三角恒等变换教案(优质课教案)

合集下载

三角函数恒等变换教案

三角函数恒等变换教案

复杂恒等变换问题解析
01
ቤተ መጻሕፍቲ ባይዱ
02
03
多项式型恒等式
对于包含多个三角函数项 的多项式型恒等式,通过 分组、提取公因式、配方 等方法进行化简和证明。
分式型恒等式
对于分式形式的恒等式, 通过通分、约分、分子有 理化等手段进行化简和证 明。
含有参数的恒等式
对于含有参数的恒等式, 先对参数进行讨论,再根 据不同情况选择合适的方 法进行证明。
正弦为负,余弦、正切为 正。
诱导公式及周期性
诱导公式
通过加减整数倍的$pi/2$或$pi$,将任意角的三角函数值转化为锐角三角函数 值。例如,$sin(pi - x) = sin x$,$cos(pi - x) = -cos x$等。
周期性
正弦、余弦函数的周期为$2pi$,正切函数的周期为$pi$。即对于任意整数$k$, 有$sin(x + 2kpi) = sin x$,$cos(x + 2kpi) = cos x$,$tan(x + kpi) = tan x$。
05
典型例题解析与讨论
简单恒等变换问题解析
1 2
利用基本恒等式进行变换 通过观察和运用基本的三角函数恒等式,如正弦、 余弦、正切的和差公式,将表达式化简为更简单 的形式。
角度变换 利用角度的加减、倍角、半角等关系,将复杂的 三角函数表达式转换为更易于处理的形式。
3
引入辅助角 通过引入辅助角,将原表达式转换为与辅助角相 关的三角函数形式,从而简化计算过程。
角的变换技巧
利用$sin(A+B)$、$cos(A+B)$等公式将 复杂角拆分为简单角。
倍角公式
如$sin 2A = 2sin A cos A$,用于将倍 角转换为单角。

三角恒等变换备课教案

三角恒等变换备课教案

三角恒等变换备课教案备课教案:三角恒等变换一、引言三角恒等变换是高中数学中的重要内容,对于学生深入理解三角函数的性质和应用具有重要意义。

本教案将通过引导学生发现和探究三角恒等变换的规律,帮助学生理解和掌握相关的变换技巧。

二、知识背景1. 三角函数的基本关系:(1) 正弦函数:sinθ = 对边/斜边(2) 余弦函数:cosθ = 邻边/斜边(3) 正切函数:tanθ = 对边/邻边2. 三角函数的周期性:(1) 正弦函数、余弦函数的周期是2π(2) 正切函数的周期是π3. 三角函数的基本恒等式:(1) 余弦函数的平方与正弦函数的平方和为1:cos^2θ + sin^2θ = 1(2) 正切函数与余切函数的乘积始终等于1:tanθ · cotθ = 1(3) 正弦函数与余切函数、余弦函数与正切函数的关系:sinθ/cotθ = cosθcosθ/tanθ = sinθ三、教学过程1. 引入:通过提问的方式引导学生回顾三角函数的基本关系和周期性规律。

2. 发现:给出一个具体的三角函数等式,例如sinθ = cos(π/2 - θ),请学生尝试寻找与之相关的恒等式。

3. 探究:根据学生的发现,引导学生使用初等三角函数的定义和已知的三角函数恒等式,进行推导和证明,找出恒等式的变换规律。

4. 总结:整理学生的发现和推导过程,总结三角恒等变换的基本规律,并给出示例进行演示和讲解。

5. 练习:提供一些练习题,让学生运用所学的三角恒等变换规律,解决相关的三角函数等式和问题。

四、教学评价1. 通过观察学生的推导过程和解题思路,评价他们对三角恒等变换规律的理解和掌握情况。

2. 提供针对性的反馈和指导,帮助学生纠正错误和加深对知识点的理解。

3. 鼓励学生积极参与课堂讨论和解题过程,培养他们的合作和思考能力。

五、课后作业1. 题目一:证明sin(π/2 - θ) = cosθ。

2. 题目二:利用三角恒等变换,化简并求解tanθ + 1 = secθ的解。

三角恒等变换教案

三角恒等变换教案

三角恒等变换教案一、教学目标1. 知识与技能:(1)理解三角恒等变换的概念和意义;(2)掌握三角恒等变换的基本公式;(3)能够运用三角恒等变换解决实际问题。

2. 过程与方法:(1)通过观察、分析、归纳三角恒等变换的规律;(2)培养学生的逻辑思维能力和运算能力。

3. 情感态度与价值观:(1)激发学生对数学的兴趣和探究欲望;(2)培养学生的团队合作意识和克服困难的勇气。

二、教学内容1. 三角恒等变换的概念和意义;2. 三角恒等变换的基本公式;3. 三角恒等变换的运用。

三、教学重点与难点1. 教学重点:(1)三角恒等变换的概念和意义;(2)三角恒等变换的基本公式;(3)三角恒等变换的运用。

2. 教学难点:(1)三角恒等变换公式的灵活运用;(2)解决实际问题时的变形和计算。

四、教学方法1. 采用问题驱动法,引导学生主动探究三角恒等变换的规律;2. 通过示例讲解,让学生掌握三角恒等变换的基本公式;3. 利用练习题和小组讨论,提高学生的实际应用能力和团队合作意识。

五、教学过程1. 导入新课:(1)复习相关三角函数知识;(2)提问:什么是三角恒等变换?为什么学习三角恒等变换?2. 知识讲解:(1)讲解三角恒等变换的概念和意义;(2)介绍三角恒等变换的基本公式;(3)示例讲解:如何运用三角恒等变换解决实际问题。

3. 课堂练习:(1)布置练习题,让学生独立完成;(2)选取部分学生的作业进行讲解和评价。

4. 小组讨论:(1)让学生分组讨论,分享解题心得和经验;5. 课堂小结:(1)回顾本节课所学内容;(2)强调三角恒等变换在数学和实际生活中的重要性。

6. 课后作业:(1)布置巩固练习题;(2)鼓励学生自主学习,深入探究三角恒等变换的运用。

六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答的正确性以及与同学的合作情况。

2. 练习作业评价:检查学生作业的完成质量,包括答案的正确性、解题方法的合理性以及书写的规范性。

高中必修第一册《55三角恒等变换》优质课教案

高中必修第一册《55三角恒等变换》优质课教案

02
知识回顾与铺垫
Chapter
三角函数基本概念回顾
任意角的概念及弧度制
01
理解任意角、正角、负角、零角的概念,掌握弧度制与角度制
的换算。
三角函数的定义
02
回顾正弦、余弦、正切函数的定义,理解三角函数在各象限的
符号。
三角函数的诱导公式
03
掌握利用单位圆和周期性推导出的三角函数诱导公式。
三角函数性质及图像复习
指出了在应用三角恒等变换时需要注意的一些细节和易错点,如公式使用的条件、 符号的变换等。
布置针对性作业,要求学生按时完成并提交
针对本节课所学内容,布置了相应的 练习题和思考题,要求学生按时完成 并提交。
鼓励学生相互交流和讨论作业中遇到 的问题,促进彼此之间的学习和进步 。
提醒学生在完成作业时要注意细节和 规范性,如书写工整、步骤清晰等。
三角恒等变换的基本公式及其应用。
教学方法与手段
教学方法
本节课采用讲解、示范、练习相结合的教学方法。通过讲解 帮助学生理解三角恒等变换的基本公式和几何意义;通过示 范使学生掌握运用三角恒等变换解决三角函数问题的方法; 通过练习巩固所学知识,提高解题能力。
教学手段
使用多媒体辅助教学,展示三角恒等变换的公式推导过程、 几何意义以及典型例题的解析过程,增强教学的直观性和生 动性。
03
新课导入与探究
Chapter
两角和与差公式推导及应用举例
公式推导
通过向量的数量积和三角函数的 定义,推导两角和与差的余弦、 正弦公式。
应用举例
解决三角形中的角度问题,如已 知两边和夹角求第三边等。
倍角公式推导及应用举例
公式推导
利用三角函数的和差公式,推导二倍 角的正弦、余弦、正切公式。

第三章三角恒等变换教案

第三章三角恒等变换教案

高中数学必修4 第3章 三角恒等变换 3.1.1 两角差的余弦公式一、教学目标掌握用向量方法建立两角差的余弦公式.通过简单使用,使学生初步理解公式的结构及其功能,为建立其它和(差)公式打好基础. 二、教学重、难点1. 教学重点:通过探索得到两角差的余弦公式;2. 教学难点:探索过程的组织和适当引导,这里不但有学习积极性的问题,还有探索过程必用的基础知识是否已经具备的问题,使用已学知识和方法的水平问题,等等. 三、教学设想: (一)导入:问题1: 我们在初中时就知道 2cos 452=,3cos302=,由此我们能否得到()cos15cos 4530?=-=大家能够猜测,是不是等于cos 45cos30-呢?根据我们在第一章所学的知识可知我们的猜测是错误的!下面我们就一起探讨两角差的余弦公式()cos ?αβ-= (二)探讨过程:在第一章三角函数的学习当中我们知道,在设角α的终边与单位圆的交点为1P ,cos α等于角α与单位圆交点的横坐标,也能够用角α的余弦线来表示。

