ≠与静电场的环路定理=⋅⎰l E d l 0相违背,故在同一导体上不存在从正感应电荷出发,终止于负感应电荷的电场线.练习7 静电场习题课 一、选择题 D B A C A二、填空题1. 9.42×103N/C, 5×10-9C .2. 25.3 R 1/R 2, 4πε0(R 1+R 2), R 2/R 1.三、计算题1. (1)拉开前 C 0=ε0S/dW 0=Q 2/(2C 0)= Q 2d /(2ε0S ) 拉开后 C=ε0S/(2d )W=Q 2/(2C )=Q 2d /(ε0S ) ∆W=W -W 0= Q 2d /(2ε0S ) (2)外力所作功A=-A e =-(W 0-W )= W -W 0=Q 2d /(2ε0S )外力作功转换成电场的能量 {用定义式解:A=⎰⋅l F d =Fd =QE 'd=Q [(Q/S )/(2ε0)]d = Q 2d /(2ε0S ) }2. 洞很细,可认为电荷与电场仍为球对称,由高斯定理可得球体内的电场为E =(ρ4πr 3/3)/(4πε0r 2)(r /r ) =ρr /(3ε0)=Q r /(4πε0R 3)F =-q E =-qQ r /(4πε0R 3) F 为恢复力, 点电荷作谐振动-qQr /(4πε0R 3)=m d 2r/d t 2 ω=[ qQ /(4πε0mR 3)]1/2因t =0时, r 0=a, v 0=0,得谐振动A=a ,ϕ0=0故点电荷的运动方程为()t mR qQ a r 304cos πε=练习8 磁感应强度 毕奥—萨伐尔定律一、选择题 A A B C D二、填空题1. 所围面积,电流,法线(n ).2. μ0I/(4R 1)+ μ0I/(4R 2),垂直向外; (μ0I/4)(1/R 12+1/R 22)1/2,π+arctan(R 1/R 2). 3. 0.三、计算题 1.取宽为d x 的无限长电流元 d I=I d x/(2a ) d B=μ0d I/(2πr ) =μ0I d x/(4πar )d B x =d B cos α=[μ0I d x/(4πar )](a/r )=μ0I d x/(4πr 2)=μ0I d x/[4π(x 2+a 2)]d B y =d B sin α= μ0Ix d x/[4πa (x 2+a 2)]()⎰⎰-+==a ax x ax xI B B 2204d d πμ=[μ0I/(4π)](1/a )arctan(x/a )a a-=μ0I/(8a )()⎰⎰-+==aay y ax a xIx B B 2204d d πμ=[μ0I/(8πa )]ln(x 2+a 2)a a-=02. 取宽为d L 细圆环电流, d I=I d N=I [N/(πR/2)]R d θ=(2IN/π)d θ d B=μ0d Ir 2/[2(r 2+x 2)3/2] r=R sin θ x=R cos θ d B=μ0NI sin 2θ d θ /(πR )⎰⎰==πππθθμ220d sin d RNI B B =μ0NI/(4R )练习9 毕—萨定律(续) 一、选择题 D B C A D二、填空题 1. 0.16T.2. μ0Qv /(8πl 2), z 轴负向. 3. μ0nI πR 2. 三、计算题1.取窄条面元d S =b d r ,面元上磁场的大小为B =μ0I /(2πr ), 面元法线与磁场方向相反.有Φ1=⎰-=aabIbdr r I 2002ln 2cos 2πμππμ Φ2=⎰-=aabIbdr r I 42002ln 2cos 2πμππμ Φ1/Φ2=12. 在圆盘上取细圆环电荷元d Q =σ2πr d r ,[σ=Q /(πR 2) ],等效电流元为 d I =d Q /T =σ2πr d r/(2π/ω)=σωr d r (1)求磁场, 电流元在中心轴线上激发磁场的方向沿轴线,且与ω同向,大小为d B=μ0d Ir 2/[2(x 2+r 2)3/2]=μ0σωr 3d r /[2(x 2+r 2)3/2]()()()⎰⎰++=+=RRx rx r r x r rr B 02322222002/32230d 42d σωμσωμ=()()()⎰+++Rx r x r x r232222220d 4σωμ-()()⎰++Rx r x r x 02322222d 4σωμ =⎪⎪⎭⎫⎝⎛+++RR x r x x r 022202202σωμ =⎪⎪⎭⎫ ⎝⎛-++x x R x R R Q 222222220πωμ(2)求磁距. 电流元的磁矩d P m=d IS=σωr d rπr2=πσωr2d r⎰=R mdr rP3πσω=πσωR4/4=ωQR2/4练习10 安培环路定理一、选择题 B C C D A二、填空题1.环路L所包围的电流, 环路L上的磁感应强度,内外.2.μ0I, 0,2μ0I.3.-μ0IS1/(S1+S2),三、计算题1. 此电流可认为是由半径为R的无限长圆柱电流I1和一个同电流密度的反方向的半径为R'的无限长圆柱电流I2组成.I1=JπR2 I2=-JπR '2 J=I/[π(R2-R '2)]它们在空腔内产生的磁感强度分别为B1=μ0r1J/2 B2=μ0r2J/2方向如图.有B x=B2sinθ2-B1sinθ1=(μ0J/2)(r2sinθ2-r1sinθ1)=0B y =B2cosθ2+B1cosθ1=(μ0J/2)(r2cosθ2+r1cosθ1)=(μ0J/2)d所以 B = B y= μ0dI/[2π(R2-R '2)]方向沿y轴正向2. 两无限大平行载流平面的截面如图.平面电流在空间产生的磁场为B1=μ0J/2 在平面①的上方向右,在平面①的下方向左;电流②在空间产生的磁场为B2=μ0J/2在平面②的上方向左,在平面②的下方向右.(1) 两无限大电流流在平面之间产生的磁感强度方向都向左,故有B=B1+B2=μ0J(2) 两无限大电流流在平面之外产生的磁感强度方向相反,故有B=B1-B2=0练习11 安培力洛仑兹力一、选择题 D B C A B二、填空题1 IBR .2 10-2, π/23 0.157N·m ; 7.85×10-2J . 三、计算题1. (1) P m=IS=Ia2方向垂直线圈平面.线圈平面保持竖直,即P m与B垂直.有M m=P m×BM m=P m B sin(π/2)=Ia2B=9.4×10-4m⋅N(2) 平衡即磁力矩与重力矩等值反向M m=P m B sin(π/2-θ)=Ia2B cosθM G= M G1 + M G2 + M G3=mg(a/2)sinθ+mga sinθ+ mg(a/2)sinθ=2(ρSa)ga sinθ=2ρSa2g sinθIa2B cosθ=2ρSa2g sinθtanθ=IB/(2ρSg)=0.2694θ=15︒2.在圆环上取微元 I 2d l = I 2R d θ 该处磁场为 B =μ0I 1/(2πR cos θ) I 2d l 与B 垂直,有 d F= I 2d lB sin(π/2) d F=μ0I 1I 2d θ/(2πcos θ)d F x =d F cos θ=μ0I 1I 2d θ /(2π) d F y =d F sin θ=μ0I 1I 2sin θd θ /(2πcos θ)⎰-=222102πππθμd I I F x =μ0I 1I 2/2 因对称F y =0.故 F =μ0I 1I 2/2 方向向右.练习12 物质的磁性 一、选择题 D B D A C二、填空题1. 7.96×105A/m,2.42×102A/m. 2. 见图3.矫顽力H c 大, 永久磁铁.三、计算题1. 设场点距中心面为x ,因磁场面对称以中心面为对称面过场点取矩形安培环路,有⎰⋅l l H d =ΣI 0 2∆LH=ΣI 0 (1) 介质内,0<x <b/2.ΣI 0=2x ∆lJ =2x ∆l γE ,有 H =x γE B =μ0μr 1H=μ0μr 1x γE (2) 介质外,|x |>b/2.ΣI 0=b ∆lJ =b ∆l γE ,有 H =b γE/2 B =μ0μr 2H=μ0μr 2b γE/22. 因磁场柱对称 取同轴的圆形安培环路,有 ⎰⋅l l H d =ΣI 0 在介质中(R 1<r <R 2),ΣI 0=I ,有 2πrH = I H = I /(2πr)介质内的磁化强度 M =χm H =χm I /(2πr ) 介质内表面的磁化电流 J SR 1=| M R 1×n R 1|=| M R 1|=χm I /(2πR 1) I SR 1=J SR 1⋅2πR 1=χm I (与I 同向)介质外表面的磁化电流 J SR 2=| M R 2×n R 2|=| M R 2|=χm I /(2πR 2) I SR 2=J SR 2⋅2πR 2=χm I (与I 反向)练习13 静磁场习题课 一、选择题 D C A A A 二、填空题1. 6.67×10-6T ; 7.20×10-21A ·m 2.2. Rih πμ20.3. -πR 2c (Wb).三、计算题1.(1)螺绕环内的磁场具有轴对称性,故在环内作与环同轴的安培环路.有 ⎰⋅l l B d =2πrB=μ0∑I i =μ0NI B=μ0NI/(2πr ) (2)取面积微元h d r 平行与环中心轴,有 d Φm =|B ⋅d S |=[μ0NI/(2πr )]h d r =μ0NIh d r /(2πr )Φm =⎰=22120021ln 22D D D D NIh dr r NIh πμπμ 2. 因电流为径向,得径向电阻为⎰=2112ln 22R RR R d rd dr πρπρ I=ε/[ρln(R 2/R 1)/(2πd )]=2πd ε/[ρln(R 2/R 1)]取微元电流 d I d l=J d S d r =[I/(2πrd )]r d θd d r=d εd θd r /[ρln(R 2/R 1)] 受磁力为 d F=|d I d l ×B |=Bd εd θd r /[ρln(R 2/R 1)]d M=|r ×d F |=Bd εd θr d r /[ρln(R 2/R 1)] 练习练习14 电磁感应定律 动生电动势一、选择题 D B D A C二、填空题 1.t I r r ωωπμcos 202210,22102Rr I r πμ .2. > , < , = .3. B ωR 2/2; 沿曲线由中心向外.三、计算题 1. 取顺时针为三角形回路电动势正向,得三角形面法线垂直纸面向里.取窄条面积微元d S =y d x =[(a+b -x )l/b ]d xΦm =⎰⋅S d S B=()⎰+-+⋅ba abldxx b a x I πμ20 =()⎥⎦⎤⎢⎣⎡-++b a b a b a b Il ln 20πμ εi =-d Φm /d t=()dt dIa b a b a b b l ⎥⎦⎤⎢⎣⎡++-ln 20πμ =-5.18×10-8V负号表示逆时针2. (1) 导线ab 的动生电动势为εi = ⎰lv×B ·d l=vBl sin(π/2+θ)=vBl cos θI i =εi /R = vBl cos θ/R方向由b 到a . 受安培力方向向右,大小为F =| ⎰l (I i d l×B )|= vB 2l 2cos θ/R F 在导轨上投影沿导轨向上,大小为F '= F cos θ =vB 2l 2cos 2θ/R重力在导轨上投影沿导轨向下,大小为mg sin θmg sin θ -vB 2l 2cos 2θ/R=ma=m d v /d t dt=d v /[g sin θ -vB 2l 2cos 2θ/(mR )]()[]{}⎰-=vmR l vB g dv t 0222cos sin θθ()()()mR t lB e l B mgR v θθθ222cos 2221cos sin --=(2) 导线ab 的最大速度v m =θθ222cos sin l B mgR .练习15 感生电动势 自感 一、选择题 A D C B B二、填空题 1.er 1(d B /d t )/(2m ),向右;eR 2(d B /d t )/(2r 2m ),向下. 2. μ0n 2l πa 2, μ0nI 0πa 2ωcos ωt . 3.ε=πR 2k/4,从c 流至b .三、计算题1.(1) 用对感生电场的积分εi =⎰l E i ·d l 解:在棒MN 上取微元d x (-R<x<R ),该处感生电场大小为E i =[R 2/(2r )](d B/d t )与棒夹角θ满足tan θ=x/Rεi =⎰⋅N M l E i d =⎰NM i x E θcos d=()⎰-⋅RR r R r x t B R 22d d d =⎰-+⋅RRR x x t B R 2232d d d =[R 3(d B/d t )/2](1/R )arctan(x/R )R R-=πR 2(d B/d t )/4 因εi =>0,故N 点的电势高.(2) 用法拉第电磁感应定律εi =-d Φ/d t 解:沿半径作辅助线OM ,ON 组成三角形回路MONMεi =⎰⋅N M l E i d =⎰⋅-MN l E i d=-⎢⎣⎡⋅⎰M N l E i d +⎰⋅O M l E i d +⎥⎦⎤⋅⎰N O l E i d =-(-d ΦmMONM /d t ) =d ΦmMONM /d t 而 ΦmMONM =⎰⋅S d S B =πR 2B/4 故 εi =πR 2(d B/d t )/4 N 点的电势高.2. .等效于螺线管B 内=μ0 nI=μ0 [Q ω /(2π)]/L=μ0 Q ω /(2πL )B 外=0Φ=⎰S B ⋅d S=B πa 2=μ0Q ω a 2 /(2 L ) εi =-d Φ/d t=-[μ0Q a 2 /(2 L )]d ω/d t=μ0ω 0Q a2 /(2 L t0)I i=εi /R=μ0ω 0Q a2 /(2 LR t0) 方向与旋转方向一致.练习16 互感(续)磁场的能量一、选择题 D C B C A二、填空题1. 0.2. ΦAB=ΦBA.3. μ0I2L/(16π.)三、计算题1. 取如图所示的坐标,设回路有电流为I,则两导线间磁场方向向里,大小为0≤r≤a B1=μ0Ir/(2πa2)+μ0I/[2π(d-r)]a≤r≤d-a B2=μ0I/(2πr)+μ0I/[2π(d-r)]d-a≤r≤d B3=μ0I/(2πr)+μ0I(d-r)/(2πa2)取窄条微元d S=l d r,由Φm=⎰⋅SSB d 得Φml =⎰aarIrl22dπμ+()⎰-ardrIl2dπμ+⎰-a darrIlπμ2d0+()⎰--adardrIlπμ2d+⎰-a darrIlπμ2d0+()⎰-a daarl r-dI22dπμ=μ0Il/(4π)+[μ0Il/(2π)]ln[d/(d-a)] +[μ0Il/(2π)]ln[(d-a)/a]+[μ0Il/(2π)]ln[(d-a)/a]+[μ0Il/(2π)]ln[d/(d-a)]+μ0Il/(4π)=μ0Il/(2π)+(μ0Il/π)ln(d/a) 由L l=Φl /I,L0= L l/l=Φl /(Il).得单位长度导线自感L0==μ0l/(2π)+(μ0l/π)ln(d/a)2. 设环形螺旋管电流为I, 则管内磁场大小为B=μ0NI/(2πρ) r≤ρ≤R 方向垂直于截面; 管外磁场为零.取窄条微元d S=h dρ,由Φm=⎰⋅S SB d得Φm =⎰RrNIhπρρμ2d0=μ0NIh ln(R/r)/(2π)M=Φm/I==μ0Nh ln(R/r)/(2π)练习17 麦克斯韦方程组一、选择题 C A D B C二、填空题1. 1.2. ②, ③, ①.3. 1.33×102 W/m2 ,2.51×10-6J/m3.三、计算题1. 设极板电荷为Q, 因I=d Q/d t, Q=CU,有(1) I=d(CU)/d t=C d U/d td U/d t=I/C= I0e-kt/CU= I0(1-e-kt)/(kC)(2)I d=dΦd/d t=d(DS)/d t=d(εES)/d t =d[ε(U/d)S]/d t=(εS/d)d U/d t =C d U/d t=I=I0e-kt(3)在极板间以电容器轴线为心,以r为半径作环面垂直于轴的环路,方向与I d成右手螺旋.有⎰⋅llH d=2πrH=∑I d当r<R时∑I d=[I d/(πR2)]πr2 H=I d r/(2πR2)B=μH=μI d r/(2πR2)=μI0e-kt r/(2πR2)当r>R时∑I d=I d H=Ir/(2πr)B=μI0e-k t/(2πr)方向与回路方向相同.O 点,r =0: B =0A 点,r =R 1<R :B =μI 0e -kt R 1/(2πR 2) 方向向里C 点,r =R 2>R : B =μI 0e -k t /(2πR 2) 方向向外.2.(1)坡印廷矢量平均值S =I =P /(2πr 2) r =10km S =P /(2πr 2)=1.59×10-5W/m 2(2) 电场强度和磁场强度振幅.εE =μHS =|S |=|E ×H |=2E με=εμH 2 E=εμS H=μεS E m =E 2=002εμS =1.09⨯10-1V /m H m =H 2=002μεS =2.91×10-4A/m练习18 电磁感应习题课一、选择题 A B B C D二、填空题1 0, 2μ0I 2/(9π2a 2).2 700Wb/s.3 vBl sin α, A 点.三、计算题1. 任意时刻金属杆角速度为ω,取微元长度d rd εi =v ×B ⋅d l=ωrBdr εi =⎰d εi =r r B ad 0⎰ω=ω Ba 2/2I =εi /R =ω Ba 2/(2R ) 方向由O 向A .微元d r 受安培力为|d F |=|I d l ×B |= IB d r d M =|d M |=|r ×d F |= IBr d r M=⎰d M =r r IB ad 0⎰=I Ba 2/2=ωB 2a 4/(4R )方向与ω相反.依转动定律,有-ω B 2a 4/(4R )=J α=(ma 2/3)d ω /d td t=-[4Rm/(3ω B 2a 2)]d ω =-[4Rm/(3 B 2a 2)]d ω/ωt =()[]()ωωωωd 34022⎰a B mR=-[4Rm/(3 B 2a 2)]ln(ω/ω0)t mRa B e43022-=ωω2. 因b >>a ,可认为小金属环上的磁场是均匀.Φm =⎰⋅S d S B =BS cos θ=[μ0I/(2b )]πa 2cos θ=μ0I πa 2cos θ/(2b )(1) I 恒定,θ=ω1t : εi =-d Φm /d t =(-d Φm /d θ)(d θ/d t )=μ0I πa 2ω1sin(ω1t )/(2b )(2) I =I 0sin ω2t ,θ=0:εi =-d Φm /d t =(-d Φm /d I )(d I/d t )=-μ0πa 2I 0ω2cos ω2t/(2b ) (3) I =I 0sin ω2t ,θ= ω1t :εi =-d Φm /d t=-[(∂Φm /∂θ)(∂θ/∂t )+(∂Φm /∂I )(∂I/∂t)]=[μ0I 0πa 2/(2b )][ω1sin(ω1t )sin(ω2t )-ω2cos ω2t ]练习19 义相对论的基本原理及其时空观一、选择题 C D B A A二、填空题 1. c , c . 2. c c 97.017/16=. 3. ()c l a 201-三、计算题1 (1)设K '相对于K 的运动速度为v ,运动方向为x 正向.因x 1=x 2,有∆t '=(∆t -v ∆x /c 2)/(1-v 2/c 2)1/2=∆t /(1-v 2/c 2)1/2v=[1-(∆t )2/(∆t ')2]1/2c =3c /5=1.8×108m/s(2)∆x'=(∆x-v∆t)/(1-v2/c2)1/2=-v∆t/(1 -v2/c2)1/2=-v∆t'=3c(m)=9×108m2. 设地球和飞船分别为K和K'系,有(1)飞船上观察者测飞船长度为固有长度,又因光速不变,有∆x'=90m∆t'=∆x'/c=3×10-7s(2)地球上观察者∆x=(∆x'+v∆t')/(1-v2/c2)1/2=27 0m∆t=(∆t'+v∆x'/c2)/(1-v2/c2)1/2=9×10-7s{或∆t=(∆t'+v∆x'/c2)/(1-v2/c2)1/2=(∆x'/c+v∆x'/c2)/(1-v2/c2)1/2=[(∆x'+v∆t')/(1-v2/c2)1/2]/c=∆x/c=9×10-7s }练习20 相对论力学基础一、选择题 A C A B C二、填空题1.1.49MeV.2.2/3c, 2/3c.3.5.81×10-13, 8.04×10-2.三、计算题1. E k=mc2-m0c2m=m0+E k/c2回旋周期T=2πm/(qB)=2π( m0+E k/c2)/(qB) E k=104MeV=1.6×10-9Jm0=1.67×10-27kg q=1.6⨯10-19C T=2π( m0+E k/c2)/(qB)=7.65×10-7s212.E =m 0c 2/221c v -=E 0/221c v -γ= 1/221c v -=E /E 0v=c ()201E E -=2.998×108m/s运动的距离∆l =v ∆t =v τ0γ= c ()201E E -τ0 E /E 0 =c τ0()1/20-E E =1.799×104m练习21 热辐射 光电效应一、选择题 A D C D B二、填空题1. 0.64 .2. 2.4×103K.3. 在一定温度下,单位时间内从绝对黑体表面单位面积上所辐射的各波长的总能量.三、计算题1. (1)T=b/λm =5.794×103K . (2)P =M (T )S =σT 44πR S 2=3.67×1026W(3)P'=P/S'=σT 44πR S 2/(4πL 2)=1.30×103W/m 22. λm = b/T =9.66×10-4mνm =c /λm =c /(b/T )=cT/b =3.11×1011Hz P =M (T )S =σT 44πR E 2=2.34×109W练习22 康普顿效应 氢原子的玻尔理论一、选择题 D B A C A二、填空题1. hc/λ;h/λ;h/(λc ).2. 1.45V ;7.14×105m/s .3. π;0.三、计算题1.hν=hc/λ=mv2/2+A=eU c+AU c=(hc/λ-A)/e=(hc/(λe)-A/emv=[2m( hc/λ-A)]1/2R=mv/(qB)=[2m( hc/λ-A)]1/2/(eB)2.(1) ∆λ=h(1-cosϕ)/(m0c) λ=λ0+∆λ=λ0+h(1-cosϕ)/(m0c)=1.024×10-10m(2)hν0+m0c2=hν+mc2=hν+m0c2+E khν0= hν+E kE k=hν0- hν= hc/λ0- hc/λ=hc(λ-λ0)/(λ0λ)=hc∆λ/[λ0(λ0+∆λ)]=4.71×10-17J=294eV练习23 德布罗意波不确定关系一、选择题 D C D A B二、填空题1. 1.46Å; 6.63×10-31m.2.3/3.3. 6.63×10-24. (或1.06×10-24,3.32×10-24,0.53×10-24)三、计算题1. (1)由带电粒子在均匀磁场中作圆运动运动的知识知,R=mv/(qB).于是有pα=mαvα=qBR=2eBRλα=h/pα=h/(2eBR)=9.98×10-12m =9.98×10-3nm(2) 设小球与α粒子速率相同v=vα=2eBR/mαλ= h/p= h/(mv)= h/[m(2eBR/mα)] =[h/(2eBR)](mα/m)=(mα/m)λα=6.62×10-34m2. (1)考虑相对论效应E k=eU=mc2-m0c2=E-E0p2c2=E2-E02=(E+E0)(E-E0)=(E k+2E0)E k22=(eU +2 m0c2) eUp=[(eU +2 m0c2) eU]1/2/cλ=h/p=hc/[(eU +2 m0c2)eU]1/2=8.74×10-13m(2)不考虑相对论效应E k=eU=mv2/2=p2/(2m)p=(2meU)1/2λ=h/p=h/(2meU)1/2= h/(2m0eU)1/2=1.23×10-12m(λ-λ0)/λ0=40.7%﹪﹪练习24 薛定谔方程氢原子的量子力学描述一、选择题 A C A D B二、填空题1.ν3=ν1+ν2;1/λ3=1/λ1+1/λ2.2. 粒子t时刻出现在r处的概率密度;单值,有限,连续;⎰=ψ1ddd2zyx.3. a/6, a/2, 5a/6.三、计算题1所发射光子的能量ε=hν=hc/λ=2.56eV激发能为∆E=10.19eV能级的能量为E k,有∆E=E k- E1E k=E1+∆E=-13.6+10.19=-3.41eV 初态能量E n=E k+ε=-0.85eV初态主量子数n=(E1/E n)1/2=42. 由归一化⎰∞∞-=VΨd2⎰l x c022(l-x)d x=1得c=530l0~l/3区间发现粒子的概率P=⎰l xΨ2d=⎰l30x2(l-x)2d x/l5=17/81=21%练习25 近代物理习题课一、选择题 D D D C B二、填空题231 13.6eV, 5.2 >, >, <.3. 459W/s三、计算题1. (1)ε=hν=hc/λ=2.86eV(2) 巴耳末系k=2,E2=E1/22=-13.6/4=-3.4eVE n=E1/n2=E2+ε=-0.54eVn=(E1/E n)1/2=5(3) 可发射四个线系, 共10条谱线;波长最短的谱线是从n=5的能态跃迁到n=1的能态而发射的光譜线2 ∆p∆x≧ћ/2 ∆p≧ћ/(2∆x)取p≈∆p≧ћ/(2∆x)=7.3⨯10-21kgm/sE k= p2/(2m)≈[ћ/(2∆x)]2/(2m)=ћ2/[8 m (∆x)2]=2.5⨯102425。

