2019上海市二模试卷C卷答案知识分享

合集下载

2019年最新上海市第二次高考模拟高三数学试卷及答案解析

2019年最新上海市第二次高考模拟高三数学试卷及答案解析

第二学期期中高三年级数学学科教学质量监测试卷(满分150分,时间120分钟)一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果. 1. 若集合{}0A x x =>,{}1B x x =<,则AB = .2. 已知复数z 满1z i ⋅=+(i 为虚数单位),则z = .3. 函数()sinx cosxf x cosx sinx=的最小正周期是 .4. 已知双曲线222181x y a -=(0a >)的一条渐近线方程为3y x =,则a = .5. 若圆柱的侧面展开图是边长为4的正方形,则圆柱的体积为 .6. 已知x y ,满足0220x y x y x -≤⎧⎪+≤⎨⎪+≥⎩,则2z x y =+的最大值是 . 7. 直线12x t y t =-⎧⎨=-⎩(t 为参数)与曲线32x cos y sin θθ=⎧⎨=⎩(θ为参数)的交点个数是 .8. 已知函数()()220()01xx f x log x x ⎧≤⎪=⎨<≤⎪⎩ 的反函数是1()f x -,则11()2f -= .9. 设多项式231(1)(1)(1)nx x x x ++++++++(*0x n N ≠∈,)的展开式中x 项的系数为n T ,则2nn T limn →∞= .10. 生产零件需要经过两道工序,在第一、第二道工序中产生废品的概率分别为0.01和p ,每道工序产生废品相互独立.若经过两道工序后得到的零件不是废品的概率是0.9603,则p = .11. 设向量m ()x y =,,n ()x y =-,,P 为曲线1m n ⋅=(0x >)上的一个动点,若点P 到直线10x y -+=的距离大于λ恒成立,则实数λ的最大值为 .12. 设1210x x x ,,,为1210,,,的一个排列,则满足对任意正整数m n ,,且110m n ≤<≤,都有m n x m x n +≤+成立的不同排列的个数为 .二、选择题(本大题共有4题,满分20分,每题5分) 每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑. 13. 设a b R ∈,,则“4a b +>”是“1a >且3b >”的………………………( )(A )充分而不必要条件 (B )必要而不充分条件(C )充要条件(D )既不充分又不必要条件14. 如图,P 为正方体1111ABCD A BC D -中1AC 与1BD 的交点,则PAC ∆在该正方体各个面上的射影可能是 …………………………………………………………………( )(A )①②③④ (B )①③ (C )①④ (D )②④ 15. 如图,在同一平面内,点P 位于两平行直线12l l ,同侧,且P 到12l l ,的距离分别为13,.点M N ,分别在12l l ,上,8PM PN +=,则PM PN ⋅的最大值为…………………( )(A )15 (B )12 (C )10 (D )9 16. 若存在t R ∈与正数m ,使()()F t m F t m -=+成立,则称“函数()F x 在x t =处存在距离为2m 的对称点”.设2()x f x xλ+=(0x >),若对于任意t ∈,总存在正数m ,使得“函数()f x 在x t =处存在距离为2m 的对称点”,则实数λ的取值范围是…………………………………………………………………………………………( )(A )(]02, (B )(]12,(C )[]12, (D )[]14, 三、解答题(本大题共有5题,满分76分) 解答下列各题必须在答题纸的相应位置写出 必要的步骤.17. (本题满分14分,第1小题满分8分,第2小题满分6分)如图,在正方体1111ABCD A BC D -中,E F 、分别是线段1BC CD 、的中点.(1)求异面直线EF 与1AA 所成角的大小; (2)求直线EF 与平面11AA B B 所成角的大小.18. (本题满分14分,第1小题6分,第2小题8分)已知抛物线22y px =(0p >),其准线方程为10x +=,直线l 过点(0)T t ,(0t >)且与抛物线交于A B 、两点,O 为坐标原点.(1)求抛物线方程,并证明:OB OA ⋅的值与直线l 倾斜角的大小无关; (2)若P 为抛物线上的动点,记||PT 的最小值为函数()d t ,求()d t 的解析式.19. (本题满分14分,第1小题6分,第2小题8分)对于定义域为D 的函数()y f x =,如果存在区间[]m n D ⊆,(m n <),同时满足: ①()f x 在[]m n ,内是单调函数;②当定义域是[]m n ,时,()f x 的值域也是[]m n ,.则称函数()f x 是区间[]m n ,上的“保值函数”. (1)求证:函数2()2g x x x =-不是定义域[01],上的“保值函数”; (2)已知211()2f x a a x=+-(0a R a ∈≠,)是区间[]m n ,上的“保值函数”,求a 的取值范围.20. (本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)数列{}n a 中,已知12121()n n n a a a a k a a ++===+,,对任意*n N ∈都成立,数列{}n a 的前n 项和为n S .(这里a k ,均为实数) (1)若{}n a 是等差数列,求k 的值;(2)若112a k ==-,,求n S ; (3)是否存在实数k ,使数列{}n a 是公比不为1的等比数列,且任意相邻三项12m m m a a a ++,,按某顺序排列后成等差数列?若存在,求出所有k 的值;若不存在,请说明理由.21. (本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)设T R ⊂≠,若存在常数0M >,使得对任意t T ∈,均有t M ≤,则称T 为有界集合,同时称M 为集合T 的上界.(1)设12121x x A y y x R ⎧⎫-⎪⎪==∈⎨⎬+⎪⎪⎩⎭,、212A x sinx ⎧⎫=>⎨⎬⎩⎭,试判断1A 、2A 是否为有界集合,并说明理由; (2)已知2()f x x u =+,记11()()()(())n n f x f x f x f f x -==,(23n =,,).若m R ∈,1[)4u ∈+∞,,且{}()n B f m n N *=∈为有界集合,求u 的值及m 的取值范围;(3)设a b c 、、均为正数,将222()()()a b b c c a ---、、中的最小数记为d .是否存在正数(01)λ∈,,使得λ为有界集合222{|dC y y a b c==++,a b c 、、均为正数}的上界,若存在,试求λ的最小值;若不存在,请说明理由.参考答案及评分标准一、填空题(本大题共有12题,满分54分) 1、()0,1 2、1 3、π 4、3 5、16π6、37、28、1-9、1210、0.03 1112、512 二、选择题(本大题共有4题,满分20分) 13、B 14、C 15、A 16、A三、解答题(本大题共有5题,满分76分)17. 解:(1)方法一:设正方体棱长为2,以D 为原点,直线DA ,DC ,1DD 为x ,y ,z 轴,建立空间直角坐标系,则(000)D ,,,(220)B ,,,(020)C ,,,1(002)D ,,,故(12E ,,,(011)F ,,,()111EF =--,,,()1002AA =,,, …………………4/设异面直线EF 与1AA 所成角的大小为α,向量EF 与1AA 所成角为β,则11EF AA cos cos EF AA αβ⋅==⋅…… 6/3==,……7/注意到02πα⎛⎤∈ ⎥⎝⎦,,故3arccosα=,即异面直线EF 与1AA 所成角的大小为3arccos.…………………8/ (2)由(1)可知,平面11AA B B 的一个法向量是(100)n =,,,…………………10/设直线EF 与平面11AA B B 所成角的大小是θ,向量EF 与n 所成角为γ,则EF n sin cos EF nθγ⋅==⋅………12/3=13/1又02πθ⎡⎤∈⎢⎥⎣⎦,,θ∴=线EF 与平面11AA B B 所成角的大小为.………………14/方法二:设正方体棱长为2.(1)在面11CC D D 内,作FH CD ⊥于H ,联结HE .因为正方体1111ABCD A BC D -,所以1AA ∥1DD ;在面11CC D D 内,有FH ∥1DD ,故异面直线EF 与1AA 所成的角就是EFH ∠(或其补角).………………………4/由已知及作图可知,H 为CD 的中点,于是,在Rt EFH ∆中,易得1FH =,HE=,故HE tanEFH FH∠=, ………………………………………… 6/== 7/ 又(0)2EFH π∠∈,,所以EFH∠=从而异面直线EF 与1AA 所成角的大小为8/(2)因为正方体1111ABCD A BC D -,所以平面11AA B B ∥平面11CC D D ,故直线EF 与平面11AA B B 所成角的大小就是直线EF 与平面11CC D D 所成角.注意到BC ⊥平面11CC D D ,即EC ⊥平面11CC D D ,所以直线EF 与平面11AA B B所成角的大小即为EFC∠. ………………………………10/在Rt EFC∆中,易得1EC FC ==,,故ECtan EFCFC∠=……………………12/2==,………………13/又(0)2EFCπ∠∈,,故2E F C a r c ta n∠=,即直线EF与平面11AA B B所成角的大小为……14/18.解:(1)方法一:由题意,2=p,所以抛物线的方程为xy42=.……………2/当直线l的斜率不存在时,直线l的方程为tx=,则(A t,(B t-,,ttOBOA42-=⋅.…………3/当直线l的斜率k存在时,则0≠k,设l的方程为)(txky-=,11()A x y,,22()B x y,,由24()y xy k x t⎧=⎨=-⎩消去x,得0442=--ktyky,故121244y yky y t⎧+=⎪⎨⎪=-⎩,所以,ttyyyyyyxx41622122212121-=+=+=⋅.…………………………………………5/综上,OBOA⋅的值与直线l倾斜角的大小无关.…………………………………………6/方法二:由题意,2=p,所以抛物线的方程为xy42=.………………………………2/依题意,可设直线l 的方程为x my t =+(m R ∈),11()A x y ,,22()B x y ,,由24y x x my t ⎧=⎨=+⎩得2440y my t --=, 故121244y y my y t+=⎧⎨=-⎩, 所以,12121212()()OA OB x x y y my t my t y y ⋅=+=+++221212(1)()m y y mt y y t =++++ …………………………5/22(1)(4)4m t mt m t =+-+⋅+24t t =-综上,OB OA ⋅的值与直线l倾斜角的大小无关. …………………………6/(2)设00()P x y ,,则0204x y =,||PT =, ……………………… (8)/注意到00≥x ,所以,若20t -≥,即2t ≥,则当02x t =-时,||PT 取得最小值,即()2)d t t =≥;………10/若20t -<,即有02t <<,则当00x =时,||PT 取得最小值,即()(02)d t t t =<<;………12/综上所述,()()2()02t d t tt ⎧≥⎪=⎨<<⎪⎩…………………………………………………14/19.解:(1)函数2()2g x x x =-在[01]x ∈,时的值域为[10]-,,…………………………4/不满足“保值函数”的定义,因此函数2()2g x x x =-不是定义域[01],上的“保值函数”.………………………6/(2)因xa a x f 2112)(-+=在[]m n ,内是单调增函数,故()()f m mf n n ==,,……8/这说明m n ,是方程x xa a =-+2112的两个不相等的实根, ………………………………10/其等价于方程1)2(222=++-x a a x a 有两个不相等的实根,……………………………11/由222(2)40a a a ∆=+->解得23-<a 或21>a . ………………………………………13/ 故a的取值范围为3122⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭,,. ………………………………………………14/20.解:(1)若{}n a 是等差数列,则对任意*n N ∈,有122n n n a a a ++=+,………………2/即121()2n n n a a a ++=+,………………………………………………………………………3/故12k =.………………………………………………………………………………………4/(2)当12k =-时,121()2n n n a a a ++=-+,即122n n n a a a ++=--, 211()n n n n a a a a ++++=-+,故32211()n n n n n n a a a a a a ++++++=-+=+. …………………………………………5/所以,当n 是偶数时,1234112()(11)22n n n n nS a a a a a a a a n -=++++++=+=+=;……………………7/当n 是奇数时,2312()2a a a a +=-+=-,12341n n n S a a a a a a -=++++++123451()()()n n a a a a a a a -=+++++++11(2)22n n -=+⨯-=-. ……………9/综上,()()222n n n S nn-=⎧⎪=⎨=⎪⎩(*k N ∈). …………………………………………10/(3)若}{n a 是等比数列 ,则公比a a a q ==12,由题意1≠a ,故1-=m m a a ,m m a a =+1,12++=m m a a .……11/① 若1m a +为等差中项,则122m m m a a a ++=+,即112m m m a a a -+=+⇔221a a =+,解得1=a (舍去);……12/② 若ma 为等差中项,则122m m m a a a ++=+,即112m m m a a a -+=+⇔22a a =+,因1≠a ,故解得,2a =-,11122215m m m m m m a a a k a a a a a +-++====-+++; ……………………………14/③ 若2m a +为等差中项,则212m m m a a a ++=+,即112221m mma a aa a+-=+⇔=+, 因为1≠a ,解得212215a a k a =-==-+,. …………………………………………15/综上,存在实数k满足题意,25k =-.…………………………………………………16/21.解:(1)对于1A ,由2121x xy -=+得1201x y y +=>-,解得11y -<<,………………2/1A ∴为有界集合; …………………………………………3/显然252266A x k x k k Z ππππ⎧⎫=+<<+∈⎨⎬⎭⎩,不是有界集合. ………………………4/(2)记()n n a f m =,则21n n a a u +=+.若14u =,则21()4f m m =+,22111()42n n n n n a a a a a +=+=-+≥,即1n n a a +≥,且211111()()2422n n n n a a a a +-=-=-+,从而1111222n n n a a a +-=-⋅+. (ⅰ)当12m =时,1()2n n f m a ==,所以1{}2B =,从而B 为有界集合.…………5/(ⅱ)当12m <时,由2114n n a a +=+,2111()()4a f m f m m ===+,显然,此时0n a >,利用数学归纳法可得12n a <,故B 为有界集合.…………………………………………6/(ⅲ)当12m >时,211111()()42n n a a a f m f m m m +≥≥≥===+≥>,2114n n n n a a a a +-=-+21()2n a =- 211()2a ≥-,即2111()2n n a a a +-≥-,由累加法得2111(1)()2n a a n a ≥+--→+∞,故B 不是有界集合.因此,当14u =,且12m ≤时,B 为有界集合;当14u =,且12m >时,B 不是有界集合; 若14u >,则211()()a f m f m m u u ===+≥,即114a u ≥>, 又2114n n a a u u +=+>>(n N *∈), 即14n a >(n N *∈). 于是,对任意n N *∈,均有221111()244n n n n n a a a a u a u u +-=-+=-+-≥-,即114n n a a u +-≥-(n N *∈),再由累加法得11(1)()4n a a n u ≥+--→+∞,故B 不是有界集合.………8/综上,当14u =,且12m ≤时,B 为有界集合;当14u =,且12m >时,B 不是有界集合;当14u >(m R ∈)时,B 不是有界集合. 故,满足题设的实数u 的值为14,且实数m 的取值范围是11[]22-,.………………10/ (3)存在.………………………………………………………………………11/不妨设a b c ≥≥.若2a cb +≤,则2a b c ≥-,且2()d b c =-. 故22222225()5()()d a b c b c a b c -++=--++22225()[(2)]b c b c b c ≤---++3(2)0c c b =-<,即22222215()05d d a b c a b c -++<⇔<++;…………13/若2a cb +>,则2a ac b <+<,即220a b a b <⇔-<, 又2a cb bc a b +>⇔->-,故2()d a b =-,又 22222225()5()()d a b c a b a b c -++=--++22(2)(2)0a b a b c =---<,即 2225()0d a b c -++<22215d a b c ⇔<++,因此,15是有界集合C 的一个上界.…………………………15/下证:上界15λ<不可能出现. 假设正数15λ<出现,取2a c b +=,1()05c a λ=->,则22a c d -⎛⎫= ⎪⎝⎭,此时,d22222213()()()55a b c a b c acλλ=+++-++-22221()()5a b c a acλλ>+++--222()a b c λ=++(*)…17/由式(*)可得222222()dd a b c a b c λλ>++⇔>++,与λ是C 的一个上界矛盾!.综上所述,满足题设的最小正数λ的值为15. …………………………………………18/。

2019届上海高三英语二模汇编--阅读C篇(解析版)

2019届上海高三英语二模汇编--阅读C篇(解析版)

2019届上海高三英语二模汇编--阅读C篇(解析版)2019届高三英语二模汇编——阅读C篇1、2019黄浦二模Directions: Read the following three passages. Each passage is followed by several questions or unfinished statements. For each of them there are four choices marked A, B, C and D. Choose the one that fits best according to the information given in the passage you have just read.(C)Right now, I am looking at a shelf full of relics, a collection of has-beens, old-timers, antiques, fossils. Right now, I am looking at a shelf full of books. Yes, that’s right. If you have some spare cash (the going rate is about $89) and you are looking to enhance your reading experience, then I highly suggest you consider purchasing an e-reader. E-readers are replacing the books of old and I welcome them with open arms (as you should).An e-reader is a device that allows you to read e-books. An e-book is a book-length publication in digital form, consisting of text, images or both, and produced on, published through and readable on computers or other electronic devices. Sometimes the equivalent of a conventional printed book, e-books can also be born digital. The Oxford Dictionary of English defines the e-book as “an electronic version of a printed book”, but e-books can and do exist without any printed equivalent.E-readers put printed books to shame. E-readers are superior to printed books because they save space, are environmentally friendly and provide helpful reading tips and tools that printed books do not.The average e-reader can store thousands of digital books,providing a genuine library at your fingertips. What is more, the e-reader itself is very small. It is easy to hold and can fit in a pocketbook or briefcase easily. This makes handling wooden giant such as War and Peace and Anna Karenina a breeze. Perhaps the only drawback to the space-saving aspect of an e-reader is that it requires you to find new things to put on your shelves.In addition, e-readers are environmentally friendly. The average novel is about 300 pages long. So, if a novel is printed 1000 times, it will use 300,000 pieces of paper. That’s a lot of paper! And for the super bestsellers, these figures increase dramatically. For example, the Harry Potter book series has sold o ver 450 million copies. That’s about 2 million trees! Upon viewing these figures, it is not hard to grasp the severe impact of printed books on the environment. Since e-readers use no trees, they represent a significant amount of preservation in terms of the environment and its resources.Finally, e-readers provide helpful reading tips and tools that printed books do not. The typical e-reader allows its user to adjust letter size, letterform and line spacing. It also allows highlighting and electronic bookmarking.Furthermore, it grants users the ability to get an overview of a book and then jump to a specific location based on that overview. While these are all nice features, perhaps the most helpful of all is the ability to get dictionary definitions at the touch of a finger. On even the most basic e-reader, users can find instant definitions without having to hunt through a physical dictionary.It can be seen that e-readers are superior to printed books. They save space, are environmentally friendly and provide helpfulreading tips and tools that printed books do not. So what good are printed books? Well, they certainly make nice decorations.63. As used in paragraph 1, it can be inferred that “has-beens, old-timers, antiques, fossils”are all words that describe something ____________.A. outdatedB. typicalC. meaningfulD. useless64. Based on information in the passage, it can be inferred that printed books of War and Peace and AnnaKarenina are all ____________.A. superior and dramaticB. dense and environmentalC. awkward and heavyD. significant and resistant65. According to the author, which of the following reading tips and tools are offered by the e-reader?①line spacing customization②the ability to quickly jump to the end of a book③access to a printed dictionary at the touch of a fingerA. ①and ②onlyB. ①and ③onlyC. ②and ③onlyD. ①, ②and ③66. Which of the following sentences from the passage best summarizes the author’s main point?A. “If you have some spare cash(the going rate is about $89)and are looking to enhance your readingexperience, then I highly suggest you consider purchasing ane-reader.”B. “E-readers are replacing the books of old, and I welcome them with open arms (as you should).”C. “An e-reader is a device that allows you to read e-books. An e-book is a book-length publication in digitalform, consisting of text, images, or both, and produced on, published through, and readable on computers or other electronic devices.”D. “E-readers are superior to printed books because they save space, are environmentally friendly, and providehelpful reading tips and tools that printed books do not.”答案:63-66 ACAD难度:中等解析:本文为说明文。

上海市闵行区2019年中考数学二模试卷及答案(word解析版)

上海市闵行区2019年中考数学二模试卷及答案(word解析版)

上海市闵行区2019年中考数学二模试卷一、选择题:(本大题共6题,每题4分,满分24分)、B与=(、3.(4分)(2019•闵行区二模)不等式组:的解集是()><<x≤1,∴解集为25.(4分)(2019•闵行区二模)在△ABC与△A′B′C′中,已知AB=A′B′,∠A=∠A′,要使二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)(2019•闵行区二模)计算:=2.=8.(4分)(2019•闵行区二模)因式分解:2x2y﹣xy=xy(2x﹣1).9.(4分)(2019•闵行区二模)方程的根是x=2.10.(4分)(2019•闵行区二模)已知关于x的一元二次方程x2﹣4x+m=0有两个实数根,那么m的取值范围是m≤4.11.(4分)(2019•闵行区二模)一次函数y=2(x﹣1)+5的图象在y轴上的截距为3.12.(4分)(2019•闵行区二模)已知反比例(k≠0)的图象经过点(2,﹣1),那么当x>0时,y随x的增大而增大(填“增大”或“减小).解:∵反比例函数13.(4分)(2019•闵行区二模)已知抛物线y=ax2+bx+2经过点(3,2),那么该抛物线的对称轴是直线x=.﹣﹣=..14.(4分)(2019•闵行区二模)布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是.=.故答案为15.(4分)(2019•闵行区二模)在▱ABCD中,AC与BD相交于点O,,,那么=(用和表示).=,,又由平行四边形法则求得:==+,则问题得解.OA=OC==,=,,=++,==(+).故答案为:.16.(4分)(2019•闵行区二模)已知:⊙O1、⊙O2的半径长分别为2、5,如果⊙O1与⊙O2相交,那么这两圆的圆心距d的取值范围是3<d<7.②17.(4分)(2019•闵行区二模)如图,在正方形ABCD中,E为边BC的中点,EF⊥AE,与边CD相交于点F,如果△CEF的面积等于1,那么△ABE的面积等于4.EC=BC18.(4分)(2019•闵行区二模)如图,在Rt△ABC中,∠C=90°,∠A=50°,点D、E分别在边AB、BC上,将△BDE沿直线DE翻折,点B与点F重合,如果∠ADF=45°,那么∠CEF= 35度.三、解答题:(本大题共7题,满分78分)19.(10分)(2019•闵行区二模)先化简,再求值:,其中.•.时,原式=20.(10分)(2019•杨浦区二模)解方程组:)式组成方程组:或,经检验,原方程组的解是:21.(10分)(2019•闵行区二模)如图,在△ABC中,AB=AC,点D在边AB上,以点A 为圆心,线段AD的长为半径的⊙A与边AC相交于点E,AF⊥DE,垂足为点F,AF的延长线与边BC相交于点G,联结GE.已知DE=10,,.求:(1)⊙A的半径AD的长;(2)∠EGC的余切值.DAF=,利用勾股定理即可求得DF=EF=DE=DAF=,==.FEG=.EGC=22.(10分)(2019•闵行区二模)为了有效地利用电力资源,电力部门推行分时用电.即在居民家中安装分时电表,每天6:00至22:00用电每千瓦时0.61元,每天22:00至次日6:00用电每千瓦时0.30元.原来不实行分时用电时,居民用电每千瓦时0.61元.某户居民为了解家庭的用电及电费情况,于去年9月随意记录了该月6天的用电情况,见下表(单位:用户去年9月总用电量约为多少千瓦时.(2)如果该用户今年3月份的分时电费为127.8元,而按照不实行分时用电的计费方法,其电费为146.4元,试问该用户今年3月份6:00至22:00与22:00至次日6:00两个时段的用电量各为多少千瓦时?(注:以上统计是从每个月的第一天6:00至下一个月的第一天6:00止)=24023.(12分)(2019•闵行区二模)已知:如图,在梯形ABCD中,AD∥BC,AB=CD,BC=2AD.DE⊥BC,垂足为点F,且F是DE的中点,联结AE,交边BC于点G.(1)求证:四边形ABGD是平行四边形;(2)如果AD=,求证:四边形DGEC是正方形.BG=CG=BG=CG=AB DC=24.(12分)(2019•闵行区二模)已知:在平面直角坐标系中,一次函数y=x+3的图象与y 轴相交于点A,二次函数y=﹣x2+bx+c的图象经过点A、B(1,0),D为顶点.(1)求这个二次函数的解析式,并写出顶点D的坐标;(2)将上述二次函数的图象沿y轴向上或向下平移,使点D的对应点C在一次函数y=x+3的图象上,求平移后所得图象的表达式;(3)设点P在一次函数y=x+3的图象上,且S△ABP=2S△ABC,求点P的坐标..AC==AP=2AC=2CP=CA+AP=3=,CA==AC=.AP=2AC=225.(14分)(2019•闵行区二模)如图,在平行四边形ABCD中,AB=8,tanB=2,CE⊥AB,垂足为点E(点E在边AB上),F为边AD的中点,联结EF,CD.(1)如图1,当点E是边AB的中点时,求线段EF的长;(2)如图2,设BC=x,△CEF的面积等于y,求y与x的函数解析式,并写出自变量的取值范围;(3)当BC=16时,∠EFD与∠AEF的度数满足数量关系:∠EFD=k∠AEF,其中k≥0,求k的值.,证出==AB=4PC==4PCEF=PC=2BE=EC BE=x﹣PC•﹣AD=8PF=PC==,AB=4PC===4PCEF=PC=2,=2BE=ECBE=﹣﹣PF==x﹣﹣+AD=8PC。