思考?.1角函数线来探求公式怎样联系单位圆上的三(1) 怎样构造角β和角αβ-?(注意:要与它们的正弦线、余弦线联系起来.)?)2(的余弦线和余弦线的正弦线怎样作出角βαβα-,、、思考2:怎样联系向量的数量积探求公式?(1)结合图形,明确应该选择哪几个向量,它们是怎样表示的?(2)怎样利用向量的数量积的概念的计算公式得到探索结果? 两角差的余弦公式:βαβαβαsin sin cos cos )cos(⋅+⋅=-(三)例题讲解例1、利用和、差角余弦公式求cos 75、cos15的值. 解:分析:把75、15构造成两个特殊角的和、差.()231cos75cos 4530cos 45cos30sin 45sin 30222=+=-=⨯=()231cos15cos 4530cos 45cos30sin 45sin 302222=-=+=⨯=点评:把一个具体角构造成两个角的和、差形式,有很多种构造方法,例如:()cos15cos 6045=-,要学会灵活使用.例2、已知4sin 5α=,5,,cos ,213παπββ⎛⎫∈=- ⎪⎝⎭是第三象限角,求()cos αβ-的值.解:因为,2παπ⎛⎫∈ ⎪⎝⎭,4sin 5α=由此得3cos 5α===-又因为5cos ,13ββ=-是第三象限角,所以12sin 13β===-所以3541233cos()cos cos sin sin 51351365αβαβαβ⎛⎫⎛⎫⎛⎫-=+=-⨯-+⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭点评:注意角α、β的象限,也就是符号问题.思考:此题中没有),2ππα⎝⎛∈,呢? (四)练习:不查表计算以下各式的值:︒︒+︒︒20sin 80sin 20cos 80cos 1)(︒+︒15sin 2315cos 212)(解: ︒︒+︒︒20sin 80sin 20cos 80cos 1)( 2160cos )2080cos(=︒=︒-︒= (五)小结:两角差的余弦公式,首先要理解公式结构的特征,理解公式的推导过程,熟知由此衍变的两角和的余弦公式.在解题过程中注意角α、β的象限,也就是符号问题,学会灵活使用.(1)牢记公式.S S C C C ⋅+⋅=-)(βα(2)在“给值求值”题型中灵活处理已、未知关系. (六)作业3.1.2两角和与差的正弦、余弦、正切公式一、教材分析本节的主要内容是两角和与差的正弦、余弦和正切公式,为了引起学生学习本章的兴趣,理解以两角差的余弦公式为基础,推导两角和、差正弦和正切公式的方法,体会三角恒等变换特点的过程,理解推导过程,掌握其应用从而激发学生对本章内容的学习兴趣和求知欲。

三角恒等变换教案优质课教案

三角恒等变换教案优质课教案

三角函数的图像与变换
三角函数的基本图像
01
正弦、余弦、正切函数在坐标系中的图像及其特点。
图像的平移与伸缩
02
通过平移和伸缩变换,可以得到不同振幅、周期和相位的三角
函数图像。
图像的对称与周期性
03
三角函数图像具有对称性和周期性,可以通过这些性质进行图
像分析和变换。
三角函数的和差化积与积化和差公式
和差化积公式
05
06
$tan(A - B) = frac{tan A - tan B}{1 + tan A tan B}$
倍角公式与半角公式
倍角公式 $sin 2A = 2sin A cos A$
$cos 2A = cos^2 A - sin^2 A = 2cos^2 A - 1 = 1 - 2sin^2 A$
解释三角恒等变换在几何图形中的应用,如角度、边长等的计算。
02
三角恒等变换在物理中的应用
阐述三角恒等变换在物理学中的应用,如振动、波动等问题的分析。
03
三角恒等变换在工程学中的应用
介绍三角恒等变换在工程领域中的应用,如建筑设计、机械制造等。
拓展:三角恒等变换在其他领域的应用
三角恒等变换在数学分析中的应用
三角恒等变换在数学、物理、工程等领域具有广泛的应用,是解决实际问题的重要 工具之一。
掌握三角恒等变换的方法和技巧,对于提高学生的数学素养和解决问题的能力具有 重要意义。
课程目标与要求
知识与技能目标
掌握三角恒等变换的基本方法和技巧, 能够熟练地进行三角函数的化简和计 算。
过程与方法目标
情感态度与价值观目标
将两个角的三角函数和差转化为 单个角的三角函数形式,便于计

三角恒等变换教案

三角恒等变换教案

三角恒等变换教案一、教学目标1. 知识与技能:(1)理解三角恒等变换的概念和意义;(2)掌握三角恒等变换的基本公式;(3)能够运用三角恒等变换解决实际问题。

2. 过程与方法:(1)通过观察和分析,培养学生的逻辑思维能力;(2)通过练习和应用,提高学生解决实际问题的能力。

3. 情感态度与价值观:(1)培养学生对数学学科的兴趣和好奇心;(2)培养学生的团队合作意识和解决问题的自信心。

二、教学内容1. 三角恒等变换的概念和意义(1)引入三角函数的定义和图像;(2)解释三角恒等变换的含义和作用。

2. 三角恒等变换的基本公式(1)sin(α±β)的公式;(2)cos(α±β)的公式;(3)tan(α±β)的公式。

三、教学过程1. 导入(1)复习相关三角函数的定义和图像;(2)提出问题,引导学生思考三角恒等变换的必要性。

2. 新课讲解(1)讲解三角恒等变换的概念和意义;(2)引导学生推导三角恒等变换的基本公式。

3. 练习与应用(1)布置相关的练习题,巩固学生对三角恒等变换的理解;(2)引导学生运用三角恒等变换解决实际问题。

四、教学评价1. 课堂讲解的评价:(1)观察学生在课堂上的参与度和理解程度;(2)通过提问和回答,检查学生对三角恒等变换的理解。

2. 练习题的评价:(1)检查学生完成练习题的情况和答案的正确性;(2)分析学生在解题过程中存在的问题和错误,及时进行反馈和指导。

五、教学资源1. 教学PPT:包含三角恒等变换的概念、意义和基本公式的讲解;2. 练习题:提供相关的练习题,供学生巩固和应用所学知识;3. 教学参考书:提供详细的三角恒等变换的讲解和例题。

六、教学策略1. 案例分析:通过分析具体的三角函数例子,让学生理解恒等变换的应用。

2. 小组讨论:让学生分组讨论三角恒等变换的性质,促进学生之间的交流和合作。

3. 问题解决:设计一些实际问题,让学生运用所学的三角恒等变换知识去解决,提高学生的应用能力。

三角恒等变换教案(教师用)

三角恒等变换教案(教师用)
例8、【给值求角】(1)已知 , ,且 ,求 的值
(2)若 且 , ,求 的值。
(答: ).
例9、【给值求取值范围】
1.若 求 的取值范围。
2. ห้องสมุดไป่ตู้求 的取值范围
针对性练习二
1、已知 则 的值等于()
(A) (B) (C) (D)
2、已知 则 值等于()
(A) (B) (C) (D)
3、化简:
答案:1·B 2·C
知识框架
一、两角和与差的正弦、余弦、正切公式
二、倍角的正弦、余弦、正切公式
1、二倍角公式:
2、二倍角公式的变形
(1)升幂:(2)降幂:
三、三角恒等变换的常见形式
1、三角恒等变换中常见的三种形式:化简、求值、证明
(1)三角函数式的化简常见的方法为化切为弦、利用诱导公式、同角三角函数的基本关系及和(差)角公式、倍角公式等进行转化求解。
巩固作业
1、若 ,求 的值。
2、已知在 中, ,求cosA的值。
3、已知 的最值。
4、已知 , ,则 的最大值为______,最小值为______.
5、若 的取值范围是
[0 , ]
难题、易错题部分
1、 中, ,则 =_______
2、已知函数y=sin( x+ )与直线y= 的交点中距离最近的两点距离为 ,那么此函数的周期是()
三角恒等变换
课题
三角恒等变换
教学目标
1、掌握和差角公式、二倍角公式的推导方法与记忆技巧,并能熟练运用此类公式。
2、能够熟练进行三角恒等变换(如:化简、求值)
重点、难点
重点:三角恒等变换;难点:三角恒等变换的应用
考点及考试要求
1、两角和与差的正弦、余弦、正切公式。

高中数学教案《三角恒等变换》

高中数学教案《三角恒等变换》

教学计划:《三角恒等变换》一、教学目标知识与技能:学生能够理解并掌握三角恒等变换的基本公式,包括和差化积、积化和差、二倍角公式等。

学生能够熟练运用三角恒等变换公式进行化简、求值及证明。

培养学生的逻辑推理能力和代数运算能力。

过程与方法:通过观察、分析、归纳等数学活动,引导学生发现三角恒等变换的规律。

采用“公式推导—例题讲解—练习巩固”的教学模式,帮助学生逐步掌握三角恒等变换的方法。

鼓励学生自主探究,通过小组合作解决复杂问题,培养团队协作能力。

情感态度与价值观:激发学生对数学学习的兴趣,感受数学的美妙与和谐。

培养学生的耐心和细心,养成严谨的科学态度。

引导学生认识到数学在解决实际问题中的重要性,增强应用数学的意识。

二、教学重点和难点重点:三角恒等变换的基本公式及其推导过程;运用公式进行化简、求值及证明。

难点:灵活运用三角恒等变换公式解决复杂问题;理解并记忆众多公式的内在联系。

三、教学过程1. 导入新课(5分钟)情境引入:通过展示一些与三角恒等变换相关的实际问题(如天文学中的角度计算、物理学中的波动分析等),引导学生思考这些问题背后可能涉及的数学知识,从而引出三角恒等变换的主题。

