人教版高中数学【选修1-2】[知识点整理及重点题型梳理]_《《推理与证明》全章复习与巩固(文)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版高中数学选修1-2
知识点梳理
重点题型(常考知识点)巩固练习
《推理与证明》全章复习与巩固
【学习目标】
1. 了解合情推理的含义,能利用归纳推理和类比推理等进行简单的推理;掌握演绎推理的基本模式;体会它们的重要性,并能运用它们进行一些简单的推理;
2. 了解合情推理和演绎推理之间的联系和差异;
3. 了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程和特点;
4. 了解间接证明的一种基本方法:反证法;了解反证法的思考过程、特点.
【知识网络】
【要点梳理】
要点一:有关推理概念
归纳推理:
又称归纳法,是从特殊到一般、部分到整体的推理.根据归纳对象是否完备,分为完全归纳法和不完全归纳法.完全归纳法是根据某类事物中的每一个对象或每一个子类的情况作出的关于该类事物的一般性结论的推理;不完全归纳法是根据某类事物中的一部分对象具有某种特征而作出该类事物都具有这一特征的一般性结论的推理.由于仅列举了归纳对象中的一小部分,因此得出的结论与前提未必有必然的联系,故其结论未必正确,必须经过理论的证明和实践的检验.
类比推理:
又称类比法,是由特殊到特殊的推理.这是由两系统的已知属性,通过比较、联想而发现未知属性的
“开拓型”“发散型”思维方式.和归纳推理一样,能由已知推测未知,推理的结论也不一定为真,有待进一步证明,通常情况下,类比的相似性越多,类比得出的结论就越可靠.
演绎推理:
又称演绎法.是从一般到特殊的推理,是数学证明中的基本推理形式.演绎推理的结论完全蕴涵于前提之中.它是“封闭型”的思维方法,只要前提真实,逻辑形式正确,则结论必然真实,但由它一般不能取得突破性进展.故合情推理与演绎推理各有侧重,相辅相成.合情推理有助于发现新事物、新结论、新规律,演绎推理保证结论的可靠性,去伪存真.
要点诠释:
演绎推理更注重推理的形式规则,常见的有假言推理、关系推理、三段论推理.
三段论推理:其一般形式为:大前提:所有M 都是P ;小前提:S 是M ;结论:S 是P .
要点二:有关证明方法
综合法
综合法是利用已知条件和某些数学定义、公理、定理等经过一系列的推理论证,最后推导出所要证明的结论成立的证明方法,是数学推理证明中的主要方法.即从已知条件出发,经过逐步的逻辑推理,最后达到待征结论或需求问题.如果要证明的命题是p q ⇒,那么证明步骤用符号表示为p (已知)123p p p ⇒⇒⇒⇒…q ⇒.
分析法
分析法就是从待征结论出发,一步一步探索下去,寻求结论成立的充分条件,最后达到题设的已知条件或已被证明的事实.用分析法证明的逻辑关系:q (结论)n p ⇐⇐…321p p p p ⇐⇐⇐⇐(已知).
要点诠释:
综合法和分析法是两种思路截然相反的证明方法,应用综合法证明问题时,必须首先想到从哪里开始起步,分析法就可以帮助我们克服这种困难.在实际证明问题时,应当把分析法和综合法综合起来使用,转换解题思路,增加解题途径.
间接证法
间接证法不是从正面确定论题的真实性,而是证明它的反论题为假或改证它的等价命题为真,间接达到目的.反证法就是间接证法的一种.
反证法证题步骤为:
(1)假设命题的结论不成立,即假设结论的反面成立.
(2)从这个假设出发,经过推理论证得出矛盾.
(3)由矛盾判断假设不成立.从而肯定命题的结论成立.
反证法导出矛盾常见的有以下几种情况:
①导出非p为真,即与原命题的条件矛盾.
②导出q为真,即与假设“非q为真”矛盾.
③导出一个与定义、公理、定理等矛盾的命题.
要点诠释:
反证法的理论基础是互为逆否命题的等价性,从逻辑角度看,命题:
“若p则q”的否定是“若p则⌝q”,由此进行推理,如果发生矛盾,那么就说明“若p则⌝q”为假,从而可以导出“若p则q”为真,从而达到证明的目的,反证法是高中数学的一种重要的证明方法,在不等式和立体几何的证明中经常用到,在高考题中也经常出现,它所反映出的“正难则反”的解决问题的思想方法更为重要.反证法主要证明:否定性,唯一性命题;至多,至少型问题;几何问题.
【典型例题】
类型一:合情推理与演绎推理
例1.平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行.类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:
充要条件①________________________________;
充要条件②________________________________.
(写出你认为正确的两个充要条件)
【思路点拨】由平面几何图形的性质类比立体几何图形的性质时要做到点类比线、线类比面、面类比体.【解析】两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点,底面是平行四边形(填任意两个即可)
【总结升华】本题考查类比推理,其关键是掌握由平面几何图形的性质类比立体几何图形的性质时,元素间的对应关系.
举一反三:
【变式1】在平面几何中,△ABC的内角平分线CE分AB所成线段的比为AE AC
EB CB
=,把这个结论类比
到空间:在三棱锥A—BCD中(如图所示),面DEC平分二面角A—CD—B且与AB相交于E,则得到的类比的结论是________.
【答案】ACD BCD
S AE EB S ∆∆=. 【变式2】观察图中各正方形图案,每条边上有n ≥2个圆点,第n 个图案中圆点的总数是n S .
按此规律推断出n S 与n 的关系式为_________.
【答案】(1)4n S n =-⨯
【解析】依图构造规律可以看出:2244S =⨯-,即四角四顶点重复计数一次.
S 3=3×4-4=(3-1)×4;
S 4=4×4-4=(4-1)×4,…
猜想:(1)4n S n =-⨯(n ≥2,且n ∈N +).
例2. 已知函数()log (1)x a f x a =-(a >0且a ≠1),若A (x 1,y 1)、B (x 2,y 2)(x 1<x 2)是()f x 图象上两
点,证明直线AB 的斜率大于零.
【解析】 当a >1时,x y a =是增函数,
设0<x 1<x 2,则1<1x a <2x a ,于是0<11x a -<21x a -,
故12log (1)log (1)x x a a a a -<-,即12y y <.
当0<a <1时,x y a =是减函数,
设x 1<x 2<0,则121x x a a
>>,于是12110x x a a ->->, 故12log (1)log (1)x x
a a a a -<-,即y 1<y 2.
∴ 无论a >1时,还是0<a <1时,函数()log (1)x a f x a =-在其定义域上是增函数,即当x 1<x 2时,一定有y 1<y 2.
故直线AB 的斜率1212
0y y x x ->-. 【总结升华】依题设函数特征,要直接由斜率公式求解不易证出,但题设所给函数的单调性比较明确,