2019年上海市徐汇区中考数学二模试卷

2019年上海市徐汇区中考数学二模试卷
第 6页(共 24页)
ZZDS PDF EDITOR
∵m2≥0, ∴m2+4>0,即△>0, ∴方程有两个不相等的实数根.
故选:A. 【点评】本题考查了一元二次方程 ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当 △>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方

16.(4 分)某校九年级学生共 300 人,为了解这个年级学生的体能,从中随机抽取 50 名学
生进行 1 分钟的跳绳测试,结果统计的频率分布如图所示,其中从左至右前四个小长方
形的高依次为 0.004、0.008、0.034、0.03,如果跳绳次数不少于 135 次为优秀,根据这次
抽查的结果,估计全年级达到跳绳优秀的人数为
ZZDS PDF EDITOR
2019 年上海市徐汇区中考数学二模试卷
一、选择题(每小题 4 分,共 24 分)
1.(4 分)在下列各式中,运算结果为 x2 的是( )
A.x4﹣x2
B.x4•x﹣2
C.x6÷x3
D.(x﹣1)2
2.(4 分)下列函数中,图象在第一象限满足 y 的值随 x 的值增大而减少的是( )
法则是解题的关键.
2.(4 分)下列函数中,图象在第一象限满足 y 的值随 x 的值增大而减少的是( )
A.y=2x
B.y=
C.y=2x﹣3
D.y=﹣x2
【分析】直接利用一次函数以及反比例函数和二次函数的增减性进而分析得出答案. 【解答】解:A、y=2x 图象在第一象限满足 y 的值随 x 的值增大而增大,故此选项错误; B、y= ,图象在第一象限满足 y 的值随 x 的值增大而减小,故此选项正确;

上海市静安区2019届高三英语二模考试试题(含解析)

上海市静安区2019届高三英语二模考试试题(含解析)
Section A
Directions: In Section A, you will hear ten short conversations between two speakers. At the end of each conversation, a question will be asked about what was said. The conversations and the questions will be spoken only once. After you hear a conversation and the question about it. read the four possible answers on your paper, and decide which one is the best answer to the question you have heard.
D. Because the quality of the gas in the station is terrible.
【答案】C
【解析】
【分析】
此题为听力题,解析略。
【详解】此题为听力题,解析略。
2.
A. 5 dollarsB. 6 dollarsC. 7 dollarsD. 11 dollars
D. The new movie wasn’t welcomed by the critics.
【答案】D
【解析】
【分析】
此题为听力题,解析略。
【详解】此题为听力题,解析略。
4.
A. They will be home on time.
B. Her mother is in an area with poor signal reception.

上海市沪教版数学高考二模试卷含详细答案2套选择填空有解析

上海市沪教版数学高考二模试卷含详细答案2套选择填空有解析

目录第一套:2019年上海市静安区高考数学二模试卷第二套:2019年上海市虹口高考数学二模试卷2019年上海市静安区高考数学二模试卷一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.设f ﹣1(x )为的反函数,则f ﹣1(1)= .2.函数y=2sin 2(2x )﹣1的最小正周期是 . 3.设i 为虚数单位,复数,则|z|= .4.= .5.若圆锥的侧面积是底面积的2倍,则其母线与轴所成角的大小是 .6.设等差数列{a n }的前n 项和为S n ,若=,则= .7.直线(t 为参数)与曲线(θ为参数)的公共点的个数是 .8.已知双曲线C 1与双曲线C 2的焦点重合,C 1的方程为,若C 2的一条渐近线的倾斜角是C 1的一条渐近线的倾斜角的2倍,则C 2的方程为 . 9.若,则满足f (x )>0的x 的取值范围是 .10.某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为和.现安排甲组研发新产品A ,乙组研发新产品B ,设甲、乙两组的研发相互独立,则至少有一种新产品研发成功的概率为 .11.设等差数列{a n }的各项都是正数,前n 项和为S n ,公差为d .若数列也是公差为d 的等差数列,则{a n }的通项公式为a n = .12.设x ∈R ,用[x]表示不超过x 的最大整数(如[2.32]=2,[﹣ 4.76]=﹣5),对于给定的n ∈N *,定义C =,其中x ∈[1,+∞),则当时,函数f (x )=C的值域是 .二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.命题“若x=1,则x 2﹣3x+2=0”的逆否命题是( ) A .若x ≠1,则x 2﹣3x+2≠0 B .若x 2﹣3x+2=0,则x=1 C .若x 2﹣3x+2=0,则x ≠1 D .若x 2﹣3x+2≠0,则x ≠1 14.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,M 、E 是AB 的三等分点,G 、N 是CD 的三等分点,F 、H 分别是BC 、MN 的中点,则四棱锥A 1﹣EFGH 的左视图是( )A .B .C .D .15.已知△ABC 是边长为4的等边三角形,D 、P 是△ABC 内部两点,且满足,,则△ADP 的面积为( ) A .B .C .D .16.已知f (x )是偶函数,且f (x )在[0,+∞)上是增函数,若f (ax+1)≤f (x ﹣2)在上恒成立,则实数a 的取值范围是( )A .[﹣2,1]B .[﹣2,0]C .[﹣1,1]D .[﹣1,0]三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知a ﹣b=2,c=4,sinA=2sinB . (Ⅰ)求△ABC 的面积; (Ⅱ)求sin (2A ﹣B ).18.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=8,BC=5,AA 1=4,平面α截长方体得到一个矩形EFGH ,且A 1E=D 1F=2,AH=DG=5.(1)求截面EFGH 把该长方体分成的两部分体积之比; (2)求直线AF 与平面α所成角的正弦值.19.如图,已知椭圆C :(a >b >0)过点,两个焦点为F 1(﹣1,0)和F 2(1,0).圆O 的方程为x 2+y 2=a 2. (1)求椭圆C 的标准方程;(2)过F 1且斜率为k (k >0)的动直线l 与椭圆C 交于A 、B 两点,与圆O 交于P 、Q 两点(点A 、P 在x 轴上方),当|AF 2|,|BF 2|,|AB|成等差数列时,求弦PQ 的长.20.如果函数y=f (x )的定义域为R ,且存在实常数a ,使得对于定义域内任意x ,都有f (x+a )=f (﹣x )成立,则称此函数f (x )具有“P(a )性质”.(1)判断函数y=cosx 是否具有“P (a )性质”,若具有“P (a )性质”,求出所有a 的值的集合;若不具有“P(a )性质”,请说明理由;(2)已知函数y=f (x )具有“P(0)性质”,且当x ≤0时,f (x )=(x+m )2,求函数y=f (x )在区间[0,1]上的值域; (3)已知函数y=g (x )既具有“P (0)性质”,又具有“P (2)性质”,且当﹣1≤x ≤1时,g (x )=|x|,若函数y=g (x )的图象与直线y=px 有2019个公共点,求实数p 的值.21.给定数列{a n },若满足a 1=a (a >0且a ≠1),对于任意的n ,m ∈N *,都有a n+m =a n •a m ,则称数列{a n }为指数数列. (1)已知数列{a n },{b n }的通项公式分别为,,试判断{a n },{b n }是不是指数数列(需说明理由);(2)若数列{a n }满足:a 1=2,a 2=4,a n+2=3a n+1﹣2a n ,证明:{a n }是指数数列;(3)若数列{a n }是指数数列,(t ∈N *),证明:数列{a n }中任意三项都不能构成等差数列.2019年上海市静安区高考数学二模试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.设f﹣1(x)为的反函数,则f﹣1(1)= 1 .【考点】4R:反函数.【分析】根据反函数的性质,原函数的值域是反函数的定义域即可求解【解答】解:的反函数,其反函数f﹣1(x),反函数的性质,反函数的定义域是原函数的值域,即.可得:x=1,∴f﹣1(x)=1.故答案为1.2.函数y=2sin2(2x)﹣1的最小正周期是.【考点】H1:三角函数的周期性及其求法.【分析】利用二倍角公式基本公式将函数化为y=Acos(ωx+φ)的形式,再利用周期公式求函数的最小正周期,【解答】解:函数y=2sin2(2x)﹣1,化简可得:y=1﹣cos4x﹣1=﹣cos4x;∴最小正周期T=.故答案为3.设i为虚数单位,复数,则|z|= 1 .【考点】A8:复数求模.【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解:复数===﹣i,则|z|=1.故答案为:1.4. = 3 .【考点】8J:数列的极限.【分析】通过分子分母同除3n+1,利用数列极限的运算法则求解即可.【解答】解: ===3.故答案为:3.5.若圆锥的侧面积是底面积的2倍,则其母线与轴所成角的大小是30°.【考点】MI:直线与平面所成的角.【分析】根据圆锥的底面积公式和侧面积公式,结合已知可得l=2R ,进而解母线与底面所成角,然后求解母线与轴所成角即可. 【解答】解:设圆锥的底面半径为R ,母线长为l ,则: 其底面积:S 底面积=πR 2,其侧面积:S 侧面积=2πRl=πRl, ∵圆锥的侧面积是其底面积的2倍, ∴l=2R ,故该圆锥的母线与底面所成的角θ有, cosθ==, ∴θ=60°,母线与轴所成角的大小是:30°. 故答案为:30°.6.设等差数列{a n }的前n 项和为S n ,若=,则=.【考点】85:等差数列的前n 项和. 【分析】=,可得3(a 1+4d )=5(a 1+2d ),化为:a 1=d .再利用等差数列的求和公式即可得出. 【解答】解:∵=,∴3(a 1+4d )=5(a 1+2d ),化为:a 1=d .则==.故答案为:.7.直线(t为参数)与曲线(θ为参数)的公共点的个数是 1 .【考点】QK:圆的参数方程;QJ:直线的参数方程.【分析】根据题意,将直线的参数方程变形为普通方程,再将曲线的参数方程变形为普通方程,分析可得该曲线为圆,且圆心坐标为(3,5),半径r=,求出圆心到直线的俄距离,分析可得直线与圆相切,即可得直线与圆有1个公共点,即可得答案.【解答】解:根据题意,直线的参数方程为,则其普通方程为x+y﹣6=0,曲线的参数方程为,则其普通方程为(x﹣3)2+(y ﹣5)2=2,该曲线为圆,且圆心坐标为(3,5),半径r=,圆心到直线x+y﹣6=0的距离d===r,则圆(x﹣3)2+(y﹣5)2=2与直线x+y﹣6=0相切,有1个公共点;故答案为:1.8.已知双曲线C1与双曲线C2的焦点重合,C1的方程为,若C2的一条渐近线的倾斜角是C1的一条渐近线的倾斜角的2倍,则C2的方程为.【考点】KC:双曲线的简单性质.【分析】求出双曲线的焦点坐标,利用渐近线的倾斜角的关系,列出方程,然后求解即可.【解答】解:双曲线C1与双曲线C2的焦点重合,C1的方程为,焦点坐标(±2,0).双曲线C1的一条渐近线为:y=,倾斜角为30°,C 2的一条渐近线的倾斜角是C1的一条渐近线的倾斜角的2倍,可得C2的渐近线y=.可得,c=2,解得a=1,b=,所求双曲线方程为:.故答案为:.9.若,则满足f(x)>0的x的取值范围是(1,+∞).【考点】7E:其他不等式的解法.【分析】由已知得到关于x的不等式,化为根式不等式,然后化为整式不等式解之.【解答】解:由f(x)>0得到即,所以,解得x>1;故x的取值范围为(1,+∞);故答案为:(1,+∞);10.某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为和.现安排甲组研发新产品A ,乙组研发新产品B ,设甲、乙两组的研发相互独立,则至少有一种新产品研发成功的概率为.【考点】C9:相互独立事件的概率乘法公式. 【分析】利用对立事件的概率公式,计算即可,【解答】解:设至少有一种新产品研发成功的事件为事件A 且事件B 为事件A 的对立事件,则事件B 为一种新产品都没有成功, 因为甲乙研发新产品成功的概率分别为和. 则P (B )=(1﹣)(1﹣)=,再根据对立事件的概率之间的公式可得P (A )=1﹣P (B )=,故至少有一种新产品研发成功的概率.故答案为.11.设等差数列{a n }的各项都是正数,前n 项和为S n ,公差为d .若数列也是公差为d 的等差数列,则{a n }的通项公式为a n =.【考点】84:等差数列的通项公式. 【分析】由题意可得:S n =na 1+d .a n >0.=+(n ﹣1)d ,化简n ≠1时可得:a 1=(n ﹣1)d 2+2d ﹣d .分别令n=2,3,解出即可得出.【解答】解:由题意可得:S n =na 1+d .a n >0.=+(n ﹣1)d ,可得:S n =a 1+(n ﹣1)2d 2+2(n ﹣1)d .∴na 1+d=a 1+(n ﹣1)2d 2+2(n ﹣1)d . n ≠1时可得:a 1=(n ﹣1)d 2+2d ﹣d . 分别令n=2,3,可得:a 1=d 2+2d ﹣d ,a 1=2d 2+2d ﹣d .解得a 1=,d=. ∴a n =+(n ﹣1)=.故答案为:.12.设x ∈R ,用[x]表示不超过x 的最大整数(如[2.32]=2,[﹣ 4.76]=﹣5),对于给定的n ∈N *,定义C =,其中x ∈[1,+∞),则当时,函数f (x )=C的值域是.【考点】57:函数与方程的综合运用.【分析】分类讨论,根据定义化简C x n ,求出C x 10的表达式,再利用函数的单调性求出C x 10的值域.【解答】解:当x ∈[,2)时,[x]=1,∴f (x )=C =, 当x ∈[,2)时,f (x )是减函数,∴f (x )∈(5,);当x ∈[2,3)时,[x]=2,∴f (x )=C=,当x ∈[2,3)时,f (x )是减函数,∴f (x )∈(15,45]; ∴当时,函数f (x )=C 的值域是,故答案为:.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.命题“若x=1,则x 2﹣3x+2=0”的逆否命题是( ) A .若x ≠1,则x 2﹣3x+2≠0 B .若x 2﹣3x+2=0,则x=1 C .若x 2﹣3x+2=0,则x ≠1 D .若x 2﹣3x+2≠0,则x ≠1 【考点】25:四种命题间的逆否关系.【分析】根据逆否命题的定义,我们易求出命题的逆否命题 【解答】解:将命题的条件与结论交换,并且否定可得逆否命题:若x 2﹣3x+2≠0,则x ≠1 故选:D14.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,M 、E 是AB 的三等分点,G 、N 是CD 的三等分点,F 、H 分别是BC 、MN 的中点,则四棱锥A 1﹣EFGH 的左视图是( )A .B .C .D .【考点】L7:简单空间图形的三视图.【分析】确定5个顶点在面DCC 1D 1上的投影,即可得出结论. 【解答】解:A 1在面DCC 1D 1上的投影为点D 1,E 在面DCC 1D 1的投影为点G ,F 在面DCC 1D 1上的投影为点C ,H 在面DCC 1D 1上的投影为点N ,因此侧视图为选项C 的图形. 故选C15.已知△ABC 是边长为4的等边三角形,D 、P 是△ABC 内部两点,且满足,,则△ADP 的面积为( ) A .B .C .D .【考点】9V :向量在几何中的应用.【分析】以A 为原点,以BC 的垂直平分线为y 轴,建立直角坐标系.由于等边三角形△的边长为4,可得B ,C 的坐标,再利用向量的坐标运算和数乘运算可得,,利用△APD 的面积公式即可得出.【解答】解:以A 为原点,以BC 的垂直平分线为y 轴,建立直角坐标系.∵等边三角形△的边长为4, ∴B (﹣2,﹣2),C (2,﹣2),由足= [(﹣2,﹣2)+(2,﹣2)]=(0,﹣),=(0,﹣)+(4,0)=(,﹣),∴△ADP的面积为S=||•||=××=,故选:A.16.已知f(x)是偶函数,且f(x)在[0,+∞)上是增函数,若f(ax+1)≤f(x﹣2)在上恒成立,则实数a的取值范围是()A.[﹣2,1] B.[﹣2,0] C.[﹣1,1] D.[﹣1,0]【考点】3N:奇偶性与单调性的综合.【分析】因为偶函数在对称区间上单调性相反,根据已知中f(x)是偶函数,且f(x)在(0,+∞)上是增函数,易得f(x)在(﹣∞,0)上为减函数,又由若时,不等式f(ax+1)≤f(x﹣2)恒成立,结合函数恒成立的条件,求出时f(x﹣2)的最小值,从而可以构造一个关于a的不等式,解不等式即可得到实数a的取值范围.【解答】解:∵f(x)是偶函数,且f(x)在(0,+∞)上是增函数,∴f(x)在(﹣∞,0)上为减函数,当时,x﹣2∈[﹣,﹣1],故f(x﹣2)≥f(﹣1)=f(1),若时,不等式f(ax+1)≤f(x﹣2)恒成立,则当时,|ax+1|≤1恒成立,∴﹣1≤ax+1≤1,∴≤a≤0,∴﹣2≤a≤0,故选B.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.在△ABC中,内角A,B,C的对边分别为a,b,c,已知a ﹣b=2,c=4,sinA=2sinB.(Ⅰ)求△ABC的面积;(Ⅱ)求sin(2A﹣B).【考点】GL:三角函数中的恒等变换应用.【分析】解法一:(I)由已知及正弦定理可求a,b的值,由余弦定理可求cosB,从而可求sinB,即可由三角形面积公式求解.(II)由余弦定理可得cosA,从而可求sinA,sin2A,cos2A,由两角差的正弦公式即可求sin(2A﹣B)的值.解法二:(I)由已知及正弦定理可求a,b的值,又c=4,可知△ABC为等腰三角形,作BD⊥AC于D,可求BD==,即可求三角形面积.(II)由余弦定理可得cosB,即可求sinB,由(I)知A=C⇒2A ﹣B=π﹣2B.从而sin(2A﹣B)=sin(π﹣2B)=sin2B,代入即可求值.【解答】解:解法一:(I)由sinA=2sinB⇒a=2b.又∵a﹣b=2,∴a=4,b=2.cosB===.sinB===.=acsinB==.∴S△ABC(II)cosA===.sinA===.sin2A=2sinAcosA=2×.cos2A=cos2A﹣sin2A=﹣.∴sin(2A﹣B)=sin2AcosB﹣cos2AsinB==.解法二:(I)由sinA=2sinB⇒a=2b.又∵a﹣b=2,∴a=4,b=2.又c=4,可知△ABC为等腰三角形.作BD ⊥AC 于D ,则BD===.∴S △ABC ==. (II )cosB===. sinB===.由(I )知A=C ⇒2A ﹣B=π﹣2B . ∴sin (2A ﹣B )=sin (π﹣2B )=sin2B =2sinBcosB =2××=.18.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=8,BC=5,AA 1=4,平面α截长方体得到一个矩形EFGH ,且A 1E=D 1F=2,AH=DG=5. (1)求截面EFGH 把该长方体分成的两部分体积之比; (2)求直线AF 与平面α所成角的正弦值.【考点】MI :直线与平面所成的角;LF :棱柱、棱锥、棱台的体积.【分析】(1)由题意,平面α把长方体分成两个高为5的直四棱柱,转化求解体积推出结果即可.(2)解法一:作AM ⊥EH ,垂足为M ,证明HG ⊥AM ,推出AM ⊥平面EFGH .通过计算求出AM=4.AF ,设直线AF 与平面α所成角为θ,求解即可.解法二:以DA 、DC 、DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,求出平面α一个法向量,利用直线AF 与平面α所成角为θ,通过空间向量的数量积求解即可.【解答】(本题满分,第1小题满分,第2小题满分8分) 解:(1)由题意,平面α把长方体分成两个高为5的直四棱柱,,… ,…所以,.…(2)解法一:作AM ⊥EH ,垂足为M ,由题意,HG ⊥平面ABB 1A 1,故HG ⊥AM ,所以AM ⊥平面EFGH . … 因为,,所以S △AEH =10,)因为EH=5,所以AM=4. … 又,…设直线AF 与平面α所成角为θ,则.… 所以,直线AF 与平面α所成角的正弦值为. …解法二:以DA 、DC 、DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则A (5,0,0),H (5,5,0),E (5,2,4),F (0,2,4),… 故,,…设平面α一个法向量为,则即所以可取. …设直线AF 与平面α所成角为θ,则. …所以,直线AF 与平面α所成角的正弦值为. …19.如图,已知椭圆C :(a >b >0)过点,两个焦点为F 1(﹣1,0)和F 2(1,0).圆O 的方程为x 2+y 2=a 2. (1)求椭圆C 的标准方程;(2)过F 1且斜率为k (k >0)的动直线l 与椭圆C 交于A 、B 两点,与圆O 交于P 、Q 两点(点A 、P 在x 轴上方),当|AF 2|,|BF 2|,|AB|成等差数列时,求弦PQ 的长.【考点】KH:直线与圆锥曲线的综合问题;K3:椭圆的标准方程;KL:直线与椭圆的位置关系.【分析】(1)求出c=1,设椭圆C的方程为,将点代入,解得a2=4,然后求解椭圆C的方程.(2)由椭圆定义,|AF1|+|AF2|=4,|BF1|+|BF2|=4,通过|AF2|,|BF2|,|AB|成等差数列,推出.设B(x,y),通过解得B,然后求解直线方程,推出弦PQ的长即可.【解答】(本题满分,第1小题满分,第2小题满分8分)解:(1)由题意,c=1,…设椭圆C的方程为,将点代入,解得a2=4(舍去),…所以,椭圆C的方程为.…(2)由椭圆定义,|AF1|+|AF2|=4,|BF1|+|BF2|=4,两式相加,得|AB|+|AF 2|+|BF 2|=8,因为|AF 2|,|BF 2|,|AB|成等差数列,所以|AB|+|AF 2|=2|BF 2|, 于是3|BF 2|=8,即. …设B (x 0,y 0),由解得,…(或设,则,解得,,所以). 所以,,直线l 的方程为,即,… 圆O 的方程为x 2+y 2=4,圆心O 到直线l 的距离,…此时,弦PQ 的长. …20.如果函数y=f (x )的定义域为R ,且存在实常数a ,使得对于定义域内任意x ,都有f (x+a )=f (﹣x )成立,则称此函数f (x )具有“P(a )性质”.(1)判断函数y=cosx 是否具有“P (a )性质”,若具有“P (a )性质”,求出所有a 的值的集合;若不具有“P(a )性质”,请说明理由;(2)已知函数y=f (x )具有“P(0)性质”,且当x ≤0时,f (x )=(x+m )2,求函数y=f (x )在区间[0,1]上的值域; (3)已知函数y=g (x )既具有“P (0)性质”,又具有“P (2)性质”,且当﹣1≤x ≤1时,g (x )=|x|,若函数y=g (x )的图象与直线y=px 有2019个公共点,求实数p 的值.【考点】57:函数与方程的综合运用.【分析】(1)根据题意可知cos(x+a)=cos(﹣x)=cosx,故而a=2kπ,k∈Z;(2)由新定义可推出f(x)为偶函数,从而求出f(x)在[0,1]上的解析式,讨论m与[0,1]的关系判断f(x)的单调性得出f(x)的最值;(3)根据新定义可知g(x)为周期为2的偶函数,作出g(x)的函数图象,根据函数图象得出p的值.【解答】解:(1)假设y=cosx具有“P(a)性质”,则cos(x+a)=cos(﹣x)=cosx恒成立,∵cos(x+2kπ)=cosx,∴函数y=cosx具有“P(a)性质”,且所有a的值的集合为{a|a=2kπ,k∈Z}.(2)因为函数y=f(x)具有“P(0)性质”,所以f(x)=f (﹣x)恒成立,∴y=f(x)是偶函数.设0≤x≤1,则﹣x≤0,∴f(x)=f(﹣x)=(﹣x+m)2=(x﹣m)2.①当m≤0时,函数y=f(x)在[0,1]上递增,值域为[m2,(1﹣m)2].②当时,函数y=f(x)在[0,m]上递减,在[m,1]上递增,y=f(m)=0,,值域为[0,(1﹣m)2].min③当时,y=f(m)=0,,值域为[0,m2].min④m>1时,函数y=f(x)在[0,1]上递减,值域为[(1﹣m)2,m2].(3)∵y=g(x)既具有“P(0)性质”,即g(x)=g(﹣x),∴函数y=g(x)偶函数,又y=g(x)既具有“P(2)性质”,即g(x+2)=g(﹣x)=g (x),∴函数y=g(x)是以2为周期的函数.作出函数y=g(x)的图象如图所示:由图象可知,当p=0时,函数y=g(x)与直线y=px交于点(2k,0)(k∈Z),即有无数个交点,不合题意.当p>0时,在区间[0,2016]上,函数y=g(x)有1008个周期,要使函数y=g(x)的图象与直线y=px有2019个交点,则直线在每个周期内都有2个交点,且第2019个交点恰好为,所以.同理,当p<0时,.综上,.21.给定数列{a n },若满足a 1=a (a >0且a ≠1),对于任意的n ,m ∈N *,都有a n+m =a n •a m ,则称数列{a n }为指数数列. (1)已知数列{a n },{b n }的通项公式分别为,,试判断{a n },{b n }是不是指数数列(需说明理由);(2)若数列{a n }满足:a 1=2,a 2=4,a n+2=3a n+1﹣2a n ,证明:{a n }是指数数列;(3)若数列{a n }是指数数列,(t ∈N *),证明:数列{a n }中任意三项都不能构成等差数列. 【考点】8B :数列的应用.【分析】(1)利用指数数列的定义,判断即可; (2)求出{a n }的通项公式为,即可证明:{a n }是指数数列;(3)利用反证法进行证明即可.【解答】(1)解:对于数列{a n },因为a 3=a 1+2≠a 1•a 2,所以{a n }不是指数数列. …对于数列{b n },对任意n ,m ∈N *,因为,所以{b n }是指数数列. …(2)证明:由题意,a n+2﹣a n+1=2(a n+1﹣a n ),所以数列{a n+1﹣a n }是首项为a 2﹣a 1=2,公比为2的等比数列. … 所以.所以,=,即{a n }的通项公式为(n ∈N *). …所以,故{a n }是指数数列. …(3)证明:因为数列{a n }是指数数列,故对于任意的n ,m ∈N *,有a n+m =a n •a m ,令m=1,则,所以{a n }是首项为,公比为的等比数列,所以,. …假设数列{a n }中存在三项a u ,a v ,a w 构成等差数列,不妨设u <v <w ,则由2a v =a u +a w ,得,所以2(t+4)w ﹣v (t+3)v ﹣u =(t+4)w ﹣u +(t+3)w ﹣u ,… 当t 为偶数时,2(t+4)w ﹣v (t+3)v ﹣u 是偶数,而(t+4)w ﹣u 是偶数,(t+3)w ﹣u 是奇数,故2(t+4)w ﹣v (t+3)v ﹣u =(t+4)w ﹣u +(t+3)w ﹣u 不能成立; … 当t 为奇数时,2(t+4)w ﹣v (t+3)v ﹣u 是偶数,而(t+4)w ﹣u 是奇数,(t+3)w ﹣u 是偶数,故2(t+4)w ﹣v (t+3)v ﹣u =(t+4)w ﹣u +(t+3)w ﹣u 也不能成立.… 所以,对任意t ∈N *,2(t+4)w ﹣v (t+3)v ﹣u =(t+4)w ﹣u +(t+3)w ﹣u不能成立,即数列{a n }的任意三项都不成构成等差数列. …2019年上海市虹口高考数学二模试卷一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.设f ﹣1(x )为的反函数,则f ﹣1(1)= .2.函数y=2sin 2(2x )﹣1的最小正周期是 . 3.设i 为虚数单位,复数,则|z|= .4.= .5.若圆锥的侧面积是底面积的2倍,则其母线与轴所成角的大小是 .6.设等差数列{a n }的前n 项和为S n ,若=,则= .7.直线(t 为参数)与曲线(θ为参数)的公共点的个数是 .8.已知双曲线C 1与双曲线C 2的焦点重合,C 1的方程为,若C 2的一条渐近线的倾斜角是C 1的一条渐近线的倾斜角的2倍,则C 2的方程为 .9.若,则满足f (x )>0的x 的取值范围是 .10.某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为和.现安排甲组研发新产品A ,乙组研发新产品B ,设甲、乙两组的研发相互独立,则至少有一种新产品研发成功的概率为 .11.设等差数列{a n }的各项都是正数,前n 项和为S n ,公差为d .若数列也是公差为d 的等差数列,则{a n }的通项公式为a n = .12.设x ∈R ,用[x]表示不超过x 的最大整数(如[2.32]=2,[﹣ 4.76]=﹣5),对于给定的n ∈N *,定义C =,其中x ∈[1,+∞),则当时,函数f (x )=C的值域是 .二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.命题“若x=1,则x 2﹣3x+2=0”的逆否命题是( ) A .若x ≠1,则x 2﹣3x+2≠0 B .若x 2﹣3x+2=0,则x=1 C .若x 2﹣3x+2=0,则x ≠1 D .若x 2﹣3x+2≠0,则x ≠1 14.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,M 、E 是AB 的三等分点,G 、N 是CD 的三等分点,F 、H 分别是BC 、MN 的中点,则四棱锥A 1﹣EFGH 的左视图是( )A.B.C.D.15.已知△ABC是边长为4的等边三角形,D、P是△ABC内部两点,且满足,,则△ADP的面积为()A.B.C.D.16.已知f(x)是偶函数,且f(x)在[0,+∞)上是增函数,若f(ax+1)≤f(x﹣2)在上恒成立,则实数a的取值范围是()A.[﹣2,1] B.[﹣2,0] C.[﹣1,1] D.[﹣1,0]三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.在△ABC中,内角A,B,C的对边分别为a,b,c,已知a ﹣b=2,c=4,sinA=2sinB.(Ⅰ)求△ABC 的面积; (Ⅱ)求sin (2A ﹣B ).18.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=8,BC=5,AA 1=4,平面α截长方体得到一个矩形EFGH ,且A 1E=D 1F=2,AH=DG=5. (1)求截面EFGH 把该长方体分成的两部分体积之比; (2)求直线AF 与平面α所成角的正弦值.19.如图,已知椭圆C :(a >b >0)过点,两个焦点为F 1(﹣1,0)和F 2(1,0).圆O 的方程为x 2+y 2=a 2. (1)求椭圆C 的标准方程;(2)过F 1且斜率为k (k >0)的动直线l 与椭圆C 交于A 、B 两点,与圆O 交于P 、Q 两点(点A 、P 在x 轴上方),当|AF 2|,|BF 2|,|AB|成等差数列时,求弦PQ 的长.20.如果函数y=f (x )的定义域为R ,且存在实常数a ,使得对于定义域内任意x ,都有f (x+a )=f (﹣x )成立,则称此函数f (x )具有“P(a )性质”.(1)判断函数y=cosx 是否具有“P (a )性质”,若具有“P (a )性质”,求出所有a 的值的集合;若不具有“P(a )性质”,请说明理由;(2)已知函数y=f (x )具有“P(0)性质”,且当x ≤0时,f (x )=(x+m )2,求函数y=f (x )在区间[0,1]上的值域; (3)已知函数y=g (x )既具有“P (0)性质”,又具有“P (2)性质”,且当﹣1≤x ≤1时,g (x )=|x|,若函数y=g (x )的图象与直线y=px 有2019个公共点,求实数p 的值.21.给定数列{a n },若满足a 1=a (a >0且a ≠1),对于任意的n ,m ∈N *,都有a n+m =a n •a m ,则称数列{a n }为指数数列. (1)已知数列{a n },{b n }的通项公式分别为,,试判断{a n },{b n }是不是指数数列(需说明理由);(2)若数列{a n }满足:a 1=2,a 2=4,a n+2=3a n+1﹣2a n ,证明:{a n }是指数数列;(3)若数列{a n }是指数数列,(t ∈N *),证明:数列{a n }中任意三项都不能构成等差数列.2019年上海市虹口高考数学二模试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.设f﹣1(x)为的反函数,则f﹣1(1)= 1 .【考点】4R:反函数.【分析】根据反函数的性质,原函数的值域是反函数的定义域即可求解【解答】解:的反函数,其反函数f﹣1(x),反函数的性质,反函数的定义域是原函数的值域,即.可得:x=1,∴f﹣1(x)=1.故答案为1.2.函数y=2sin2(2x)﹣1的最小正周期是.【考点】H1:三角函数的周期性及其求法.【分析】利用二倍角公式基本公式将函数化为y=Acos(ωx+φ)的形式,再利用周期公式求函数的最小正周期,【解答】解:函数y=2sin2(2x)﹣1,化简可得:y=1﹣cos4x﹣1=﹣cos4x;∴最小正周期T=.故答案为3.设i为虚数单位,复数,则|z|= 1 .【考点】A8:复数求模.【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解:复数===﹣i,则|z|=1.故答案为:1.4. = 3 .【考点】8J:数列的极限.【分析】通过分子分母同除3n+1,利用数列极限的运算法则求解即可.【解答】解: ===3.故答案为:3.5.若圆锥的侧面积是底面积的2倍,则其母线与轴所成角的大小是30°.【考点】MI:直线与平面所成的角.【分析】根据圆锥的底面积公式和侧面积公式,结合已知可得l=2R ,进而解母线与底面所成角,然后求解母线与轴所成角即可. 【解答】解:设圆锥的底面半径为R ,母线长为l ,则: 其底面积:S 底面积=πR 2, 其侧面积:S 侧面积=2πRl=πRl, ∵圆锥的侧面积是其底面积的2倍, ∴l=2R ,故该圆锥的母线与底面所成的角θ有, cosθ==, ∴θ=60°,母线与轴所成角的大小是:30°. 故答案为:30°.6.设等差数列{a n }的前n 项和为S n ,若=,则=.【考点】85:等差数列的前n 项和. 【分析】=,可得3(a 1+4d )=5(a 1+2d ),化为:a 1=d .再利用等差数列的求和公式即可得出. 【解答】解:∵=,∴3(a 1+4d )=5(a 1+2d ),化为:a 1=d .则==.故答案为:.7.直线(t为参数)与曲线(θ为参数)的公共点的个数是 1 .【考点】QK:圆的参数方程;QJ:直线的参数方程.【分析】根据题意,将直线的参数方程变形为普通方程,再将曲线的参数方程变形为普通方程,分析可得该曲线为圆,且圆心坐标为(3,5),半径r=,求出圆心到直线的俄距离,分析可得直线与圆相切,即可得直线与圆有1个公共点,即可得答案.【解答】解:根据题意,直线的参数方程为,则其普通方程为x+y﹣6=0,曲线的参数方程为,则其普通方程为(x﹣3)2+(y ﹣5)2=2,该曲线为圆,且圆心坐标为(3,5),半径r=,圆心到直线x+y﹣6=0的距离d===r,则圆(x﹣3)2+(y﹣5)2=2与直线x+y﹣6=0相切,有1个公共点;故答案为:1.8.已知双曲线C1与双曲线C2的焦点重合,C1的方程为,若C2的一条渐近线的倾斜角是C1的一条渐近线的倾斜角的2倍,则C2的方程为.【考点】KC:双曲线的简单性质.【分析】求出双曲线的焦点坐标,利用渐近线的倾斜角的关系,列出方程,然后求解即可.【解答】解:双曲线C1与双曲线C2的焦点重合,C1的方程为,焦点坐标(±2,0).双曲线C1的一条渐近线为:y=,倾斜角为30°,C 2的一条渐近线的倾斜角是C1的一条渐近线的倾斜角的2倍,可得C2的渐近线y=.可得,c=2,解得a=1,b=,所求双曲线方程为:.故答案为:.9.若,则满足f(x)>0的x的取值范围是(1,+∞).【考点】7E:其他不等式的解法.【分析】由已知得到关于x的不等式,化为根式不等式,然后化为整式不等式解之.【解答】解:由f(x)>0得到即,所以,解得x>1;故x的取值范围为(1,+∞);故答案为:(1,+∞);10.某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为和.现安排甲组研发新产品A ,乙组研发新产品B ,设甲、乙两组的研发相互独立,则至少有一种新产品研发成功的概率为.【考点】C9:相互独立事件的概率乘法公式. 【分析】利用对立事件的概率公式,计算即可,【解答】解:设至少有一种新产品研发成功的事件为事件A 且事件B 为事件A 的对立事件,则事件B 为一种新产品都没有成功, 因为甲乙研发新产品成功的概率分别为和. 则P (B )=(1﹣)(1﹣)=,再根据对立事件的概率之间的公式可得P (A )=1﹣P (B )=,故至少有一种新产品研发成功的概率.故答案为.11.设等差数列{a n }的各项都是正数,前n 项和为S n ,公差为d .若数列也是公差为d 的等差数列,则{a n }的通项公式为a n =.【考点】84:等差数列的通项公式. 【分析】由题意可得:S n =na 1+d .a n >0.=+(n ﹣1)d ,化简n ≠1时可得:a 1=(n ﹣1)d 2+2d ﹣d .分别令n=2,3,解出即可得出.【解答】解:由题意可得:S n =na 1+d .a n >0.=+(n ﹣1)d ,可得:S n =a 1+(n ﹣1)2d 2+2(n ﹣1)d .∴na 1+d=a 1+(n ﹣1)2d 2+2(n ﹣1)d . n ≠1时可得:a 1=(n ﹣1)d 2+2d ﹣d . 分别令n=2,3,可得:a 1=d 2+2d ﹣d ,a 1=2d 2+2d ﹣d .解得a 1=,d=. ∴a n =+(n ﹣1)=.故答案为:.12.设x ∈R ,用[x]表示不超过x 的最大整数(如[2.32]=2,[﹣ 4.76]=﹣5),对于给定的n ∈N *,定义C =,其中x ∈[1,+∞),则当时,函数f (x )=C的值域是.【考点】57:函数与方程的综合运用.【分析】分类讨论,根据定义化简C x n ,求出C x 10的表达式,再利用函数的单调性求出C x 10的值域.【解答】解:当x ∈[,2)时,[x]=1,∴f (x )=C =, 当x ∈[,2)时,f (x )是减函数,∴f (x )∈(5,);当x ∈[2,3)时,[x]=2,∴f (x )=C=,当x ∈[2,3)时,f (x )是减函数,∴f (x )∈(15,45]; ∴当时,函数f (x )=C 的值域是,故答案为:.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.命题“若x=1,则x 2﹣3x+2=0”的逆否命题是( ) A .若x ≠1,则x 2﹣3x+2≠0 B .若x 2﹣3x+2=0,则x=1 C .若x 2﹣3x+2=0,则x ≠1 D .若x 2﹣3x+2≠0,则x ≠1 【考点】25:四种命题间的逆否关系.【分析】根据逆否命题的定义,我们易求出命题的逆否命题 【解答】解:将命题的条件与结论交换,并且否定可得逆否命题:若x 2﹣3x+2≠0,则x ≠1 故选:D14.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,M 、E 是AB 的三等分点,G 、N 是CD 的三等分点,F 、H 分别是BC 、MN 的中点,则四棱锥A 1﹣EFGH 的左视图是( )。