复习旧知:简要回顾三角函数的基本性质、图像及诱导公式,为学习三角恒等变换做好铺垫。

明确目标:介绍本节课的学习目标,即掌握三角恒等变换的基本公式及其应用。

2. 公式推导(15分钟)和差化积公式推导:通过图形展示和代数运算相结合的方式,引导学生推导出和差化积公式。

强调公式的推导过程,帮助学生理解公式的来源和含义。

积化和差公式推导:类比和差化积公式的推导过程,引导学生自主推导积化和差公式。

鼓励学生提出疑问和见解,促进课堂互动。

二倍角公式推导:利用三角函数的倍角关系,引导学生推导出二倍角公式。

强调公式的记忆方法和应用技巧。

3. 例题讲解(10分钟)基础例题:选取具有代表性的基础例题进行讲解,如利用三角恒等变换公式化简表达式、求三角函数值等。

三角恒等变换教案

三角恒等变换教案

三角恒等变换教案三角恒等变换教案一、教学目标:1.能够掌握三角恒等变换的概念和基本性质;2.能够灵活运用三角恒等变换求解简单的三角函数值;3.能够理解三角恒等变换与三角函数的图像、周期、奇偶性之间的关系。

二、教学内容:1.三角恒等变换的定义和基本性质;2.三角恒等变换与三角函数的图像、周期、奇偶性之间的关系;3.使用三角恒等变换求解简单的三角函数值。

三、教学重难点:1.三角恒等变换的基本性质的理解和运用;2.三角恒等变换与三角函数的图像、周期、奇偶性之间的关系。

四、教学方法:1.讲授结合练习,理论与实际相结合;2.举例分析和解题演练。

五、教学过程:第一步:引入新知识(10分钟)向学生简单介绍三角恒等变换的概念,并与他们讨论三角函数的图像、周期、奇偶性。

通过讨论的方法,激发学生的兴趣,引导学生主动思考。

第二步:讲解三角恒等变换的基本性质(15分钟)1.角的关系:讲解正弦、余弦、正切函数之间的关系,以及正角、负角之间的关系。

2.平方关系:讲解正弦、余弦、正切函数的平方和、平方差以及积与商之间的关系。

3.倒数关系:讲解正弦、余弦、正切函数的倒数之间的关系。

第三步:练习应用(20分钟)1.通过示例的方式,向学生展示如何使用三角恒等变换求解简单的三角函数值。

2.组织学生进行练习,让学生分小组进行解题,及时给予指导和反馈。

第四步:总结归纳(10分钟)请学生总结三角恒等变换的基本性质,并与他们讨论三角恒等变换与三角函数的图像、周期、奇偶性之间的关系。

第五步:小结(5分钟)对本节课学习的内容进行小结,并激发学生对三角函数的兴趣,鼓励他们进一步实践和研究。

六、教学反思本节课采用了理论与实际相结合的教学方法,通过讨论、演示和练习,使学生能够深入理解三角恒等变换的基本性质,并能够熟练灵活地应用。

课堂上,我积极引导学生思考和互动,激发了学生的学习兴趣和积极性。

但是,部分学生在练习环节遇到了一些困难,建议将练习题目难易程度适当调整,以使学生在解题过程中能够灵活运用所学知识。

三角恒等变形教案

三角恒等变形教案

三角恒等变形教案一、知识和方法二、教学目标1.理解、记忆并能够运用两角和、差余弦公式。

2.了解体会整体法和拆分法在解决问题中的运用。

三、教学过程1.课程导入:① 问题:的值是多少 105cos ,15cos ?② 复习:同角平方关系1cos sin 22=+αα。

两点间距离公式221221)()(y y x x ---。

2.公式推导:① 准备:在平面直角坐标系中标出ββαα-,,+的坐标。

② 思路:三角形全等,两点间距离公式。

③ 推导:带入化简得βαβαβαsin sin cos cos )cos(⋅-⋅=+。

④ 推广:βαβαβαsin sin cos cos )cos(⋅+⋅=-。

3.例题:① 简单运用:a) 的值。

求105cos ,15cos b) 。

求已知)3cos(),2,23(,53cos παππαα-∈=c) 。

求已知)cos(),23,(,43cos ),,2(,32sin βαππββππαα-∈-=∈=② 整体法和拆分法的运用:a) 。

求已知βπβαβααcos ,2,0,5147)cos(,171cos <<-=+= b) 。

)求,(),,(且已知αππβαππβαβαβα2cos 43-247,54)cos(,54)cos(∈∈+-=-=+ ③ 余弦二倍角公式: 。

求已知αππαα2cos ),,2(,135sin ∈=4.练习:① 基础练习:a) 的值。

求均为锐角,,已知βαβαβα-==,101cos ,51sin b) 的值。

,求已知22)cos (cos )sin (sin 31)cos(βαβαβα+++=-c) 的值。

求103sin 5sin 103cos 5cos ππππ- d) 的值。

-求均为锐角,、,已知)cos(,21cos cos 21sin sin βαβαβαβα=--=- e)的值。

和、,求、,已知ββαππβαππβαβαβα2cos 2cos )2,23(),2(,1312)cos(1312)cos(∈+∈-=+-=- ② 拓展练习:a) 的值。

高中必修第一册《5.5 三角恒等变换》优质课教案教学设计

高中必修第一册《5.5 三角恒等变换》优质课教案教学设计

第五章三角函数5.5.2 简单的三角恒等变换本节课选自《普通高中课程标准实验教科书数学必修1本(A版)》5.5.2节《简单的三角恒等变换》属于新授课.本节的内容是简单的三角恒等变换,主要内容是利用已有的十一个公式进行简单的恒等变换,以及三角恒等变换在数学中的应用,本节的内容都是用例题来展现的,通过例题的解答,引导学生对变换对象和变换目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等属性思想方法的认识,从而加深理解变换思想,提高学生的推理能力。

让学生感受数形结合及转化的思想方法。

发展学生数学直观、数学抽象、逻辑推理、数学建模的核心素养。

课程目标学科素养1.能用二倍角公式导出半角公式,体会其中的三角恒等变换的基本思想方法,以及进行简单的应用.2.了解三角恒等变换的特点、变换技巧,掌握三角恒等变换的基本思想方法,能利用三角恒等变换对三角函数式化简、求值以及三角恒等式的证明和一些简单的应用.3.体会知识之间的内在联系,培养学生的思考归纳能力,提高其思维灵活性.a.数学抽象:公式的应用;b.逻辑推理:公式之间的联系;c.数学运算:运用公式求值;d.直观想象:公式的灵活运用;e.数学建模:运用三角公式解决实际问题;教学重点:体会其中的三角恒等变换的基本思想方法,以及进行简单的应用.教学难点:了解三角恒等变换的特点、变换技巧,掌握三角恒等变换的基本思想方法,能利用三角恒等变换对三角函数式化简、求值以及三角恒等式的证明和一些简单的应用.多媒体分析:要求当角α取何值时,矩形①找出S与α之间的函数关系设矩形ABCD 的面积为S ,则αααsin )sin 33(cos -=⨯=BC AB S )2cos 1(632sin 21sin 33cos sin 2ααααα--=-= 63)2cos 212sin 23(31632cos 632sin 21-+=-+=αααα 63)62sin(31-+=πα. 对于第二步求具体值,要首先确定变量的取值范围: 由 03πα<<, 得52666πππα<+<. 所以当 262ππα+=, 即6πα=时,max 133.663S =-= 因此,当6πα=时, 矩形ABCD 的面积最大,最大面积为36. 注:(1)在求解最大值时,要特别注意 “03πα<<”这一隐含条件;(2)应用问题转化为数学问题,最后要回归到实际问题.通过三角变换把形如y =a sin x +b cos x 的函数转化为形如y =A sin(ωx+ϕ)的函数,从而使问题得到简化。