长江大学大一公共课大学物理试卷及答案 (2)

长江大学大一公共课大学物理试卷及答案 (2)

长江大学20XX级大学物理(上) (答案全部做在答题纸上,做在试题纸上无效)一填空(44)1.一质点作半径为9m的匀变速圆周运动,3秒内由静止绕行S=4.5m,则其加速度a= (1) m/s(矢量式),及其量值a= (2) m/s.2.质量为m的小车以速度v0作匀速直线运动,刹车后受到的阻力与速度成正比而反向,即F=-kv(k为正的常数),则t时刻小车的速度和加速度分别为v(t)= (3) 和a(t)= (4) .3.设地球半径为R,自转周期为T,地球表面重力加速度为g,则第二宇宙速度v2 = (5) ,位于赤道上空的同步卫星的高度h= (6) .4.长度为L质量为m的匀质细杆,直立在地面上,使其自然倒下,触地端保持不移动,则碰地前瞬间,杆的角速度ω= (7) 和质心线速度值v c= (8) .5.弹簧振子的固有周期为T,其振动曲线如图(1),则振动方程为 (9) ,若将弹簧长A度剪去一半, 则该振子的固有周期T1= (10) .6.一平面简谐波以波速u=10m/s沿x正方向传播,t=0时的波形如图(2),则原点0的振动方程为(11) ,该波的波函数为 (12) .7.设气体分子速率分布函数为f(v),则分子速率处于v1 → v2区间内的概率∞为 (13) ,而∫f(v)dv= (14) .8.在27O C时1atm的氮气,其分子的平均速率为 (15) ,平均转动动能为 (16) ,系统的分子数密度为 (17) .9.一摩尔氧气由体积V1按P=KV2(K为正的常数)的规律膨胀到V2,则气体所做的功为 (18) .10.电荷线密度为λ的长直线电荷,如图(3),则A点处的场强值为 (19) ,若将点电荷+q0从A点沿路径ACB移到B点,电场力做功为 (20) .11.半径R的金属球带电量为Q,则该球的电势V= (21) 和电容C= (22) .二(12)一摩尔氧气的循环曲线如图(4),bc为绝热线,试求: (1)ab,ca过程中系统吸收的热量Q A和Q B(用P1,P2,V1表示);(2)循环效率η(算出数值).三(12)波源的振动曲线如图(5),波速u=4m/s的平面简谐波沿x正方向传播,求: (1)波源的振动方程;(2)该波的波函数;(3)画出t=1.5秒时的波形图.四(12)长为L,质量M的均匀细杆,可绕水平轴O自由转动,现让其从水平位置由静止释放,在竖直位置与地面上质量为m的小球作完全非弹性碰撞,如图(6),求: (1)细杆碰撞前瞬间的角速度ω0;(2)碰撞后的角速度ω.yV1 V2=2V1图(4) 图(5) 图(6)五(8)长为L电荷线密度为λ的均匀带电线段,如图(7),求其延长线上一点P的场强和电势.图(7)六(12)圆柱形电容器内外薄圆筒A B的半径分别为R A和R B,长为h,单位长度带电量为λ.求(1)两筒间的场强发布E(r)和电势差V AB;(2)该电容器的电容C和电场能量W.物理常数: R=8.31J/K.mol, k=1.38*10-23J/K20XX级大学物理(上)试题答案一(44分)1(1)1n0+1t0(m/s2), (2)√2 (m/s2).2(3) v0e-kt/m,(4)-(kv0/m)e- kt/m. 3(5)√2g R,(6)3√R2T2g/4π2 –R. 4(7) √3g/L, (8)√3g L/4.5(9) x=A cos(2πt/T-π/3), (10) T/√2.6(11)y0=2cos(2πt+π/2)m, (12) y=2cos[2π(t-x/10)+π/2]m.v27(13)∫f(v)dv,(14) 1,8(15) 516.8m/s,(16) 4.14*10- 21J,(17) 2.44*1025m-3.v19(18) K(V13-V23)/3.10(19) λ , (20) q0λln[(a+b)/a]. 11(21) Q , (22) C=4πε0R.2πε0a 2πε0 4πε0R参考分数二(12)(1)Q ab=C V(T b-T a)=5(P2-P1)V1/2,Q ca=C P(T a-T C)=7P1(V1-V2)/2<0 (6) (2)η=1- Q2/Q1=1-7P1(V2-V1)/[5V1(P2-P1)]=1-7/[5(P2/P1-1)](2)(6)∵P b V bγ=P c V cγ,即P2/P1=(V2/V1)γ=21.4=2.64 (3)∴η=1-7/[5(2.64-1)]=14.6﹪(1)三(12)(1)y0(0)=5cosφ=0,v0>0,即sinφ<0∴φ=3π/2,而ω=2π/T=π, ∴y0(t)=5cos(πt+3π/2)(m(2) y(x,t)=5cos[π(t-x/4)+3π/2](m(3) y(x,t=1.5)=5cos[π(1.5-x/4)+3π/2=-5con(πx/4)(m(λ=u T=4*2=8m)四(12)(1) M g l/2=Iω02/2, I=Ml2/3, ∴ω0 =√3g/l (4,1,1)(6) (2) Iω0=(I+m l2)ω, ∴ω=Mω0/(M+3m)=[M/(M+3m)]√3g/l (4,2)(6)a+l五(8)(1)E P =∫dq/(4πε0x2)=∫λdx/(4a+l(2)V P =∫dq/(4πε0x)=∫λdx/(4πε0x)E P方向:若λ>0,则E P沿x正方向,若λP六(12)(1)由高斯定理可得:E=λ/(2πε0r),(R1< r <R2) (3) (6) R BV AB=∫[λdr/(2πε0r)]=[λ/(2πε0)]lnR B/R A (3)R A(2) C=Q/V AB=(2πε0h)/lnR B/R A (3)(6)W=Q2/2C=(λ2h/4πε0)lnR B/R A (3)。

大学物理学练习册参考答案全

大学物理学练习册参考答案全

大学物理学练习册参考答案单元一 质点运动学四、学生练习 (一)选择题1.B2.C3.B4.B5.B (二)填空题1. 0 02.2192x y -=, j i ρρ114+, j i ρρ82-3.16vi j =-+v v v ;14a i j =-+v vv;4. 020211V kt V -;5、16Rt 2 4 6 112M h h h =-v v(三)计算题1 解答(1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:v =Δx /Δt = 4(m·s -1).(2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m .(3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:a = [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).2.解答 1)由t y t x ππ6sin 86cos 5==消去t 得轨迹方程:1642522=+y x 2)tdt dy v t dtdx v y x ππππ6cos 486sin 30==-==当t=5得;πππππ4830cos 48030sin 30===-=y x v vt dt dv a t dtdv a y y xx ππππ6sin 2886cos 18022-==-==当t=5 030sin 28818030cos 180222=-==-=-=πππππdt dv a a yy x 3.解答:1)()t t dt t dt d t tvv 204240+=+==⎰⎰⎰则:t t )2(42++=2)()t t t dt t t dt d ttr )312(2)2(4322++=++==⎰⎰⎰t t t )312()22(32+++=4. [证明](1)分离变量得2d d vk t v=-, 故020d d v tv vk t v =-⎰⎰, 可得:011kt v v =+. (2)公式可化为001v v v kt=+,由于v = d x/d t ,所以:00001d d d(1)1(1)v x t v kt v kt k v kt ==+++ 积分00001d d(1)(1)x tx v kt k v kt =++⎰⎰.因此 01ln(1)x v kt k=+. 证毕.5.解答(1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2); 角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即n a a =由此得2r r ω=22(12)24t =解得36t =.所以3242(13)t θ=+=+=3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).6.解答:当s 2=t 时,4.022.0=⨯==t βω 1s rad -⋅ 则16.04.04.0=⨯==ωR v 1s m -⋅064.0)4.0(4.022=⨯==ωR a n 2s m -⋅08.02.04.0=⨯==βτR a 2s m -⋅22222s m 102.0)08.0()064.0(-⋅=+=+=τa a a n单元二 牛顿运动定律(一)选择题 1.A 2.C 3.C 4.C 5 A 6.C (二)填空题 1. 022x F t COS F X ++-=ωωω2.略3. )13(35-4. 50N 1m/s5.21m m t f +∆ )()(212122221m m m t m t m t m f +∆+∆+∆6. 0 18J 17J 7J7. mr k rk (三)计算题1.解答:θμθcos )sin (f f mg =- ; θμθμsin cos +=mgf0cos sin =+=θμθθd df; 0tan =θ ; 037=θ θsin hl ==037sin 5.12. 解答;dtdvmkv F mg =--分离变量积分得 0ln(1)v tktm mdvmg F kvktmg F dt v e mg F kv mg F m k-----=??----蝌 3解答:烧断前 2221211();a L L a L w w =+=烧断后,弹簧瞬间的力不变,所以2a 不变。