上海2019学年第二学期闵行区地理二模试卷答案

上海2019学年第二学期闵行区地理二模试卷答案

2020/6/1上海2019学年第二学期闵行区地理二模试卷上海2019学年第二学期闵行区地理二模试卷(详解)一、选择题(本大题共20小题,每小题2分,共40分)1. A.地月系B.太阳系C.银河系D.河外星系【答案】【解析】比邻星是距离太阳最近的一颗恒星,两者相距约4.2光年。

比邻星位于C 根据材料,比邻星属于恒星,且距离太阳有4.2光年,范围在银河系内,但是不属于地月系、太阳系和河外星系,ABD错,C对,故本题选C。

2. A.正午前后B.黄昏前后C.子夜前后D.黎明前后【答案】【解析】“超级月亮”比平时的满月更大,这时月球位于公转轨道近地点附近。

闵敏同学想观察、拍摄“超级月亮”刚从地平线升起后的场景,应该选择在该现象当天的B “超级月亮”属于满月,黄昏升起,清晨落下,观察、拍摄“超级月亮”刚从地平线升起时应该选择在该现象当天的黄昏前后。

故本题选B。

3. A.流水的侵蚀、搬运作用B.流水的搬运、堆积作用C.海浪的侵蚀、搬运作用D.海浪的搬运、堆积作用【答案】【解析】江苏盐城的沿海滩涂是候鸟重要的栖息地,这里的地貌其形成主要受到D沿海滩涂主要位于沿海地区,受到海浪的搬运和堆积作用,细小颗粒物在海岸堆积形成,D说法正确。

流水的侵蚀、搬运和堆积一般形成于河流经过地区,排除A和B。

海浪的侵蚀一般形成深水港湾,滩涂主要是浅水地区,排除C;故本题选D。

4.按照板块构造学说的解释,菲律宾海沟位于2020/6/1上海2019学年第二学期闵行区地理二模试卷A.板块相互张裂的生长边界B.板块相互张裂的消亡边界C.板块相互碰撞的生长边界D.板块相互碰撞的消亡边界【答案】【解析】D 海底地形包括大陆架、大陆坡、海沟、洋盆和海岭等基本类型,海沟是海底地形中海拔最低深度最深的地形类型,世界上主要的海沟包括马里亚纳海沟、日本海沟、千岛海沟、菲律宾海沟、秘鲁智利海沟、波多黎各海沟、开曼海沟、爪哇海沟、毛里求斯海沟、弗拉马海沟、利特克海沟等等。

2019年上海市长宁区、嘉定区高考数学二模试卷(含解析)

2019年上海市长宁区、嘉定区高考数学二模试卷(含解析)