《三角恒等变换》教学案

《三角恒等变换》教学案

《三角恒等变换》教学案第1课时两角和与差的余弦教学过程一、问题情境[1]在实数运算中,有公式a(b+c)=ab+ac;在向量运算中,有公式a·(b+c)=a·b+a·c;在三角运算中,有公式cos(α-β)=cosα-cosβ吗?如果没有,式子一定不成立吗?二、数学建构问题1在直角坐标系xOy中,以Ox为始边分别作角α,β (0≤β≤α≤π),其终边分别与单位圆交于P1,P2,则向量,的夹角是多少?·的值是多少?[2](图1)由图1可得向量,的夹角是α-β,=(cosα,sinα),=(cosβ,sinβ).一方面,由向量数量积的定义,有·=||·||cos(α-β)=cos(α-β).另一方面,由向量数量积的坐标表示,有·=cosαcosβ+sinαsinβ.从而cos(α-β)=cosαcosβ+sinαsinβ, 0≤β≤α≤π.问题2如果α,β∈R,上述公式还成立吗?[3]当α-β∈[0,π]时,α-β就是,的夹角,所以cos(α-β)=cosαcosβ+sinαsinβ.对于任意的α,β,总可选适当的整数k,使α-β-2kπ∈[-π,π).记β1=β+2kπ,则β1与β的终边相同,且α-β1∈[-π,π),从而|α-β1|≤π,|α-β1|就是,的夹角.因此cos(|α-β1|)=cos(α-β1)=cos(α-β-2kπ)=cos(α-β)=cosαcosβ+sinαsinβ.综上,cos(α-β)=cosαcosβ+sinαsinβ,这就是两角差的余弦公式,记为C(α-β).问题3cos(β-α)的展开式是什么?它与cos(α-β)展开式相等吗?为什么?cos(β-α)=cosαcosβ+sinαsinβ,它们展开式相等.因为余弦函数是偶函数,所以cos(α-β)=cos(β-α).问题4能利用两角差的余弦公式求cos(α+β)吗?[4]在两角差的余弦公式中,用-β代替β,就可以得到cos(α+β)=cosαcosβ-sinαsinβ,这就是两角和的余弦公式,记为C(α+β).思考“用-β代替β”的换元方法体现在图形上有什么几何意义?能直接利用向量的数量积推出两角和的余弦公式吗?用“-β代替β”的几何意义就是作出角β关于x轴的对称图形.(一) 公式理解1. 结构特征:①左边是两角差的余弦,右边是同名积的和;②左边是两角和的余弦,右边是同名积的差.2. 公式中的α,β可以是任意的角(或式子).3. 当α,β中有一个是90°的整数倍时,用诱导公式比较简便.(二) 巩固概念问题5请利用两角和(差)的余弦公式证明cos=sinα.[5]cos=cos cosα+sin sinα=sinα.三、数学运用【例1】利用两角和(差)的余弦公式,求cos75°,cos15°,sin15°,tan15°.[6][处理建议]引导学生将75°, 15°转化为两个特殊角的和或差,正弦需转化为余弦.[规范板书]解(1) 方法1:cos75°=cos(45°+30°)=cos45°cos30°-sin45°sin30°=.方法2:cos75°=cos(120°-45°)=cos120°cos45°+sin120°sin45°=.(2) 方法1:cos15°=cos(45°-30°)=cos45°cos30°+sin45°sin30°=.方法2:cos15°=cos(60°-45°)=cos60°cos45°+sin60°sin45°=.(3) sin15°=cos(90°-75°)=cos75°=.(4) tan15°===2-.[题后反思](1)两角差(和)的余弦公式也适用于形式上不是差(和)角,但可以拆分成两角差(和)的情形;(2)角的拆分可能有多种形式,要根据题目选择适当的拆分.变式化简cos+cos.[规范板书]解原式=cos cosα-sin sinα+cos cosα+sin sinα=cosα.【例2】不查表,求下列式子的值:(1) cos120°cos15°-sin120°sin15°;(2) cos58°sin77°+sin122°sin13°.[处理建议]本例是逆用两角和(差)的余弦公式求值,要引导学生构造公式中的结构.[规范板书]解(1)原式=cos(120°+15°)=cos135°=-.(2) 原式=cos58°cos13°+sin58°sin13°=cos(58°-13°)=.变式不查表,求cos215°-sin215°的值.[规范板书]解cos215°-sin215°=cos(15°+15°)=.[题后反思] 只有式子结构与公式结构完全相同时才能逆用公式,否则需对式子进行变形.【例3】已知sinα=,α∈,cosβ=-,β∈,求cos(α+β)的值.[处理建议]由公式C(α+β)可知,欲求cos(α+β),应先计算cosα,sinβ的值.cosα,sinβ是通过sin2x+cos2x=1(x为任意角)来求解的,要注意“±”的选取.[规范板书]解因为α∈,sinα=,所以cosα=-=-=-.又因为cosβ=-,β∈π,,所以sinβ=-=-=-,所以cos(α+β)=cosαcosβ-sinαsinβ=-×--×=.[题后反思]思考:在例3中,你能求出sin(α+β)的值吗?*【例4】若α,β为锐角,且满足cosα=,cos(α+β)=,求cosβ的值.[处理建议]先由学生自己分析解题思路,可能是“展开cos(α+β),与sin2β+cos2β=1联立,解方程组”.再引导学生观察发现α,α+β,β三个角之间的关系为β=(α+β)-α,用两角差的余弦公式求解.最后由学生比较两种方法的简易度,让学生体会拆角方法的简捷和思路的合理性.[规范板书]解因为α,β为锐角,所以0<α<, 0<β<, 0<α+β<π.因为cosα=,cos(α+β)=,所以sinα=,sin(α+β)=,所以cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα=×+×=.[题后反思] 在“给式求值”问题中,要注意用已知角来表示所求角.如本题已知角为α+β和α,所求角是β,则β=(α+β)-α.变式已知cos(2α-β)=-,sin(α-2β)=,且<α<, 0<β<,求cos(α+β)的值.[处理建议]引导学生寻找已知角与所求角之间的关系,即(2α-β)-(α-2β)=α+β.由α,β的取值范围,分别求出2α-β,α-2β的正弦值和余弦值,再利用公式即可求解.[规范板书]解∵<α<, 0<β<,∴<2α-β<π,-<α-2β<.由cos(2α-β)=-,sin(α-2β)=,得sin(2α-β)=,cos(α-2β)=,∴cos(α+β)=cos[(2α-β)-(α-2β)]=cos(2α-β)·cos(α-2β)+sin(2α-β)·sin(α-2β)=×+×=.四、课堂练习1. 化简:cos(30°+α)-cos(30°-α)=-sinα.2. 化简:cos65°cos115°-cos25°sin115°=-1.提示原式=cos65°cos115°-sin65°sin115°=cos(65°+115°)=cos180°=-1.3. 已知sinα=,α∈,cosβ=-,β是第三象限角,则cos(α-β)=-.提示因为α∈,sinα=,所以cosα=-=-=-.又因为cosβ=-,β是第三象限角,所以sinβ=-=-=-,所以cos(α-β)=cosαcosβ+sinαsinβ=×+×=-.4. 已知α∈,cos=,则cosα=.提示因为α∈,所以α-∈,所以sin=-.因此,cosα=cos=cos-sin=.五、课堂小结1. 运用向量数量积的定义及坐标运算公式推导两角差的余弦公式,在两角差的余弦公式上用赋值法得到两角和的余弦公式.2. 两角和与差的余弦公式的结构特证.3. 三角变换时,注意角与角的关系(用已知角表示所求角).第2课时两角和与差的正弦(1)教学过程一、问题情境[1]如何求sin15°的值?二、数学建构问题1上节课中,我们是如何求sin15°的值?我们是将sin15°变换成cos75°,再利用两角和的余弦公式来计算.而sin15°=sin(45°-30°),有没有两角和(差)的正弦公式?问题2能否用上述方法,将sin(α+β)转化成某个角的余弦?sin(α+β)=cos.问题3上述中涉及三个角和的余弦,如何展开才能使结果只含有α,β的正弦和余弦?cos=cos=cos cosβ+sin sinβ=sinαcosβ+cosαsinβ,即sin(α+β)=sinαcosβ+cosαsinβ,这就是两角和的正弦公式,记为S(α+β).问题4能得到两角差的正弦公式吗?即sin(α-β)=.[2]解法一在两角和的正弦公式中,用-β代替β,就可以得到sin(α-β)=sinαcosβ-cosαsinβ,这就是两角差的正弦公式,记为S(α-β).解法二sin(α-β)=cos-(α-β)=cos-α+β=cos-αcosβ-sin-αsinβ=sinαcosβ-cosαsinβ.问题5能用同角三角函数的关系,由C(α±β)推导出S(α±β)?这样做有什么困难?用同角三角函数的关系推导时,会遇到符号确定的困难.问题6sin(β-α)的展开式是什么?它与sin(α-β)的展开式相同吗?为什么?sin(α-β)=sinβcosα-cosβsina,它与sin(α-β)的展开式互为相反数.因为正弦函数是奇函数,所以sin(β-α)=-sin(α-β).公式理解1. 结构特征:①左边是两角和的正弦,右边是异名积的和;②左边是两角差的余弦,右边是异名积的差.2. 公式中的α,β可以是任意的角(或式子).3. 运用公式要注意角及函数的位置排列顺序.4. 当α,β中有一个是90°的整数倍时,用诱导公式比较简便.三、数学运用【例1】已知sinα=-,α是第四象限角,求sin的值.[处理建议]由学生自己分析解题思路,教师引导学生注意cosα的正负.[规范板书]解因为sinα=-,α是第四象限角,所以cosα==,所以sin-α=sin cosα-cos sinα=×-×=.变式化简:sin+sin.[规范板书]解原式=sin cosα-cos sinα+=2sin cosα=cosα.【例2】已知α∈,sin=,求sinα的值.[处理建议]先由学生自己分析解题思路,可能是“展开sin,与sin2α+cos2α=1联立,解方程组”.再引导学生观察分析α,α+之间的关系,根据两角差的正弦公式求解.[规范板书]解因为α∈,所以α+∈,.又因为sin=,所以cosα+=,所以sinα=sin+α-=sin+αcos-cos+αsin=×-×=-.