长江大学大一公共课大学物理试卷及答案

长江大学大一公共课大学物理试卷及答案

长江大学XX 级大学物理考试卷一、选择题(每题2分,共20分)1、下列说法中正确的是 ( D ) (A )加速度恒定不变时,物体的运动方向也不变; (B )平均速率等于平均速度的大小; (C )当物体的速度为零时,加速度必定为零;(D )质点作曲线运动时,质点速度大小变化产生切向加速度,速度方向的变化产生法向加速度。

2、对功的概念有以下几种说法:(1)保守力作功时,系统内相应的势能增加。

(2)质点运动经一闭合路径,保守力对质点作的功为零。

(3)作用力和反作用力大小相等、方向相反,所以两者作功的代数和必为零。

在上述说法中正确的是 ( C ) (A )(1)(2) (B )(2)(3) (C )只有(2) (D )只有(3) 3、两个匀质圆盘A 和B 的密度分别为A ρ和B ρ。

若B A ρρ>,但两圆盘质量和厚度相同,若两盘对通过盘心垂直于盘面的轴的转动惯量分别为A J 和B J ,则 ( B ) (A )B J J >A ; (B )B J J <A ; (C )B J J =A ; (D )不能确定哪个大。

4、一质点作简谐振动,周期为T ,当它由平衡位置向x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为 ( C ) (A )4T ; (B )12T ; (C )6T ; (D )8T 5、机械波在弹性媒质中传播时,若媒质中媒质元刚好经过平衡位置,则它的能量为: ( A ) (A )动能最大,势能也最大; (B )动能最小,势能也最小; (C )动能最大,势能最小; (D )动能最小,势能最大。

6、两种不同的理想气体,若它们的最可几速率相等,则它们的 ( A )(A )平均速率相等,方均根速率相等; (B )平均速率相等,方均根速率不相等; (C )平均速率不相等,方均根速率相等; (D )平均速率不相等,方均根速率不相等。

7、若理想气体的体积为V ,压强为p ,温度为T ,其单个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为: ( B )(A )m pV ; (B )kT pV ; (C )RT pV ; (D )mTpV 8、关于热力学过程,下列说法正确的是: ( C ) (A )准静态过程一定是可逆过程; (B )非准静态过程不一定是不可逆过程; (C )可逆过程一定是准静态过程;(D )不可逆过程一定是非准静态过程。

长江大学《大学物理》习题课2

长江大学《大学物理》习题课2

4、一根同轴线由半径为R1的长导线和套在它外面 的内半径为R2、外半径为R3的同轴导体圆筒组 成.中间充满磁导率为μ的各向同性均匀非铁磁绝
缘材料,如图.传导电流I沿导
线向上流去,由圆筒向下流回,
R3 R2 R 1 I
在它们的截面上电流都是均匀
分布的.求同轴线内外的磁感 强度大小B的分布.
I
如果做成永磁体 容易退磁
.
4、长直电缆由一个圆柱导体和一共轴圆筒状导体组 成,两导体中有等值反向均匀电流I通过,其间充满 磁导率为 的均匀磁介质.介质中离中心轴距离为r
I 的某点处的磁场强度的大小H =_________ 2 r ,磁感强
I 度的大小B =__________ . 2 r
(A) 21 212
(B) 21 12 (C) 21 12 1 (D) 21 12 2
I S 1 I 2S 2
二、填空题 1、有一半径为a,流过稳恒电流为I的1/4圆弧形载
流导线bc,按图示方式置于均匀外磁场中,则该
载流导线所受的安培力大小为
aIB
.
c a O I a
a (A) B = 0,因为B1 = B2 = B3 = 0. 1 (B) B = 0,因为B1+B2=0,B3= 0. O (C) B≠0,因为虽然B1+B2=0, 2 I 但B3≠ 0. b (D) B≠0,因为虽然B3= 0,但 B1 B2 0 . I
c
2、如图所示,导线框abcd置于均匀磁场中(B的方向 竖直向上),线框可绕AA′轴转动.导线通电时,转过 a 角后,达到稳定平衡.如果导线改用密度为原来1/2 的材料做,欲保持原来的稳定平衡位置(即a 不变), 可以采用下列哪一种办法?(导线是均匀的) (A) 将磁场B减为原来的1/2或线框中电流减为原来的 1/2. B d (B) 将导线的bc部分长度减小 a A A′ 为原来的1/2. b c (C) 将导线ab和cd部分长度减 小为原来的1/2. (D) 将磁场B减少1/4,线框中电流也减少1/4.

大学物理练习册参考答案

大学物理练习册参考答案

大学物理练习册参考答案大学物理练习册是大学物理的重要教材之一,它的主要作用是为大学物理课程提供题目和习题,使学生能够更好地掌握和理解物理知识。

本文将为大家提供几个大学物理练习册的参考答案,供大家参考。

第一题:有一块长度为20cm,宽度为10cm,厚度为2cm的矩形金属板,重量为3N。

请问这块金属板的密度是多少?答案:首先我们需要知道密度的定义,密度是单位体积内物质的质量。

因此,我们可以根据这个公式计算出这块金属板的密度:密度=质量/体积其中,这块金属板的质量为3N,体积为20cm × 10cm × 2cm = 400cm³。

把质量和体积带入公式中,可以得到这块金属板的密度为:密度=3N/400cm³=0.0075N/cm³因此,这块金属板的密度为0.0075N/cm³。

第二题:有一个长度为4m的绳子,一个人沿着绳子向上爬,绳子的质量是忽略不计的。

如果人的体重为600N,他在绳子上爬行的过程中,绳子的张力是多少?答案:在求解这个问题之前,我们需要知道牛顿第二定律的公式:力=质量× 加速度根据牛顿第二定律,可以得到人在绳子上爬行时绳子所受的力等于绳子的张力减去重力。

因此,我们可以得到以下公式:绳子的张力=人的重力+绳子的重力其中,人的重力为600N,绳子的重力可以根据绳子的长度和重力加速度计算得出。

在地球上,物体的重力加速度大约为9.8m/s²。

因此,绳子的重力可以用下面的公式计算:绳子的重力=绳子的质量× 重力加速度因为绳子的质量可以根据绳子的长度和线密度计算得出,我们可以得到以下公式:绳子的质量=绳子的长度× 线密度假设绳子的线密度为ρ,绳子的质量可以表示为:绳子的质量=ρ × 面积× 长度根据绳子的面积和长度,可以得到:面积=长度× 直径/4因此,绳子的质量可以通过以下公式计算得出:绳子的质量=ρ × 直径² × 长度/16把绳子的质量和重力加速度带入公式中,可以得到绳子的重力为:绳子的重力=ρ × 直径² × 长度/16 × 重力加速度把人的重力和绳子的重力带入公式中,可以得到绳子的张力为:绳子的张力=人的重力+绳子的重力=600N+ρ × 直径² × 长度/16 × 重力加速度因此,如果已知绳子的线密度、直径、长度和重力加速度,就可以计算出绳子在负责人上爬行时所受的张力。

大学物理练习册(上册)答案

大学物理练习册(上册)答案

练习一 (第一章 质点运动学) 一、选择题 1、(D )2、(C )3、(D )4、(B )5、(D ) 二、填空题1、(1)A (2)1.186s(或4133-s) (3)0.67s (或32s ) 2、8m 10m3、(1)t e t t A βωβωωωβ-+-]sin 2cos )[(22 (2)ωπωπk +2( ,2,1,0=k ) 4、3/30Ct v + 400121Ct t v x ++ 5、(1)5m/s (2) 17m/s 三、计算题1、解:dxdvv dt dx dx dv x dt dv a ==+==262分离变数积分⎰⎰+=xvdx x vdv 020)62(得 )1(422x x v +=质点在任意位置处的速度为 )1(22x x v +=(由初始时刻的加速度大于零,可知速度的大小为非负)。

2、解:(1)第二秒内的位移为 m x x x 5.0)1()2(-=-=∆ 第二秒内的平均速度为s m txv /5.0-=∆∆= (2)t 时刻的速度为 269t t dtdxv -==第二秒末的瞬时速度为 s m s m s m v /6/26/292-=⨯-⨯=(3)令0692=-==t t dtdxv ,解得s t 5.1= 第二秒内的路程为 m x x x x s 25.2)5.1()2()1()5.1(=-+-=。

3、解:(1)由几何关系θθsin cos r y r x ==质点作匀速率圆周运动故dtd θω=,代入初始条件0=t 时0=θ,得 t 时刻t ωθ=,所以j y i x r+=)sin (cos j t i t rωω+=(2)速度为)cos sin (j t i t r dtrd v ωωω+-==加速度为)sin (cos 2j t i t r dt vd a ωωω+-==(3)r j t i t r dtv d a 22)sin (cos ωωωω-=+-==由此知加速度的方向与径矢的方向相反,即加速度的方向指向圆心。

答案长江大学物理习题集(上册)

答案长江大学物理习题集(上册)

一、运动学 1.基本物理量 (1).位置矢量(运动方程) r = r (t) = x (t)i + y (t)j + z (t)k, 速度v = dr/dt = (dx/dt)i+(dy/dt)j + (dz/dt)k, 加速度 a=dv/dt=(dvx/dt)i+(dvy/dt)j +(dvz/dt)k =d2r/dt2=(d2x/dt2)i+(d2y/dt2)j + (d2z/dt2)k, 切向加速度 at= dv/dt, 法向加速度 an= v2/ . (2).圆周运动及刚体定轴转动的角量描述 =(t), =d/dt, = d/dt =d2/dt2, 角量与线量的关系 △l=r△, v=r (v= ×r), at=r, an=r2。 2.相对运动 v20=v21+v10, a20=a21+a10. 二、质点动力学 1.牛顿三定律(略); 惯性系(略);非惯性系(略); 惯性力:平动加速参照系 F惯= ma (a为非惯性系相对惯性系的加速度). 匀速转动参照系的惯性离心力 F惯= m2r 2.动量 P=mv, 冲量 , 质点及质点系的动量定理 =P2-P1, 动量守恒定律: (1) F外=0, p=恒量, (2) (F外)某方向=0,p某方向=恒量, (3) F外f内,p≈恒量 (F外) 某方向( f内) 某方向,p某方向≈恒量 3.功 功率 P=F·v,
2. 阻力作功 A= 依动能定理,有
第一次x1=0,x2=1; 第二次x1=1,x2待求 k(x22-12)= k(12-02) 得 x=,所以第二次击铁钉的深度为 x=-1=0.414cm
Ⅳ 课堂例题 一. 选择题 1.一质点在几个外力同时作用下运动时,下述哪种说法正确? (A) 质点的动量改变时,质点的动能一定改变. (B) 质点的动能不变时,质点的动量也一定不变. (C) 外力的冲量是零,外力的功一定为零. (D) 外力的功为零,外力的冲量一定为零. 2.有一劲度系数为k的轻弹簧,原长为l0,将它吊在天花板上.当它 下端挂一托盘平衡时,其长度变为l1.然后在托盘中放一重物,弹簧长 度变为l2,则由l1伸长至l2的过程中,弹性力所作的功为 (A) . (B) . (C) . (D) . 3.某物体的运动规律为dv/dt=-kv2t,式中的k为大于零的常量. 当t=0时,初速为v0,则速度v与时间t的函数关系是 (A) (B) (C) (D) 4.一根细绳跨过一光滑的定滑轮,一端挂一质量为M的物体,另一 端被人用双手拉着,人的质量m=M/2.若人相对于绳以加速度a0向上 爬,则人相对于地面的加速度(以竖直向上为正)是 (A) (2 a0 + g)/3. (B) -(3g-a0). (C) -(2 a0 + g)/3. (D) a0. 5.假设卫星环绕地球中心作圆周运动,则在运动过程中,卫星对地 球中心的 (A) 角动量守恒,动能也守恒. (B) 角动量守恒,动能不守恒. (C) 角动量不守恒,动能守恒. (D) 角动量不守恒,动量也不守恒. (E) 角动量守恒,动量也守恒. 6.如图所示,A、B为两个相同的绕着轻绳的定滑轮.A滑轮挂一质

大学物理练习册习题解答(1-22上)

大学物理练习册习题解答(1-22上)

练习一 运动的描述 (一)1.(D )2.(D ) 3.217,5s m sm 4.mmπ5,105.(1)s m t x V 5.0-=∆∆= (2)()s m v t t dt dx v 62,692-=-==(3)()()()()质点反向运动时,,05.125.25.1215.1===⨯-⨯+⨯-⨯=v s t m S6.答:矢径是从坐标原点至质点所在位置的有向线段。

位移是由前一时刻质点所在位置引向后一时刻质点所在位置的有向线段,它们的一般关系为0r r r -=∆ 若把坐标原点选在质点的初始位置,则00=r,任意时刻质点对此位置的位移为r r =∆,即此时r既是矢径也是位移。

练习二 运动的描述 (一)1.()()s m t t s radtt 612,34223-- 2.(c ) 3.三 , 三至六 4.s m s m s m 20,3103.17=5.1032,224,432102+===∴===⎰⎰⎰⎰t x dt t dx tv tdt dv t dt dv a txvt6.根据已知条件确定常量K 222224,4,4RtR v t s d ra Rtv tk ======ωωω22222228.3532168841sm a a a sm R v a s m Rt dt v d a sm Rtv s t n n =+=========ττ时,练习三 运动定律与力学中的守恒定律(一)1.(D ) 2. (C )3.4.5.因绳子质量不计,所以环受到的摩擦力在数值上等于张力T ,设2m 对地加速度为/2a ,取向上为正;1m 对地加速度为1a (亦即绳子的加速度)向下为正,⎪⎩⎪⎨⎧-==-=-21/2/222111aa a a m g m T a m T g m()()()212121/22121221222112m m a m g m m a m m m m a g T m m a m g m m a +--=+-=++-=解得:6.(1)子弹进入沙土后受力为-kv,由牛顿定律有mt k vv tev v v dv dt mk vdv dt mk dtdv mkv -=∴=-=-∴=-⎰⎰00,,(2)求最大深度()()kv mv x ev k m x dtev dx dt dx v mkt mkt 00max 00,1,=-=∴=∴=--练习四 运动定律与力学中的守恒定律(二)1.(C )2.(B ) 3.s m S N 24,140⋅()()sm m mv I v mv mv I sN dtt dt F I t t 24,14040301212221=+=∴-=⋅=+==⎰⎰4.2221221,m t F m m t F m m t F ∆++∆+∆5.(1)系统在水平方向动量守恒。

大学物理学第四版第一到六章课后题答案

大学物理学第四版第一到六章课后题答案

习题11.1选择题(1) 一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为(A)dtdr (B)dt r d(C)dtr d ||(D)22)()(dtdy dt dx + [答案:D](2) 一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a -=,则一秒钟后质点的速度(A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。

[答案:D](3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为 (A)tR t R ππ2,2 (B) t Rπ2,0 (C) 0,0 (D)0,2tR π [答案:B] 1.2填空题(1) 一质点,以1-⋅s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。

[答案: 10m ; 5πm](2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m·s -1,则当t 为3s 时,质点的速度v= 。

[答案: 23m·s -1 ](3) 轮船在水上以相对于水的速度1V 航行,水流速度为2V ,一人相对于甲板以速度3V行走。

如人相对于岸静止,则1V 、2V和3V 的关系是 。

[答案: 0321=++V V V]1.3 一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定:(1) 物体的大小和形状; (2) 物体的内部结构; (3) 所研究问题的性质。

解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。

1.4 下面几个质点运动学方程,哪个是匀变速直线运动?(1)x=4t-3;(2)x=-4t 3+3t 2+6;(3)x=-2t 2+8t+4;(4)x=2/t 2-4/t 。