2019年上海市长宁区、嘉定区高考数学二模试卷一、选择题(本大题共4小题,共20.0分)1.已知x∈R,则“1x>1”是“x<1”的()A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件2.产能利用率是指实际产出与生产能力的比率,工业产能利用率是衡量工业生产经营状况的重要指标,下图为国家统计局发布的2015年至2018年第2季度我国工业产能利用率的折线图(%).在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2016年第二季度与2015年第二季度相比较:环比是指本期统计数据与上期统计数据相比较,例如2015二季度与2015年第一季度相比较根据上述信息,下列结论中正确的是()A. 2015年第三季度环比有所提高B. 2016年第一季度同比有所提高C. 2017年第三季度同比有所提高D. 2018年第一季度环比有所提高3.已知圆(x-2)2+y2=9的圆心为C,过点M(-2,0)且与x轴不重合的直线l交圆A、B两点,点A在点M与点B之间.过点M作直线AC的平行线交直线BC于点P,则点P的轨迹为()A. 圆的一部分B. 椭圆的一部分C. 双曲线的一部分D. 抛物线的一部分4.对于△ABC,若存在△A1B1C1,满足cosAsinA1=cosBsinB1=cosCsinC1=1,则称△ABC为“V类三角形”.“V类三角形”一定满足()A. 有一个内角为30∘B. 有一个内角为45∘C. 有一个内角为60∘D. 有一个内角为75∘二、填空题(本大题共12小题,共54.0分)5.已知集合A={1,2,3,4},B={x|2<x<5,x∈R},则A∩B=______6.已知复数z满足z−i=3+4i(i是虚数单位),则|z|=______7.若线性方程组的增广矩阵为(20mn12),解为{y=1x=1则m+n=______8.在(x+1x)4的二项展开式中,常数项的值为______9. 已知一个圆锥的主视图(如图所示)是边长分别为5,5,4的三角形,则该圆锥的侧面积为______ 10. 已知实数x ,y 满足{x ≥0y ≤1y ≥x −1,则x +2y 的最小值为______11. 设函数f(x)=√x −a (其中a 为常数)的反函数为f -1(x ),若函数f -1(x )的图象经过点(0,1),则方程f -1(x )=2的解为______12. 学校从3名男同学和2名女同学中任选2人参加志愿者服务活动,则选出的2人中至少有1名女同学的概率为______(结果用数值表示) 13. 已知直线{y =tsinαx=1+tcosα(t 为参数)与抛物线y 2=4x 相交于A 、B 两点,若线段AB 中点的坐标为(m ,2),线段AB 的长为______.14. 在△ABC 中,已知CD ⃗⃗⃗⃗⃗ =2DB ⃗⃗⃗⃗⃗⃗ ,P 为线段AD 上的一点,且满足CP ⃗⃗⃗⃗⃗ =12CA ⃗⃗⃗⃗⃗ +m CB ⃗⃗⃗⃗⃗ ,若△ABC 的面积为2√3,∠ACB =π3,则|CP⃗⃗⃗⃗⃗ |的最小值为______. 15. 已知有穷数列{a n }共有m 项,记数列{a n }的所有项和为S (1),第二项及以后所有项和为S (2),……第n (1≤n ≤m )项及以后所有项和为S (n ),若S (n )是首项为1,公差为2的等差数列的前n 项和,则当1≤n <m 时,a n =______16. 已知定义在R 上的奇函数f (x )满足f (x +2)=-f (x ),且当0≤x ≤1时,f (x )=log 2(x +a ),若对于x 属于[0,1]都有f(−x 2+tx +12)≥1−log 23,则实数t 的取值范围为______三、解答题(本大题共5小题,共76.0分)17. 已知正四棱柱ABCD -A 1B 1C 1D 1的底面边长为1,A 1B与底面ABCD 所成的角为π4(1)求三棱锥A 1-BCD 的体积;(2)求异面直线A 1B 与B 1C 所成的角的大小.18. 已知函数f(x)=cosx(sinx +cosx)−12,(1)若0<α<π2,且sinα=√22,求f (α)的值(2)求函数f (x )最小正周期及函数f (x )在[0,π2]上单调递减区间.19. 为了在夏季降温和冬季取暖时减少能源消耗,业主决定对房屋的屋顶和外墙喷涂某种新型隔热材料,该材料有效使用年限为20年,已知该房屋外表喷涂一层这种隔热材料的费用为每毫米厚6万元,且每年的能源消耗费用H (万元)与隔热层厚度x (毫米)满足关系H(x)=403x+5(0≤x ≤10)设f (x )为隔热层建造费用与20年的能源消耗费用之和.(1)请解释H (0)的实际意义,并求f (x )的表达式;(2)当隔热层喷涂厚度为多少毫米时,业主所付的总费用f (x )最少?并求此时与不建隔热层相比较,业主可节省多少钱?20. 已知椭圆Γ:x 24+y 23=1的左、右焦点分别为F 1、F 2,过F 2的直线l 与椭圆Γ相交于P 、Q .(1)求△F 1PQ 的周长;(2)设点A 为椭圆Γ的上顶点,点P 在第一象限,点M 在线段AF 2上,若F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ =23F 1P ⃗⃗⃗⃗⃗⃗⃗ ,求点P 的横坐标;(3)设直线l 不平行于坐标轴,点R 为点P 关于x 轴对称点,直线QR 与x 轴交于点N 求△QF 2N 面积的最大值.21. 记无穷数列{a n }的前n 项中最大值为M n ,最小值为m n ,令b n =M n +m n2.求:(1)若a n =2n −3n ,写出b 1,b 2,b 3,b 4的值;(2)设a n =2n −λn ,若b 3=-3,求λ的值及n ≥4时数列{b n }的前n 项和S n ; (3)求证:“数列{a n }是等差数列”的充要条件是“数列{b n }是等差数列.答案和解析1.【答案】A【解析】解:“”⇔0<x<1.∴“”是“x<1”的充分不必要条件.故选:A.利用不等式的解法解出:“”,即可判断出结论.本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.2.【答案】C【解析】解:2015年第二季度利用率为74.3%,第三季度利用率为74.0%,故2015年第三季度环比有所下降,故A错误;2015年第一季度利用率为74.2%,2016年第一季度利用率为72.9%,故2016年第一季度同比有所下降,故B错误;2016年底三季度利用率率为73.2%,2017年第三季度利用率为76.8%,故2017年第三季度同比有所提高,故C正确;2017年第四季度利用率为78%,2018年第一季度利用率为76.5%,故2018年第一季度环比有所下降,故D错误.故选:C.根据同比和环比的定义比较两期数据得出结论.本题考查了新定义的理解,图表认知,属于基础题.3.【答案】C【解析】解:可得圆(x-2)2+y2=9的圆心为C(2,0),半径为R=3.如图,∵CB=CA=R=3,∴∠CBA=∠CAB,∵AC∥MP,∴,∴∠CBA=∠CAB=∠PMA,∴PM=PB=PC+BC⇒PM-PC=BC=3(定值),且3<MC.∴点P的轨迹是双曲线的一部分,故选:C.根据题意可得PM-PC=BC=3(定值),且3<MC.即可得点P的轨迹是双曲线的一部分.本题考查了动点根据的求解,考查了转化思想,属于中档题.4.【答案】B【解析】解:设A=B,由已知得sinA1=sinB1,cosA=sinA1,cosB=sinB1,cosC=sinC1,则A1=B1,所以A+A1=90°,B+B1=90°,C+C1=90°,(舍),或A+A1=90°,B+B1=90°,C=C1-90°,解得:C=45°.故选:B.设等腰△ABC中A=B,由已知得sinA1=sinB1,cosA=sinA1,cosB=sinB1,cosC=sinC1,则A1=B1,结合同角三角函数关系进行化简求值即可.本题主要考查三角函数的化简求值,注意新定义运算法则,诱导公式的应用,属于基础题.5.【答案】{3,4}【解析】解:∵A={1,2,3,4},B={x|2<x<5,x∈R};∴A∩B={3,4}.故答案为:{3,4}.进行交集的运算即可.考查列举法、描述法的定义,以及交集的运算.6.【答案】5【解析】解:由i=3+4i,得,∴|z|=||=.故答案为:5.把已知等式变形,利用复数代数形式的乘除运算,再由复数模的计算公式求解.本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.7.【答案】3【解析】解:由题意,可将增广矩阵的形式还原为线性方程组,得:,∵解为,∴m=2,n=1.∴m+n=3.故答案为:3.本题可可将增广矩阵的形式还原为线性方程组的形式,然后将解代入方程组即可得到m、n的值,即可得到结果.本题主要考查增广矩阵的相关概念及线性方程组的求参数.本题属基础题.8.【答案】6【解析】解:在的二项展开式中,通项公式为:T r+1=x4-r=x4-2r,令4-2r=0,解得r=2.∴常数项==6.故答案为:6.利用通项公式即可得出.本题考查了二项式定理的通项公式,考查了推理能力与计算能力,属于基础题.9.【答案】10π【解析】解:根据圆锥的主视图可知:圆锥的母线长为5,底面半径为2,所以底面周长为4π,侧面积为×5×4π=10π,故答案为:10π.根据圆锥的主视图可知:圆锥的母线长为5,底面半径为2,所以底面周长为4π再代入侧面积公式可得.本题考查了圆锥的侧面积,属基础题.10.【答案】-2【解析】解:由实数x,y满足,作出可行域如图,由解得A(0,-1).化z=x+2y为y=-x+,由图可知,当直线y=-x+过A(0,-1)时,直线在y轴上的截距最小,z有最小值等于z=0+2×(-1)=-2.故答案为:-2.由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.11.【答案】x=1【解析】解:由y=f(x)=,得x-a=y2(y≥0),∴函数f(x)的反函数f-1(x)=x2+a(x≥0).把点(0,1)代入,可得a=1.∴f-1(x)=x2+1(x≥0).由f-1(x)=2,得x2+1=2,即x=1.故答案为:x=1.求出原函数的反函数,代入已知点的坐标求得a,则方程f-1(x)=2的解可求.本题考查函数的反函数的求法,关键是明确反函数的定义域是原函数的值域,是基础题.12.【答案】710【解析】解:学校从3名男同学和2名女同学中任选2人参加志愿者服务活动,基本事件总数n==10.选出的2人中至少有1名女同学包含的基本事件个数m==7,则选出的2人中至少有1名女同学的概率为p=.故答案为:.基本事件总数n==10.选出的2人中至少有1名女同学包含的基本事件个数m==7,由此能求出选出的2人中至少有1名女同学的概率.本题考查概率的求法,考查相互独立事件概率计算公式等基础知识,考查运算求解能力,是基础题.13.【答案】8【解析】解:直线(t为参数),可得直线的方程y=k(x-1),k=tanα,把直线的方程代入抛物线方程可得:ky2-4y-4k=0,直线(t为参数)与抛物线y2=4x相交于A、B两点,设A(x1,y1),B (x2,y2),线段AB中点的坐标为(m,2),可得y1+y2=4,解得k=1,y2-4y-4=0,y1y2=-4,线段AB的长:=•==8.故答案为:8.化简直线的参数方程为普通方程与抛物线方程联立,利用韦达定理求出m,通过弦长公式求解即可.本题考查直线与抛物线的位置关系的综合应用,弦长公式的应用,考查计算能力.14.【答案】2【解析】解∵=∵A,P,D三点共线,∴,即m=.∴===,又∵.∴,即CA•CB=8.∴====.故答案为:2.利用A,P,D三点共线可求出m=,并得到.再利用平面向量的基本性质和基本不等式即可求出的最小值.本题考查平面向量共线定理,是中档题,解题时要认真审题,注意平面向量线性运算的运用.15.【答案】-2n-1【解析】解:S(n)是首项为1,公差为2的等差数列的前n项和,所以S(n)=n+=n2,则a n=S(n)-S(n+1)=n2-(n+1)2=-2n-1,故填:-2n-1.设数列{a n}的前n项和为T n,则S(n)=T m-T n,又知道S(n)是首项为1,公差为2的等差数列的前n项和,则当1≤n<m时,即可得到a n的表达式.本题考查了数列通项的求法,等差数列的前n项和公式,属于基础题.16.【答案】[0,3]【解析】解:由题意,f(x)为周期为4的函数,且是奇函数.0在函数定义域内,故f(0)=0,得a=1,所以当0≤x≤1时,f(x)=log2(x+1),当x∈[-1,0]时,-x∈[0,1],此时f(x)=-f(-x)=-log2(-x+1),又知道f(x+2)=-f(x)=f(-x),所以f(x)以x=1为对称轴.且当x∈[-1,1]时f(x)单调递增,当x∈[1,3]时f(x)单调递减.当x∈[-1,3]时,令f(x)=1-log23,得x=-,或x=,所以在[-1,3]内当f(x)>1-log23时,x∈[-,].设g(x)=-,若对于x属于[0,1]都有,因为g (0)=∈[-,].,故g(x)∈[-,].①当<0时,g(x)在[0,1]上单调递减,故g(x)∈[t-,]⊆[-,].得t≥0,无解.②0≤t≤1时,,此时g(t)最大,g(1)最小,即g(x)∈[t-1,]⊆[-,].得t∈[0,1].③当1<t≤2时,即,此时g(0)最小,g(t)最大,即g(x)∈[,]⊆[-,].得t∈(1,2],④当t>2时,g(x)在[0,1]上单调递增,故g(x)∈[,t-]⊆[-,].解得,t∈(2,3],综上t∈[0,3].故填:[0,3].f(x)为周期为4的函数,且是奇函数.0在函数定义域内,故f(0)=0,得a=1,先得到[-1,3]一个周期内f(x)的图象,求出该周期内使f(x)≥1-log23成立的x 的范围,从而推出的范围,再分t的范围讨论即可.本题考查了复合函数的值域、对称区间上函数解析式的求法、二次函数在闭区间上的最值、函数的对称性、周期性、恒成立等知识.属于难题.17.【答案】解:(1)∵正四棱柱ABCD-A1B1C1D1的底面边长为1,A1B与底面ABCD 所成的角为π4,AA1⊥平面ABCD,∴∠A1BA是A1B与底面ABCD所成的角,∴∠A1BA=π4,∴AA1=AB=1,∴三棱锥A1-BCD的体积:V A1−BCD =13×AA1×S△BCD=13×1×12×1×1=16.解:(2)∵A1D∥B1C,∴∠DA1B是异面直线A1B与B1C所成的角(或所成角的平面角),∵由(1)知AA1=1,∴A1D=BD=A1B,∴∠DA1B=π3,∴异面直线A1B与B1C所成的角的大小为π3.【解析】(1)由AA1⊥平面ABCD,得∠A1BA是A1B与底面ABCD所成的角,从而∠A1BA=,进而AA1=AB=1,由此能求出三棱锥A1-BCD的体积.(2)由A1D∥B1C,得∠DA1B是异面直线A1B与B1C所成的角(或所成角的平面角),由此能求出异面直线A1B与B1C所成的角的大小.本题考查三棱锥的体积的求法,考查异面直线所成角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题. 18.【答案】解:(1)∵函数f(x)=cosx(sinx +cosx)−12,若0<α<π2,且sinα=√22,∴cosα=√1−sin 2α=√22,∴f (α)=cosα(sinα+cosα)-12=√22(√22+√22)-12=12.(2))∵函数f(x)=cosx(sinx +cosx)−12=12sin2x +1+cos2x 2-12=√22sin (2x +π4), 故f (x )的最小正周期为2π2=π.令2k π+π2≤2x +π4≤2k π+3π2,求得k π+π8≤x ≤k π≤k π+5π8,可得函数的减区间为[k π+π8,k π+5π8],k ∈Z . 再根据x ∈[0π2],可得函数f (x )在[0,π2]上单调递减区间为[π8,π2]. 【解析】(1)由题意利用同角三角函数的基本关系求得f (α)的值.(2)利用三角恒等变换,化简函数的解析式,再利用正弦函数的周期性、单调性得出结论.本题主要考查同角三角函数的基本关系,三角恒等变换,正弦函数的周期性、单调性,属于中档题.19.【答案】解:(1)H (0)=405=8,H (0)的实际意义为不使用新型隔热材料时,每年的能源消耗费用为8万元. f (x )的解析式为:f(x)=8003x+5+6x (0≤x ≤10). (2)f (x )=8003x+5+6x =8003x+5+2(3x +5)-10≥2√1600-10=70. 当且仅当8003x+5=2(3x +5)即x =5时取等号.∴厚度为5cm 时,总费用最小70万元.若不使用隔热材料,则20年的能源消耗总费用为8×20=160万元, 故业主可节省90万元. 【解析】(1)将建造费用和能源消耗费用相加得出f (x )的解析式;(2)利用基本不等式得出f (x )的最小值及对应的x 的值,与不使用隔热材料的总费用比较得出结论.本题考查了函数解析式的求解,函数最值的计算,属于中档题. 20.【答案】解:(1)由题意可得a =2,则△F 1PQ 的周长=|PF 1|+|QF 1|+|PQ |=|PF 1|+|QF 1|+|PF 2|+|QF 2|=4a =4×2=8, (2)设P (x 0,y 0),0<x 0<2, ∴x 024+y 023=1,∵A (0,√3),F 2(1,0), ∴直线AF 的方程为y =-√3x +√3, 设M 的坐标为(x M ,y M ), ∴y M =-√3x M +√3, ∵F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ =23F 1P ⃗⃗⃗⃗⃗⃗⃗ ,∴(x M +1,y M )=23(x 0+1,y 0), ∴x M =23x 0-13,y M =23y 0, ∴23y 0=-√3(23x 0-13)+√3,即y 0=-√3(x 0-2),代入到x 024+y023=1,整理化简可得5x 02-16x 0+12=0,解得x 0=2(舍去)或x 0=65, 故点P 的横坐标为65,(3)设P (x 1,y 1),Q (x 2,y 2),设直线l 的方程为x =my +1, 联立{x =my +1x 24+y 23=1,得(3m 2+4)y 2+6my -9=0.∴y 1+y 2=-6m 3m 2+4,y 1y 2=-93m 2+4, 由题设知,R (x 1,-y 1), ∴直线QR 的方程为y +y 1=y 2+y 1x 2−x 1(x -x 1).令y =0,得x =x 1+y 1(x 2−x 1)y 2+y 1=my 1+1+y 1(my 2−my 1)y 2+y 1=1+m (y 2y 1+y 12+y 1y 2−y 12y 2+y 1)=1+m •2y 1y 2y1+y 2=1+2m •−93m 2+4−6m 3m 2+4=4,∴点N (4,0). ∴|F 2N |=4-1=3,∴△QF 2N 面积S =12|F 2N |•|y 2|=32|y 2|, ∵0<|y 2|≤√3,当|y 2|=√3时,△QF 2N 面积最大,最大值为3√32.【解析】(1)根据椭圆的性质可得周长为4a ,即可求出答案,(2)设P (x 0,y 0),求出直线AF ,设M 的坐标为(x M ,y M ),根据,可得x M =x 0-,y M =y 0,即可得到y 0=-(x 0-2),代入到+=1,整理即可求出(3)联立直线方程与椭圆方程,化为关于y 的一元二次方程,利用根与系数的关系求得P ,Q 的纵坐标的和与积,再求出N 的坐标,写出三角形面积公式,即可求出.本题考查椭圆方程的性质,考查直线与椭圆位置关系的应用,向量的运算,直线方程,韦达定理,考查计算能力和转化能力,是中档题.21.【答案】(1)b 1=-1,b 2=−32,b 3=−32,b 4=1;(2)λ=4,S n =2n −n 2−3n +2;(3)证明略.解:(1)∵a n =2n -3n ,∴a 1=-1,a 2=-2,a 3=-1,a 4=4, ∴b 1=-1,b 2=-32,b 3=-32,b 4=1;(2)设a n =2n −λn ,可得a 1=2-λ,a 2=4-2λ,a 3=8-3λ, 若b 3=-3,可得λ>0,由6-3λ=-6,可得λ=4; 由10-4λ=-6,可得λ=4;由12-5λ=-6,可得λ=185, 若λ=4,可得a 1=-2,a 2=-4,a 3=-4,满足题意;λ=185时,a 1=-85,a 2=-165,a 3=-145,可得b 3=-125,不符题意,舍去, 综上可得λ=4,即有数列中的项为-2,-4,-4,0,12,40,…, 可得b n =−4+2n −4n2,n ≥5,则前n 项和S n =-10+(24+25+…+2n -1)-2(6+7+…+n +1) =-10+16(1−2n−4)1−2-2•12((n -4)(6+n +1) =2n -n 2-3n +2;(3)证明:充分性:若“数列{a n }是等差数列”,设其公差为d , 则b n =a 1+a n2,b n +1=a 1+a n+12=b n +d2,故“数列{b n }是等差数列”;必要性:若“数列{b n }是等差数列”,设其公差为d ′,则b n+1-b n=M n+1+m n+12-M n+m n2=M n+1−M n2+m n+1−m n2=d′,根据定义,M n+1≥M n,m n+1≤m n,至少有一个取等号,当d′>0时,M n+1>M n,a n+1=M n+1>M n≥a n,即数列{a n}为增数列,则M n=a n,m n=a1,则b n+1-b n=a n+1+a12-a n+a12=a n+1−a n2=d′,即a n+1-a n=2d′,即“数列{a n}是等差数列”,同理可得d′<0时,“数列{a n}是等差数列”;当d′=0时,M n+1=M n,且m n+1=m n,故{a n}为常数列,是等差数列.综上可得:“数列{a n}是等差数列”是“数列{b n}是等差数列”的充要条件.【解析】(1)分别计算出a1,a2,a3,a4结合题意即可得b1,b2,b3,b4的值;(2)由新定义,可得λ>0,考虑三种情况求得λ,检验可得所求λ;进而得到b n,由数列的分组求和,可得所求和;(3)充分性易证,无论d为何值,始终有b n=,即可证得结果,必要性须分类证明.本题考查数列的通项公式的求法,考查实数的取值范围的求法,考查数列性质、不等式等基础知识,考查运算求解能力,考查函数与方程思想,属于难题.。

2019年上海市闵行区中考数学二模试卷(含精品解析)

2019年上海市闵行区中考数学二模试卷(含精品解析)