[题后反思](1)三角变换中要注意角与角的关系,如α=-,α=+等等.(2)利用平方关系确定cos时,一定要注意α+的范围.变式已知α∈,sin=,求sinα的值.[规范板书]解因为α∈,所以α+∈.又因为sin(α+)=,所以cosα+=±.(1) 当cos=-时,cos<cos,所以α+>,即α>(舍去).(2) 当cos=时,sinα=sin=sin cos-cos sin=×-×=-.【例3】已知cos(α+β)=,cosβ=,α,β均为锐角,求sinα的值.[处理建议]先由学生自己分析解题思路,可能是“展开cos(α+β),与sin2β+cos2β=1联立,解方程组”.再引导学生思考:在学习两角和差的余弦公式时,有类似的题目吗?是如何解决的?(将α看成是α+β与β的差,即α=(α+β)-β,再用两角差的正弦公式求解) [规范板书]解因为α,β均为锐角,所以α+β∈(0,π).又因为cos(α+β)=,cosβ=,所以sin(α+β)=,sinβ=,所以sinα=sin=sin(α+β)cosβ-cos(α+β)sinβ=×-×=.[题后反思] (1)在“给式求值”问题中,要注意用已知角来表示所求角.如本题已知角为α+β和β,所求角是α,则α=(α+β)-β.(2)在解三角函数问题时,常通过条件缩小角的范围,避免讨论.如将本题β的范围改为(0,π),则如何求解呢?(由cosβ=,β∈(0,π),得β∈)变式已知<α<, 0<β<,cos=,sin=,试求sin(α+β)的值.[处理建议]引导学生思考:(1) 本题中的已知角是什么?所求角是什么?两者间有什么关系?(已知角是+β,-α,所求角是α+β,两者间的关系是-=+(α+β))(2) 已知角的和是+(α+β),不是α+β,如何求sin(α+β)?(先求cos)[规范板书]解因为<α<, 0<β<,所以-α∈,+β∈.又因为cos=,sin=,所以sin=-,cos=-.所以cos=cos+β--α=cos+βcos-α+sin+βsin-α=-×+×-=-.又因为cos=-sin(α+β),所以sin(α+β)=.*【例4】cos33°cos12°-cos57°cos78°=.[处理建议]引导学生从公式结构出发,构造与公式相同的结构,逆用公式.[规范板书]解法一(用两角和的余弦公式)原式=cos33°cos12°-sin33°sin12°=cos(33°+12°)=.解法二(用两角差的正弦公式)原式=sin57°cos12°-cos57°sin12°=sin(57°-12°)=.[题后反思]逆用公式要注意公式的结构与条件结构是否相同.变式1求函数y=sinx+cosx的最大值.[处理建议]引导学生思考:(1) 正弦函数、余弦函数分别在何时取最大值?(正弦函数当x=2kπ+,k∈Z时取最大值,余弦函数当x=2kπ,k∈Z时取最大值)(2) 题中函数的最值是在x=2kπ+,k∈Z,或x=2kπ,k∈Z时取得吗?(3) 本题如何求最大值?[规范板书]解y=sinxcos+cosxsin=sin.当x+=2kπ+,k∈Z,即x=+2kπ,k∈Z时,函数y取得最大值1.[题后反思]本题还有其他解法吗?(y=sinxsin+cosxcos=cos.当x-=2kπ,k∈Z,即x=+2kπ,k∈Z时,函数y取得最大值1)变式2求函数y=sinx+cosx的最大值.[处理建议]引导学生发现变式1与变式2之间的关系.[规范板书]解y=2sinx+cosx=2sinxsin+cosxcos=2cos x-.当x-=2kπ,k∈Z,即x=+2kπ,k∈Z时,函数y取得最大值2.[题后反思]解题过程中提出的系数2与原系数1,有何关系?(2=)四、课堂练习1. 计算:sin69°cos99°-cos69°sin99°=-.2. 在△ABC中, A=,cos B=,则sin C=.提示∵ A=,∴cos A=sin A=.又∵cos B=,B∈(0,π),∴sin B=,∴sin C=sin(A+B)=sin A cos B+cos A sin B=.3. 函数y=sinx-cosx的最小值是-2.提示y=2=2sin x-.当x-=2kπ-,k∈Z,即x=2kπ-,k∈Z时,函数y 取得最小值-2.4. 已知cosα=,cos(α+β)=,且α,β都为锐角,求sinβ的值.解由已知条件可得sinα=,sin(α+β)=,所以sinβ=sin=sin(α+β)cosα-cos(α+β)sinα=×-×=.五、课堂小结1. 运用两角和与差的余弦公式及三角函数的诱导公式来推导两角和与差的正弦公式.2. 两角和与差的正弦公式的结构特征.3. 三角变换时,注意角与角的关系(用已知角表示所求角).第3课时两角和与差的正弦(2)教学过程一、问题情境化简:sin+cos.二、数学建构活动解决问题情境中的问题.解原式=sin2xcos-cos2xsin+cos2xcos-sin2xsin=sin2x-cos2x+cos2x-sin2x=0.问题1在“两角和与差的余弦”这一课中,我们曾发现在求解三角函数问题时,如果能注意到角与角的关系,可以减少运算量,那么这道题中涉及哪些角,它们有什么关系?从局部看,本题涉及2x,,,它们没有明显关系.从整体来看,本题涉及2x-,2x+,它们的关系为-=.问题2能否根据上述回答想到其他解决思路?原式=sin2x-+cos+2x-=sin2x--sin2x-=0.总结在求解三角函数问题时,要注意角与角之间的关系.三、数学运用【例1】求的值.[处理建议]引导学生寻找题中角的关系,将50°看成60°-10°,从而减少非特殊角的个数(消元的思想).[规范板书]解原式===.[题后反思](1) 通过寻找角与角间的关系,减少非特殊角的个数,这是三角变换的重要思路之一.(2) 思考:为什么不将10°改写成60°—50°?【例2】已知sin(2α+β)+2sinβ=0,cos(α+β)cosα≠0,求证:tanα=3tan(α+β).[处理建议]引导学生观察条件中的角与结论中的角之间的关系.[规范板书]证明sin(2α+β)+2sinβ=sin+2sin=[sin(α+β)c osα+cos(α+β)sinα]+2[sin(α+β)cosα-cos(α+β)sinα]=3sin(α+β)cosα-cos(α+β)sinα=0.又因为cos(α+β)cosα≠0,所以=,即tanα=3tan(α+β).【例3】已知sin(α+β)=,sin(α-β)=-,求的值.[处理建议]引导学生思考:(1) 条件是关于角的正弦,结论是关于角的正切,这种既含有正弦、余弦,又含有正切的问题,我们一般先做什么?(化切为弦,即求)(2) 要求,就要求sinαcosβ,cosαsinβ,条件中有吗?(只需将sin(α+β),sin(α-β)展开即可)[规范板书]解由已知条件得所以从而==×=.[题后反思](1)三角变换要会“执果索因”,如本例及例1中将所求角表示成已知角.(2)本例的解法体现了方程思想.(3)思考:从本例的解题过程可以看出,只要知道sin(α+β),sin(α-β)的值,就可以求出sinαcosβ,cosαsinβ.据此你能用α+β,α-β的正弦与余弦表示sinαcosβ,cosαsinβ,cosαcosβ,sinαsinβ吗?【例4】化简:sin(α+β)cosα-[sin(2α+β)-sinβ].[处理建议]引导学生观察2α+β,β,α+β,α四个角之间的关系,即2α+β=(α+β)+α,β=(α+β)-α,从而可将原三角函数式化为关于角α+β和α的三角函数式,再做适当整合、化简.[规范板书]解原式=sin(α+β)cosα-=sin(α+β)cosα-·2cos(α+β)sinα=sin(α+β)cosα-cos(α+β)sinα=sin=sinβ.[题后反思](1)正确逆用两角和与差的正、余弦公式,是化简三角函数式的基本途径.(2)化简三角函数式要从分析角的关系入手,即找题中角与角的关系,这是化简三角函数式的一个切入点.四、课堂练习1. 求的值.解原式====.2. 证明:=tan(α+β).证明左边===tan(α+β)=右边.五、课堂小结1. 三角变换时,要注意角与角的关系,会“执果索因”.2. 灵活运用两角和(差)公式进行简单的三角函数式的化简、求值和证明.第4课时两角和与差的正切(1)教学过程一、问题情境回顾“两角和与差的余弦”例1中求tan15°的过程,我们是先分别求出sin15°,cos15°,再由同角三角函数关系求出tan15°,那么能否由tan45°和tan30°直接求出tan15°呢?[1]二、数学建构问题1对于一般的角α,β,当α,β,α+β的正切值存在时,能由tanα,tanβ直接表示tan(α+β)吗?tan(α+β)===.问题2上述公式对于任意角α,β都成立吗?当α,β,α+β均不等于kπ+,k∈Z时,式子才成立,这就是两角和的正切公式,记为T(α+β).问题3如何由tanα,tanβ直接表示tan(α-β)?解法一tan(α-β)===.解法二用-β代换β,就可以得到tan(α-β)==.公式理解1. 结构特征:公式右边分子上的符号与左边的符号一致,而分母的符号与分子的符号相反;分子是两角正切值的和与差,分母含有两角正切值的积.2. 公式中的α,β,α+β,α-β的正切值都存在时,公式才能成立.三、数学运用【例1】(1) 已知tanα=,tanβ=,则tan(α+β)=;(2)已知tanα=3,则tan=.答案(1) 1;(2) -.[处理建议]本题是公式的直接运用,可让学生自己求解.变式1已知α,β均为锐角,且tanα=,tanβ=,则α+β=.[处理建议]引导学生思考:(1) 要求角的大小,先要求什么?(角的某个三角函数值和角的范围)(2) 本题中用哪个三角函数?为什么?(本题中用正切.一是因为题中涉及角的正切;二是因为α+β∈(0,π),且在此范围内一个正切值对应一个角)[规范板书]解tan(α+β)===1.又因为α,β均为锐角,所以α+β∈(0,π),所以α+β=.[题后反思]求角的大小,先求角的某一三角函数值和角的范围.变式2如图,三个相同的正方形相接,求证:α+β=.(变式2)[处理建议]引导学生选择适当的三角函数求解.[规范板书]解法一由题可知tanα=,tanβ=,所以tan(α+β)===1.又因为α,β均为锐角,所以α+β∈(0,π),所以α+β=.解法二由题可知cosβ=,sinβ=,cosα=,sinα=,所以cos(α+β)=cosαcosβ-sinαsinβ=×-×=.又因为α,β均为锐角,所以α+β∈(0,π),所以α+β=.