给出这个匀变速直线运动在t=3s 时的速度和加速度,并说明该时刻运动是加速的还是减速的。

物理长江练习册全册答案

物理长江练习册全册答案

物理长江练习册全册答案第一章:力学基础1. 题目:一个质量为5kg的物体在水平面上,受到一个大小为20N的水平推力,求物体的加速度。

答案:根据牛顿第二定律,\[ F = ma \],其中\( F \)为推力,\( m \)为质量,\( a \)为加速度。

代入数值解得,\[ a =\frac{F}{m} = \frac{20N}{5kg} = 4m/s^2 \]。

2. 题目:一个物体从静止开始自由下落,求其在第2秒末的速度。

答案:自由下落的物体速度\( v \)与时间\( t \)的关系为\[ v = gt \],其中\( g \)为重力加速度,取9.8m/s²。

代入\( t = 2s \),得\[ v = 9.8m/s^2 \times 2s = 19.6m/s \]。

第二章:能量守恒与转换1. 题目:一个质量为2kg的物体从高度5m处自由落下,求其着地时的动能。

答案:物体的势能\( PE \)为\[ PE = mgh \],其中\( m \)为质量,\( g \)为重力加速度,\( h \)为高度。

代入数值,\[ PE = 2kg \times 9.8m/s^2 \times 5m = 98J \]。

由于能量守恒,物体着地时的动能\( KE \)等于其势能,\[ KE = 98J \]。

2. 题目:一个物体以10m/s的速度运动,求其动能。

答案:动能\( KE \)的公式为\[ KE = \frac{1}{2}mv^2 \],代入数值,\[ KE = \frac{1}{2} \times 2kg \times (10m/s)^2 = 100J \]。

第三章:电磁学1. 题目:一个导体两端的电压为12V,通过的电流为2A,求导体的电阻。

答案:根据欧姆定律,\[ V = IR \],其中\( V \)为电压,\( I \)为电流,\( R \)为电阻。

解得电阻\[ R = \frac{V}{I} =\frac{12V}{2A} = 6\Omega \]。

长江大学物理练习册答案1

长江大学物理练习册答案1

2静 电 场 习 题 课说明:数学表达式中字母为黑体者表示矢量壹.内容提要一、电荷守恒定律(略) .二、库仑定律 : F=q 1q 2r /(4πε0r 3) . 三、电场强度E :1.定义:E=F /q 0 (F 为试验电荷q 0在电场E 中所受作用力);2. 电场叠加原理i E E ∑= (矢量叠加);点电荷系激发的电场:)4/(30r q i πεi r E ∑=;连续带电体激发的电场: E=∫ q r d q /(4πε0r 3) . 四、高斯定理: 1.电场线(略);2.电场强度通量 Фe =∫S E∙d S (计算电场强度通量时注意曲面S 的法线正方向);3.高斯定理(过闭合曲面的电场强度通量):真空中 0d εi S e qΦ∑=⋅=⎰S E ;介质中 iSq0d ∑=⋅⎰S D ;4.库仑电场为有源场. 五、环路定理: 1.表达式⎰=⋅l0d l E ;2. 静电场为保守场. 六、电势V :1.定义式 (场强与电势的积分关系.下式 中p 表示场点,(0) 表示电势零点):⎰⋅=)0(d pV l E ;2. 电势差 ⎰⋅=-=BAl E d B A AB V V V ;3. 电势叠加原理 V V i ∑=(标量叠加); 点电荷系激发的电势:)4/(0r q V i πε∑=; 连续带电体激发的电势()[]⎰=q r q V 04d πε.4.静电场力的功 W AB =qV AB ;5. 场强与电势的微分关系E=-grad V=[(∂V/∂x )i+(∂V/∂y )j+(∂V/∂z )k ] .七、电偶极子: 1.定义(略); 2.电矩 P e =q l ; 3.激发的电场:延长线上 E=[1/(4πε0)] (2P e /r 3); 中垂线上 E=[1/(4πε0)] (-P e /r 3); 4. 激发的电势 V =P e ·r / (4πε0r 3) ; 5. 在均匀电场中受力矩 M= P e ×E . 八、导体:1.静电平衡条件 导体内E=0, 导体表面附近外E 垂直表面;2.推论(1)导体为等势体,导体表面为等势面, (2)导体表面曲率半径小处面电荷密度大, (3) 导体表面外附近电场E=σ/ε0,3.静电屏蔽(1) 空腔导体内的物体不受腔外电场的影响,(2)接地空腔导体外物体不受腔内电场的影响. 九、电介质:1.有极分子取向极化,无极分子位移极化;2.极化强度 P=∑p e /ΔV ,在各向同性介质中P=χε0E ;3.电位移矢量 D=ε0E+P ,在各向同性介质中D=ε0εr E=εE ,εr =1+χ. 十、电容:1.定义式 C=Q/U=Q /(V 1-V 2);2.几种电容器的电容 (1)平行板电容器 C=εS/d , (2)圆柱形电容器 C=2πεl/ln(R 2/R 1), (3)球形电容器 C=4πεR 2R 1 /(R 2-R 1), (4)孤立导体球 C=4πεR ;3.并联 C=C 1+C 2+C 3+…;4串联 1/C=1/C 1+1/C 2+1/C 3+….2十一、静电场的能量:1.点电荷系相互作用能W e = (1/2)∑q i V i ;2.连续带电体的能量W e = (1/2)∫q V d q ;3.电容器电能W e =(1/2)qU=(1/2)CU 2=q 2/(2C ); 4.静电场的能量密度 w e =(1/2)D ·E ,W e =∫V w e d V=(1/2)∫V D ·E d V .十二、几种特殊带电体激发电场: 1.无限长均匀带电直线激发电场的场强E =λr /(2πε0r 2);2.均匀带电园环轴线上的场强与电势E=Qx/[4πε0 (x 2+R 2)3/2],V= Q/[4πε0 (x 2+R 2)1/2]; 3. 无限大均匀带电平面激发电场的场强E=σ/(2ε0);4. 均匀带电球面激发的场强与电势: 球面内 E =0, V= Q/(4πε0 R ) 球面外 E = Q r /(4πε0 r 3), V= Q/(4πε0 r );5. 均匀带电球体激发的场强与电势: 球体内E =Q r /(4πε0R 3), V=Q (3R 2-r )/(8πε0R 3); 球体外E = Q r /(4πε0 r 3), V= Q/(4πε0 r );6. 无限长均匀带电圆柱面激发的场强: 柱面内 E =0, 柱面外 E =λr /(2πε0r 2);7. 无限长均匀带电圆柱体激发的场强: 柱体内 E =λr /(2πε0R 2), 柱体外 E =λr /(2πε0r 2)贰、练习一至练习八答案及简短解答练习1 库伦定律 电场强度一、选择题 C B A C D 二、填空题1. λ1d/(λ1+λ2).2. 2qy j /[4πε0 (a 2+y 2)3/2] , ±a/21/2.3. M/(E sin θ).三、计算题1. 取环带微元d q =σd S=σ2π(R sin θ)R d θ =2πσR 2sin θd θ d E =d qx/[4πε0(r 2+x 2)3/2]=()3024cos d sin 2R R R πεθθθπσ=σsin θcos θd θ/(2ε0)()()0/204/2d cos sin εσεθθθσπ==⎰E方向x 轴正向.2.取园弧微元 d q=λd l=[Q/(πR )]R d θ=Q d θ/πd E =d q/(4πε0r 2) =Q d θ/(4π2ε0R 2)d E x =d E cos(θ+π)=-d E cos θ d E y =d E sin(θ+π)=-d E sin θE x =()⎰⎰-=2/32/2024d cos d ππεπθθR Q E x=Q/(2π2ε0R 2)E y =⎰d E y ()⎰-2/32/2024d sin ππεπθθR Q =0故 E=E x =()2022R Q επ 方向沿x 轴正向.练习2 电场强度(续)电通量一、选择题 D C D B A 二、填空题1. -p/(4πε0y 3), 2p/(4πε0x 3).2. λ/(πε0a ),3. 5.14⨯105N.三、计算题1. 取无限长窄条电荷元d x ,电荷线密度λ'=λd x/a它在P 点产生的电场强度为d E=λ'/(2πε0r )=λd x/(2πε0a 22x b +) d E x =d E cos α=-λx d x/[2πε0a (b 2+x 2)] d E y =d E sin α=λb d x/[2πε0a (b 2+x 2)]E x =()⎰⎰-+=2/2/2202a a x xb a xdxdE πελ3=()04ln 2/2/022=+-a a ax b πελE y =()⎰⎰-+=2/2/2202a a y xb a bdxdE πελba ab x b a b a a 2arctan arctan 1202/2/0πελπελ=⋅=- 2. 取窄条面元d S=a d x ,该处电场强度为 E=λ/(2πε0r ) 过面元的电通量为d Φe =E ⋅d S =[λ/(2πε0r )]a d x cos θ =λac d x/[2πε0(c 2+x 2)]Φe =⎰d Φe ()⎰-+=2/2/2202b b xc acdxπελ2/2/0arctan 12b b cx c ac -⋅=πελ=λa arctan[b /(2c )]/(πε0)练习3 高斯定理一、选择题 D A D C B二、填空题1. σ/(2ε0),向左;3σ/(2ε0),向左;σ/(2ε0),向右. 2 -Q/ε0, -2Q r 0/(9πε0R 2), -Q r 0/(2πε0R 2). 3 (q 1+ q 4)/ε0, q 1、q 2、q 3、q 4, 矢量和三、计算题1 因电荷分布以中心面面对称,故电场强度方向垂直于平板,距离中心相等处场强大小相等.取如图所示的柱形高斯面:两底面∆S以平板中心面对称,侧面与平板垂直.=⋅⎰S E d SQ /ε左边=⎰⋅左底S E d +⎰⋅右底S E d +⎰⋅侧面S E d =2∆SE(1)板内|x |<a Q=()[]⎰-∆xxSdx a x 2cos 0πρ=()()[]xx a x S a -∆2sin 20ππρ=4ρ0(a /π)∆S sin[πx /(2a )]得 E={2ρ0a sin[πx /(2a )]}/(πε0)(2)板外|x |>a Q=()[]⎰-∆aaSdx a x 2cos 0πρ=()()[]aa a x S a -∆2sin 20ππρ =4ρ0(a /π)∆S得 E=2ρ0a /(πε0)当x >0方向向右, 当x <0方向向左.2. 球形空腔无限长圆柱带电体可认为是均匀带正电(体电荷密度为ρ)无限长圆柱体与均匀带负电(体电荷密度为-ρ)球体组成.分别用高斯定理求无限长均匀带电圆柱体激发的电场E 1与均匀带电球体激发的电场E 2.为求E 1,在柱体内作同轴的圆柱形高斯面,有=⋅⎰S E d S02102ερπεπl r Q rlE ==E 1=ρr 1/(2ε0)方向垂直于轴指向外;为求E 2,在球体内外作同心的球形高斯面,有=⋅⎰S E d S0224πQ E r = 球内r<a Q=-ρ4πr 23/3 E 2=-πr 2/(3ε0) 球外r>a Q=-ρ4πa 3/3 E 2=-πa 3/(3ε0r 22) 负号表示方向指向球心.对于O 点 E 1=ρd/(2ε0), E 2=-πr 2/(3ε0)=0 (因r 2=0) 得 E O =ρa/(2ε0) 方向向右; 对于P 点E 1=ρd/(2ε0), E 2=-πa 3/(12ε0d 2) 得 E P =ρd/(2ε0)-πa 3/(12ε0d 2) 方向向左.练习4 静电场的环路定理 电势一、选择题 A C B D D 二、填空题1.)222(812310q q q R++πε. 2 Ed cos α. 3 .-q/(6πε0R )λ4三、计算题1.解:设球层电荷密度为ρ. ρ=Q/(4πR 23/3-4πR 13/3)=3Q/[4π(R 23-R 13)]球内,球层中,球外电场为E 1=0, E 2=ρ(r 3-R 13)/(3ε0r 2) , E 3=ρ(R 23-R 13)/(3ε0r 2)故⎰⎰⎰∞+=⋅=rR R R r211d d d 21r E r E r E ϕ⎰∞+2d 3R r E=0+{ρ(R 22-R 12)/(6ε0)+[ρR 13/(3ε0)(1/R 2-1/R 1)]}+ ρ(R 23-R 13)/(3ε0R 2) =ρ(R 22-R 12)/(2ε0) =3Q (R 22-R 12)/[8πε0(R 23-R 13)]2. (1)⎰⋅=-212d 2r r r r U U 1l E =⎰2102r rdr r πελ=(λ/2πε0)ln(r 2/r 1)(2)无限长带电直线不能选取无限远为势能零点,因为此时带电直线已不是无限长了,公式E=λ/(2πε0r )不再适用.练习5 电势梯度 静电能 静电场中的导体一、选择题 A A C D B 二、填空题1. 2U 0/3+2Qd/(9ε0S ).2. 会, 矢量.3. 是, 是, 垂直, 等于.三、计算题1. E x =-∂U/∂x=-C [1/(x 2+y 2)3/2+x (-3/2)2x /(x 2+y 2)5/2]= (2x 2-y 2)C /(x 2+y 2)5/2 E y =-∂U/∂y=-Cx (-3/2)2y /(x 2+y 2)5/2=3Cxy /(x 2+y 2)5/2 x 轴上点(y =0) E x =2Cx 2/x 5=2C /x 3 E y =0E =2C i /x 3 y 轴上点(x =0) E x =-Cy 2/y 5=-C /y 3 E y =0E =-C i /y 32. B 球接地,有 U B =U ∞=0, U A =U BAU A =(-Q+Q B )/(4πε0R 3)U BA =[Q B /(4πε0)](1/R 2-1/R 1)得 Q B =QR 1R 2/( R 1R 2+ R 2R 3- R 1R 3) U A =[Q/(4πε0R 3)][-1+R 1R 2/(R 1R 2+R 2R 3-R 1R 3)]=-Q (R 2-R 1)/[4πε0(R 1R 2+R 2R 3-R 1R 3)]练习6 静电场中的导体(续)静电场中的电介质一、选择题 D D B A C 二、填空题1. 非极性, 极性.2. 取向, 取向; 位移, 位移.3. -Q/(2S ), -Q/(S )三、计算题1. 在A 板体内取一点A , B 板体内取一点B ,它们的电场强度是四个表面的电荷产生的,应为零,有E A =σ1/(2ε0)-σ2/(2ε0)-σ3/(2ε0)-σ4/(2ε0)=0 E A =σ1/(2ε0)+σ2/(2ε0)+σ3/(2ε0)-σ4/(2ε0)=0 而 S (σ1+σ2)=Q 1 S (σ3+σ4)=Q 2 有 σ1-σ2-σ3-σ4=0σ1+σ2+σ3-σ4=0 σ1+σ2=Q 1/S σ3+σ4=Q 2/S解得 σ1=σ4=(Q 1+Q 2)/(2S )=2.66⨯10-8C/m 2σ2=-σ3=(Q 1-Q 2)/(2S )=0.89⨯10-8C/m 2 两板间的场强 E=σ2/ε0=(Q 1-Q 2)/(2ε0S )V=U A -U B ⎰⋅=BAl E d=Ed=(Q 1-Q 2)d /(2ε0S )=1000V四、证明题1. 设在同一导体上有从正感应电荷出发,终止于负感应电荷的电场线.沿电场线ACB 作环路ACBA ,导体内直线BA 的场强为零,ACB 的电场与环路同向于是有=⋅⎰l E d l+⋅⎰ACBl E d ⎰⋅AB l E d 2=⎰⋅ACBl E d ≠0与静电场的环路定理=⋅⎰l E d l0相违背,故5在同一导体上不存在从正感应电荷出发,终止于负感应电荷的电场线.练习7 静电场中的电介质(续) 电容静电场的能量一、选择题 D C B C A二、填空题1. 1/εr , 1/εr .2.3.36×105N/C . 3 ε0εr U 2/(2d 2)三、计算题1. (1)因此电荷与介质均为球对称,电场也球对称,过场点作与金属球同心的球形高斯面,有iSq0d ∑=⋅⎰S D4πr 2D=∑q 0i当r=5cm <R 1, ∑q 0i =0得 D 1=0, E 1=0 当r=15cm(R 1<r <R 1+d ) ∑q 0i =Q=1.0×10-8C 得 D 2=Q /(4πr 2)=3.54×10-8C/m 2 E 2=Q /(4πε0εr r 2)=7.99×103N/C 当r=25cm(r >R 1+d ) ∑q 0i =Q=1.0×10-8C 得 D 3=Q /(4πr 2)=1.27×10-8C/m 2 E 3=Q /(4πε0r 2)=1.44×104N/C D 和E 的方向沿径向. (2) 当r=5cm <R 1时 U 1=⎰∞⋅rl E d⎰=R rr E d 1⎰++dR Rr E d 2⎰∞++dR r E d 3=Q/(4πε0εr R )-Q/[4πε0εr (R+d )]+Q/[4πε0(R+d )]=540V当r=15cm <R 1时 U 2=⎰∞⋅rl E d ⎰+=dR rr E d 2⎰∞++dR r E d 3=Q/(4πε0εr r )-Q/[4πε0εr (R+d )]+Q/[4πε0(R+d )]=480V当r=25cm <R 1时 U 3=⎰∞⋅rl E d ⎰∞=rr E d 3=Q/(4πε0r )=360V(3)在介质的内外表面存在极化电荷,P e =ε0χE=ε0(εr -1)E σ'= P e ·n r=R 处, 介质表面法线指向球心σ'=P e ·n =P e cos π=-ε0(εr -1)Eq '=σ'S =-ε0(εr -1) [Q /(4πε0εr R 2)]4πR 2=-(εr -1)Q /εr =-0.8×10-8Cr=R+d 处, 介质表面法线向外σ'=P e ·n =P e cos0=ε0(εr -1)Eq '=σ'S =ε0(εr -1)[Q /(4πε0εr (R+d )2]4π(R +d )2=(εr -1)Q /εr =0.8×10-8C2.球形电容器 C =4πε0RQ 1=C 1V 1= 4πε0RV 1 Q 2=C 2V 2= 4πε0RV 2 W 0=C 1V 12/2+C 2V 22/2=2πε0R (V 12+V 22)两导体相连后 C =C 1+C 2=8πε0RQ=Q 1+Q 2= C 1V 1+C 2V 2=4πε0R (V 1+V 2) W=Q 2/(2C )= [4πε0R (V 1+V 2)]2/(16πε0R ) =πε0R (V 1+V 2)2静电力作功 A=W 0-W=2πε0R (V 12+V 22)-πε0R (V 1+V 2)2=πε0R (V 1-V 2)2=1.11×10-7J练习8 静电场习题课一、选择题 D B A C A 二、填空题1. 9.42×103N/C, 5×10-9C .2.25.3 R 1/R 2, 4πε0(R 1+R 2), R 2/R 1.三、计算题1. (1)拉开前 C 0=ε0S/d W 0=Q 2/(2C 0)= Q 2d /(2ε0S ) 拉开后 C=ε0S/(2d )W=Q 2/(2C )=Q 2d /(ε0S )∆W=W -W 0= Q 2d /(2ε0S )(2)外力所作功A=-A e =-(W 0-W )= W -W 0= Q 2d /(2ε0S ) 外力作功转换成电场的能量 {用定义式解:A=⎰⋅l F d =Fd =QE 'd=Q [(Q/S )/(2ε0)]d= Q 2d /(2ε0S ) }2. 洞很细,可认为电荷与电场仍为球对称,由高斯定理可得球体内电场为6E =(ρ4πr 3/3)r /(4πε0r 3)=ρr /(3ε0)=Q r /(4πε0R 3)F =-q E =-qQ r /(4πε0R 3)F 为恢复力, 点电荷作谐振动-qQr /(4πε0R 3)=m d 2r/d t 2ω=[ qQ /(4πε0mR 3)]1/2因t =0时, r 0=a, v 0=0,得谐振动A=a ,ϕ0=0故点电荷的运动方程为()t mR qQ a r 304cos πε=叁、静电场部分测试题一.选择题1.真空中有一均匀带电球体和一均匀带电球面,如果它们的半径和所带的电量都相等,则它们的静电能之间的关系是(A) 均匀带电球体产生电场的静电能等于均匀带电球面产生电场的静电能. (B) 均匀带电球体产生电场的静电能大于均匀带电球面产生电场的静电能. (C) 均匀带电球体产生电场的静电能小于均匀带电球面产生电场的静电能. (D) 球体内的静电能大于球面内的静电能,球体外的静电能小于球面外的静电能. 2.如图1所示,厚度为d 的“无限大”均匀带电导体板,电荷面密度为σ ,则板两侧离板面距离均为h 的两点a 、b 之间的电势差为: (A) 零.(B) σ /2ε 0 (C) σ h /ε 0.(D) 2σ h /ε 0.3.如图2所示,一半径为a 的“无限长”圆柱面上均匀带电,其 电荷线密度为λ,在它外面同轴地套一半径为b 的薄金属圆筒,圆筒原先不带电,但与地连接,设地的电势为零,则在内圆柱面里面、距离轴线为r 的P 点的场强大小和电势分别为:(A) E =0,U =raln 20πελ. (B) E =0,U =abln 20πελ. (C) E =r02πελ,U =r b ln 20πελ. (D) E =r02πελ,U =a b ln 20πελ. 4.质量均为m ,相距为r 1的两个电子,由静止开始在电力作用下(忽略重力作用)运动至相距为r 2 ,此时每一个电子的速率为(A) ⎪⎪⎭⎫⎝⎛-2101142r r m e πε.图27(B)⎪⎪⎭⎫ ⎝⎛-2101142r r m eπε. (C) ⎪⎪⎭⎫ ⎝⎛-2101142r r m eπε . (D) ⎪⎪⎭⎫ ⎝⎛-2101141r r m eπε. 5. 如图3所示,在真空中半径分别为R 和2R 的两个同心球面,其上分别均匀地带有电量+q 和-3q ,今将一电量为+Q 的带电粒子从内球面处由静止释放,则该粒子到达外球面时的动能为:(A) R Qq 04πε. (B) RQq 02πε.(C) RQq 08πε.(D)RQq083πε. 6.关于试验电荷以下说法正确的是 (A) 试验电荷是电量极小的正电荷; (B) 试验电荷是体积极小的正电荷;(C) 试验电荷是体积和电量都极小的正电荷;(D) 试验电荷是电量足够小,以至于它不影响产生原电场的电荷分布,从而不影响原电场;同时是体积足够小,以至于它所在的位置真正代表一点的正电荷(这里的足够小都是相对问题而言的).6.在点电荷激发的电场中,如以点电荷为心作一个球面,关于球面上的电场,以下说法正确的是(A) 球面上的电场强度矢量E 处处不等;(B) 球面上的电场强度矢量E 处处相等,故球面上的电场是匀强电场; (C) 球面上的电场强度矢量E 的方向一定指向球心;(D) 球面上的电场强度矢量E 的方向一定沿半径垂直球面向外. 8.关于高斯定理的理解有下面几种说法,其中正确的是 (A) 如高斯面上E 处处为零,则该面内必无电荷; (B) 如高斯面内无电荷,则高斯面上E 处处为零; (C) 如高斯面上E 处处不为零,则高斯面内必有电荷; (D) 如高斯面内有净电荷,则通过高斯面的电通量必不为零;9.如图4,在点电荷+q 的电场中,若取图中P 点处为电势零点,则M 点的电势为3q 图3 +图48(A) ()a q 04πε. (B) ()a q 08πε. (C) ()a q 04πε-. (D) )a q 08πε-.10.如图5,一导体球壳A,同心地罩在一接地导体B 上,今给A 球带负电-Q , 则B 球(A) 带正电.(B) 带负电. (C) 不带电.(D) 上面带正电,下面带负电.二.填空题1.一均匀带电直线长为d ,电荷线密度为+λ,以导线中点O 为球心,R 为半径(R >d/2 ) 作一球面,如图86所示,则通过该球面的电场强度通量为 , 带电直线的延长线与球面交点P 处的电场强度的大小为 , 方向 .2.一空气平行板容器,两板相距为d ,与一电池连接时两板之间相互作用力的大小为F ,在与电池保持连接的情况下,将两板距离拉开到2d ,则两板之间的相互作用力的大小是 .3. 图7所示为某电荷系形成的电场中的电力线示意图,已知A 点处有电量为Q 的点电荷,则从电力可判断B 处存在一 (填正、负)的点电荷;其电量 | q |(填> ,< ,= )Q .4. 在相对介电常数ε r = 4 的各向同性均匀介质中,与电能密度w e=2×106J/cm 3相应的电场强度大小E = .5.如图8,一平行板电容器, 极板面积为S ,,相距为d , 若B 板接地,,且保持A 板的电势 U A =U 0不变,,如图, 把一块面积相同的带电量为Q 的导体薄板C 平行地插入两板中间, 则导体薄板C 的电势U C = .6.如图9所示,一电荷线密度为λ 的无限长带电直线垂直通过图面上的A 点,一电荷为Q 的均匀球体,其球心为O 点,ΔAOP 是边长为a 的等边三角形,为了使P 点处场强方向垂直于OP, 则λ和Q 的数量之间应满足 关系,且λ与Q 为 号电荷 (填同号或异号) .7. 点电荷q 1 、q 2、q 3和q 4在真空中的分布如图10所示,图中S 为闭合曲面,则通过该闭合曲面的电通量S E d ⋅⎰S= ,式图6-Q图5AC BU U 图8图9 ∙q 1 ∙q 2 ∙q 3 ∙q 4S图10AQ 图7中的E是哪些点电荷在闭合曲面上任一点产生的场强的矢量和?答:是.8.为求半径为R带电量为Q的均匀带电园盘中心轴线上P点的电场强度, 可将园盘分成无数个同心的细园环, 园环宽度为d r,半径为r,此面元的面积d S= ,带电量为d q = ,此细园环在中心轴线上距圆心x的一点产生的电场强度E = .9.电量分别为q1 , q2 , q3的三个点电荷分别位于同一圆周的三个点上,如图11所示,设无穷远处为电势零点,圆半径为R, 则b点处的电势U = .10.若静电场的某个立体区域电势等于恒量, 则该区域的电场强度分布是;若电势随空间坐标作线性变化, 则该区域的场强分布是.三.计算题1.如图12所示,一电荷面密度为σ的“无限大”平面,在距离平面a米远处的一点的场强大小的一半是由平面上的一个半径为R的圆面积范围内的电荷所产生的,试求该圆半径的大小2.两平行的无限长半径均为r0的圆柱形导线相距为d(d>> r0 ) ,求单位长度的此两导线间的电容.3.半径为R的一球体内均匀分布着电荷体密度为ρ的正电荷,若保持电荷分布不变,在该球体内挖去半径r的一个小球体,球心为O´ , 两球心间距离OO = d, 如图13所示, 求:(1) 在球形空腔内,球心O'处的电场强度E0;(2) 在球体内P点处的电场强度E.设O'、O、P三点在同一直径上,且OP= d.4.一均匀带电的球层, 其电荷体密度为ρ, 球层内表面半径为R1, 外表面半径为R2,设无穷远处为电势零点, 求球层内任一点(R1<r0<R2)的电势.图12q q3图11图13910肆、静电场部分测试题解一.选择题 B A B D C D A D D A 二.填空题1. λd/ε0, λd/[4πε0(R 2-d 2/4)],水平向左2. 负,<.3. F /4. 4. 3.36×1011V/m.5. U 0/2+Qd/(4ε0S ).6. Q=a λ, 异.7. (q 2+q 4)/ε0, q 1、q 2、q 3、q 4. 8. 2πr d r , 2πr σd r , σd r .9.)22(812310q q q R++πε.10. E =0,匀强电场.三.计算题1. 该均匀带电圆在距平面a 米处产生场强为[]{}⎰⎰+==qa r adq E E 3220)(4d πε]{}⎰+=Ra r r a 023220)(4d 2πεπσ=[σ/(2ε0)][1-a /(R 2+a 2)1/2]“无限大”均匀带电平面在该点产生的场强为E '=σ/(2ε0),由题意E '=2 E .故σ/(2ε0) =2[σ/(2ε0)][1-a /(R 2+a 2)1/2]a /(R 2+a 2)1/2=1/2 解得 a R 3= 2. 设两无限长导线带电线密度为λ±,取坐标如图,由叠加原理可求得两导体间的场强: E =λ/(2πε0x )+λ/[2πε0(d -x )]⎰⋅=∆baU l E d()[]()[]⎰--+=000112r d r x r d x d πελ=[λ/(πε0)]ln[(d -r 0)/r 0]≈[λ/(πε0)]ln(d /r 0) 取导线长度L ,则所带电量Q=λL ,则此段导线的电容为 C L =Q/∆U=πε0L/ln(d /r 0) 单位长度电容为 C 0=C L /L =πε0/ln(d /r 0)3. 此带电体可认为是实心均匀带正电(电荷密度ρ)的大球和均匀带负电(电荷密度-ρ,位置在原空腔处)的小球组成.Q 1=ρ(4πR 3/3), Q 2=-ρ(4πa 3/3),用高斯定理可求Q 1在大球内(r 1<R )产生的场.E 1= Q 1r 1/(4πε0R 3)=ρr 1/(3ε0)Q 2在小球内(r 2<a )外(r 2>a )产生的场.E 2内= Q 2r 2/(4πε0a 3)=-ρr 2/(3ε0) E 2外= Q r 2/(4πε0r 23)=-ρa 3r 2/(3ε0r 3) (1)O ' 点处:r 1=d ,r 2=0. E 1=ρd 1/(3ε0), E 2=0E 0=E 1+E 2=ρd 1/(3ε0) 方向向右(2)P 点处:r 1=d ,r 2=2d. E 1=ρd 1/(3ε0), E 2=-ρa 3/(12ε0d 2) E 0=E 1+E 2=ρd 1/(3ε0) -ρa 3/(12ε0d 2)= ρ (4d 3-a 3)/(12ε0d 2)方向向左4一法,用电势定义求因电荷球对称,电场球对称,作与带电体对称的球形高斯面,有0int 2/4d επq E rS==⋅⎰S E球内,r<R 1: q int =0 E 1=0 球层中R 1<r<R 2, q int =ρ4π( r 3-R 13)/3E 2=ρ( r 3-R 13)/3ε0r 2球外r>R 2: q int =ρ4π( R 23-R 13)/3E 2=ρ( R 23-R 13)/3ε0r 2 故⎰∞⋅=rU l E d ⎰⎰∞⋅+⋅=2232R R r l E l E d d()()[]+⋅-⎰2120313R r 3r r R r d ερ ()()[]⎰∞⋅-+2231323R r r R R d ερ[ρ/(3ε0)][( R 22-r 02)/2- R 13(1/r 0-1/R 2)]++[ρ/(3ε0)]( R 23-R 13)/R 2) =ρ(3R 2-r 02-2R 13/r 0)/(6ε0)二法,用电势叠加求取同心的薄球壳微元d q ==4πr 2ρd r ,它在球层内产生的电势:当r<r 0时, d U =d q/(4πε0r 0)= ρr 2d r/(ε0r 0), 当r>r 0时, d U =d q/(4πε0r )= ρr d r/ε0, 所以()[]⎰⎰⎰+==20010002R r r R r r r r r U U ερερd d d =[ρ/(3ε0)]( r 02-R 13/r 0)+[ ρ/(2ε0)]( R 22-r 02)=ρ(3R 2-r 02-2R 13/r 0)/(6ε0)11。