2019年上海市闵⾏区中考数学⼆模试卷(含精品解析)2019年上海市闵⾏区中考数学⼆模试卷⼀、选择题:(本⼤题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有⼀个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.下列各数中是⽆理数的是()A B C D2.下列⽅程中,没有实数根的⽅程是()A1B.x2+x﹣1=0C D x3.已知直线y=kx+b经过第⼀、⼆、四象限,那么直线y=bx+k⼀定不经过()A.第⼀象限B.第⼆象限C.第三象限D.第四象限4.下列各统计量中,表⽰⼀组数据离散程度的量是()A.平均数B.众数C.⽅差D.频数5.如图,在△ABC中,AB=AC,AD⊥BC于点D,则下列结论不⼀定成⽴的是()A.AD=BD B.BD=CD C.∠BAD=∠CAD D.∠B=∠C6.在平⾯直⾓坐标系xOy中,以点(3,4)为圆⼼,4为半径的圆⼀定()A.与x轴和y轴都相交B.与x轴和y轴都相切C.与x轴相交、与y轴相切D.与x轴相切、与y轴相交⼆、填空题:(本⼤题共12题,每题4分,满分48分)7.计算:a2?a3=.8.分解因式:x2﹣9x=.9.已知函数f(x f(﹣2)=.10的解为.11.⼀元⼆次⽅程2x2﹣3x﹣4=0根的判别式的值等于.12.已知反⽐例函数y2,﹣1),则k=.13.从⼀副52张没有⼤⼩王的扑克牌中任意抽取⼀张牌,那么抽到A的概率是.14.⼀射击运动员在⼀次射击练习中打出的成绩如表所⽰,那么这个射击运动员这次成绩的中位数是.15.如图,在△ABC中,点D在边AC上,且CD=2AD.,=.(结16.如图,已知在⊙O中,半径OC垂直于弦AB,垂⾜为点D.如果CD=4,AB=16,那么OC=.17.如图,斜坡AB的长为200⽶,其坡⾓为45°.现把它改成坡⾓为30°的斜坡AD,那么BD=⽶.(结果保留根号)18.如图,在△ABC中,AB=AC=5,BC=D为边AC上⼀点(点D与点A、C不重合).将△ABD沿直线BD翻折,使点A落在点E处,连接CE.如果CE∥AB,那么AD:CD=.三、解答题:(本⼤题共7题,满分78分)19.(10﹣x1.20.(1021.(10分)如图,在△ABC中,AB=AC,BC=10,D是边BC的中点,点E在边AC AD与BE相交于点F.求:(1)边AB的长;(222.(10分)甲骑⾃⾏车以10千⽶/时的速度沿公路⾏驶,3⼩时后,⼄骑摩托车从同⼀地点出发沿公路与甲同向⾏驶,速度为25千⽶/时.设甲出发后x⼩时,甲离开出发地的路程为y1千⽶,⼄离开出发地的路程为y2千⽶.试回答下列问题:(1)求y1、y2关于x的函数解析式;(2)在同⼀直⾓坐标系中,画出(1)中两个函数的图象;(3)当x为何值时,⼄追上甲,此时他们离出发地的路程是多少千⽶?23.(12分)如图,已知四边形ABCD是菱形,对⾓线AC、BD相交于点O,BD=2AC.过点A 作AE⊥CD,垂⾜为点E,AE 与BD相交于点F.过点C作CG⊥AC,与AE的延长线相交于点G.求证:(1)△ACG≌△DOA;(2)DF?BD=2DE?AG.24.(12分)已知抛物线y=﹣x2+bx+c经过点A(1,0)、B(3,0),且与y轴的公共点为点C.(1)求抛物线的解析式,并求出点C的坐标;(2)求∠ACB的正切值;(3)点E为线段AC上⼀点,过点E作EF⊥BC,垂⾜为点F BCE的⾯积.25.(14分)如图1,点P为∠MAN的内部⼀点.过点P分别作PB⊥AM、PC⊥AN,垂⾜分别为点B、C.过点B作BD⊥CP,与CP的延长线相交于点D.BE⊥AP,垂⾜为点E.(1)求证:∠BPD=∠MAN;(2)如果AB=BE=BD,求BD的长;(3)如图2,设点Q是线段BP的中点.联结QC、CE,QC交AP于点F.如果∠MAN=45°,且BE∥QC2019年上海市闵⾏区中考数学⼆模试卷参考答案与试题解析⼀、选择题:(本⼤题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有⼀个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.【分析】根据⽆理数的定义即可求出答案.【解答】解:(A A不是⽆理数;(B)原式=﹣2,故B不是⽆理数;(C C不是⽆理数;故选:D.【点评】本题考查⽆理数的定义,解题的关键是正确理解⽆理数的定义,本题属于基础题型.2.【分析】将⽆理⽅程化为⼀元⼆次⽅程运⽤根的判别式判断根的情况,将分式⽅程求解再检验判断是否增根,此题难度不⼤.【解答】解:A.原⽅程变形为x2+3=1,即x2=﹣2,∵﹣2<0,所以⽅程没有实数根,故A符合题意;B.△=b2﹣4ac=12﹣4×1×(﹣1)=5>0,所以原⽅程有实数根,故B正确,不符合题意;C.原⽅程变形为2x﹣2=x+2,解得x=4,当x=4x=4是原分式⽅程的根,故C不符合题意;D.原⽅程变形为x+2=x2,即x2﹣x﹣2=0,.△=b2﹣4ac=(﹣1)2﹣4×1×(﹣2)=9>0,所以原⽅程有实数根,故D 不符合题意.故选:A.【点评】本题考查了⼀元⼆次⽅程与分式⽅程的解,熟练运⽤⼀元⼆次⽅程根的判别式与解分式⽅程是解题的关键.3.【分析】由直线经过⼀、⼆、四象限可分析k<0,b>0,由此判定y=bx+k不经过第⼆象限.【解答】解:∵直线y=kx+b 经过第⼀、⼆、四象限,∴k<0,b>0,∴直线y=bx+k⼀定不经过第⼆象限.故选:B.【点评】本题考查了⼀次函数的性质,关键要知道k和b对图象的决定作⽤.4.【分析】根据⽅差和标准差反映了⼀组数据与其平均值的离散程度的⼤⼩.⽅差(或标准差)越⼤,数据的历算程度越⼤,稳定性越⼩;反之,则离散程度越⼩,稳定性越好可得答案.【解答】解:⽅差是表⽰⼀组数据离散程度的量,故选:C.【点评】此题主要考查了统计量的选择,关键是掌握平均数、众数、中位数和极差、⽅差在描述数据时的区别.5.【分析】根据已知和公共边科证明△ADB≌△ACD,则这两个三⾓形的对应⾓、对应边相等,据此作答.【解答】解:∵AB=AC,AD=AD,AD⊥BC,∴Rt△ADB≌Rt△ACD(HL),∴BD=CD,∠BAD=∠CAD,∠B=∠C(全等三⾓形的对应⾓、对应边相等)故B、C、D⼀定成⽴,A不⼀定成⽴.故选:A.【点评】此题考查直⾓三⾓形全等的判定和性质,注意利⽤已知隐含的条件:AD是公共边.6.【分析】先根据点的坐标求出点到x轴的距离是4,到y轴的距离是3,再根据直线与圆的位置关系得出即可.【解答】解:∵点(3,4),∴点到x轴的距离是4,到y轴的距离是3,∴在平⾯直⾓坐标系xOy中,以点(3,4)为圆⼼,4为半径的圆⼀定与x轴相切,与y轴相交,故选:D.【点评】本题考查了切线的性质,点的坐标,直线与圆的位置关系等知识点,能熟记直线与圆的位置关系的内容是解此题的关键.⼆、填空题:(本⼤题共12题,每题4分,满分48分)7.【分析】根据同底数的幂的乘法,底数不变,指数相加,计算即可.【解答】解:a2?a3=a2+3=a5.故答案为:a5.【点评】熟练掌握同底数的幂的乘法的运算法则是解题的关键.8.【分析】⾸先确定多项式中的两项中的公因式为x,然后提取公因式即可.【解答】解:原式=x?x﹣9?x=x(x﹣9),故答案为:x(x﹣9).【点评】本题考查了提公因式法因式分解的知识,解题的关键是⾸先确定多项式各项的公因式,然后提取出来.9.【分析】把x=﹣2代⼊函数解析式即可求解.【解答】解:当x=﹣2时,f(﹣22.故答案是:2.【点评】本题考查知识点是求函数的值,只要把x的取值代⼊函数解析式即可.10.【分析】⾸先把⽅程两边分别平⽅,然后解⼀元⼆次⽅程即可求出x的值.【解答】解:两边平⽅得:2x+3=x2∴x2﹣2x﹣3=0,解⽅程得:x1=3,x2=﹣1,检验:当x1=3时,⽅程的左边=右边,所以x1=3为原⽅程的解,当x2=﹣1时,原⽅程的左边≠右边,所以x2=﹣1不是原⽅程的解.故答案为3.【点评】本题主要考查解⽆理⽅程,关键在于⾸先把⽅程的两边平⽅,注意最后要把x的值代⼊原⽅程进⾏检验.11.【分析】⼀元⼆次⽅程的根判别式为:△=b2﹣4ac,代⼊计算即可【解答】解:依题意,⼀元⼆次⽅程2x2﹣3x﹣4=0,a=2,b=﹣3,c=﹣4∴根的判别式为:△=b2﹣4ac=(﹣3)2﹣4×2×(﹣4)=41故答案为:41【点评】此题主要考查⼀元⼆次⽅程的根的判别式:⼀元⼆次⽅程ax2+bx+c=0(a≠0)的根与根的判别式:△=b2﹣4ac,有如下关系:①当△>0 时,⽅程有两个不相等的实数根;②当△=0 时,⽅程有两个相等的实数根;③当△<0 时,⽅程⽆实数根.上述结论反过来也成⽴.12.【分析】直接把点(2,﹣1)代⼊反⽐例函数y【解答】解:∵反⽐例函数y2,﹣1),∴﹣1解得k=﹣2.故答案为:﹣2.【点评】本题考查的是反⽐例函数图象上点的坐标特点,熟知反⽐例函数图象上各点的坐标⼀定适合此函数的解析式是解答此题的关键.13.【分析】直接利⽤概率求法进⽽得出答案.【解答】解:从⼀副52张没有⼤⼩王的扑克牌中任意抽取⼀张牌,那么抽到A【点评】此题主要考查了概率公式,正确应⽤概率公式是解题关键.14.【分析】直接利⽤表格中数据得出数据个数,进⽽利⽤中位数的定义求出答案.【解答】解:由表格中数据可得射击次数为20,中位数是第10个和第11个数据的平均数,8+9)=8.5.故答案为:8.5.【点评】此题主要考查了中位数,正确把握中位数的定义是解题关键.15.【分析】【解答】解:∵CD=2AD【点评】本题考查平⾯向量,三⾓形法则等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.【分析】根据垂径定理可得AD=8,∠ADO=90°,设CO=x,则AO=x,DO=x﹣4,再利⽤勾股定理列出⽅程,解出x 的值即可.【解答】解:∵半径OC垂直于弦AB,∴AD=8,∠ADO=90°,设CO=x,则AO=x,DO=x﹣4,x2=82+(x﹣4)2,解得:x=10,∴CO=10,故答案为:10.【点评】此题主要考查了垂径定理和勾股定理,关键是掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.17.【分析】直接利⽤锐⾓三⾓函数关系得出AC,BC的长,进⽽得出DC的长,即可得出答案.【解答】解:由题意可得:BC=AC=AB?sin45°=m),则tan30故DC m),则BD=100m.故答案为:100【点评】此题主要考查了解直⾓三⾓形的应⽤,正确运⽤锐⾓三⾓函数关系是解题关键.18.【分析】作辅助线,构建平⾏线和直⾓三⾓形,先根据勾股定理计算AG的长,证明△BCH∽△ABG,列⽐例式可得BH=4,CH=2,根据勾股定理计算EH 的长,从⽽得CE的长,最后根【解答】解:如图,过A作AG⊥BC于G,过B作BH⊥CE,交EC的延长线于H,延长BD和CE交于点F,∵AC=AB=5,∴BG=CG AG∵FH∥AB,∴∠ABG=∠BCH,∵∠H=∠AGB=90°,∴△BCH∽△ABG,∴BH=4,CH=2,由折叠得:AB=BE=5,∴EH3,CE=3﹣2=1,∵FH∥AB,∴∠F=∠ABD=∠EBD,∴EF=BE=5,∴FC=5+1=6,∵FC∥AB,故答案为:5:6.【点评】本题考查翻折变换、三⾓形相似的性质和判定、平⾏线分线段成⽐例定理、等腰三⾓形的性质等知识,解题的关键是正确作辅助线,寻找相似三⾓形解决问题.三、解答题:(本⼤题共7题,满分78分)19.【分析】将被除式分⼦、分母因式分解、把除法转化为乘法,再约分计算乘法,最后计算减法即可化简原式,继⽽把x的值代⼊计算可得.【解答】当x1时,1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.20.【分析】⾸先解每个不等式,然后利⽤数轴确定两个不等式的解集的公共部分,即是不等式组的解集.【解答】由①得:2x>﹣2,解得:x>﹣1,由②得:2x≥3x﹣1,解得:x≤1,所以,原不等式组的解集为:﹣1<x≤1.在数轴上表⽰为:【点评】本题考查的是解⼀元⼀次不等式(组),正确求出每⼀个不等式解集是基础,熟知“同⼤取⼤;同⼩取⼩;⼤⼩⼩⼤中间找;⼤⼤⼩⼩找不到”的原则是解答此题的关键.21.【分析】(1)根据等腰三⾓形的性质得到AD⊥BC,BD=DC=5,根据余弦的定义列式计算,得到答案;(2)过点E作EH∥BC,交AD与点H,根据平⾏线分线段成⽐例定理计算即可.【解答】解:(1)∵AB=AC,点D是边BC的中点,∴AD⊥BC,BD=DC=5,在Rt△ABD中,cos∠ABC∴AB=13;(2)过点E作EH∥BC,交AD与点H,∵EH∥BC∵BD=CD,∵EH∥BC,【点评】本题考查的是等腰三⾓形的性质、解直⾓三⾓形、平⾏线分线段成⽐例定理,掌握等腰三⾓形的三线合⼀、余弦的定义是解题的关键.22.【分析】(1)根据路程=速度×时间列出函数解析式便可;(2)确定两个点坐标,作出直线便可;(3)联⽴两个解析式的⽅程组解答便可.【解答】解:(1)由题意,得y1=10x(x≥0);y2=25(x﹣3),即y2=25x﹣75(x≥3);(2)列表描点、连线,(3)由题意,当⼄追上甲时,有y1=y2,则10x=25x﹣75,解得x=5此时他们离出发地的路程是10×5=50(千⽶),答:当x=5⼩时时,⼄追上甲,此时他们离出发地的距离为50千⽶.【点评】本题是⼀次函数的应⽤,主要考查了从实际问题中列⼀次函数的解析式,作⼀次函数的图象,求两个⼀次函数图象的交点问题.23.【分析】(1)根据菱形的性质得出AD=CD,AC⊥BD,OB=OD,求出∠G=∠DAC,AC=OD,根据全等三⾓形的判定推出即可;(2)根据相似三⾓形的判定得出△CDO∽△FDE OD?DF=DE?CD,根据△ACG≌△DOA求出AG=AD=CD,代⼊求出即可.【解答】证明:(1)∵在菱形ABCD中,AD=CD,AC⊥BD,OB=OD,∴∠DAC=∠DCA,∠AOD=90°,∵AE⊥CD,CG⊥AC,∴∠DCA+∠GCE=90°,∠G+∠GCE=90°,∴∠G=∠DCA,∴∠G=∠DAC,∵BD=2AC,BD=2OD,∴AC=OD,在△ACG和△DOA中,∴△ACG≌△DOA(AAS);(2)∵AE⊥CD,BD⊥AC,∴∠DOC=∠DEF=90°,⼜∵∠CDO=∠FDE,∴△CDO∽△FDE,OD?DF=DE?CD,∵△ACG≌△DOA,∴AG=AD=CD,⼜∵OD,∴DF?BD=2DE?AG.【点评】本题考查了全等三⾓形的性质和判定,相似三⾓形的性质和判定,菱形的性质,能综合运⽤定理进⾏推理是解此题的关键.24.【分析】(1(2)BC cos∠ABH则BH则AHCH=×EF,即可求解.(3)由S△BCE【解答】解:(1故抛物线的表达式为:y=﹣x2+4x﹣3,则点C的坐标为(0,﹣3);(2)联结AC、BC.过点A作AH⊥BC,垂⾜为点H.∵B(3,0),C(0,3),∴OB=OC=3,BC在Rt△BOC和Rt△BHA中,∠AHB=∠COB=90°.∴cos∠ABH BH则AH CH=在Rt△ACH中,∠AHC=90°,∴tan∠ACB(3)联结BE.设EF=a.BF=4a,⼜∵tan∠ACB∴CF=2a,∴BC=BF+FC=6a,∴6a=解得:a即:EFCB×EF∴S△BCE【点评】本题考查的是⼆次函数综合运⽤,涉及到解直⾓三⾓形、⾯积的计算等知识,难度不⼤.25.【分析】(1)根据四边形的内⾓和等于360°得到∠BAC+∠BPC=180°,根据邻补⾓的概念得到∠BPD+∠BPC=180°,得到BPD=∠MAN;(2)根据正弦的定义求出AB,根据勾股定理求出BE,计算即可;(3)过点B作BG⊥AC,垂⾜为点G.过点Q作QH∥BD,设BD=2a,PC=2b,根据相似三⾓形的性质分别求出QF、FC,证明PE=EF,根据三⾓形的⾯积公式计算,得到答案.【解答】(1)证明:∵PB⊥AM,PC⊥AN,∴∠PBA=∠PCA=90°,∵∠BAC+∠PCA+∠BPC+∠PBA=360°,∴∠BAC+∠BPC=180°,∵∠BPD+∠BPC=180°,∴∠MAN=∠BPD;(2)解:∵BE⊥AP,∠D=90°,BE=BD,∴∠BPD=∠BPE.∴∠BPE=∠BAC,在Rt△ABP中,由∠ABP=90°,BE⊥AP,∴∠APB=∠ABE,∴∠BAC=∠ABE,∴sin∠BAC=sin∠ABE∵AB=∴AE=6,∴BE2,∴BD=BE=2;(3)解:过点B作BG⊥AC,垂⾜为点G.过点Q作QH∥BD,设BD=2a,PC=2b,∵∠BPD=∠MAN=45°,∴DP=BD=2a,∴CD=2a+2b,在Rt△ABG和Rt△BDP中,∠BAC=∠BPD=45°,∴BG=AG,DP=BD,∵QH∥BD,点Q为BP的中点,∴PH=a.QH=a,∴CH=PH+PC=a+2b,∵BD∥AC,CD⊥AC,BG⊥AC,∴BG=DC=2a+2b.∴AC=4a+2b,∵BE∥QC,BE⊥AP,∴∠CFP=∠BEP=90°,⼜∠ACP=90°,∴∠QCH=∠PAC,∴△ACP∽△QCH,=解得,a=b,∴CH=3a.由勾股定理得,CQ,∵∠QHC=∠PFC=90°,∠QCH=∠PCF,∴△QCH∽△PFC,=解得,∴QF∵BE∥QC,Q是PB的中点,∴PE=EF,∴△PQF与△CEF⾯积之⽐等于⾼之⽐,【点评】本题考查的是相似三⾓形的判定和性质、锐⾓三⾓函数的定义,掌握相似三⾓形的判定定理和性质定理是解题的关键.。

2019年上海市静安区中考数学二模试卷(解析版)

2019年上海市静安区中考数学二模试卷(解析版)