【例2】已知=4+,求tan的值.[处理建议]先由学生自己分析解题思路,可能会有两种:一是由已知求出tanα的值,然后由两角差的正切公式求出tan;二是由=tan直接得到答案.引导学生观察条件和结论之间的关系,学会用整体思想去分析问题.[规范板书]解法一由=4+,解出tanα=-,所以tan==4+.解法二tan==4+.变式1求值:.[规范板书]解原式==tan(45°-15°)=.变式2求值:.[规范板书]解原式==tan(60°-15°)=1.【例3】已知tanα与tanβ是方程x2-3x-3=0的两个根,求tan(α+β)的值.[处理建议]本题可以先直接求出tanα,tanβ,然后利用公式求tan(α+β);也可以用韦达定理先求tanα+tanβ,tanαtanβ,然后利用公式求tan(α+β).再让学生比较这两种方法的繁易程度.[规范板书]解法一因为方程x2-3x-3=0的两个根为,所以tanα+tanβ=3,tanαtanβ=-3,所以tan(α+β)===.解法二由题可知Δ=(-3)2-4×(-3)=12>0,所以tanα+tanβ=3,tanαtanβ=-3,所以tan(α+β)===.变式已知tanα与tanβ是方程x2-3x-3=0的两个根,求sin2(α+β)-3sin(α+β)cos(α+β)-3cos2(α+β)的值.[规范板书]解由题可知Δ=(-3)2-4×(-3)=12>0,所以tanα+tanβ=3,tanαtanβ=-3,所以tan(α+β)===.故sin2(α+β)-3sin(α+β)cos(α+β)-3cos2(α+β)====-3.(例4)*【例4】如图,在平面直角坐标系xOy中,以Ox轴为始边作两个锐角α,β,它们的终边分别与单位圆相交于A, B两点,已知A, B的横坐标分别为,.(1) 求tan(α+β)的值;(2) 求α+2β的值.[处理建议]引导学生根据三角函数的定义,求出tanα,tanβ,从而求出tan(α+β)和tan(α+2β),并通过α+2β的范围确定α+2β的大小.[规范板书]解由题意知cosα=,cosβ=,又α,β为锐角,∴sinα=,sinβ=.因此tanα=7,tanβ=.(1) tan(α+β)==-3.(2) tan(α+2β)=tan==-1.∵α,β为锐角,∴ 0<α+2β<,∴α+2β=.(变式)变式 如图, A , B 是单位圆O 上的点,且A 点坐标为, B 在第二象限, C 是圆O与x 轴正半轴的交点,△A O B 为正三角形,求tan ∠B O C 的值.[规范板书] 解 由题可知tan ∠A O C =, ∴ tan ∠B O C =tan (∠A O C +60°)====-.四、 课堂练习1. 已知tanα=-2, tanβ=5,则tan (α-β)=.2. 计算:=-.提示 原式==tan (45°+75°)=-.3. 已知α为锐角, cosα=,则tan =-3. 提示 由cosα=, α为锐角,得sinα=,则tanα=2,所以tan==-3.4. 已知0<α<, 0<β<,且tanα, tanβ是方程3x 2+4x-1=0的两根,求α+β的值.解 因为方程3x 2+4x-1=0的两根为,所以tanα+tanβ=-, tanα·tanβ=-,则tan (α+β)===-1.又0<α<, 0<β<,所以α+β∈(0, π), 故α+β=.五、 课堂小结1. 运用两角和与差的正弦、余弦公式推导两角和与差的正切公式.2. 两角和与差的正切公式的结构特征和角的限制.3. 求角的步骤:先求出某个三角函数值,再根据角的范围求解.第5课时 两角和与差的正切(2)教学过程一、 问题情境 已知tan (a+4)=2,则tanα= . 二、 数学建构活动 解决问题情境中的问题. 解 tan==2,解得tanα=.问题1 本题条件中的角与结论中的角分别是什么? 条件中的角是α+,结论中的角是α.问题2在即时体验2中,我们是如何求cosα的?先用条件中的角表示结论中的角,即α=-,再用两角差的余弦公式求解.问题3本题还有其他解法吗?tanα=tan+α-==.三、数学运用【例1】已知tan=2,tan=3,求tan(α+β)的值.[处理建议]先由学生自己分析解题思路,可能的思路有两个:一是由tan=2求出tanα,由tan=3求出tanβ,然后再求tan(α+β);二是由-=+α+β,先求出tan,而后再求tan(α+β).再引导学生比较两种方法的繁简程度.[规范板书]解∵tan+α+β=tanβ+--α===,∴tan(α+β)=tan===.[题后反思]在三角函数“给式求值”问题中,要注意已知角与所求角之间的关系.【例2】证明:tan x-tan=.[处理建议]用问题:“本题中涉及几个角?它们有什么关系?”引导学生寻找角与角之间的关系.[规范板书]证明右边====tan-tan=左边.变式已知sin(2α+β)=5sinβ,求证:3tanα=2tan(α+β).[规范板书]证明由题可知sin(α+β)+α=5sin,则sin(α+β)cosα+cos(α+β)sinα=5,化简得4sin(α+β)cosα=6cos(α+β)sinα,两边同除以cosαcos(α+β)得3tanα=2tan(α+β).【例3】求tan23°+tan37°+tan23°tan37°的值.[处理建议]引导学生由式中含有两角正切值的和与积,联想到两角和差的正切公式.[规范板书]解原式=tan(23°+37°)(1-tan23°tan37°)+tan23°tan37°=.[题后反思] 当题中出现两角正切值的和(差)与积时,要联想到两角和(差)的正切公式的变形:tanα+tanβ=tan(α+β)(1-tanαtanβ),tanα-tanβ=tan(α-β)(1+tanαtanβ).变式在斜三角形ABC中,求证:tan A+tan B+tan C=tan A tan B tan C.[处理建议]引导学生分析式子的结构,发现式子中含正切值的和与积.[规范板书]证明在斜三角形ABC中,有A+B+C=π,即A+B=π-C,且A, B,A+B≠,所以左边=tan(A+B)(1-tan A tan B)+tan C=tan(π-C)(1-tan A tan B)+tan C=tan A tan B tan C=右边.[题后反思]一般地,当角A, B, C满足什么条件时,能使等式tan A+tan B+tan C=tan A tan B tan C成立?(一般地,当A+B+C=kπ,k∈Z时,此结论成立)【例4】如图(1),两座建筑物AB, CD的高度分别为9m和15m,从建筑物 AB的顶部A看建筑物 CD的张角∠CAD=45°,求建筑物AB与CD的底部之间的距离BD.(例4(1))(例4(2))[处理建议]引导学生通过作 CD的垂线 A E,将中涉及到的量转移到两个直角三角形中.[规范板书]解如图(2),作A E⊥CD于E.因为AB∥CD, AB=9, CD=15,所以D E=9,E C=6.设A E=x,∠CA E=α.因为∠CAD=45°,所以∠DA E=45°-α.在Rt△A E C和Rt△A E D中,有tanα=,tan(45°-α)=.因为tan(45°-α)=,所以=,解得x=18,x=-3(舍去).答:建筑物 AB与 CD的底部之间的距离 BD为18m.四、课堂练习1. 已知tan(α-β)=,tan=,则tan=.提示tanα+=tan(α-β)+β+=.2. 计算:=.提示原式===.(第3题)3. 如图,在矩形ABCD中,AB=a, BC=2a,在BC上取一点P,使得AB+B P=P D,求tan∠A P D的值.解由AB+B P=P D,得a+B P=,解得B P=a,故C P=a.设∠A P B=α,∠D P C=β,则tanα==,tanβ==,所以tan(α+β)==-18,所以tan∠A P D=tan(π-α-β)=-tan(α+β)=18.五、课堂小结1. 三角变换时,要注意角与角的关系,学会“执果索因”.2. 当条件中出现两角正切值的和(差)时,会用两角和(差)的正切公式的变形解题.第6课时二倍角的三角函数(1)教学过程一、问题情境问题我们已经知道函数y=sin2x与y=sinx的图象关系,也知道α+β的正弦、余弦和正切可用α,β的正弦、余弦和正切来表示,那么角α的三角函数和角2α的三角函数之间有怎样的数量关系?[1]在S(α+β), C(α+β),T(α+β)公式中,令β=α,就可以得到结果:sin2α=2sinαcosα(S2α);cos2α=cos2α-sin2α(C2α);tan2α=(T2α).二、数学建构问题1二倍角公式中,角有限制吗?二倍角的正弦、余弦公式中的角是任意角,但二倍角的正切公式中,2α≠+kπ,α≠+kπ,k∈Z.问题2二倍角的余弦公式中,同时出现了sin2α,cos2α,能否只保留一个?能.cos2α=2cos2α-1,cos2α=1-2sin2α.三、数学运用【例1】已知sinα=,α∈,求sin2α,cos2α,tan2α的值.[2][处理建议]引导学生先求出cosα的值,然后正确运用二倍角公式计算.[规范板书]解因为sinα=,α∈,所以cosα=-.于是,sin2α=2sinαcosα=2××=-,cos2α=1-2sin2α=1-2×=-,tan2α==×=.[题后反思] (1)还有其他方法求tan2α吗?(tanα==-,tan2α=)(2)已知sinα,求cos2α时,用公式cos2α=1-2sin2α可以避免讨论.若用sin22α+cos22α=1求解,则cos2α=±.哪种是错误答案,如何修正?(cos2α=±是错的.因为sinα=,α∈,所以α∈, 2α∈,所以cos2α=-)(3)已知角的某个三角函数值及范围,可以缩小角的范围.变式已知sinα=0.8,α∈,求sin2α,cos2α的值.[规范板书]解因为sinα=0.8,α∈,所以cosα=0.6,所以sin2α=2sinαcosα=0.96,cos2α=1-2sin2α=-0.28.【例2】化简:(1) cos cos ;(2) cos4-sin4;(3) .[处理建议]引导学生从公式的结构出发,构造与公式相同的结构,逆用公式.[规范板书]解(1)原式=cos sin==sin=.(2) 原式=cos2-sin2cos2+sin2=cos2-sin2=cosα.(3) 原式=·=tan45°=.[题后反思] (1)公式变形:sinαcosα=sin2α;(2)倍角公式中的倍角是相对的,如4α是2α的倍角,α是的倍角等.