大学物理习题册及答案

大学物理习题册及答案

3
6. 质点沿半径为 R = 3m 的圆周运动,见图 2-6,已知切向加速度 aτ = 6t m/s2, t = 0
时质点在 O′点,其速度 v0 = 0, s0 = 0,试求: (1) t = 1s 时质点速度和加速度的大小; (2) 第 2 秒内质点所通过的路程。
s R
О′
图 2-6
4
练习三 运动的描述(三)
班级
学号
姓名
1. 质点作圆周运动,其角加速度 β = 6t (SI),若质点具有初角速度 ω 0 ,则任意时刻 t
质点的角速度为
、转过的角度为

2. 一质点沿半径为 R 的圆周运动,已知角速度 ω 与时间 t 的关系为 ω = kt 2 (SI) 、k 为
常数,已知 t = 0 时,θ 0 = 0、 ω0 = 0,则 t 时刻的角加速度为
1
6. 路灯离地面高度为 H ,一个身高为 h 的人,在灯下水平路面上非匀速步行,如图 1-6 所示。当人与灯的水平距离为 s 时,人的步行速度大小为 v0 ,方向向右,求此时他的头顶在 地面上的影子移动的速度。
H
v0
h s 图 1-6
2
练习二 运动的描述(二)
班级
学号
姓名
1. 如图 2-1 所示,质点沿路径 s 运动,在 P 点的速度为 v 、
量值相等的是:
A. ∆r = ∆s ; B. d r = ∆s ; C. d r = d s ; D. d r = ∆r ; E. ∆r = d s 。
4. [
]对于作曲线运动的物体,以下几种说法中哪一种是正确的:
A. 切向加速度必不为零;
B. 法向加速度必不为零(拐点处除外);
C. 由于速度沿切线方向,法向分速度必为零,因此法向加速度必为零;