2019年上海市静安区中考数学⼆模试卷(解析版)2019年上海市静安区中考数学⼆模试卷⼀、选择题:(本⼤题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有⼀个是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.(4分)下列⼆次根式中,与是同类⼆次根式的是()A.B.C.D.2.(4分)计算(1﹣a)(﹣1﹣a)的结果是()A.a2﹣1B.1﹣a2C.a2﹣2a+1D.﹣a2+2a﹣13.(4分)函数y=﹣(x>0)的图象位于()A.第⼀象限B.第⼆象限C.第三象限D.第四象限4.(4分)如图,在同⼀平⾯内,将边长相等的正⽅形、正五边形的⼀边重合,那么∠1的⼤⼩是()A.8°B.15°C.18°D.28°5.(4分)⼩明和⼩丽暑期参加⼯⼚社会实践活动,师傅将他们⼯作第⼀周每天⽣产的合格产品的个数整理成如表1两组数据.那么关于他们⼯作第⼀周每天⽣产的合格产品个数,下列说法中正确的是()A.⼩明的平均数⼩于⼩丽的平均数B.两⼈的中位数相同C.两⼈的众数相同D.⼩明的⽅差⼩于⼩丽的⽅差6.(4分)下列说法中正确的是()A.对⾓线相等的四边形是矩形B.对⾓线互相垂直的矩形是正⽅形C.顺次联结矩形各边中点所得四边形是正⽅形D.正多边形都是中⼼对称图形⼆、填空题:(本⼤题共12题,每题4分,满分48分)【在答题纸相应题号后的空格内直接填写答案】7.(4分)计算:a2?a4=.8.(4分)如果有意义,那么x的取值范围是.9.(4分)⽅程:=3的解为.10.(4分)如果关于x的⼆次三项式x2﹣4x+m在实数范围内不能分解因式,那么m的取值范围是.11.(4分)某商店三⽉份的利润是25000元,要使五⽉份的利润达到36000元,假设每⽉的利润增长率相同,那么这个相同的增长率是.12.(4分)已知正⽐例函数y=﹣2x,那么y的值随x的值增⼤⽽.(填“增⼤”或“减⼩”)13.(4分)从0,1,2,3这四个数字中任取3个数,取得的3个数中不含2的概率是.14.(4分)为了解某校九年级男⽣1000⽶跑步的⽔平情况,从中随机抽取部分男⽣进⾏测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所⽰的不完整的统计图,那么扇形统计图中表⽰C等次的扇形所对的圆⼼⾓的度数为度.15.(4分)已知△ABC中,G是△ABC的重⼼,则=.16.(4分)已知在△ABC中,∠C=90°,AC=BC=2,如果以点C为圆⼼的圆与斜边AB有且只有⼀个交点,那么⊙C的半径是.17.(4分)如图,在平⾏四边形ABCD中,点E、F是AB的三等分点,点G是AD的中点,联结EC、FG交于点M.已知=,=,那么向量=.(⽤向量,表⽰).18.(4分)如图,在平⾯直⾓坐标系xOy中,已知A(2,0),B(0,6),M(0,2).点Q在直线AB上,把△BMQ沿着直线MQ翻折,点B落在点P处,联结PQ.如果直线PQ与直线AB所构成的夹⾓为60°,那么点P的坐标是.三、解答题:(本⼤题共7题,满分78分)【将下列各题的解答过程,做在答题纸的相应位置上】19.(10分)计算:4﹣+(﹣1)2++|1﹣|.20.(10分)解⽅程组:21.(10分)⼀个⽔库的⽔位在某段时间内持续上涨,表格中记录了连续5⼩时内6个时间点的⽔位⾼度,其中x表⽰时间,y 表⽰⽔位⾼度.(1)通过观察数据,请写出⽔位⾼度y与时间x的函数解析式(不需要写出定义域);(2)据估计,这种上涨规律还会持续,并且当⽔位⾼度达到8⽶时,⽔库报警系统会⾃动发出警报.请预测再过多久系统会发出警报.22.(10分)已知:如图5,在矩形ABCD中,过AC的中点M作EF⊥AC,分别交AD、BC于点E、F.(1)求证:四边形AECF是菱形;(2)如果CD2=BF?BC,求∠BAF的度数.23.(12分)已知:如图,△ABC内接于⊙O,AB=AC,点E为弦AB的中点,AO的延长线交BC于点D,联结ED.过点B作BF⊥DE交AC于点F.(1)求证:∠BAD=∠CBF;(2)如果OD=DB.求证:AF=BF.24.(12分)在平⾯直⾓坐标系xOy中(如图7),已知抛物线y=ax2+bx+c(a≠0)经过原点,与x轴的另⼀个交点为A,顶点为P(﹣3,4).(1)求这条抛物线表达式;(2)将该抛物线向右平移,平移后的新抛物线顶点为Q,它与y轴交点为B,联结PB、PQ.设点B的纵坐标为m,⽤含m的代数式表⽰∠BPQ的正切值;(3)联结AP,在(2)的条件下,射线PB平分∠APQ,求点B到直线AP的距离.25.(14分)已知:如图8,梯形ABCD中,AD∥BC,AD=2,AB=BC=CD=6.动点P 在射线BA上,以BP为半径的⊙P 交边BC于点E(点E与点C不重合),联结PE、PC.设BP=x,PC=y.(1)求证:PE∥DC;(2)求y关于x的函数解析式,并写出定义域;(3)联结PD,当∠PDC=∠B时,以D为圆⼼半径为R的⊙D与⊙P相交,求R的取值范围.2019年上海市静安区中考数学⼆模试卷参考答案与试题解析⼀、选择题:(本⼤题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有⼀个是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.(4分)下列⼆次根式中,与是同类⼆次根式的是()A.B.C.D.【分析】各项化简后,利⽤同类⼆次根式定义判断即可.【解答】解:与是同类⼆次根式的是,故选:C.【点评】此题考查了同类⼆次根式,熟练掌握同类⼆次根式的定义是解本题的关键.2.(4分)计算(1﹣a)(﹣1﹣a)的结果是()A.a2﹣1B.1﹣a2C.a2﹣2a+1D.﹣a2+2a﹣1【分析】利⽤平⽅差公式计算即可求出值,【解答】解:原式=(﹣a)2﹣12=a2﹣1,故选:A.【点评】此题考查了平⽅差公式,熟练掌握平⽅差公式是解本题的关键.3.(4分)函数y=﹣(x>0)的图象位于()A.第⼀象限B.第⼆象限C.第三象限D.第四象限【分析】根据反⽐例函数中y=,当k<0,双曲线的两⽀分别位于第⼆、第四象限,在每⼀象限内y随x的增⼤⽽增⼤,进⽽得出答案.【解答】解:函数y=﹣(x>0)的图象位于第四象限.故选:D.【点评】此题主要考查了反⽐例函数的性质,正确记忆反⽐例函数图象分布的象限是解题关键.4.(4分)如图,在同⼀平⾯内,将边长相等的正⽅形、正五边形的⼀边重合,那么∠1的⼤⼩是()A.8°B.15°C.18°D.28°【分析】∠1的度数是正五边形的内⾓与正⽅形的内⾓的度数的差,根据多边形的内⾓和定理求得⾓的度数即可得出结果.【解答】解:∵正五边形的内⾓的度数是×(5﹣2)×180°=108°,⼜∵正⽅形的内⾓是90°,∴∠1=108°﹣90°=18°;故选:C.【点评】本题考查了多边形的内⾓和定理、正⽅形的性质,求得正五边形的内⾓的度数是关键.5.(4分)⼩明和⼩丽暑期参加⼯⼚社会实践活动,师傅将他们⼯作第⼀周每天⽣产的合格产品的个数整理成如表1两组数据.那么关于他们⼯作第⼀周每天⽣产的合格产品个数,下列说法中正确的是()A.⼩明的平均数⼩于⼩丽的平均数B.两⼈的中位数相同C.两⼈的众数相同D.⼩明的⽅差⼩于⼩丽的⽅差【分析】根据众数、中位数、⽅差和平均数的计算公式分别进⾏解答即可得出答案.【解答】解:A、⼩明的平均数为(2+6+7+7+8)÷5=6,⼩丽的平均数为(2+3+4+8+8)÷5=5,故本选项错误;B、⼩明的中位数为7,⼩丽的中位数为4,故本选项错误;C、⼩明的众数为7,⼩丽的众数为8,故本选项错误;D、⼩明的⽅差为4.4,⼩丽的⽅差为6.4,⼩明的⽅差⼩于⼩丽的⽅差,故原题说法正确;故选:D.【点评】此题主要考查了众数、中位数、⽅差和平均数,熟练掌握定义和公式是解题的关键;⼀组数据中出现次数最多的数据叫做众数;将⼀组数据按照从⼩到⼤(或从⼤到⼩)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;⼀般地设n个数据,x1,x2,…x n的平均数为,则⽅差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了⼀组数据的波动⼤⼩,⽅差越⼤,波动性越⼤,反之也成⽴.6.(4分)下列说法中正确的是()A.对⾓线相等的四边形是矩形B.对⾓线互相垂直的矩形是正⽅形C.顺次联结矩形各边中点所得四边形是正⽅形D.正多边形都是中⼼对称图形【分析】根据矩形的判定⽅法对A进⾏判断;根据正⽅形的判定⽅法对B进⾏判断;根据矩形的性质、三⾓形中位线定理以及菱形的判定⽅法对C进⾏判断;根据中⼼对称图形的定义对D进⾏判断.【解答】解:A对⾓线相等的平⾏四边形是矩形,所以A选项错误;B、对⾓线互相垂直的矩形是正⽅形,所以B选项正确;C、顺次联结矩形各边中点所得四边形是菱形,所以C选项错误;D、边数为偶数的正多边形都是中⼼对称图形,所以D选项错误.故选:B.【点评】本题考查了命题与定理:判断⼀件事情的语句,叫做命题.命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,⼀个命题可以写成“如果…那么…”形式.有些命题的正确性是⽤推理证实的,这样的真命题叫做定理.⼆、填空题:(本⼤题共12题,每题4分,满分48分)【在答题纸相应题号后的空格内直接填写答案】7.(4分)计算:a2?a4=a6.【分析】根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,进⾏运算即可.【解答】解:a2?a4=a2+4=a6.故答案为:a6.【点评】此题考查了同底数幂的乘法运算,属于基础题,解答本题的关键是掌握同底数幂的乘法法则.8.(4分)如果有意义,那么x的取值范围是x>0.【分析】根据⼆次根式有意义的条件以及分式有意义的条件即可求出答案.【解答】解:由题意可知:,解得:x>0,故答案为:x>0.【点评】本题考查⼆次根式,解题的关键是熟练运⽤⼆次根式有意义的条件以及分式有意义的条件,本题属于基础题型.9.(4分)⽅程:=3的解为10.【分析】将⽆理⽅程两边平⽅,转化为⼀元⼀次⽅程来解.【解答】解:两边平⽅得:x﹣1=9,移项得:x=10.故本题答案为:10.【点评】本题由于两边平⽅,可能产⽣增根,所以解答以后要验根.10.(4分)如果关于x的⼆次三项式x2﹣4x+m在实数范围内不能分解因式,那么m的取值范围是m>4.【分析】关于x的⼆次三项式x2﹣4x+m在实数范围内不能分解因式,就是对应的⼆次⽅程x2﹣4x+m=0⽆实数根,由此可解.【解答】关于x的⼆次三项式x2﹣4x+m在实数范围内不能分解因式,就是对应的⼆次⽅程x2﹣4x+m=0⽆实数根,∴△=(﹣4)2﹣4m=16﹣4m<0,∴m>4.故答案为:m>4.【点评】本题考查⼆次三项式的因式分解问题,可转化为对应的⼆次⽅程的实数根的情况,属于⽐较简单的问题.11.(4分)某商店三⽉份的利润是25000元,要使五⽉份的利润达到36000元,假设每⽉的利润增长率相同,那么这个相同的增长率是20%.【分析】设每⽉的利润增长率为x,根据该商店三⽉份及五⽉份的利润,可得出关于x的⼀元⼆次⽅程,解之取其正值即可得出结论.【解答】解:设每⽉的利润增长率为x,依题意,得:25000(1+x)=36000,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).故答案为:20%.【点评】本题考查了⼀元⼆次⽅程的应⽤,找准等量关系,正确列出⼀元⼆次⽅程是解题的关键.12.(4分)已知正⽐例函数y=﹣2x,那么y的值随x的值增⼤⽽减⼩.(填“增⼤”或“减⼩”)【分析】直接根据正⽐例函数的性质解答.【解答】解:因为正⽐例函数y=﹣2x中的k=﹣2<0,所以y的值随x的值增⼤⽽减⼩.故答案是:减⼩.【点评】本题考查了正⽐例函数的性质:正⽐例函数y=kx(k≠0)的图象为直线,当k >0时,图象经过第⼀、三象限,y值随x的增⼤⽽增⼤;当k<0时,图象经过第⼆、四象限,y值随x的增⼤⽽减⼩.13.(4分)从0,1,2,3这四个数字中任取3个数,取得的3个数中不含2的概率是.【分析】利⽤列举法展⽰所有4种等可能的结果数,再确定取得的3个数中不含2的结果数,然后根据概率公式求解.【解答】解:从0,1,2,3这四个数字中任取3个数有0、1、2;0、1、3;0、2、3;1、2、3四种等可能的结果数,所以取得的3个数中不含2的概率=.故答案为.【点评】本题考查了列表法与树状图法:利⽤列表法或树状图法展⽰所有可能的结果求出n,再从中选出符合事件A或B的结果数⽬m,然后根据概率公式计算事件A或事件B的概率.14.(4分)为了解某校九年级男⽣1000⽶跑步的⽔平情况,从中随机抽取部分男⽣进⾏测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所⽰的不完整的统计图,那么扇形统计图中表⽰C等次的扇形所对的圆⼼⾓的度数为72度.【分析】根据A等次的⼈数和所占的百分⽐求出总⼈数,再⽤C等次的⼈数除以总⼈数求出所占的百分⽐,然后乘以360°即可得出答案.【解答】解:扇形统计图中表⽰C等次的扇形所对的圆⼼⾓的度数为:360°×=72°,故答案为:72.【点评】本题考查的是条形统计图和扇形统计图的综合运⽤.读懂统计图,从统计图中得到必要的信息是解决问题的关键.15.(4分)已知△ABC中,G是△ABC的重⼼,则=.【分析】设△ABC边AB上的⾼为h,根据三⾓形的重⼼到顶点的距离等于到对边中点的距离的2倍可得△ABG边AB上的⾼线为h,再根据三⾓形的⾯积公式计算即可得解.【解答】解:设△ABC边AB上的⾼为h,∵G是△ABC的重⼼,∴△ABG边AB上的⾼为h,∴==.故答案为:.【点评】本题考查了三⾓形的重⼼,熟记三⾓形的重⼼到顶点的距离等于到对边中点的距离的2倍是解题的关键,本知识点在很多教材上已经不做要求.16.(4分)已知在△ABC中,∠C=90°,AC=BC=2,如果以点C为圆⼼的圆与斜边AB有且只有⼀个交点,那么⊙C的半径是.【分析】根据等腰直⾓三⾓形的性质和直线与圆的位置关系解答即可.【解答】解:∵在△ABC中,∠C=90°,AC=BC=2,∵以点C为圆⼼的圆与斜边AB有且只有⼀个交点,∴CD⊥AB,∴CD=,即⊙C的半径是故答案为:.【点评】此题考查直线与圆的位置关系,关键是根据等腰直⾓三⾓形的性质和直线与圆的位置关系解答.17.(4分)如图,在平⾏四边形ABCD中,点E、F是AB的三等分点,点G是AD的中点,联结EC、FG交于点M.已知=,=,那么向量=+.(⽤向量,表⽰).【分析】如图,延长FG交CD的延长线于H.⾸先证明CM=EC,求出即可解决问题.【解答】解:如图,延长FG交CD的延长线于H.∵四边形ABCD是平⾏四边形,∴AB∥CH,∴==1,∴AF=DH,设AE=EF=FB=a,则AB=CD=3a,AF=DH=2a,CH=5a,∵EF∥CH,∴==,∴CM=CE,∵=+=+,∴==+,故答案为+.【点评】本题考查平⾯向量,平⾏四边形的性质,平⾏线分线段成⽐例定理等知识,解题的关键是学会添加常⽤辅助线,灵活运⽤平⾏线分线段成⽐例定理解决问题,属于中考常考题型.18.(4分)如图,在平⾯直⾓坐标系xOy中,已知A(2,0),B(0,6),M(0,2).点Q在直线AB上,把△BMQ沿着直线MQ翻折,点B落在点P处,联结PQ.如果直线PQ与直线AB所构成的夹⾓为60°,那么点P的坐标是(2,4)或(0,﹣2)或(﹣2,0).【分析】先求出OA=2,OB=6,OM=2,BM=OB﹣OM=4,tan∠BAO=,得出∠BAO=60°,AB=2OA=4,分∠PQB=120°或∠PQB=60°两种情况,(1)当∠PQB=120°时,⼜分两种情况:①延长PQ交OB于点N,则∠BQN=60°,QN⊥BM,由折叠得出BM=MP=4,求出BN=NM=BM=2,由勾股定理得出NP==2,ON=OM+NM=4,即可得出P点的坐标;②QM⊥OB,BM=MP,OP=PM﹣OM=BM﹣OM=4﹣2=2,即可得出P点的坐标;(2)当∠PQB=60°时,Q点与A点重合,AB=AP=4,OP=AP﹣OA=2,即可得出P点的坐标;综上情况即可P点的坐标.【解答】解:∵A(2,0),B(0,6),M(0,2),∴OA=2,OB=6,OM=2,BM=OB﹣OM=4,∴tan∠BAO===,∴∠BAO=60°,∵∠AOB=90°,∴∠ABO=30°,∴AB=2OA=4,∵直线PQ与直线AB所构成的夹⾓为60°,∴∠PQB=120°或∠PQB=60°,(1)当∠PQB=120°时,分两种情况:①如图1所⽰:延长PQ交OB于点N,则∠BQN=60°,∴∠QNB=90°,即QN⊥BM,由折叠得:BM=MP=4,∠BQM=∠PQM,∵∠PQB=120°,∴∠BQM=∠PQM=120°,∴∠BQN=∠MQN=60°,∵QN⊥BM,∴BN=NM=BM=2,在Rt△PNM中,NP===2,ON=OM+NM=4,∴P点的坐标为:(2,4);②如图2所⽰:QM⊥OB,BM=MP,OP=PM﹣OM=BM﹣OM=4﹣2=2,∴P点的坐标为:(0,﹣2);(2)当∠PQB=60°时,如图3所⽰:Q点与A点重合,由折叠得:AB=AP=4,OP=AP﹣OA=4﹣2=2,∴P点的坐标为:(﹣2,0);综上所述:P点的坐标为:(2,4)或(0,﹣2)或(﹣2,0).【点评】本题考查了翻折变换的性质、直⾓三⾓形的性质、勾股定理、三⾓函数、坐标等知识,熟练掌握翻折变换的性质、直⾓三⾓形的性质,并进⾏分类讨论是关键.三、解答题:(本⼤题共7题,满分78分)【将下列各题的解答过程,做在答题纸的相应位置上】19.(10分)计算:4﹣+(﹣1)2++|1﹣|.【分析】将原式每⼀项分别化简为+(2+1﹣2)+(﹣)+﹣1,再进⾏计算即可.【解答】解:原式=+(2+1﹣2)+(﹣)+﹣1=+3﹣2+﹣+﹣1=+﹣2.【点评】本题考查负指数幂的运算,分母有理化,绝对值运算.能够将每⼀项准确化简是正确计算的关键.20.(10分)解⽅程组:【分析】先将⼆次⽅程化为两个⼀次⽅程,则原⽅程组化为两个⼆元⼀次⽅程组,解⽅程组即可.【解答】解:由②得:(x﹣2y)(x+5y)=0原⽅程组可化为:或解得:,.∴原⽅程组的解为,.【点评】本题考查了解⾼次⽅程组,将⾼次⽅程化为⼀次⽅程是解题的关键.21.(10分)⼀个⽔库的⽔位在某段时间内持续上涨,表格中记录了连续5⼩时内6个时间点的⽔位⾼度,其中x表⽰时间,y表⽰⽔位⾼度.(1)通过观察数据,请写出⽔位⾼度y与时间x的函数解析式(不需要写出定义域);(2)据估计,这种上涨规律还会持续,并且当⽔位⾼度达到8⽶时,⽔库报警系统会⾃动发出警报.请预测再过多久系统会发出警报.【分析】(1)根据题意和表格中的数据可以求得y与x之间的函数解析式;(2)将y=8代⼊(1)中的函数解析式,求出x的值,再⽤x的值减去5即可解答本题.【解答】解:(1)设y与x之间的函数解析式为y=kx+b,,得,即y与x之间的函数解析式为y=0.3x+3;(2)把y=8,代⼊y=0.3x+3,得8=0.3x+3,解得,x=,=,答:再过⼩时后系统会发出警报.【点评】本题考查⼀次函数的应⽤,解答本题的关键是明确题意,利⽤⼀次函数的性质解答.22.(10分)已知:如图5,在矩形ABCD中,过AC的中点M作EF⊥AC,分别交AD、BC于点E、F.(1)求证:四边形AECF是菱形;(2)如果CD2=BF?BC,求∠BAF的度数.【分析】(1)通过证明△AME≌△CMF得到ME=MF.则可判断四边形AECF为平⾏四边形,然后利⽤对⾓线互相垂直得到结论;(2)利⽤CD2=BF?BC和AB=CD得到=,根据相似三⾓形的判定⽅法得到△ABF∽△CBA,所以∠2=∠3,⽽根据菱形的性质得∠1=∠4,即∠1=∠3=∠4,从⽽可求出∠1的度数.【解答】(1)证明:∵四边形ABCD为矩形,∴AD∥BC,∴∠1=∠2,∵点M为AC的中点,∴AM=CM.在△AME与△CMF中∴△AME≌△CMF(ASA),∴ME=MF.∴四边形AECF为平⾏四边形,⼜∵EF⊥AC,∴平⾏四边形AECF为菱形;(2)解:∵CD2=BF?BC,∴=,⼜∵四边形ABCD为矩形,∴AB=CD,∴=⼜∵∠ABF=∠CBA,∴△ABF∽△CBA,∴∠2=∠3,∵四边形AECF为菱形,∴∠1=∠4,即∠1=∠3=∠4,∵四边形ABCD为矩形,∴∠BAD=∠1+∠3+∠4=90°,∴即∠1=30°.【点评】本题考查了相似三⾓形的判定与性质:在判定两个三⾓形相似时,应注意利⽤图形中已有的公共⾓、公共边等隐含条件,以充分发挥基本图形的作⽤,寻找相似三⾓形的⼀般⽅法是通过作平⾏线构造相似三⾓形.也考查了菱形的判定与性质和矩形的性质.23.(12分)已知:如图,△ABC内接于⊙O,AB=AC,点E为弦AB的中点,AO的延长线交BC于点D,联结ED.过点B作BF⊥DE交AC于点F.(1)求证:∠BAD=∠CBF;(2)如果OD=DB.求证:AF=BF.【分析】(1)由等腰三⾓形的性质得出∠ABC=∠C,由垂径定理得出AD⊥BC,BD=CD,证出DE是△ABC的中位线.得出DE∥AC,证出∠BFC=90°,由⾓的互余关系即可得出结论;(2)连接OB.证出△ODB是等腰直⾓三⾓形,得出∠BOD=45°.再由等腰三⾓形的性质得出∠OBA=∠OAB.即可得出结论.【解答】(1)证明:如图1所⽰:∵AB=AC,∴∠ABC=∠C,∵直线AD经过圆⼼O,∴AD⊥BC,BD=CD,∵点E为弦AB的中点,∴DE是△ABC的中位线.∴DE∥AC,∵BF⊥DE,∴∠BPD=90°,∴∠BFC=90°,∴∠CBF+∠ACB=90°.∵AB=AC,∴∠ABC=∠ACB,。

上海市2019年高三语文二模试卷C卷

上海市2019年高三语文二模试卷C卷

上海市2019年高三语文二模试卷C卷姓名:________ 班级:________ 成绩:________一、情景默写 (共1题;共3分)1. (3分)补写下面名篇名句(1)韩愈在《师说》中用“________,________”两句强调懂得道理有先有后,技能学业各有专门研究,人与人之间可以互相学习。

(2)《登高》一诗中杜甫把个人悲苦和国运艰难结合,道出心中无限悲凉的句子是:“________,________”。

(3)把行人艰难的步履、惶恐的神情绘声绘色地刻画出来的句子是:“________,________”。

(4)苏轼在《江城子密州出猎》中引用典故,表达希望得到朝廷重新重用的一句是“________”。

二、语言表达 (共1题;共4分)2. (4分)(2020·静安模拟) 按要求选择。

(1)在横线上填入合适的名句,最合适的一项是()。

每一个人的人格都应受到尊重。

自尊、自重,就意味着尊重他人,自主、自由,就意味着尊重他人的自由权利。

我们常常发现,标榜者与者发生在一个人身上,唯命是听的人往往不负责任。

与完全相反,宽以待己者往往严以对人。

这正是因为自尊者尊重人,自由选择的人是负责的人,而又决不强人所难,自爱的人爱人,他们懂得。

①摧眉折腰事权贵②己所不欲,勿施予人③不为五斗米折腰④躬自厚而薄责于人A . ③①②④B . ①③④②C . ③①④②D . ①③②④(2)青年作者王俐平在一次座谈会上认识了《文学月刊》的编辑李格非老师,王俐平为了投稿和请教方便,主动加了李格非老师的微信。

某日,王俐平将自己的短篇小说用微信发送给李格非老师,微信是这样写的:尊敬的李老师,奉上一篇小作,请您多加指教;如有可能发表在贵刊,将是我莫大的荣幸。

李格非因为工作调动,不再担任该刊编辑,于是回复道:谢谢您的信任,很抱歉,我已调离编辑部。

下面是几位同学替王俐平拟定回复李老师的微信,最恰当的一项是()。

A . 太遗憾了!他们会为失去一位这么好的编辑而感到惭愧。

2019年最新(统考)上海市高考数学二模试卷及答案解析

2019年最新(统考)上海市高考数学二模试卷及答案解析
(2)若A,B,C三点共线,求线段AC的长.
20.已知数列{an}的前n项和为Sn,且Sn=2an﹣2(n∈N*).
(1)求{an}的通项公式;
(2)设 ,b1=8,Tn是数列{bn}的前n项和,求正整数k,使得对任意n∈N*均有Tk≥Tn恒成立;
(3)设 ,Rn是数列{cn}的前n项和,若对任意n∈N*均有Rn<λ恒成立,求λ的最小值.
5.设点(9,3)在函数f(x)=loga(x﹣1)(a>0,a≠1)的图象上,则f(x)的反函数f﹣1(x)=.
6.若x,y满足 ,则目标函数z=x+2y的最大值为.
7.在平面直角坐标系xOy中,直线l的方程为x+y﹣6=0,圆C的参数方程为 ,则圆心C到直线l的距离为.
8.双曲线 =1的左右两焦点分别是F1,F2,若点P在双曲线上,且∠F1PF2为锐角,则点P的横坐标的取值范围是.
上海市高考数学二模试卷
一、填空题(第1题到第6题每题4分,第7题到第12题.
2.若关于x,y的方程组 无解,则a=.
3.已知{an}为等差数列,若a1=6,a3+a5=0,则数列{an}的通项公式为.
4.设集合A={x||x﹣2|≤3},B={x|x<t},若A∩B=∅,则实数t的取值范围是.
A.小于 B.等于 C.大于 D.大于1.6
16.如图,在△ABC中,BC=a,AC=b,AB=c.O是△ABC的外心,OD⊥BC于D,OE⊥AC于E,OF⊥AB于F,则OD:OE:OF等于( )
A.a:b:cB.
C.sinA:sinB:sinCD.cosA:cosB:cosC
三、解答题(第17-19题每题14分,第20题16分,第21题18分,满分76分)
【考点】84:等差数列的通项公式.