变式(1) 计算:-=4;(2)化简:-=tan2α.[规范板书]解(1)原式====4.(2) 原式==tan2α.【例3】求证:=.[处理建议]引导学生思考:(1) 式子左右两边有什么差异?(从角的差异来看,左边角是右边角的二倍;从名称的差异来看,题中涉及正弦、余弦和正切)(2) 三角变换时,从哪个差异入手比较简单?(从角的差异入手)[规范板书]证明左边====tan2θ==右边.∴原式得证.[题后反思] (1)三角变换时,首先要找到角与角之间的关系,如倍角关系、α=(α+β)-β等.(2)当题中出现1+cosα, 1-cosα时,要想到用倍角公式消1.变式若270°<α<360°,则=-cos.[处理建议]引导学生对结构“1+cos2α”进行变形,同时要注意开方后“±”的选取.[规范板书]解因为270°<α<360°,所以135°<<180°,cosα>0,cos<0.原式=====-cos.四、课堂练习1. 计算:(1) (sin15°+cos15°)2=.(2) sin22°30'cos22°30'=.(3) -=.(4) sin2-cos2=-.2. 求证:=tan(+x).证明====tan.五、课堂小结1. 运用两角和的正弦、余弦、正切公式推导出二倍角公式.2. 注意二倍角正切公式中角的限制.3. 三角变换技巧:①变名;②变角;③变结构.第7课时二倍角的三角函数(2)教学过程一、数学运用【例1】已知sinθ+cosθ=,θ∈,求sinθ·cosθ,sin2θ,cos2θ,sinθ,cosθ的值.[处理建议]先由学生自己分析解题思路,可能是“联立方程sinθ+cosθ=与sin2θ+cos2θ=1求解”.再引导学生思考:(1)能否不通过sinθ,cosθ,直接求出sinθcosθ,sin2θ,cos2θ?(2) 结论中的sinθcosθ在条件中并没有出现,如何才能出现?(只需将sinθ+cosθ=平方即可)[规范板书]解法一由sinθ+cosθ=,得sinθ=-cosθ,将其代入恒等式sin2θ+cos2θ=1,得+cos2θ=1,化简得50cos2θ-10cosθ-24=0,解得cosθ=-或cosθ=.又因为θ∈,所以cosθ=-,则sinθ=-cosθ=,于是sinθ·cosθ=-,sin2θ=-,cos2θ=1-2sin2θ=1-2×=-.综上所述,sinθ·cosθ=-,sin2θ=-,cos2θ=-,sinθ=,cosθ=-.解法二由题意知(sinθ+cosθ)2=1+2sinθcosθ=,所以sinθcosθ=-,sin2θ=-.又因为θ∈,所以2θ∈,故cos2θ=-.(cosθ-sinθ)2=1-2sinθcosθ=,又因为θ∈,所以cosθ-sinθ=-,与sinθ+cosθ=联立,解得sinθ=,cosθ=-.综上所述,sinθ·cosθ=-,sin2θ=-,cos2θ=-,sinθ=,cosθ=-.[题后反思](1)三角变换时要会“执果索因”,即用已知条件构造结果中的结构.(2)sinα+cosα,sinα·cosα,sinα-cosα三者之间可以互相转化.变式将例1中“θ∈”改为“θ∈(0,π)”.[处理建议]在解题过程中,引导学生根据结果适当缩小角的范围.[规范板书]解法一由sinθ+cosθ=,得sinθ=-cosθ,将其代入恒等式sin2θ+cos2θ=1,得+cos2θ=1,化简得50cos2θ-10cosθ-24=0,解得cosθ=-或cosθ=,代入sinθ=-cosθ,所以或又因为θ∈(0,π),所以以下同例1的解法一.解法二由题可知(sinθ+cosθ)2=1+2sinθcosθ=,所以sinθcosθ=-,sin2θ=-.又因为θ∈(0,π),所以θ∈.又因为sinθ+cosθ=>0,所以θ∈,即2θ∈,故cos2θ=-.以下同例1题的解法二.[题后反思] 三角函数问题常需根据条件缩小角的范围,以避免讨论.【例2】已知sin=,0<θ<,求cos2θ,cos的值.[处理建议]引导学生寻找条件中的角与结论中角的关系.关系有两种:一是将条件中的-θ转化成θ求解;二是条件中角的两倍与结论中的2θ的和是,即2+2θ=.[规范板书]解法一因为0<θ<,所以-θ∈.又因为sin=,所以cos=,所以sinθ=sin--θ=cos-θ-sin-θ==,cosθ=.于是,cos2θ=1-2sin2θ=,cos=(cosθ-sinθ)=.解法二因为0<θ<,所以-θ∈.又因为sin=,所以cos-θ=,所以sin-2θ=2sin-θcos-θ=2××=,即cos2θ=,cos+θ=cos--θ=sin-θ=.[题后反思]三角变换时,要注意题中角与角的关系:如是否可以用一(两)个角表示其他角;α±β,α±2β是否特殊角等.变式设sin=,则sin2θ=-.[处理建议]引导学生思考:题中的角+θ与结论中的角2θ之间有什么关系?2+θ-2θ=[规范板书]解cos=cos2+θ=1-2sin2+θ=,所以sin2θ=-cos=-.【例3】化简:sin2α-+sin2α+-sin2α.[处理建议]引导学生分析式中角的关系与结构特征.[规范板书]解法一原式=+-sin2α=sin2α+cos2α-sin2α=.解法二由倍角公式cos2α=1-2sin2α,得sin2α=,于是,原式=+-=-=-=.[题后反思](1)二倍角余弦公式的变形(降幂公式):sin2α=,cos2α=.(2) 三角变换也可从“变结构”入手,常见的结构有1+cosα, 1-cosα等.变式求证:cos8α-sin8α=cos2α(1-sin22α).[处理建议]引导学生思考:(1)式子的左右两边有什么差异?(结构上的差异:三角函数的次方不同;角上的差异:角α与角2α有倍角关系)(2)本题从什么差异入手比较简单?(从结构入手,将左边的次数降低)[规范板书]证明左边=(cos4α-sin4α)(cos4α+sin4α)=(cos2α-sin2α)(cos2α+sin2α)(cos4α+sin4α)=cos2α·(cos2α+sin2α)2-2sin2αcos2α=cos2α·1-2sin2αcos2α=cos2α·=右边.*【例4】在半圆钢板上截取一块矩形材料,怎样截取能使这个矩形的面积最大?[处理建议]引导学生作图,并选择圆心角∠B O A(θ)为自变量,建立关于θ的函数,同时注意应用题的书写规范.[规范板书](例4)解如图,设∠B O A=θ,且θ为锐角,半圆的半径为R,则面积最大的矩形ABCD必内接于半圆O,且两边长分别为AB=Rsinθ, DA=2O A=2Rcosθ,所以这个矩形的面积S=AB·DA=Rsinθ·2Rcosθ=R2sin2θ.所以当sin2θ=1(θ为锐角),即θ=45°时,矩形ABCD的面积取得最大值R2.此时AD=R, AB=R.答:当这个矩形的两边长与半圆的半径的比是1∶2∶时,所截矩形的面积最大.[题后反思]求解与圆有关的最值问题时,常以圆心角为自变量.变式在一个圆的所有内接矩形中,怎样的矩形面积最大?[规范板书]解设ABCD是☉O的内接矩形,☉O半径为R,∠ACB=θ,则AB=2Rsinθ, BC=2Rcosθ,所以矩形ABCD的面积S=AB·BC=4R2sinθcosθ=2R2sin2θ.当sin2θ=1(θ为锐角),即θ=45°时,矩形ABCD的面积最大.二、课堂练习1. 已知sin=,则sin2x=.提示sin2x=cos-2x=cos2-x=1-2sin2-x=1-2×2=.2. 如果sin2α=,α∈,那么cosα-sinα=-.提示(cosα-sinα)2=1-sin2α=,又α∈,所以cosα-sinα<0,故cosα-sinα=-.3. 化简:cos2θ+cos2+cos2.解法一原式=++=+++=.解法二原式=cos2θ++=cos2θ+cos2θ+sinθcosθ+sin2θ+cos2θ-sinθcosθ+sin2θ=.三、课堂小结1. sinα+cosα,sinαcosα,sinα-cosα三者之间的转化.2. 三角变换技巧:①变名(化切为弦);②变角(用已知角表示所求角);③变结构(降幂公式).第8课时本章复习教学过程一、数学运用【例1】化简:.[处理建议]观察分析待化简的式子,可以看到分子较容易处理,它是二倍角余弦公式的逆用.分母相对复杂,从名称看,有弦有切;从角看,两个角与分子中的角都不同,但-α,+α互余;从结构看,涉及正弦的平方.而后请学生从式子“角”、“结构”上的差异着手,使用不同的公式求解.[规范板书]解法一原式=(复角化单角) =(化切为弦)==1.(化简繁分式)解法二原式=(将分母化同角) =(化切为弦)===1.(逆用二倍角正弦公式) [题后反思]三角变换的实质是灵活地运用公式进行运算,在这个过程中,要从“名”、“角”、“结构”上的差异入手.变式化简:.[规范板书]解原式=·=·tan10°=·=-2.【例2】若sin=,则cos=-.[处理建议]引导学生找出已知角与所求角,并找出两角之间的关系:2+=π.[规范板书]解cos+2α=cosπ-2-α=-cos2-α=2sin2-π-1=-.[题后反思]三角变换过程中要注意寻找题中角与角的关系.变式1设α为锐角,若cos=,则sin=.[规范板书]解∵α为锐角,∴<α+<.又cos=,∴sin=.∴sin=2sin cos=,cos=2cos2-1=.∴sin=sin=sin cos-cos sin=.[题后反思]本题是2012年江苏高考卷第11题,解题的关键是寻找所求角与已知角之间的关系.本题也可以先求出sinα和cosα的值,从而可求得sin2α和cos2α的值,进一步可求得sin的值.变式2已知函数f(x)=sin+cos,x∈R.(1) 求f(x)的最小正周期和最小值;(2) 已知cos(β-α)=,cos(β+α)=-, 0<α<β≤,求证:-2=0.[规范板书]解(1)因为f(x)=sin+sin x-+=2sin x-,所以T=2π,f(x)的最小值为-2.(2) 由已知可得cosβcosα+sinβsinα=,cosβcosα-s inβsinα=-,两式相加得2cosαcosβ=0.又因为0<α<β≤,所以β=,所以-2=-2=0.【例3】已知函数f(x)=sin-cos+2cos2x.(1) 求f的值;(2) 求f(x)的最大值及相应x的值.[处理建议]第(1)问可直接代入化简、求值;第(2)问需将函数f(x)化为A sin(ωx+φ)+B 的形式.[规范板书]解(1) f=sin2×+-cos2×++2cos2=sin-。