长江大学 大学物理上 重点习题答案 选择填空

长江大学 大学物理上 重点习题答案 选择填空

选择题y 轴上运动,运动方程为y =4t 2-2t 3,则质点返回原点时的速度和加速度分别为:B (B) -8m/s, -16m/s 2.物体通过两个连续相等位移的平均速度分别为v 1=10m/s ,v 2=15m/s ,若物体作直线运动,则在整个过程中物体的平均速度为:A(A) 12 m/s .质点沿XOY 平面作曲线运动,其运动方程为:x =2t, y =19-2t 2. 则质点位置矢量与速度矢量恰好垂直的时刻为:D(B) 0秒和3秒.B(A) 质点作圆周运动,加速度一定与速度垂直; (B) 物体作直线运动,法向加速度必为零; (C)轨道最弯处法向加速度最大;(D) 某时刻的速率为零,切向加速度必为零.R =1m 的圆周运动,某时刻角速度ω=1rad/s,角加速度α=1rad/s 2,则质点速度和加速度的大小为C(C) 1m/s, 2m/s 2. v 0,抛射角为θ,抛射点的法向加速度,最高点的切向加速度以及最高点的曲率半径分别为 A(A) g cos θ , 0 , v 02 cos 2θ /g .E(A) 物体在恒力作用下,不可能作曲线运动; (B) 物体在变力作用下,不可能作直线运动;(C) 物体在垂直于速度方向,且大小不变的力作用下,作匀速园周运动; (D) 物体在不垂直于速度方向力的作用下,不可能作园周运动;(E) 物体在垂直于速度方向,但大小可变的力的作用下,可以作匀速曲线运动.3.1(A)所示,m A >μm B 时,算出m B 向右的加速度为a ,今去掉m A 而代之以拉力T =m A g , 如图3.1(B)所示,算出m B 的加速度a ',则 C(C) a < a '.图1.13.3所示,弹簧秤挂一滑轮,滑轮两边各挂一质量为m 和2m 的物体,绳子与滑轮的质量忽略不计,轴承处摩擦忽略不计,在m 及2m 的运动过程中,弹簧秤的读数为 D(D) 8mg / 3.A(A) 功是标量,能也是标量,不涉及方向问题; (B) 某方向的合力为零,功在该方向的投影必为零; (C) 某方向合外力做的功为零,该方向的机械能守恒; (D) 物体的速度大,合外力做的功多,物体所具有的功也多.A(A) 势能的增量大,相关的保守力做的正功多;(B) 势能是属于物体系的,其量值与势能零点的选取有关; (C) 功是能量转换的量度;(D) 物体速率的增量大,合外力做的正功多.M ,如图4.2所示.开始物体在平衡位置O 以上一点A . (1)手把住M 缓慢下放至平衡点;(2)手突然放开,物体自己经过平衡点.合力做的功分别为A 1、A 2 ,则B(B) A1 < A 2.B(A) 大力的冲量一定比小力的冲量大; (B) 小力的冲量有可能比大力的冲量大; (C) 速度大的物体动量一定大;(D) 质量大的物体动量一定大.,这一周期内物体 C (A) 动量守恒,合外力为零. (B) 动量守恒,合外力不为零.(C) 动量变化为零,合外力不为零, 合外力的冲量为零.(D) 动量变化为零,合外力为零.,落地后弹性跳起,达到原先的高度时速度的大小与方向与原先的相同,则 B(A) 此过程动量守恒,重力与地面弹力的合力为零.(B) 此过程前后的动量相等,重力的冲量与地面弹力的冲量大小相等,方向相反.图3.3 < < < < 图3.4a(C) 此过程动量守恒,合外力的冲量为零. (D) 此过程前后动量相等,重力的冲量为零.B (A) 火车在平直的斜坡上运动; (B) 火车在拐弯时的运动; (C) 活塞在气缸内的运动; (D) 空中缆车的运动.C(A) 合外力为零,合外力矩一定为零; (B) 合外力为零,合外力矩一定不为零; (C) 合外力为零,合外力矩可以不为零; (D) 合外力不为零,合外力矩一定不为零; (E) 合外力不为零,合外力矩一定为零.A 、B 两个半径相同,质量相同的细圆环.A 环的质量均匀分布,B 环的质量不均匀分布,设它们对过环心的中心轴的转动惯量分别为I A 和I B ,则有D(D) I A =I B .:(A) 角速度大的物体,受的合外力矩不一定大; (B) 有角加速度的物体,所受合外力矩不可能为零; (C) 有角加速度的物体,所受合外力一定不为零;(D)作定轴(轴过质心)转动的物体,不论角加速度多大,所受合外力一定为零.,如果合外力矩的方向与角速度的方向一致,则以下说法正确的是: (A) 合力矩增大时, 物体角速度一定增大; (B) 合力矩减小时, 物体角速度一定减小; (C) 合力矩减小时,物体角加速度不一定变小; (D) 合力矩增大时,物体角加速度不一定增大.A 、B 、C(如图7.1所示)以相同的角速度 绕其对称轴旋转, 己知RA =R C <RB ,若从某时刻起,它们受到相同的阻力矩,则(A) A 先停转.图7.1圆盘绕O 轴转动,如图8.1所示.若同时射来两颗质量相同,速度大小相同,方向相反并在一直线上运动的子弹,子弹射入圆盘后均留在盘内,则子弹射入后圆盘的角速度ω将 C(C) 减小.,当她伸长两手时的转动惯量为I 0,角速度为ω0,当她突然收臂使转动惯量减小为I 0 / 2时,其角速度应为 A(A) 2ω0.,如图8.2,摆球在水平面内作圆周运动.则 C (A) 摆球的动量, 摆球与地球组成系统的机械能都守恒. (B) 摆球的动量, 摆球与地球组成系统的机械能都不守恒. (C) 摆球的动量不守恒, 摆球与地球组成系统的机械能守恒. (D) 摆球的动量守恒, 摆球与地球组成系统的机械能不守恒.,左边装CO 2 ,右边装H 2,两边气体质量相同,温度相同,如果隔板与器壁无摩擦,则隔板应 B(A) 向右移动. (B) 向左移动. (C) 不动.(D) 无法判断是否移动.,体积为V ,压强为p ,绝对温度为T ,每个分子的质量为m ,R 为普通气体常数,N 0为阿伏伽德罗常数,则该气体的分子数密度n 为 A(A) pN 0/(RT ). (B) pN 0/(RTV ). (C) pmN 0/(RT ). (D) mN 0/(RTV ).9.1,一定量的理想气体,由平衡状态A 变到平衡状态B(p A=p B ),则无论经过的是什么过程,系统必然 B(A) 对外作正功. (B) 内能增加. (C) 从外界吸热. (D) 向外界放热.图8.1图9.1理想气体从p -V 图上初态a 分别经历如图10.1所示的(1)或(2)过程到达末态b .已知T a <T b ,则这两过程中气体吸收的热量Q 1和Q 2的关系是 A(A) Q 1 > Q 2 > 0 . (B) Q 2> Q 1 > 0 . (C) Q 2 < Q 1 <0 . (D) Q 1 < Q 2< 0 . (E) Q 1 = Q 2 > 0 .,下列所述过程中不可能发生的是 D (A) 从外界吸热,但温度降低; (B) 对外做功且同时吸热; (C) 吸热且同时体积被压缩;(D) 等温下的绝热膨胀.10.2所示的三个过程中,a →c 为等温过程,则有 B (A) a →b 过程 ∆E <0,a →d 过程 ∆E <0. (B) a →b 过程 ∆E >0,a →d 过程 ∆E <0. (C) a →b 过程 ∆E <0, a →d 过程 ∆E >0. (D) a →b 过程 ∆E >0, a →d 过程 ∆E >0.V —T 曲线表示如图11.1,在此循环过程中,气体从外界吸热的过程是 A(A) A →B. (B) B →C. (A)C →A. (C) B →C 和C →A.(D)小(图11.2中阴影部分)分别为S 1和S 2 , 则二者的大小关系是: B(A) S 1 > S 2 . (B) S1 = S2 . (C) S 1 < S 2 . (D) 无法确定.图10.1图10.2图11.1根据热力学第二定律可知: D(A) 功可以全部转换为热,但热不能全部转换为功.(B) 热可以从高温物体传到低温物体,但不能从低温物体传到高温物体. (C) 不可逆过程就是不能向相反方向进行的过程. (D) 一切自发过程都是不可逆的.,用隔板分成相等的两部分,左边盛有一定量的理想气体,压强为p 0,右边为真空,如图12.1所示.今将隔板抽去,气体自由膨胀,则气体达到平衡时,气体的压强是(下列各式中γ = C P / C V ): D(A) p 0 /2 γ. (B) 2γp 0. (C) p 0. (D) p 0 /2.,初态温度为T ,体积为V ,先绝热变化使体积变为2V ,再等容变化使温度恢复到T ,最后等温变化使气体回到初态,则整个循环过程中,气体 A(A) 向外界放热. (B) 从外界吸热. (C) 对外界做正功. (D) 内能减少.abca ,如右上图12.2所示.如改用p -V 图或p-T图表示这一循环,以下四组图中,正确的是 A1摩尔氢气和1摩尔氦气,若两种气体各自对器壁产生的压强分别为p 1和p 2,则两者的大小关系是: C(A) p 1>p 2 . (B) p 1<p 2 . (C) p 1= p 2 . (D) 不确定的.图12.1(A)(B)(D)(C)V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为: B(A) pV/m . (B) pV / (kT ) . (C)pV /(RT ) . (D) pV /(mT ) .B (1) 气体的温度是分子平动动能的量度.(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义. (3) 温度的高低反映物质内部分子运动剧烈程度的不同. (4) 从微观上看,气体的温度表示每个气体分子的冷热程度. 上述说法中正确的是(A) (1)、(2)、(4) . (B) (1)、(2)、(3) . (C) (2)、(3)、(4) .(D) (1)、(3)、(4) .,下面对理想气体内能的理解错误的是 B (A) 气体处于一定状态,就具有一定的内能; (B) 对应于某一状态的内能是可以直接测量的;(C) 当理想气体的状态发生变化时,内能不一定随之变化; (D)只有当伴随着温度变化的状态变化时,内能才发生变化; ρ相等的氮气和氧气,若它们的方均根速率也相等,则 C (A) 它们的压强p 和温度T 都相等. (B) 它们的压强p 和温度T 都都不等. (C) 压强p 相等,氧气的温度比氮气的高. (D) 温度T 相等, 氧气的压强比氮气的高.图14.1所示为某种气体的速率分布曲线,则()⎰21d v v v v f表示速率介于v 1到 v 2之间的 C(A) 分子数.(B) 分子的平均速率.(C) 分子数占总分子数的百分比. (D) 分子的方均根速率.图14.1B(A) 由pV =(M/M mol )RT 知,在等温条件下,逐渐增大压强,当p →∞时,V →0; (B) 由pV =(M/M mol )RT 知,在等温条件下,逐渐让体积膨胀,当V →∞时,p →0; (C) 由E =(M/M mol )iRT /2知,当T →0时,E →0;(D) 由绝热方程式V -1T =恒量知,当V →0时,T →∞、E →∞.d Q 、d E 、d A 的正负,下面判断中错误的是 (A) 等容升压、等温膨胀 、等压膨胀中d Q >0; D (B) 等容升压、等压膨胀中d E >0; (C) 等压膨胀时d Q 、d E 、d A同为正; (D) 绝热膨胀时d E >0.如图15.1所示的是两个不同温度的等温过程,则 A(A) Ⅰ过程的温度高,Ⅰ过程的吸热多. (B) Ⅰ过程的温度高,Ⅱ过程的吸热多.(C) Ⅱ过程的温度高,Ⅰ过程的吸热多. (D) Ⅱ过程的温度高,Ⅱ过程的吸热多.C (1) 球形碗底小球小幅度的摆动; (2) 细绳悬挂的小球作大幅度的摆动; (3) 小木球在水面上的上下浮动;(4) 橡皮球在地面上作等高的上下跳动;(5) 木质圆柱体在水面上的上下浮动(母线垂直于水面). (A) (1) (2) (3) (4) (5) 都不是简谐振动. (B) (1) (2) (3) (4) 不是简谐振动. (C) (2) (3) (4) 不是简谐振动. (D)(1) (2) (3) 不是简谐振动. m 1、m 2并由一根轻弹簧的两端连接着的小球放在光滑的水平面上.当m 1固定时, m 2的振动频率为ν2, 当 m 2固定时, m 1的振动频率为ν1,则ν1等于 D(A) ν2.(B) m 1ν2/ m 2. (C) m 2ν2/ m 1. (D) ν212/m m . ,取月球上的重力加速度为g /6,这个钟的分针走过一周,实际上所经历的时间是 B(A) 6小时.(B)6小时.图15.1(C) (1/6)小时.(D) (6/6)小时.T,则其振动动能变化的周期是B(A) T/4.(B) T/2.(C) T.(D) 2T.,其方程为x=A cos(ωt+ϕ).在求质点的振动动能时,得出下面5个表达式C(1) (1/2)mω2A2sin2(ω t +ϕ);(2) (1/2)mω2A2cos2(ω t +ϕ);(3) (1/2)kA2 sin(ω t +ϕ);(4) (1/2)kA2 cos2(ω t +ϕ);(5) (2π2/T2)mA2 sin2(ω t +ϕ);其中m是质点的质量,k是弹簧的倔强系数,T是振动的周期.下面结论中正确的是 C(A) (1), (4)是对的;(B) (2), (4)是对的;(C) (1), (5)是对的;(D) (3), (5)是对的;(E) (2), (5)是对的.:x1 = A1cosω t, x2 = A2sinω t,且A2< A1.则合成振动的振幅为C(A) A1 + A2.(B) A1-A2.(C) (A12 + A22)1/2.(D) (A12-A22)1/2.k的弹簧与一质量为m的物体组成弹簧振子的固有周期为T1,若将此弹簧剪去一半的长度并和一质量为m/2的物体组成一新的振动系统,则新系统的固有周期T2为C(A) 2T1.(B) T1.(C) T1/2.(D) T1 /2.y=-0.05sinπ(t-2x) (SI), 则该波的频率ν(Hz),波速u(m/s)及波线上各点振动的振幅A(m)依次为 A(A) 1/2, 1/2, -0.05 .(B) 1/2, 1 , -0.05 . (C) 2, 2 , 0.05 . (D) 1/2, 1/2, 0.05 .x 轴正向传播,t =0时刻的波形如右上图18.2所示,则P处质点的振动在t = 0时刻的旋转矢量图是 D大位移处,则它的能量是 B(A) 动能为零,势能最大. (B) 动能为零,势能为零. (C) 动能最大,势能最大. (D)动能最大,势能为零.t = 0.25s 时波形如图19.1所示,则该波的波函数为: (A) y = 0.5cos[4π (t -x /8)-π/2] (cm) . (B) y = 0.5cos[4π (t + x /8) + π/2] (cm) . (C) y = 0.5cos[4π (t + x /8)-π/2] (cm) . (D) y = 0.5cos[4π (t -x /8) + π/2](cm) .BP 、CP 方向传播,它们在B 点和C 点的振动表达式分别为y B = 0.2cos2π t (SI) 和 y C = 0.3cos(2π t +π ) (SI)己知BP =0.4m,CP =0.5m 波速u =0.2m/s,则P 点合振动的振幅为(A) 0.2m . (B) 0.3m . (C)0.5m . (D) 0.1m .,以下说法正确的是D (A) 任何两列波叠加都会产生驻波; (B) 任何两列相干波叠加都能产生驻波; (C) 两列振幅相同的相干波叠加能产生驻波;(A) (D)(C)(B)(D) 两列振幅相同,在同一直线上沿相反方向传播的相干波叠加才能产生驻波., 以下说法错误的是 B(A) 驻波是一种特殊的振动,波节处的势能与波腹处的动能相互转化; (B) 两波节之间的距离等于产生驻波的相干波的波长; (C) 一波节两边的质点的振动步调(或位相)相反; (D) 相邻两波节之间的质点的振动步调(或位相)相同.u ,声源频率为νs ,若声源s 不动,而接收器R 相对于媒质以速度v R 沿着s 、R 的连线向着声源s 运动,则接收器R 的振动频率为 D(A) νs .(B) Rv u u -νs .(C)R v u u +νs . (D) uv u R+νs .x =A cos(ωt +π/4 )在t=T/4(T 为周期)时刻,物体的加速度为 B (A) 222ωA -. (B) 222ωA . (C) 232ωA -.(D) 232ωA .m 的物体组成一振动系统,弹簧的倔强系数为k 1和k 2,并联后与物体相接.则此系统的固有频率为ν等于 A(A) π2//)(21m k k +. (B) π2/)/(2121m k k k k +.(C) π2)/(21k k m +. (D) π2)/()(2121m k kk k +.25ms -1的速度远离一静止的正在呜笛的机车,机车汽笛的频率为600Hz ,汽车中的乘客听到机车呜笛声音的频率是(已知空气中的声速为330 ms -1) C(A) 558Hz. (B) 646 Hz . (C) 555 Hz .t(D) 649 Hz .(1) 完全相同的两盏钠光灯,发出相同波长的光,照射到屏上;(2) 同一盏钠光灯,用黑纸盖住其中部将钠光灯分成上下两部分同时照射到屏上; (3) 用一盏钠光灯照亮一狭缝,此亮缝再照亮与它平行间距很小的两条狭缝,此二亮缝的光照射到屏上.以上三种装置,能在屏上形成稳定干涉花样的是A (A) 装置(3). (B) 装置(2). (C) 装置(1)(3). (D) 装置(2)(3).C (A) 使屏靠近双缝.(B) 把两个缝的宽度稍微调窄. (C) 使两缝的间距变小. (D) 改用波长较小的单色光源.22.1所示,设s 1、s 2为两相干光源发出波长为λ的单色光,分别通过两种介质(折射率分别为n 1和n 2,且n 1>n 2)射到介质的分界面上的P 点,己知s 1P = s 2P = r ,则这两条光的几何路程∆r ,光程差δ 和相位差∆ϕ分别为 C(A) ∆ r = 0 , δ = 0 , ∆ϕ = 0.(B) ∆ r = (n 1-n 2) r , δ =( n 1-n 2) r , ∆ϕ =2π (n 1-n 2) r /λ . (C) ∆ r = 0 , δ =( n 1-n 2) r , ∆ϕ =2π (n 1-n 2) r /λ . (D) ∆ r = 0 , δ =( n 1-n 2) r , ∆ϕ =2π (n 1-n2) r .23.1 所示, 薄膜的折射率为n 2, 入射介质的折射率为n 1, 透射介质为n 3,且n 1<n 2<n 3, 入射光线在两介质交界面的反射光线分别为(1)和(2), 则产生半波损失的情况是B(A) (1)光产生半波损失, (2)光不产生半波损失.(B) (1)光 (2)光都产生半波损失. (C) (1)光 (2)光都不产生半波损失.(D) (1)光不产生半波损失, (2)光产生半波损失.波长为λ的单色光垂直入射到厚度为e 的平行膜上,如图23.2,若反射光消失,则当n 1<n 2<n 3时,应满足条件(1); 当n 1<n 2>n 3时应满足条件(2). 条件(1),条件(2)分别是 C(A) (1)2ne = k λ, (2) 2ne = k λ. (B) (1)2ne = k λ + λ/2, (2) 2ne = k λ+λ/2. (C) (1)2ne = k λ-λ/2,(2) 2ne = k λ.图22.1图23.2图23.1(D) (1)2ne = kλ, (2) 2ne = kλ-λ/2., C(A) 干涉条纹是垂直于棱边的直条纹, 劈尖夹角变小时,条纹变稀,从中心向两边扩展.(B) 干涉条纹是垂直于棱边的直条纹, 劈尖夹角变小时,条纹变密,从两边向中心靠拢.(C) 干涉条纹是平行于棱边的直条纹, 劈尖夹角变小时,条纹变疏,条纹背向棱边扩展.(D) 干涉条纹是平行于棱边的直条纹, 劈尖夹角变小时,条纹变密,条纹向棱边靠拢.B(A) 将单狭缝分成许多条带,相邻条带的对应点到达屏上会聚点的距离之差为入射光波长的1/2.(B) 将能透过单狭缝的波阵面分成许多条带, 相邻条带的对应点的衍射光到达屏上会聚点的光程差为入射光波长的1/2.(C) 将能透过单狭缝的波阵面分成条带,各条带的宽度为入射光波长的1/2.(D) 将单狭缝透光部分分成条带,各条带的宽度为入射光波长的1/2.λ垂直入射到单狭缝上,对应于某一衍射角θ, 此单狭缝两边缘衍射光通过透镜到屏上会聚点A的光程差为δ = 2λ , 则 D(A) 透过此单狭缝的波阵面所分成的半波带数目为二个,屏上A点为明点.(B) 透过此单狭缝的波阵面所分成的半波带数目为二个,屏上A点为暗点.(C) 透过此单狭缝的波阵面所分成的半波带数目为四个,屏上A点为明点.(D) 透过此单狭缝的波阵面所分成的半波带数目为四个,屏上A点为暗点.λ = 5500 Å的单色光垂直照射到光栅常数d= 2×10-4cm的平面衍射光栅上,可能观察到的光谱线的最大级次为 B(A) 2.(B) 3.(C) 4.(D) 5.,当偏振片转动时,最强的透射光是最弱的透射光光强的16倍,则在入射光中,自然光的强度I1和偏振光的强度I2之比I1:I2为A(A) 2:15.(B) 15:2.(C) 1:15.(D) 15:1.光图25.1,设想用完全相同但偏振化方向相互垂直的偏振片各盖一缝,则屏幕上 D(A) 条纹形状不变,光强变小. (B) 条纹形状不变,光强也不变. (C) 条纹移动,光强减弱. (D) 看不见干涉条纹.π/4角度的线偏振光,以起偏角入射到某介质上,则反射光与折射光的情况是 C(A) 反射光为垂直入射面振动的线偏光, 折射光为平行入射面振动的线偏光. (B) 反射光与折射光都是振动与入射面成π/4的线偏光.(C) 反射光为垂直入射面振动的线偏光,折射光也是线偏光,不过它的振动在平行入射面上的投影大于在垂直入射面上的投影.(D) 看不见反射光,折射光振动方向与入射光振动方向相同.,其运动方程为s =5+4t -t 2 (SI),则小球运动到最高点的时刻为 t = 2 秒.X 轴运动, v =1+3t 2 (SI), 若t =0时,质点位于原点.则质点的加速度a = 6t (SI);质点的运动方程为x = t +t 3(SI).a t =0的运动是匀速率运动;任意时刻a n =0的运动是直线运动;任意时刻a =0的运动是匀速直线运动;任意时刻a t =0,a n =常量的运动是匀速圆周运动.r =2t 2i +cos πt j (SI), 则其速度v = 4t i -πsin πt j ;加速度a = 4i -π2cos πt j ;当t =1秒时,其切向加速度τa = 4m/s2 ;法向加速度n a =9.87m/s23.5所示,一根绳子系着一质量为m 的小球,悬挂在天花板上,小球在水平面内作匀速圆周运动,有人在铅直方向求合力写出T cos θ-mg = 0 (1) 也有人在沿绳子拉力方向求合力写出T - mg cos θ= 0 (2)显然两式互相矛盾,你认为哪式正确?答 1式.理由是铅直方向无加速度,小球的向心加速度在绳子方向上有投影3.6所示,一水平圆盘,半径为r ,边缘放置一质量为m 的物体A ,它与盘的静摩擦系数为μ,圆盘绕中心轴OO '转动,当其角速度ω小于或等于 (mg/r)l/2 时,物A 不致于飞出.R ,质量为M .现有一质量为m 的物体处在离地面高度2R 处,以地球和物体为系统,如取地面的引力势能为零,则系统的引力势能为 2GMm/(3R) ;如取无穷远处的引力势能为零,则系统的引力势能为 -GMm/(3R).4.4所示,一半径R =0.5m 的圆弧轨道,一质量为m =2kg 的物体从轨道的上端A 点下滑, 到达底部B 点时的速度为v =2m /s, 则重力做功为 9.8J ,正压力做功为 0 ,摩擦力做功为 -5.8J .正压N 能否写成N =mg cos α=mg sin θ(如图示C 点)?答:不能.F = x i +3y 2j (SI) 作用于其运动方程为x = 2t (S I)的作直线运动的物体上,则0~1s内力F 作的功为A =2J .(m =60kg)作立定跳远在平地上可跳5m,今让其站在一小车(M =140kg)上以与地面完全相同的姿势作立定向地下跳远,忽略小车的高度,则他可跳远3.5m .6.2所示,两个质量和半径都相同的均匀滑轮,轴处无摩擦,α1和α2分别表示图(1)、图(2)中滑轮的角加速度,则α1>α2(填<=>).6.3所示,半径分别为R A 和R B 的两轮,同皮带连结,若皮带不打滑,则两轮的角速度ωA :ωB =R B::R A ;两轮边缘上A 点及B 点的线速度v A :v B =1:1;切向加速度A a τ:B a τ= 1:1;法向加速度nA a :nB a =R B::RA .XOY 平面内的三个质点,质量分别为m 1 = 1kg, m 2 = 2kg,和 m 3 = 3kg,位置坐标(以米为单位)分别为m 1 (-3,-2)、m 2 (-2,1)和m 3 (1,2),则这三个质点构成的质点组对Z 轴的转动惯量I z = 38kg ·m 2.,孔中穿一轻绳,绳的一端栓一质量为m 的小球,另一端用手拉住.若小球开始在光滑桌面上作半径为R 1速率为v 1的圆周运动,今用力F 慢慢往下拉绳子,当圆周运动的半径减小到R 2时,则小球的速率为R 1v 1/R 2,, 力F 做的功为(1/2)mv 12(R 12/R22-1)..8.4所示,加速度a 至少等于g cot θ时,物体m 对斜面的正压力为零,此时绳子的张图4.4图6.3力T =mg/sin θ.θ0的摆在摆动进程中,张力最大在θ=0处,最小在θ=±θ0 处,最大张力为3mg -2mg cos θ0,最小张力为mg cos θ0 ,任意时刻(此时摆角为θ,-θ0≤θ≤θ0)绳子的张力为 mg (3cos θ-2cos θ0) .V 容器内的某种平衡态气体的分子数为N ,则此气体的分子数密度为n =N/V , 设此气体的总质量为M ,其摩尔质量为M mol ,则此气体的摩尔数为M/Mmol ,分子数N 与阿伏伽德罗常数N 0的关系为N=N 0M/M mol .A 的热力学系统,若经准静态等容过程变到平衡态B ,将从外界吸热416 J,若经准静态等压过程变到与平衡态B 有相同温度的平衡态C ,将从外界吸热582 J,所以,从平衡态A 变到平衡态C 的准静态等压过程中系统对外界所作的功为166J..10mol 的单原子理想气体,在压缩过程中外界做功209J ,气体温度升高了1K ,则气体内能的增量∆E = 124.7J ,气体吸收热量Q = -84.3J ,此过程摩尔热容 C = -8.43J/(mol·K)..a →b 的绝热变化,如图10..4所示.设在a →b 过程中,内能的增量为∆E ,温度的增量为∆T ,对外做功为A ,从外界吸收的热为Q ,则在这几个量中,符号为正的量是A ;符号为负的量是∆T ∆E ,;等于零的量是Q ..11.3的卡诺循环:(1)abcda ,(2)dcefd ,(3)abefa ,其效率分别为:η1=33.3%; η2= 50%; η3= 66.7%..理想气体(设γ=C p /C V 为已知)的循环过程如图11.4的T —V 图所示,其中CA 为绝热过程,A 点状态参量(T 1,V 1)和B 点的状态参量(T 1,V 2)为已知,试求C 点的状态量:V c =V 2; T c =(V 1/V 2)γ-1T 1;p c =(R T 1/V2)(V 1/V 2)γ-1;27︒C,效率为40% ,高温热源的温度T1 =500K .. ,在夏天工作,环境温度在35︒C,冰箱内的温度为0︒C,这台电冰箱的理想制冷系数为ω =7.8 ..图10.413.1所示,两个容器容积相等,分别储有相同质量的N 2和O 2气体,它们用光滑细管相连通,管子中置一小滴水银,两边的温度差为30K ,当水银滴在正中不动时,N 2的温度T 1=210K ,O 2的温度T 2=240K.( N 2的摩尔质量为28×10-3kg/mol,O 2的摩尔质量为32×10-3kg/mol.)(1)分子可以看作质点; (2)除碰撞时外,分子之间的力可以忽略不计; (3)分子与分子的碰撞是完全弹性碰撞.14.2所示两条曲线(1)和(2),分别定性的表示一定量的某种理想气体不同温度下的速率分布曲线,对应温度高的曲线是(2).若图中两条曲线定性的表示相同温度下的氢气和氧气的速率分布曲线,则表示氧气速率分布曲线的是(1) .、B 、C 三个容器中装有同一种理想气体,其分子数密度之比为n A :n B :n C = 4:2:1,而分子的方均根速率之比为2A v :2B v :2C v =1:2:4。