上海市闵行区2019年高三第二学期期中(二模)学科质量检测数学试题及答案(word版)

上海市闵行区2019年高三第二学期期中(二模)学科质量检测数学试题及答案(word版)

上海市闵行区2019届高三二模数学试卷2019.4一、填空题(本大题共有12题,满分54分)考生应在答题纸上相应编号的空格内直接填写结果,第1~6题每个空格填对得4分,第7~12题每个空格填对得5分,否则一律得零分.1.设全集{}4,3,2,1,0=U ,集合{}1,2A =, {}1,3B =,则U A B =ð . 2.抛物线22y x =的准线方程为 .3.已知函数2()log f x x =的反函数为1()f x -,则1(2)f -= .4.已知等比数列{}n a 的首项为1,公比为12-,n S 表示{}n a 的前n 项和,则lim n n S →∞= .5.若关于,x y 的方程组10240x my x y n +-=⎧⎨-+=⎩有无穷多组解,则11m n 的值为 .6.在ABC △中,角A B C 、、的对边分别为a b c 、、,其面积)(31222b c a S -+=,则ta n B =______________.7.若2(2nx +的展开式中含有常数项,则最小的正整数n 为 . 8.设不等式组6020360x y x y x y +-≥⎧⎪-+≥⎨⎪-+≤⎩表示的可行域为Ω,若指数函数xy a =的图像与Ω有公共点,则a 的取值范围是 .9.若函数()2sin cos f x x x x ωωω=的图像关于直线3x π=对称,则正数ω的最小值为 .10.在正方体1111ABCD A B C D -的所有棱中,任取其中三条,则它们所在的直线两两异面的概率为 .11.若函数()2()4292918x x f x x x x =+-+-+有零点,则其所有零点的集合为 .(用列举法表示)12.如图,A 是22:9O x y +=上的任意一点,B C 、是O 直径的两个端点,点D 在直径BC 上,3BD DC =,点P 在线段AC 上,若1+2AP PB PD λλ⎛⎫=-⎪⎝⎭,则点P 的轨迹方程为 .二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.已知l 、m 、n 是三条不同直线,α、β是两个不同平面,下列命题正确的是( ) (A) 若l m ⊥,l n ⊥,则n m // (B ) 若m α,n β,//αβ,则n m //(C) 若m α,n α,mn A =,l m ⊥,l n ⊥,则l α⊥(D) 平面α内有不共线的三点到平面β的距离相等,则//αβ14.过点()1,0与双曲线2214x y -=仅有一个公共点的直线有 ( ) (A) 1条 (B )2条 (C )3条 (D )4条15.十七世纪,法国数学家费马提出猜想:“当整数2>n 时,关于z y x ,,的方程nnnzy x =+没有正整数解”,经历三百多年,1995年英国数学家安德鲁·怀尔斯给出了证明,使它终成费马大定理,则下面命题正确的是 ( )①对任意正整数n ,关于z y x ,,的方程nnnz y x =+都没有正整数解; ②当整数2>n 时,关于z y x ,,的方程nnnz y x =+至少存在一组正整数解; ③当正整数2n ≤时,关于z y x ,,的方程nnnz y x =+至少存在一组正整数解; ④若关于z y x ,,的方程nnnz y x =+至少存在一组正整数解,则正整数2n ≤. (A) ①② (B) ①③ (C) ②④ (D) ③④ 16.如图所示,直角坐标平面被两坐标轴和两条直线y x =±等分成八个区域(不含边界).已知数列{}n a ,n S 表示数列{}n a 的前n 项和,对任意的正整数n ,均有()12=-n n n a S a .当0n a >时,点()1,n n n P a a +( ) (A)只能在区域② (B)只能在区域②或④ (C) 在区域①②③④均会出现(D) 当n 为奇数时,点n P 在区域②或④,当n 为偶数时,点n P 在区域①或③三、解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分.如图,已知四棱锥P ABCD -的底面ABCD 是边长为2的正方形,PD ⊥底面ABCD ,1PD =.(1)求直线PB 与平面PCD 所成的角的大小; (2)求四棱锥P ABCD -的侧面积.xABPD18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知复数z满足z =2z 的虚部为2.(1)求复数z ;(2)设复数22z z z z -、、在复平面上对应的点分别为A B C 、、,求:()OA OB OC +⋅的值.19.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.国内某知名企业为适应发展的需要,计划加大对研发的投入.据了解,该企业原有100名技术人员,年人均投入m 万元.现把原有技术人员分成两部分:技术人员和研发人员,其中技术人员x 名[]()*45,60x x ∈∈N 且,调整后研发人员的年人均投入增加%2x ,技术人员的年人均投入调整为3)50xma -(万元. (1)要使这100x -名研发人员的年总投入恰好与调整前100名技术人员的年总投入相同,求调整后的技术人员的人数.(2)是否存在这样的实数a ,使得调整后,在技术人员的年人均投入不减少的情况下,研发人员的年总投入始终不低于技术人员的年总投入?若存在,求出a 的范围;若不存在,说明理由.20.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.把半椭圆()22122:10x y x a bΓ+=≥与圆弧()()2222:10x y a x Γ-+=<合成的曲线称作“曲圆”,其中()1,0F 为1Γ的右焦点.如图所示,1A 、2A 、1B 、2B 分别是“曲圆”与x 轴、y 轴的交点,已知1223B FB π∠=,过点F 且倾斜角为θ的直线交“曲圆”于P Q 、两点(P 在x 轴的上方..). (1)求半椭圆1Γ和圆弧2Γ的方程;(2)当点P Q 、分别在第一、第三象限时,求1A PQ △的周长C 的取值范围;xyOA 1FA 2B 1B 2(3)若射线FP 绕点F 顺时针...旋转2π交“曲圆”于点R ,请用θ表示P R 、两点的坐标,并求FPR △的面积的最小值.21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.无穷数列{}n a ,{}n b ,{}n c 满足: n *∈N ,11,n n n n n n a b c b c a ++=-=-,1n n n c a b +=-,记{}max ,,n n n n d a b c = ({}max ,,n n n a b c 表示3个实数,,n n n a b c 中的最大数).(1)若1118,4,2a b c ===,求数列{}n d 的前n 项和n S ;(2)若1111,1,,a b c x =-== 当x ∈R 时,求满足条件23d d =的x 的取值范围;(3)证明:对于任意正整数111,,a b c ,必存在正整数k ,使得1k k a a +=,11,k k k k b b c c ++==.上海市闵行区2019届高三二模数学试卷参考答案与评分标准一. 填空题 1.; 2.; 3.; 4.; 5.; 6.; 7.;8.;9.; 10.; 11.;12.. 二. 选择题 13.C ; 14.D ; 15.D ; 16.B . 三. 解答题17.[解] (1)因为PD ⊥底面ABCD , 所以PD ⊥BC ,又因为BC ⊥CD , 所以BC ⊥平面PCD ,所以是直线PB 与平面PCD 所成的角, ………………3分 在中,BC ,PC所以直线PB 与平面PCD所成的角的大小 . ………………7分(2)四棱锥P-ABCD 的侧面积所以四棱锥P-ABCD 的侧面积为……………………14分18.[解] (1)设,则 ………………4分 .所以或 ………………………6分(2)当时,,, ……………………8分所以 ……………………10分 所以 ………………12分 当时,,, 所以.所以 ……………14分 19.[解] (1)解:, ……………4分 解得所以调整后的技术人员的人数为50. ……………………6分(2)因为,由恒成立得……8分 因为恒成立 …………………10分 {}212x =-4233435(]1,214255{}2,1,1,2--()2214x y -+=CPB ∠Rt PCB △2==tan arctan 55CPB CPB ∠=⇒∠=arctan 5=2S 2S 2122PCD PCB S CD PD BC PC +=⋅+⋅=⨯+=+△△侧2+(,)z x yi x y =+∈R 22222x y xy ⎧+=⎨=⎩11x y x y ⇒====-或1z i =+1z i =--1z i =+22z i =21z z i -=-()()()1,10,21,1A B C -、、()()()1,31,1132OA OB OC +⋅=⋅-=-=-1z i =--22z i =213z z i -=--()()()1,10,21,3A B C ----、、()()()1,11,3132OA OB OC +⋅=-⋅--=-=-100)(12%)100m x x m -+=(50=x []*45,60,x x ∈∈N 3)50x ma m -≥(235a ≥3()(100)(12%)50xx m a x m x ⋅-≤-+所以恒成立 因为当等号成立所以. ……………………………………12分所以存在实数满足条件. ……………………………………14分20.[解] (1) 解:(1)易得,:,……2分:. …………………4分(2)由题意可知,此时为腰长为2的等腰三角形,,故的周长.…8分所以周长的取值范围为. ……………10分 (3)不妨设, 由题意知,即 ………………………12分(其中, ,以下步骤未求出也给2分)①当时,将的坐标代入得: ,整理得,解得或(舍去),从而可得.令,则当即时,. ……………14分[]*1001,45,60,25x a x x x ≤++∈∈N 10015,25x x++≥50x =5≤a 23,55a ⎡⎤∈⎢⎥⎣⎦2,1a c ==1Γ()221043x y x +=≥2Γ()()22140x y x -+=<0,3πθ⎛⎫∈ ⎪⎝⎭1AQF △14sin 2AQ θ=1A PQ △11C QA QF PF A P =+++22sin2a a a θ=++()64sin 6,82θ=+∈C ()6,81||r FP =2||r FR =11(1cos ,sin )P r r θθ+221cos ,sin 22R r r ππθθ⎛⎫⎛⎫⎛⎫+-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()221sin ,cos R r r θθ+-132cos r θ=+232sin r θ=+12r r 、203θπ⎛⎤∈ ⎥⎝⎦,P 13422=+y x 22113(1cos )4(sin )120r r θθ++-=2211(4cos )6cos 90r r θθ-+-=132cos r θ=+13cos 2r θ=-2332sin 2cos 2r πθθ==+⎛⎫+- ⎪⎝⎭()12113319222cos 2sin 2sin cos 2sin cos 4FPR S r r θθθθθθ==⋅⋅=⋅+++++△sin cos 4t πθθθ⎛⎫+=+= ⎪⎝⎭2947FPR S t t =++△2=t ⎥⎦⎤ ⎝⎛∈=ππθ32,04()min FPR S =△OA 1 FA B 1B 2 QP②当时,综上可得:的面积的最小值为. …………………16分21.[解] (1)(1)可求;;;所以; …………………2分所以. …………………………4分(2)…………………………6分.………8分所以满足条件的的取值范围为.10分 (通过函数的图像(要画出),找出的表达式,最后得出正确结论,给6分) 解法2:如果,则, …………………………6分 所以时, …………………………8分 所以或所以满足条件的的取值范围为. ……………10分(3)证明:(I )先证明“若中至少有一个为0,则另两个数相等” 不妨设,假设,因为,所以,23θππ⎛⎫∈ ⎪⎝⎭,1211332222sin 2sin FPRS r r θθ==⋅⋅=>>++△PFR △2499+2222,6,4a b c ===3332,2,4a b c ===2,2,0(4)n n n a b c n ===≥1238,6,4,2(4)n d d d d n ====≥29,(4)212,(5)n n n n s n n ⎧-+≤=⎨+≥⎩2221,1,2a xb xc =-=+=21,12,111,1x xd x x x +≥⎧⎪⇒=-<<⎨⎪-+≤-⎩33312,12,11a xb xc x x =+-=--=--+⇒31,0132,31131,103x x xd x x x x x ⎧+≤≤≤-⎪=-<<-<<⎨⎪--≤≤≥⎩或或或23d d =x {}1,1-222()1,()1,()2a x x b x x c x =-=+=3()d x 2221,1,2a xb xc =-=+=220a b ⋅≠23d d >23d d =220a b ⋅=1x =-1x =23d d =x {}1,1-(),,2k k k a b c k ≥0k a =k k b c ≠0k a =11k k b c --=-1|b 2(所以与矛盾,所以……12分 所以有.所以此时必存在正整数,使得 ………14分(II)再证明:“若 都不为0,则:” 不妨设,则,所以…………………16分所以此时一定严格递减下去,直至存在正整数,使得,此时中有一个为0,由(I )可知此时命题也成立. 所以对于任意正整数必存在正整数,使得:. ………………… 18分 证法2:因为 ① 当且仅当等号成立,②当且仅当等号成立,③当且仅当等号成立,所以. ……………………12分 (I )若三个数至少有两个相等,不妨设 则 所以必存在正整数,使得.………14分(II) 若三个数互不相等,则……………16分所以此时一定严格递减下去,直至存在正整数,使得,此时中有两个相等,由(I )可知此时命题也成立. 所以对于任意正整数必存在正整数,使得:.……………………18分1111k k k k k k b c a b a c ----=-=-=k k b c ≠k k b c =1110,k k k k k k a a b c b c +++=====k 111,,k k k k k k a a b b c c +++===(),,2k k k a b c k ≥1k k d d +<k k a d ={}1max ,,k k k k k k a b c b c a +=-<<11,k k k k k k k k b a c a c b a a ++=-<=-<{}1111max ,,k k k k k k d a b c a d ++++=<=k d m 1m m d d +=,,m m m a b c 111,,,a b c k 111,,k k k k k k a a b b c c +++===1111111k k k k k k k k k k c a b c b c a a b c +------=-=---≤-=()2k ≥()()11110k k k k c b c a ------≤11111k k k k k k k k a b c a c a b a +----=-=---≤()2k ≥()()11110k k k k a c a b ------≤11111k k k k k k k k b a c b c b a b +----=-=---≤()2k ≥()()11110k k k k b c b a ------≤1k k d d +≤()2k ≥111,,k k k a b c ---11,k k a b --=11110,k k k k k k k c a b c a c b ----==-=-=k 10,k k k c a b +=-=11k k k k k k k k a b c a c b a b ++=-=-===111,,k k k a b c ---()2k ≥1,k k d d -<k d m 1m m d d +=111,,m m m a b c ---111,,,a b c k 111,,k k k k k k a a b b c c +++===。

2019年上海市徐汇区中考数学二模试卷(解析版)

2019年上海市徐汇区中考数学二模试卷(解析版)