长江大学物理练习册答案

长江大学物理练习册答案

1长江大学物理练习册答案壹.内容提要一、狭义相对论 1. 基本原理(1)爱因斯坦相对性原理; (2)光速不变原理. 2.洛伦兹坐标变换式⎪⎪⎩⎪⎪⎨⎧='='='='2222211/c v -vx/c -t t z z y y /c v -vt-x x ⎪⎪⎩⎪⎪⎨⎧'+'='='='+'=2222211/c v -/c x v t t z z y y /c v -t v x x 3. 时空观 (1).同时的相对性∆t=()2221/c v -/c x v t '∆+'∆(2). 长度收缩 l=2201/c v -l (3). 时间延缓 ∆t=2201Δ/c v -t4. 相对论力学(1).相对论质量 2201/c v -m m = (2).相对论动量 2201/c v -m m v v p ==(3).质能关系式①静能 E 0=m 0c 2 ②运动的能量 E=mc 2=22201/c v -c m③动能 E k =E -E 0=22201/c v -c m -m 0c 2④ E k =∆mc 2 ∆E =∆mc 2 (4). 动量能量关系式E 2=E 02+p 2c 2 . 二.光的粒子性1.普朗克黑体辐射公式(1).普朗克的量子假设(略) (2).普朗克黑体辐射公式M ν(T )d ν=()1e d 223-kT h c h νννπ M λ(T )d λ =()1ed 252-λλλπkT c h hc(3)斯特藩-玻耳兹曼定律 M (T )=σT 4(4)维恩位移定律 λm T = b 2. 光子 能量ε=h ν 动量p=h/λ 3.光电效应(1)爱因斯坦方程 h ν=mv 2/2+A (2)红限频率 ν0=A /h(3)遏止电势差 U c =( h ν-A )/e 4.康普顿效应 ∆λ=()[]()2sin 220θc m h 三、量子物理1.氢原子的玻尔理论 (1)三条假设 ①定态假设,②量子化条件 L=nħ=nh /(2π) ③频率条件 h ν=E i -E f(2)氢原子中电子轨道半径 r n =n 2r 1 (玻尔半径r 1为电子第一轨道半径n=1) (3)氢原子能级公式 E n =E 1/n 2氢原子的基态能量( n=1) E 1=-13.6eV (3)能级跃迁时辐射光子的频率和波长公式 ν=Rc (1/n f 2-1/n i 2) 1/λ= R (1/n f 2-1/n i 2) 2.德布罗意波 能量E=h ν 动量p=h/λ 德布罗意波长 λ=h/p=h/ (mv )3.不确定关系 ∆x ∆p x ≥h ∆y ∆p y ≥h∆z ∆p z ≥h ∆E ∆t ≥h4.量子力学简介2(1)波函数自由粒子的波函数 ()()px -Et h t x Ψπψ2i-0e,=找到粒子的概率密度为⎪ψ⎪2=ψψ*;波函数必须是单值、有界、连续并满足归一化条件:⎰∞∞-=1d 2V Ψ(1) 薛定谔方程①一维含时薛定谔方程t Ψh U Ψx Ψm h ∂∂=+∂∂-ππ2i 82222②一维定态薛定谔方程()()()08d d 2222=+x ψU -E hmx x ψπ ③三维定态薛定谔方程()08222=+∇ΨU -E h mΨπ (3)一维无限深势阱 08d d 2222=+ψh mE x ψπ 一维方垒势的隧道效应。

长江大学油层物理习题解答

长江大学油层物理习题解答

1第一篇 储层流体的高压物性第一章 天然气的高压物理性质一、名词解释。

1.天然气视分子量(gas apparent molecular weight ):2.天然气的相对密度g(gas relative density ) :3.天然气的压缩因子Z(gas compressibility factor) :4.对应状态原理(correlation state principle) :5.天然气压缩系数Cg (gas compressive coefficient ):6.天然气体积系数Bg (gas formation volume factor): 二.判断题。

√×× ×√√××1.体系压力愈高,则天然气体积系数愈小。

(√ ) 2.烃类体系温度愈高,则天然气压缩因子愈小。

(× ) 3.体系压力越大,天然气等温压缩率越大。

(× ) 4.当二者组分相似,分子量相近时,天然气的粘度增加。

( ) 5.压力不变时,随着温度的增加,天然气的粘度增加。

(× ) 6.天然气水合物形成的有利条件是低温低压。

(√ ) 7.温度不变时,压力增加,天然气体积系数减小。

(√ ) 8.温度不变时,压力增加,天然气分子量变大。

(× ) 9. 当压缩因子为1时,实际气体则成为理想气体。

(× )三.选择题。

ACACBDB1.理想气体的压缩系数与下列因素有关1.理想气体的压缩系数与下列因素有关A.压力B.温度C.体积D.组成 ( A )2.在相同温度下,随着压力的增加,天然气压缩因子在低压区间将在高压区间将A.上升,上升B.上升,下降C.下降,上升D.下降,下降 ( C )3.对于单组分烃,在相同温度下,若C原子数愈少,则其饱和蒸气压愈其挥发性愈A.大,强B.小,弱C.小,强D.大,弱( A )4.地层中天然气的密度地面天然气的密度。

大学物理1习题册答案(1)

大学物理1习题册答案(1)

第一页一、1、(2),(22)/,2/,(23),(23)/i j m i j m s j m s i j m i j m s +----2、0 m/s二、1、D 2、C三、1、(1)0.5,0.5/y j m v j m s ∆=-=- (因为只沿y 方向,以下符号j均可省去)(3) (2)123/,6/v j m s v j m s ==-2.25S m =(4)222129/,3/,15/a j m s a j m s a j m s =-=-=-第二页一、1、2322/,103t m s t m +23、222002sin 22cos sin cos cos v v g g θθααα+ 二、1、B 2、D三、1、(1)224.8/,230.4/n a m s a m s τ==(2)2 3.1553Rad θ=+≈ (3)1/312060.55t s t s -==≈, 第三页1、(1)2,0,0,2/S m r v v m s ππ=∆===29(2)2/,/,arctan 2v m s v v a m s ππτθ==== ,2、(1) 8.5s m =(2)22223/28.5/,/(8.5)v m s a m s t ==+ 3、2(1)192x y =-12(2)217,411,26r i j r i j v i j =+=+=-12(3)24,28,4v i j v i j a j =-=-≡-111222(4)0,3,6,212;0,19,2r v t s r i j v i j t s r j v i===+=-===min (5)3,t s r m ==4、00tan tan v R v R v tθθ=-第四页一、1、B 2、C 3、D 4、C二、1、(1)位于[-A,A]之间的线段 (2)2cos A t ωω- (3)(0,1,2...)n n πω=2、(1)2(),b ct c R -- (23、(1(2)()12arccos /t t三、1、22216v x += 第五页一、1、(1)0,0 (2)23.33,1.67/N m s2、02sin mv α,竖直向下二、1、C 2、B三、1、,367.5I N s F N θ==≈(忽略重力冲量)2、2mRS M m=+,向左第六页1、()12122112121212122()(),,m m g a m m g m a m a m m ga a T f m m m m m m '-''-+--====+++ 2、12,33g a N == 3、000(1)(2)ln(1)v R v t Rv S v t R Rμμμ==++4、0MV S K= 第七页一、1、2ln 2,mk x k二、1、C 2、B 3、B三、1、(1)摩擦力为122,7.5f N f N ==,如果考虑弹力,则112220.1,arctan1030.9,arctan 4F N F N θθ=≈==≈=(2)16.5F N >第八页 一、1、C2、C二、1、1111,,0;,,0mvd mvd mgd mgd 2、4022.66410/kg m s ⨯3、125.2610m ⨯三、1、(1)0(2)M L mab k ω==第九页一、1、23mg R μ2、544300,54at bt at bt t ωω+-+-3、()()()2122121261,1243m m g L mL m m mL m m L-++++ 二、1、(1)300n rev = (2)22230/,3/,0.3/,90/n s v m s a m s a m s τωππππ====2、2126.25/,17.5,21.25rad s T N T N α===第十页一、1、P 不守恒,L守恒2、210,2mr ω 3、22211,28mR mgh mR ωω+ 4、2234,2m R ωω二、1、(1)0111((02626M MV V m m =+=- (2)I = 第11页 1、()22mgSa M m L=+2、27g a =3、v =4、ln 2J t k=第12页一、1、232,,423L gmL mg L2、B3、B二、23gt Rθ=第13页1、()0F L L - d2、/4mgL3、合外力为0,只有保守力做功4、23GMmR-5、67 J6、-8 J7、12(1)v Mv ==向右(2)2m gRW M m=+(3)223m gN mg M=+第14页1)0X X -2、2/3k E3、23aL bL -4、01cos 3θ=+5、101(1)(2)2v X X ==6、略7、(1)12()F m m g =+ (2)不变 第15页 1、()()221 1.33/,20.67MV V m s t s mgμ==== 2、(1)00/,22V m s F mg N ====(2)()sin 2cos 1,3cos 1v a g g n F θτθθ==+-=-3、(1)0.06x m =(2)0.651e =<,所以是非弹性的(3)0.038,0x m e '==,所以是完全非弹性的4、1221E k E k = 第16页 1、D 2、A3、B4、B5、c6、收缩,在相对物体静止的参照系中,L 7c8、()()10.623v c L c ==9、0.12v c = 第17页 1、C2、B3、A4、2E mc =,200.25M c56、16:9, 8:37、0.6c8、略9、180.9999089, 1.4948610/V c P kg m s -=≈=⨯第18页1、()14Q -2、各个点电荷单独存在时在该点产生场强的矢量和3、C4、C5、C6、D7、222q E R πε=,水平向右8、00(1)(2)02x E E σε⎛⎫==第19页1、22,2q R E R E ππε+2、0ie sq E dS φε∑==⎰ ;在静电场中,通过任意闭合曲面的E 通量,等于该曲面内电荷量的代数和除以0ε。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Ⅲ练习一至练习七参考答案练习一质点运动的描述一.选择题 C B A B D二.填空题1. 2.2. 6 t ; t+t33. -w2r或-w2 (Acoswti+Bsinwtj)x2/A2+y2/B2=1三.计算题1.取坐标如图,船的运动方程为x=[l2(t)-h2]1/2因人收绳(绳缩短)的速率为v0,即dl/dt=-v0.有u=dx/dt=(ldl/dt)/ (l2-h2)1/2=- v0 (x2+h2)1/2/xa= dv/dt=- v0[x (dx/dt)/ (x2+h2)1/2]/x-[(x2+h2)1/2/x2] (dx/dt) =- v0{-h2/[ x2 (x2+h2)1/2]}[ - v0 (x2+h2)1/2/x]=- v02h2/ x3负号表示指向岸边.2. 取坐标如图,石子落地坐标满足x=v0tcosq=scosay=v0tsinq-gt2/2=ssina解得tana= tanq-gt/(2v0cosq)t=2v0sin(q-a)/(g cosa)s=x/cosa= v0tcosq / cosa=2v02sin(q-a)cosq /(g cos2a)当v0,a给定时,求s的极大值. 令ds/dq=0,有ds/dq=[2v02/(gcos2a)][cos(q-a)cosq- in(q-a)sinq]=[2v02 cos(2q-a)/(gcos2a)] 由此可得cos(2q-a)=0推出2q-a=p/2得q=p/4+a/2所以,当q=p/4+a/2时, s有极大值,其值为smax=2v02sin(p/4-a/2)cos(p/4+a/2)/(g cos2a)= v02[sin(p/2)-sina] /(g cos2a)= v02(1-sina)/(g cos2a)练习二圆周运动相对运动一.选择题 B B D C A二.填空题79.5m.匀速率,直线, 匀速直线, 匀速圆周.4ti-psinptj, 4i-p2cosptj,4m/s2,9.87m/s2.三.计算题M的速度就是r变化的速度,设CA=R.由r2=R2+l2-2RlcoswtR/sina=r/sinwt得2rdr/dt=2Rlwsinwt=2lwsinwt ·r sina /sinwtv=dr/dt=lwsina或v=dr/dt=lwRsinwt/r= lwRsinwt/( R2+l2-2Rlcoswt)1/2取向下为X正向,角码0,1,2分别表示地,螺帽,升降机.依相对运动,有a12=a10-a20a12=g-(-2g)=3gh= a12t2/2t=[2h/(3g)]1/2=0.37sv0=a20t0=-2gt0x=v0t+gt2=-2gt0t+gt2代入t0=2s, t=0.37s, 得x=-13.8m螺帽上升了s=13.8m练习三牛顿运动定律一.选择题 E C A D A二.填空题1. (1)式, 铅直方向无加速度,小球的向心加速度在绳子方向上有投影.(mg/r)1/2.3. (m1l1+m2l1+m2l2)w2, m2(l1+l2)w2.三.计算题1. 受力分析如图,有m1g-T=m1a10fm -m2g=m2a20fm =T用角标0、1、2分别表示地、绳(绳与m1的加速度的大小相等)、m2,向上为坐标正向,因a20=a21+a10 有a20=a10-a2解得m1、m2的加速度,环与绳间摩擦力分别为a10=[(m1-m2)g+m2a2]/(m1+m2) a20=[(m1-m2)g-m1a2]/(m1+m2) fm=T=(2g-a2)m1m2/(m1 +m2)2.(1) fm =-kv=mdv/dt,,v=v0e-kt/m(2) v=dx/dt练习四功和能一.选择题 A A D B C二.填空题1. k(x+x0)2/2, k(x+x0)2/2-kx02/2, kx2/2.2. 2GMm/(3R), -GMm/(3R).3. 9.8J, 0, -5.8J, 不能.三.计算题1. (1).=31J(2).依动能定理,有,得v=(2A/m)1/2=5.34m/s;(3).因其功只与始末态(即只与x1、x2)有关,故为保守力2. 用角标1、2分别表示甲球和乙球,碰撞前v10=(2gl)1/2 v10=0因是弹性碰撞,且m1=m2=m,碰后有v1=0 v2=(2gl)1/2D点处mv22/2= mvD2/2+mgR(1-cosq)mgl= mvD2/2+ mg (l/2)(1-cos60°)= mvD2/2+ mg l/4vD= (3g l/2)1/2正压力N=mgcos60°+ mvD2/R=7mg/2练习五冲量和动量一.选择题 B C B D A二.填空题2.>,相反3.5.三.计算题1.取质点在b点处的速度方向为X正向, 向下为Y正向.因周期为T=2pr/v有重力的冲量I1== mgpr/v,方向向下合力的冲量(应用冲量定理)I=mv0-(-mv0)=2 mv0张力的冲量I2=I-I1=2 mv0i-(mgpr/v)j其大小为I2=[(2 mv0)2+(mgpr/v)2]1/2= m [4v02+(gpr/v)2]1/2与Y轴的夹角a=arctan(I2x/I2y)= arctan[2mv0/(-mgpr/v0)]=p-arctan[v02/(pgr)]2.设绳子的质量线密度为r(r=dm/dl=m/l),t时间内落至桌面的绳子对桌面的压力设为G,即N1=rgx=G,dt时间内碰到桌面的绳子dm=rdx受桌面的力N'2, 依动量定理,有(-N'2+rdxg)dt»-N'2dt=rdx(0-v)=-rdxvN'2=rvdx/dt=rv2=r(2gx)N2=r(2gx)故t时刻绳子对桌面的压力为N=N1+N2=3rgx=3G练习六力矩转动惯量转动定律一.选择题 B C D A A二.填空题1. >.2. mr2/2, MR2/2, =.3. RB:RA, 1:1, 1:1, RB:RA.三.计算题1.任意时刻杆与铅直方向成q角M=mg(l/2)sinq=Jamglsinq /2=(ml2/3)a=(ml2/3)dw/dtdw/dt=3gsinq /(2l)=(dw/dq)(dq/dt)=wdw/dqwdw= 3gsinq dq /(2l)w2/2=3g/(4l)w=[3g/(2l)]1/2a=3gsin60°/(2l) = 3g/(4l)2.以圆盘中心轴为心取圆环微元rdrdm=sdS=s2prdr s =m/(pR2)dfm=mdmg=ms2prdrgdMm=rdfm=2pmsgr2drMm==2pmsgR3/3=2mmgR/3练习七转动定律(续)角动量一.选择题 C A A BA二.填空题1. 20.2. 38kg ·m2.3. R1v1/R2, (1/2)m v12(R12/R22-1).三.计算题切向方向受力分析如图,系m1 = 20g的物体时动力学方程为mg-T=0Tr-Mm=0所以摩擦阻力矩Mm=mgr=3.92×10-2m·N系m2=50g的物体时物体加速下降,由h=at2/2得a=2h/t2=8×10-3m/s2a=a/r=4×10-2s-2动力学方程为: m2g-T=m2aTr-Mm=Ja得绳系m2后的张力T= m2(g-a)=0.4896N飞轮的转动惯量J =(Tr-Mm)/a=1.468kg·m22.小球、细棒组成系统对O点的角动量守恒mvL/2=0+( ML2/3)ww=3mv/ (2ML)细棒与地球组成系统的机械能守恒Jw2/2=Mg (L/2)(1-cosq)( ML2/3) [3mv/ (2ML)]2/2=Mg L (1-cosq)/23m2v2/ (4M)=Mg L (1-cosq)v2=(4M2/ m2)g L (1-cosq)/3v=(2M/ m)[g L (1-cosq)/3]1/2Ⅳ课堂例题一. 选择题1.一质点在几个外力同时作用下运动时,下述哪种说法正确?(A) 质点的动量改变时,质点的动能一定改变.(B) 质点的动能不变时,质点的动量也一定不变.(C) 外力的冲量是零,外力的功一定为零.(D) 外力的功为零,外力的冲量一定为零.2.有一劲度系数为k的轻弹簧,原长为l0,将它吊在天花板上.当它下端挂一托盘平衡时,其长度变为l1.然后在托盘中放一重物,弹簧长度变为l2,则由l1伸长至l2的过程中,弹性力所作的功为(A) . (B) .(C) .(D) .3.某物体的运动规律为dv/dt=-kv2t,式中的k为大于零的常量.当t=0时,初速为v0,则速度v与时间t的函数关系是(A) (B)(C) (D)4. 均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?(A) 角速度从小到大,角加速度从大到小.(B) 角速度从小到大,角加速度从小到大.(C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大.5.假设卫星环绕地球中心作圆周运动,则在运动过程中,卫星对地球中心的(A) 角动量守恒,动能也守恒.(B) 角动量守恒,动能不守恒.(C) 角动量不守恒,动能守恒.(D) 角动量不守恒,动量也不守恒.(E) 角动量守恒,动量也守恒.6.如图所示,A、B为两个相同的绕着轻绳的定滑轮.A滑轮挂一质量为M的物体,B滑轮受拉力F,而且F=Mg.设A、B两滑轮的角加速度分别为bA和bB,不计滑轮轴的摩擦,则有(A) bA=bB.(B) bA>bB.(C) bA<bB.(D) 开始时bA=bB,以后bA<bB.二. 填空题1.如图所示,x轴沿水平方向,y轴竖直向下,在t=0时刻将质量为m的质点由a处静止释放,让它自由下落,则在任意时刻t,质点所受的对原点O的力矩=________________;在任意时刻t,质点对原点O的角动量=__________________.2.如图所示,一物体放在水平传送带上,物体与传送带间无相对滑动,当传送带作匀速运动时,静摩擦力对物体作功为_____;当传送带作加速运动时,静摩擦力对物体作功为_____;当传送带作减速运动时,静摩擦力对物体作功为______.(仅填“正”,“负”或“零”)3.转动着的飞轮的转动惯量为J,在t=0时角速度为w0.此后飞轮经历制动过程.阻力矩M的大小与角速度w 的平方成正比,比例系数为k (k为大于0的常量).当w=w0/3时,飞轮的角加速度b =__________.从开始制动到w=w0/3所经过的时间t=_______________.4.质量为m、长为l的棒,可绕通过棒中心且与棒垂直的竖直光滑固定轴O在水平面内自由转动(转动惯量J=ml2 / 12).开始时棒静止,现有一子弹,质量也是m,在水平面内以速度v0垂直射入棒端并嵌在其中.则子弹嵌入后棒的角速度w =_____________________.三. 计算题1.见书P95 3.162.见书p116 4.143.见书p153 5.84.有一质量为m1、长为l的均匀细棒,静止平放在滑动摩擦系数为m的水平桌面上,它可绕通过其端点O且与桌面垂直的固定光滑轴转动.另有一水平运动的质量为m2的小滑块,从侧面垂直于棒与棒的另一端A相碰撞,设碰撞时间极短.已知小滑块在碰撞前后的速度分别为和,如图所示.求碰撞后从细棒开始转动到停止转动的过程所需的时间.(已知棒绕O 点的转动惯量J=m1l2/3)。

相关文档
最新文档