2019年上海市徐汇区中考数学二模试卷一、选择题(每小题4分,共24分)1.在下列各式中,运算结果为x2的是()A.x4﹣x2B.x4•x﹣2C.x6÷x3D.(x﹣1)22.下列函数中,图象在第一象限满足y的值随x的值增大而减少的是()A.y=2x B.y=C.y=2x﹣3 D.y=﹣x23.关于x的方程x2﹣mx﹣1=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定4.今年3月12日,学校开展植树活动,植树小组16名同学的树苗种植情况如下表:植树数(棵) 3 5 6 7 8 人数 2 5 1 6 2 那么这16名同学植树棵树的众数和中位数分别是()A.5和6 B.5和6.5 C.7和6 D.7和6.55.下列说法,不正确的是()A.B.如果||=||,那么=C.D.若非零向量(k≠0),则6.在四边形ABCD中,AB∥CD,AB=AD,添加下列条件不能推得四边形ABCD为菱形的是()A.AB=CD B.AD∥BC C.BC=CD D.AB=BC二、填空题(每小题4分,共48分)7.1的倒数是.8.2018年1月,“墨子号”量子卫星实现了距离达7600000米的洲际量子密钥分发,数字7600000用科学记数法表示为.9.在实数范围内分解因式x3﹣4x的结果为.10.不等式组的解集是.11.方程=x的解是.12.如图,AB∥CD,若∠E=34°,∠D=20°,则∠B的度数为.13.在不透明的盒子中装有5个黑色棋子和15个白色棋子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑色棋子的概率是.14.如果函数y=kx+b的图象平行于直线y=3x﹣1且在y轴上的截距为2,那么函数y=kx+b 的解析式是.15.在Rt△ABC中,∠ACB=90°,AD是BC边上的中线,如果AD=2BC,那么cos∠CAD的值是.16.某校九年级学生共300人,为了解这个年级学生的体能,从中随机抽取50名学生进行1分钟的跳绳测试,结果统计的频率分布如图所示,其中从左至右前四个小长方形的高依次为0.004、0.008、0.034、0.03,如果跳绳次数不少于135次为优秀,根据这次抽查的结果,估计全年级达到跳绳优秀的人数为.17.如图,把半径为2的⊙O沿弦AB折叠,经过圆心O,则阴影部分的面积为(结果保留π).18.如图,在Rt△ABC中,∠ACB=90°,AB=6,cos B=,先将△ACB绕着顶点C顺时针旋转90°,然后再将旋转后的三角形进行放大或缩小得到△A′CB′(点A′、C、B′的对应点分别是点A、C、B),连接A′A、B′B,如果△AA′B和△AA′B′相似,那么A′C的长是.三、解答题(共78分)19.(10分)计算:.20.(10分)解方程组:.21.(10分)如图,已知⊙O的弦AB长为8,延长AB至C,且BC=AB,tan C=.求:(1)⊙O的半径;(2)点C到直线AO的距离.22.(10分)某市植物园于2019年3月﹣5月举办花展,按照往年的规律推算,自4月下旬起游客量每天将增加1000人,游客量预计将在5月1日达到最高峰,并持续到5月4日,随后游客量每天有所减少,已知4月24日为第一天起,每天的游客量y(人)与时间x (天)的函数图象如图所示,结合图象提供的信息,解答下列问题:(1)已知该植物园门票15元/张,若每位游客在园内每天平均消费35元,试求5月1日﹣5月4日,所有游客消费总额约为多少元?(2)当x≥11时,求y关于x的函数解析式.23.(12分)如图,已知梯形ABCD中,AD∥BC,AB=AC,E是边BC上的点,且∠AED=∠CAD,DE交AC于点F.(1)求证:△ABE∽△DAF;(2)当AC•FC=AE•EC时,求证:AD=BE.24.(12分)如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与直线y=x﹣3分别交x轴、y轴上的B、C两点,设该抛物线与x轴的另一个交点为点A,顶点为点D,连接CD交x轴于点E.(1)求该抛物线的表达式及点D的坐标;(2)求∠DCB的正切值;(3)如果点F在y轴上,且∠FBC=∠DBA+∠DCB,求点F的坐标.25.(14分)如图,△ABC中,AC=BC=10,cos C=,点P是AC边上一动点(不与点A、C重合),以PA长为半径的⊙P与边AB的另一个交点为D,过点D作DE⊥CB于点E.(1)当⊙P与边BC相切时,求⊙P的半径.(2)连接BP交DE于点F,设AP的长为x,PF的长为y,求y关于x的函数解析式,并直接写出x的取值范围.(3)在(2)的条件下,当以PE长为直径的⊙Q与⊙P相交于AC边上的点G时,求相交所得的公共弦的长参考答案一、选择题1.在下列各式中,运算结果为x2的是()A.x4﹣x2B.x4•x﹣2C.x6÷x3D.(x﹣1)2【分析】根据同类项的概念、同底数幂的乘除法法则、幂的乘方法则计算,判断即可.【解答】解:x4与x2不是同类项,不能合并,A选项错误;x4•x﹣2=x2,B选项正确;x6÷x3=x3,C选项错误;(x﹣1)2=x﹣2,D选项错误;故选:B.【点评】本题考查的是同底数幂的乘法、同底数幂的除法、幂的乘方,掌握它们的运算法则是解题的关键.2.下列函数中,图象在第一象限满足y的值随x的值增大而减少的是()A.y=2x B.y=C.y=2x﹣3 D.y=﹣x2【分析】直接利用一次函数以及反比例函数和二次函数的增减性进而分析得出答案.【解答】解:A、y=2x图象在第一象限满足y的值随x的值增大而增大,故此选项错误;B、y=,图象在第一象限满足y的值随x的值增大而减小,故此选项正确;C、y=2x﹣3图象在第一象限满足y的值随x的值增大而增大,故此选项错误;D、y=﹣x2,图象在第四象限满足y的值随x的值增大而减小,故此选项错误.故选:B.【点评】此题主要考查了函数的性质,正确掌握相关函数的性质是解题关键.3.关于x的方程x2﹣mx﹣1=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定【分析】先计算△=(﹣m)2﹣4×1×(﹣1)=m2+4,由于m2为非负数,则m2+4>0,即△>0,根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac的意义即可判断方程根的情况.【解答】解:△=(﹣m)2﹣4×1×(﹣1)=m2+4,∵m2≥0,∴m2+4>0,即△>0,∴方程有两个不相等的实数根.故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.4.今年3月12日,学校开展植树活动,植树小组16名同学的树苗种植情况如下表:植树数(棵) 3 5 6 7 8 人数 2 5 1 6 2 那么这16名同学植树棵树的众数和中位数分别是()A.5和6 B.5和6.5 C.7和6 D.7和6.5【分析】根据众数和中位数的定义求解可得.【解答】解:∵植树数为3的有1人,植树数为5的有5人,植树数为6的有1人,植树数为7的有6人,植树数为8的有2人,∴出现次数最多的数据是7,∴众数为7;∵一共有16名同学,∴因此其中位数应是第8和第9名数据的平均数,∴中位数为(6+7)÷2=6.5,故中位数为:6.5.故选:D.【点评】此题主要考查了中位数和众数.一些学生往往对概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.5.下列说法,不正确的是()A.B.如果||=||,那么=C.D.若非零向量(k≠0),则【分析】根据平面向量的三角形法则,平行向量的判定,向量的加法交换律等知识一一判断即可.【解答】解:A、正确.∵=+,∴﹣=.不符合题意.B、错误.模相等的向量不一定相等,符合题意.C、正确.向量的解法返回加法交换律.不符合题意.D、正确.根据平行向量的判定得出结论.不符合题意.故选:B.【点评】本题考查平面向量的三角形法则,平行向量的判定,向量的加法交换律等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.在四边形ABCD中,AB∥CD,AB=AD,添加下列条件不能推得四边形ABCD为菱形的是()A.AB=CD B.AD∥BC C.BC=CD D.AB=BC【分析】根据菱形的定义及其判定、矩形的判定对各选项逐一判断即可得.【解答】解:A选项:若AB=CD,∵AB∥CD,∴四边形ABCD是平行四边形,当AB=AD可判定四边形ABCD是菱形;B选项:当AD∥BC时,又AB∥CD,∴四边形ABCD是平行四边形,当AB=AD可判定四边形ABCD是菱形;C选项:当BC=CD时,△ABD≌△BCD(SSS),∴∠A=∠C.∵AB∥CD,∴∠C+∠ABC=180°.∴∠A+∠ABC=180°.∴AD∥BC.又AB∥CD,∴四边形ABCD是平行四边形,当AB=AD可判定四边形ABCD是菱形;D选项只能说明四边形的三条边相等,所以不能判定是菱形.故选:D.【点评】本题主要考查菱形的判定,解题的关键是掌握菱形的定义.二、填空题(每小题4分,共48分)7.1的倒数是.【分析】根据倒数的定义求解.【解答】解:1的倒数是=.【点评】倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.0没有倒数.8.2018年1月,“墨子号”量子卫星实现了距离达7600000米的洲际量子密钥分发,数字7600000用科学记数法表示为7.6×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:7600000=7.6×106,故答案为7.6×106【点评】本题考查了科学记数法表示交大的数,正确移动小数点位数是解题的关键.9.在实数范围内分解因式x3﹣4x的结果为x(x+2)(x﹣2).【分析】首先提取公因式,然后利用平方差公式即可分解.【解答】解:x3﹣4x=x(x2﹣4)=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).【点评】本题主要考查了因式分解的方法,正确运用各种方法是解题的关键.10.不等式组的解集是5≤x<7 .【分析】分步进行解答,x﹣2≥3,得x≥5,5﹣x>﹣2,解得x<﹣7,即可得出解集.【解答】解:不等式组解①式得x≥5解②式得x<7故该不等式的解集为:5≤x<7故答案为:5≤x<7【点评】此题主要考查解一元一次不等式组,分组解答后,也可以通过数轴表示出公共部分即为该不等式组的解集.值得注意的是,在化系数为1时,若遇到负号,要改变不等号的方向.11.方程=x的解是x=1 .【分析】将无理方程化为一元二次方程,然后求解即可.【解答】解:原方程变形为 4﹣3x=x2,整理得x2+3x﹣4=0,∴(x+4)(x﹣1)=0,∴x+4=0或x﹣1=0,∴x1=﹣4(舍去),x2=1.故答案为x=1.【点评】本题考查了无理方程,将无理方程化为一元二次方程是解题的关键.12.如图,AB∥CD,若∠E=34°,∠D=20°,则∠B的度数为54°.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,求出∠BCD,再根据两直线平行,内错角相等进行解答即可.【解答】解:如图,∵∠E=34°,∠D=20°,∴∠BCD=∠D+∠E=20°+34°=54°,∵AB∥CD,∴∠B=∠BCD=54°.故答案为:54°.【点评】本题考查了平行线的性质,三角形的外角性质,熟记各性质并准确识图是解题的关键.13.在不透明的盒子中装有5个黑色棋子和15个白色棋子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑色棋子的概率是.【分析】直接利用概率公式求解.【解答】解:任意摸出一个棋子,摸到黑色棋子的概率==.故答案为.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.14.如果函数y=kx+b的图象平行于直线y=3x﹣1且在y轴上的截距为2,那么函数y=kx+b 的解析式是y=3x+2 .【分析】利用两直线平行得到k的值,利用在y轴上的截距的意义得到b的值,从而可确定函数y=kx+b的解析式.【解答】解:∵函数y=kx+b的图象平行于直线y=3x﹣1且在y轴上的截距为2,∴k=3,b=2,∴函数y=kx+b的解析式为y=3x+2.故答案为y=3x+2.【点评】本题考查了两条直线的交点或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.15.在Rt△ABC中,∠ACB=90°,AD是BC边上的中线,如果AD=2BC,那么cos∠CAD的值是.【分析】设CD=a,根据题意求出BC和AD,根据勾股定理求出AC,根据余弦的定义计算,得到答案.【解答】解:设CD=a,∵AD是BC边上的中线,∴BC=2CD=2a,∴AD=2BC=4a,由勾股定理得,AC==a,∴cos∠CAD===,故答案为:.【点评】本题考查的是解直角三角形,掌握勾股定理、余弦的定义是解题的关键.16.某校九年级学生共300人,为了解这个年级学生的体能,从中随机抽取50名学生进行1分钟的跳绳测试,结果统计的频率分布如图所示,其中从左至右前四个小长方形的高依次为0.004、0.008、0.034、0.03,如果跳绳次数不少于135次为优秀,根据这次抽查的结果,估计全年级达到跳绳优秀的人数为72人.【分析】根据题意求出第⑤、⑥组的频率,然后用⑤、⑥两组的频率之和乘以总人数,计算即可得解.【解答】解:∵从左至右前四个小长方形的高依次为0.004、0.008、0.034、0.03,∴从左至右前四个小组的频率为:0.04,0.08,0.34,0.3;∴跳绳次数不少于135次的频率为1﹣0.04﹣0.08﹣0.34﹣0.3=0.24,∴全年级达到跳绳优秀的人数为300×0.24=72人,故答案为:72人.【点评】本题考查了读频数分布直方图的能力和利用统计图获取信息的能力,读懂题目信息,求出第⑤、⑥组的频率是解题的关键.17.如图,把半径为2的⊙O沿弦AB折叠,经过圆心O,则阴影部分的面积为﹣(结果保留π).【分析】过O作OD⊥AB于D,交劣弧AB于E,根据勾股定理求出AD,根据垂径定理求出AB,分别求出扇形AOB和三角形AOB的面积,即可得出答案.【解答】解:过O作OD⊥AB于D,交劣弧AB于E,如图:∵把半径为2的⊙O沿弦AB折叠,经过圆心O,∴OD=DE=1,OA=2,∵在Rt△ODA中,sin A==,∴∠A=30°,∴∠AOE=60°,同理∠BOE=60°,∴∠AOB=60°+60°=120°,在Rt△ODA中,由勾股定理得:AD===,∵OD⊥AB,OD过O,∴AB=2AD=2,∴阴影部分的面积S=S扇形AOB ﹣S△AOB=﹣=﹣,故答案为:﹣.【点评】本题考查了垂径定理,勾股定理,扇形的面积,折叠的性质等知识点,能求出扇形AOB和△AOB的面积是解此题的关键.18.如图,在Rt△ABC中,∠ACB=90°,AB=6,cos B=,先将△ACB绕着顶点C顺时针旋转90°,然后再将旋转后的三角形进行放大或缩小得到△A′CB′(点A′、C、B′的对应点分别是点A、C、B),连接A′A、B′B,如果△AA′B和△AA′B′相似,那么A′C的长是3﹣5 .【分析】由题意当点A′在线段BC上且AA′平分∠BAC时,△AA′B和△AA′B′相似,作A′H⊥AB于H.证明△AA′H≌△AA′C(AAS),推出A′C=A′H,AC=AH=2,设A′C=A′H=x,根据勾股定理构建方程即可解决问题.【解答】解:由题意当点A′在线段BC上且AA′平分∠BAC时,△AA′B和△AA′B′相似,作A′H⊥AB于H.在Rt△ABC中,∵cos B==,AB=6,∴BC=4,AC==2,∵∠A′AH=∠A′AC,∠AHA′=∠ACA′=90°,AA′=AA′,∴△AA′H≌△AA′C(AAS),∴A′C=A′H,AC=AH=2,设A′C=A′H=x,在Rt△A′BH中,(4﹣x)2=x2+(6﹣2)2,∴x=3﹣5,∴A′C=3﹣5,故答案为3﹣5.【点评】本题考查全等三角形的判定和性质,相似三角形的判定和性质,勾股定理等知识,解题的关键是理解题意,学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.三、解答题(共78分)19.(10分)计算:.【分析】依次对各项进行化简,然后相加减即可.【解答】解:原式=2++()﹣3=2++﹣3=﹣﹣.【点评】本题考查了根式化简,熟练掌握分母有理化与最简二次根式化简是解题的关键.20.(10分)解方程组:.【分析】先对方程①②分解因式转化为两个一元一次方程,然后联立,组成4个二元一次方程组,解之即可.【解答】解:由①得(x+y)(x﹣2y)=0,∴x+y=0或x﹣2y=0由②得(x+y)2=1,∴x+y=1或x+y=﹣1所以原方程组化为或或或,所以原方程组的解为,.【点评】本题考查了高次方程组,将高次方程化为一次方程是解题的关键.21.(10分)如图,已知⊙O的弦AB长为8,延长AB至C,且BC=AB,tan C=.求:(1)⊙O的半径;(2)点C到直线AO的距离.【分析】(1)过O作OD⊥AB于D,根据垂径定理求出AD=BD=4,解直角三角形求出OD,根据勾股定理求出即可;(2)根据三角形的面积公式求出即可.【解答】解:(1)过O作OD⊥AB于D,则∠ODC=90°,∵OD过O,∴AD=BD,∵AB=8,∴AD=BD=4,∵BC=AB,∴BC=4,∴DC=4+4=8,∵tan C==,∴OD=4,在Rt△ODA中,由勾股定理得:OA===4,即⊙O的半径是4;(2)过C作CE⊥AO于E,则S==,△AOC即=,解得:CE=6,即点C到直线AO的距离是6.【点评】本题考查了垂径定理,三角形的面积公式,勾股定理,解直角三角形等知识点,能求出AD、OD的长度是解此题的关键.22.(10分)某市植物园于2019年3月﹣5月举办花展,按照往年的规律推算,自4月下旬起游客量每天将增加1000人,游客量预计将在5月1日达到最高峰,并持续到5月4日,随后游客量每天有所减少,已知4月24日为第一天起,每天的游客量y(人)与时间x(天)的函数图象如图所示,结合图象提供的信息,解答下列问题:(1)已知该植物园门票15元/张,若每位游客在园内每天平均消费35元,试求5月1日﹣5月4日,所有游客消费总额约为多少元?(2)当x≥11时,求y关于x的函数解析式.【分析】(1)由图象可知,4月24日的游客量为33000人,再根据“自4月下旬起游客量每天将增加1000人,游客量预计将在5月1日达到最高峰,并持续到5月4日”得到5月1日到5月4日每天的游客量,进而由门票与园内消费计算出游客消费总额;(2)设函数解析式为y=kx+b,再由(11,40000)和(18,34400),用待定系数法便可求得结果.【解答】解:(1)根据题意,得5月1日到5月4日每天的游客量均为:33000+7×1000=40000(人),∴所有游客消费总额为:(15+35)×40000×4=8000000(元),答:5月1日到5月4日所有游客消费总额为8000000元;(2)设函数解析式为y=kx+b,把(11,40000)和(18,34400)都代入,得,解得,,∴函数的解析式为:y=﹣800x+48800.【点评】本题是一次函数函数图象与实际生活结合的题目,主要考查了列代数式,用待定系数法求一次函数的解析式,关键是看懂函数图象,理解题意,正确运用待定系数法,较基础.23.(12分)如图,已知梯形ABCD中,AD∥BC,AB=AC,E是边BC上的点,且∠AED=∠CAD,DE交AC于点F.(1)求证:△ABE∽△DAF;(2)当AC•FC=AE•EC时,求证:AD=BE.【分析】(1)想办法证明∠B=∠DAF,∠BAE=∠FAD即可解决问题.(2)只要证明四边形ADEB是平行四边形即可解决问题.【解答】证明:(1)∵AD∥BC,∴∠DAC=∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠DAF=∠B,∵∠AEC=∠AED+∠DEC=∠B+∠BAE,∠AED=∠CAD=∠ACB,∴∠DEC=∠BAE,∵AD∥BC,∴∠DEC=∠ADF,∴∠BAE=∠ADF,∴△ABE∽△DAF.(2)∵AC•FC=AE•EC,AC=AB,∴AB•FC=AE•EC,∴=,∵∠B=∠FCE,∠BAE=∠FEC,∴△BAE∽△CEF,∴=,∴=,∴FC=EF,∴∠FEC=∠FCE,∵∠FCE=∠B,∴∠B=∠FEC,∴AB∥DE,∵AD∥BE,∴四边形ADEB是平行四边形,∴AD=BE.【点评】本题考查相似三角形的判定和性质,平行四边形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.24.(12分)如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与直线y=x﹣3分别交x轴、y轴上的B、C两点,设该抛物线与x轴的另一个交点为点A,顶点为点D,连接CD交x轴于点E.(1)求该抛物线的表达式及点D的坐标;(2)求∠DCB的正切值;(3)如果点F在y轴上,且∠FBC=∠DBA+∠DCB,求点F的坐标.【分析】(1)y=x﹣3,令y=0,则x=6,令x=0,则y=﹣3,求出则点B、C的坐标,将点B、C坐标代入抛物线y=﹣x2+bx+c,即可求解;(2)求出则点E(3,0),EH=EB•sin∠OBC=,CE=3,则CH=,即可求解;(3)分点F在y轴负半轴和在y轴正半轴两种情况,分别求解即可.【解答】解:(1)y=x﹣3,令y=0,则x=6,令x=0,则y=﹣3,则点B、C的坐标分别为(6,0)、(0,﹣3),则c=﹣3,将点B坐标代入抛物线y=﹣x2+bx﹣3得:0=﹣×36﹣6b﹣3,解得:b=2,故抛物线的表达式为:y=﹣x2+2x﹣3,令y=0,则x=6或﹣2,即点A(2,0),则点D(4,1);(2)过点E作EH⊥BC交于点H,C、D的坐标分别为:(0,﹣3)、(4,1),直线CD的表达式为:y=x﹣3,则点E(3,0),tan∠OBC===,则sin∠OBC=,则EH=EB•sin∠OBC=,CE=3,则CH=,则tan∠DCB==;(3)点A、B、C、D、E的坐标分别为(2,0)、(6,0)、(0,﹣3)、(4,1)、(3,0),则BC=3,∵OE=OC,∴∠AEC=45°,tan∠DBE==,故:∠DBE=∠OBC,则∠FBC=∠DBA+∠DCB=∠AEC=45°,①当点F在y轴负半轴时,过点F作FG⊥BG交BC的延长线与点G,则∠GFC=∠OBC=α,设:GF=2m,则CG=CG tanα=m,∵∠CBF=45°,∴BG=GF,即:3+m=2m,解得:m=3,CF==m=15,故点F(0,﹣18);②当点F在y轴正半轴时,同理可得:点F(0,1);故:点F坐标为(0,1)或(0,﹣18).【点评】本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形等相关知识,其中(3),确定∠FBC=∠DBA+∠DCB=∠AEC=45°,是本题的突破口.25.(14分)如图,△ABC中,AC=BC=10,cos C=,点P是AC边上一动点(不与点A、C重合),以PA长为半径的⊙P与边AB的另一个交点为D,过点D作DE⊥CB于点E.(1)当⊙P与边BC相切时,求⊙P的半径.(2)连接BP交DE于点F,设AP的长为x,PF的长为y,求y关于x的函数解析式,并直接写出x的取值范围.(3)在(2)的条件下,当以PE长为直径的⊙Q与⊙P相交于AC边上的点G时,求相交所得的公共弦的长【分析】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cos C =,则sin C=,sin C===,即可求解;(2)PD∥BE,则,即:=,即可求解;(3)证明四边形PDBE为平行四边形,则AG=GP=BD,即:AB=DB+AD=AG+AD=4,即可求解.【解答】解:(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cos C=,则sin C=,sin C===,解得:R=;(2)在△ABC中,AC=BC=10,cos C=,设AP=PD=x,∠A=∠ABC=β,过点B作BH⊥AC,则BH=AC sin C=8,同理可得:CH=6,HA=4,AB=4,则:tan∠CAB=2BP==,DA=x,则BD=4﹣x,如下图所示,PA=PD,∴∠PAD=∠CAB=∠CBA=β,tanβ=2,则cosβ=,sinβ=,EB=BD cosβ=(4﹣x)×=4﹣x,∴PD∥BE,∴,即:=,整理得:y=;(3)以EP为直径作圆Q如下图所示,两个圆交于点G,则PG=PQ,即两个圆的半径相等,则两圆另外一个交点为D,GD为相交所得的公共弦,∵点Q时弧GD的中点,∴DG⊥EP,∵AG是圆P的直径,∴∠GDA=90°,∴EP∥BD,由(2)知,PD∥BC,∴四边形PDBE为平行四边形,∴AG=GP=BD,∴AB=DB+AD=AG+AD=4,设圆的半径为r,在△ADG中,AD=2r cosβ=,DG=,AG=2r,+2r=4,解得:2r=,则:DG==50﹣10,相交所得的公共弦的长为50﹣10.【点评】本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.。

2019年上海市闵行区中考数学二模试卷含答案解析+【精选五套中考模拟卷】

2019年上海市闵行区中考数学二模试卷含答案解析+【精选五套中考模拟卷】
∴BF=5.
又∵cos∠ABC= ,
∴BC=13,CF= =12.
∵AD=CF=12,AB=12,
∴BD= =12 .
∵△ABE沿BE翻折得到△PBE,
故答案为:8.
14.(4分)如图,已知在矩形ABCD中,点E在边AD上,且AE=2ED.设 = , = ,那么 = ﹣ (用 、 的式子表示).
【解答】解:∵四边形ABCD是矩形,
∴AB=CD,AB∥CD,AD=BC,AD∥BC,
∴ = = , = = ,
∵AE=2DE,
∴ = ,
∵ = + .
∴ = ﹣ ,
∴k>0,
∴它的图象的两个分支分别在第一、三象限.
故选:A.
4.(4分)有9名学生参加校民乐决赛,最终成绩各不相同,其中一名同学想要知道自己是否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )
A.平均数B.中位数C.众数D.方差
【解答】解:由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.
12.(4分)某十字路口的交通信 号灯每分钟红灯亮30秒,绿灯亮25 秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为.
13.(4分)已知一个40个数据的样本,把它分成六组,第一组到第四组的频数分别为10,5,7,6,第五组的频率是0.10,则第六组的频数为.
14.(4分)如图,已知在矩形ABCD中,点E在边AD上,且AE=2ED.设 = , = ,那么 =(用 、 的式子表示).
A.平均数B.中位数C.众数D.方差
5.(4分)已知四边形ABCD是平行四边形,下列结论中不正确的是( )
A.当AB=BC时,四边形ABC D是菱形

2019上海市二模试卷C卷

2019上海市二模试卷C卷

上海市初三语文质量测试(C)满分 分 考试时间 分钟考生注意:本试卷共 题。

请将所有答案做在答题纸的指定位置上,做在试卷上一律不计分。

一、文言文( 分)(一)默写( 分)1.蜂蝶纷纷过墙去,。

(王驾《雨晴》)2. ,到乡翻似烂柯人。

(刘禹锡《酬乐天扬州初逢席上见赠》)3.持节云中, ? (苏轼《江城子》)4. ,轻烟老树寒鸦,一点飞鸿影下。

(白朴《天净沙·秋》)5.黄发垂髫,。

(陶渊明《桃花源记》)(二)阅读下面的词,完成第6—7题(4分)如梦令昨夜雨疏风骤,浓睡不消残酒。

试问卷帘人,却道海棠依旧。

知否,知否?应是绿肥红瘦。

6.这首词的作者是(2分)A.苏轼B.柳永C.李清照D.马致远7.卷帘人指侍女,从她的回答中,读者可以推知作者提问的内容是;而“”则是作者发问的前提。

(2分)(三)阅读下文,完成第8—10题(9分)爱莲说水陆草木之花,可爱者甚蕃。

晋陶渊明独爱菊。

自李唐来,世人甚爱牡丹。

予独爱莲之出淤泥而不染,濯清涟而不妖。

中通外直,不蔓不枝,香远益.清,亭亭净植,可远观而不可亵玩焉。

予谓菊,花之隐逸者也;牡丹,花之富贵者也,莲,花之君子者也。

噫!菊之爱,陶后鲜有闻。

莲之爱,同予者何人?牡丹之爱,宜乎众.矣。

8.解释下列加点词(4分)(1)香远益.清(2)宜乎众.矣9.下列对文章理解不正确...的一项是(3分)A.“爱”是文章的题眼,全文围绕“爱莲”点明主旨。

B.第一段以菊花和牡丹为衬托来赞美莲花高洁的品格。

C..第二段将菊花和牡丹相比较突出莲花似君子的形象。

D.文章以三种花来比喻除作者以外的当时社会的三种人。

10.从作者对莲花的喜爱中,可看出作者对品德的追求。

(2分)(四)阅读下文,完成第11—13题(12分)李存审①出于寒微,常戒诸子曰:“尔父少提一剑去乡里,四十年间,位极.将相。

其间出万死获一生者非一,破骨出镞②者凡百馀。

”因授以所出镞,命.藏之,曰:“尔曹③生于膏粱④,当知尔父起家如此也。

2019上海市初三语文二模定稿C卷含答案

2019上海市初三语文二模定稿C卷含答案

2019 上海市初三语文二模定稿 C 卷(含答案 )上海市初三语文质量测试(C)一、文言文( 40 分)(一)默写( 15 分)1.招手自兹去,。

(李白《送友人》)2.,为伊消得人憔倅。

(柳永《蝶恋花》)3.盈盈一水间,。

(无名氏《迢迢牵牛星》)4.,皆若空游无所依。

(柳宗元《小石潭记》)5.因此动心忍性,。

(孟子《生于忧患死于安乐》)(二)阅读下边的元曲,达成第6-7 题( 4 分)【甲】孤乡村日残霞,轻烟老树寒鸦,一点飞鸿影下。

青山绿水,白草红叶黄花。

【乙】枯藤老树昏鸦,小桥流水人家,古道西风瘦马。

斜阳西下,断肠人在天涯。

6.这两首元曲的曲牌是,元曲【甲】的作者是。

(2分)7.以下对这首两首元曲理解正确..的一项为哪一项(2分)A.都运用对照手法激烈表达作者内心感情。

B.都经过多种光景组合创造出深远的境界。

C.都经过明媚高兴之景描述衬托伤感之情。

D.都在曲的结尾句直接表达出诗人的感情。

(三)阅读下边的短文,达成第8-10 题( 9 分)①林尽水源,便得一山。

山有小口,忧如如有光。

便舍船,从口入。

初极狭,才通人。

复行数十步,豁然爽朗。

土地平旷,屋舍俨然,有良田、美池、桑竹之属。

阡陌交通,鸡犬相闻。

其中来往种作,男女穿着,悉如外人。

黄发垂髫,并怡然自乐。

②见渔人,乃大惊,问所素来。

具答之。

便要还家,设酒杀鸡作食。

村中闻有这人,咸来问讯。

自云先世避秦时乱,率老婆邑人来此绝境,不复出焉;遂与外人间隔。

问今是何世,乃不知有汉,不论魏晋。

这人一一为具言所闻,皆叹惋。

余人各复延至其家,皆出酒食。

停多日,辞去。

局内人语云:“不足为外人道也。

”8.上文的作者是东晋大诗人。

(2分)9.用现代汉语翻译下边的句子。

( 3 分)林尽水源,便得一山。

10. 归纳第①段的内容:。

文章点明源中人“来此绝境” 的时间和原由的句子是“”。

(4 分)(四)阅读下边的短文,达成第11-13 题( 12 分)李订婚公家甚贫,同巷李生,每推财以济.之。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019上海市二模试卷
C卷答案
上海市初三语文质量测试(C)参考答案及评分标准
一、文言文(40分)
(一)(15分,每小题3分,错一字扣1分,扣完为止)
1.却疑春色在邻家
2. 怀旧空吟闻笛赋
3. 何日遣冯唐
4. 孤村落日残霞
5. 并怡然自乐
(二)(4分)
6.(2分)C
7.(2分)海棠怎样了?(或海棠还好吗)昨夜雨疏风骤
(三)(9分)
8.(4分)(1)更加(2)多
9.(3分) C
10.(2分)洁身自好的高尚品德(不愿与世俗同流合污)
(四)(12分)
11.(4分)D
12.(4分)出生入死的百战,
13.(4分)教育孩子们不忘过去,珍惜安逸生活。

(或“教育孩子富贵来之不易,需知创业艰难”;“在安逸的生活中不可丧失斗志,应多多历练,有所作为”)
二、现代文(40分)
(一)(18分)
14.(2分)肠道微生物群落
15.(4分)列数字准确具体地说明拟杆菌和厚壁菌类群是人体的众多菌类中是最主要的菌类
16.(4分)人的体重是由肠道微生物群落决定的(或:肠道微生物群落能够改变人的体重)
17.(4分)B(A是“作用之一”;C是“体重增加”;D是“研究结果目前尚不能肯定”)
18.(4分)在平常的饮食中长期食用低脂低糖的食物,不吃高糖高脂的食物,使体内拟杆菌增多,厚壁菌类群减少(因为通过调整饮食结构可以改变肠道内细菌群的种类和数量,更好地消化新食物从而改变体重)。

(二)(22分)
19.(4分)A
20.(4分)(选句得1分,效果3分)
选A(1分)效果:疑问句引发“小树”从不同角度思考,引导他与同学们成为朋友,表现了“我”关爱学生、循循善诱的师者形象。

(3分)选B(1分)效果:反问句,加强语气,引导“小树”忽略差异关注共性,努力成为同学们的朋友,表现了“我”关爱学生、循循善诱的师者形象。

(3分)选C(1分)效果:疑问句激发“小树”对自身兴趣点的关注,也为帮“小树”定计划提供思路,表现了“我”关爱学生、循循善诱的师者形象。

(3分)选D(1分)效果:疑问句激发“小树”的兴趣点,引导他发挥自身优势主动帮助他人,表现了“我”关爱学生、循循善诱的师者形象。

(3分)
21.(6分)沉默隐忍冷漠憎恨获得赞赏
22.(4分)联系上下文看,放在第⑨段是最为恰当的。

(1分)理由:此处
小树和同学们都敞开了心扉,为曾经有过的想法和行为而惭愧歉意。

同时从第⑩段的“我打断他们”这一句中可以推知同学们都在抢着表态。

23.(4分)题目的浅层是草长高了,可以扎草玩意儿;深层的意思是学生的心灵会走过寒冬,走向火热的夏天,会懂得“爱”,会日趋成熟。

三、综合运用(10分)
24.(4分)腔调主要大师艺术手法行当分类
25.(4分)示例:这种说法是不对的,戏曲文化是中国的传统文化,它是我国民间艺人和戏曲表演家传给我们的宝贵财富,散发着迷人的芳香,作为现代人,我们有责任和义务欣赏戏曲,传承戏曲文化,让戏曲文化进一步发扬光大。

26.(2分)李逵
四、写作(60分)
27.(60分)按中考作文评分标准评分。

相关文档
最新文档