数学教案三角恒等变换

数学教案三角恒等变换

数学教案三角恒等变换数学教案:三角恒等变换引言:三角恒等变换是高中数学中的重要内容,它在解题过程中具有广泛的应用。

本教案将通过多种实例,引导学生理解三角恒等变换的概念、性质及应用,提高学生解决三角函数相关问题的能力。

一、知识导入:基本概念与性质(500字左右)1. 引入:提出实际中的三角形问题,引发学生思考三角形之间的关系。

2. 提出三角恒等变换的概念,并解释其意义和用途。

3. 结合基本三角函数的定义,介绍三角恒等变换的性质和基本公式。

二、基本恒等变换(500字左右)1. 说明三角恒等变换的基本形式,并给出示例。

2. 推导和解释基本恒等变换的推导过程,帮助学生理解其中的数学原理。

3. 针对不同类型的三角函数,列举相应的基本恒等变换公式。

三、应用实例一:解三角方程(500字左右)1. 提供一些实际问题,通过三角恒等变换的方法,将其转化为解方程的问题。

2. 引导学生通过恒等变换的方式,解决多种类型的三角方程。

3. 鼓励学生总结解题方法和技巧,帮助他们深入理解三角恒等变换的实际应用。

四、应用实例二:三角函数的求值与简化(500字左右)1. 提供一些实际问题,要求学生利用三角恒等变换简化复杂的三角函数式子。

2. 引导学生通过代入不同的角度值,比较不同的三角函数值,推导出恒等变换的结果。

3. 帮助学生发现并总结三角函数简化的一般规律。

五、综合应用:证明三角恒等式(500字左右)1. 提出一些已知的三角恒等式,要求学生通过恒等变换的方式来证明其正确性。

2. 指导学生进行恒等变换的证明过程,注重逻辑推理和数学推导的合理性。

3. 提供一些挑战性问题,鼓励学生运用恒等变换证明复杂的三角恒等式。

六、总结与拓展(200字左右)1. 总结三角恒等变换的基本思想和方法,强调其在解题中的重要性。

2. 提供一些额外的拓展问题,引导学生进一步思考和应用所学的三角恒等变换知识。

3. 引导学生关注数学以及实际生活中的三角形相关问题,并从中发现和解决问题的方法。

高二数学简单的三角恒等变换教案(通用11篇)

高二数学简单的三角恒等变换教案(通用11篇)

高二数学简单的三角恒等变换教案(通用11篇)高二数学简单的三角恒等变换教案 1教学目标1、理解并掌握基本的三角恒等式,如和差化积、积化和差公式。

2、能够运用三角恒等式进行简单的三角恒等变换。

3、培养学生的逻辑推理能力和数学运算能力。

教学重点1、三角恒等式的理解和记忆。

2、三角恒等变换的方法和步骤。

教学难点三角恒等式的灵活运用和复杂三角表达式的化简。

教学准备1、多媒体课件,包含三角恒等式、例题和练习题。

2、黑板和粉笔。

教学过程一、导入新课复习上节课内容,回顾三角函数的定义和性质。

提出问题:如何利用已知的三角函数公式推导出新的三角恒等式?二、新课讲解1、讲解三角恒等式的基本概念,介绍和差化积、积化和差等公式。

2、通过实例演示如何使用三角恒等式进行三角恒等变换。

3、引导学生总结三角恒等变换的.一般方法和步骤。

三、课堂练习布置一些简单的三角恒等变换练习题,让学生尝试运用所学知识解决问题。

教师巡视指导,及时纠正学生的错误,并给予适当的提示和帮助。

四、巩固提升分析一些较复杂的三角恒等变换问题,引导学生思考如何灵活运用三角恒等式进行化简。

鼓励学生相互讨论,分享解题思路和方法。

五、课堂小结总结本节课的重点内容,强调三角恒等变换的重要性和应用价值。

布置课后作业,要求学生完成一些三角恒等变换的练习题,以巩固所学知识。

教学反思本节课通过实例演示和课堂练习,使学生初步掌握了三角恒等变换的基本方法和步骤。

但在处理较复杂问题时,部分学生仍显得不够熟练,需要进一步加强练习和指导。

在今后的教学中,可以设计更多具有针对性的练习题,帮助学生巩固和提高三角恒等变换的能力。

同时,也要注重培养学生的逻辑思维能力和数学运算能力,为后续的数学学习打下坚实的基础。

高二数学简单的三角恒等变换教案 2理解并掌握三角恒等变换的基本公式,包括正弦、余弦、正切的和差公式,二倍角公式,半角公式等。

能够运用三角恒等变换解决一些简单的三角函数化简、求值及证明问题,培养学生的逻辑推理能力和数学运算能力。

简单的三角恒等变换教案

简单的三角恒等变换教案

简单的三角恒等变换教案(一)一.教学目标1、通过二倍角的变形公式推导半角的正弦、余弦、正切公式,体会化归、换元、方程、逆向使用公式等数学思想,提高学生的推理能力。

2、理解并掌握二倍角的正弦、余弦、正切公式,并会利用公式进行简单的恒等变形,体会三角恒等变形在数学中的应用。

3、通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.二、教学重点与难点教学重点:引导学生以已有的十一个公式为依据,以推导积化和差、和差化积、半角公式的推导作为基本训练,学习三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点,提高推理、运算能力.教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力.三、教学设想:(一)复习:三角函数的和(差)公式,倍角公式(二)新课讲授:1、由二倍角公式引导学生思考:2αα与有什么样的关系?学习和(差)公式,倍角公式以后,我们就有了进行变换的性工具,从而使三角变换的内容、思路和方法更加丰富,这为我们的推理、运算能力提供了新的平台. 例1、试以cos α表示222sin ,cos ,tan 222ααα. 解:我们可以通过二倍角2cos 2cos 12αα=-和2cos 12sin 2αα=-来做此题. 因为2cos 12sin 2αα=-,可以得到21cos sin 22αα-=; 因为2cos 2cos 12αα=-,可以得到21cos cos 22αα+=. 又因为222sin 1cos 2tan 21cos cos 2ααααα-==+. 思考:代数式变换与三角变换有什么不同?代数式变换往往着眼于式子结构形式的变换.对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,这是三角式恒等变换的重要特点.例2.已知135sin =α,且α在第三象限,求2tan α的值。

简单的三角恒等变换教案教学设计精品

简单的三角恒等变换教案教学设计精品

简单的三角恒等变换教案教学设计精品一、教学内容本节课的教学内容来自于人教版数学教材六年级下册第117页的第一课时“简单的三角恒等变换”。

这部分内容主要包括:1. 了解三角恒等变换的概念;2. 学习三角恒等变换的基本公式;3. 学会运用三角恒等变换解决实际问题。

二、教学目标1. 让学生掌握三角恒等变换的基本公式,并能灵活运用解决实际问题;2. 培养学生的逻辑思维能力和转化能力;3. 提高学生运用数学知识解决生活问题的能力。

三、教学难点与重点重点:掌握三角恒等变换的基本公式;难点:灵活运用三角恒等变换解决实际问题。

四、教具与学具准备教具:黑板、粉笔、多媒体课件;学具:教材、练习本、三角板。

五、教学过程1. 实践情景引入:教师展示一个实际问题:一个正三角形分成两个等腰三角形,求分割后的三角形的面积。

引导学生思考如何运用三角恒等变换解决此问题。

2. 知识讲解:(1)教师引导学生回顾三角形的基本知识,如三角形的内角和、三角形的面积公式等;(2)教师讲解三角恒等变换的概念,并展示三角恒等变换的基本公式;(3)教师通过例题讲解,让学生理解并掌握三角恒等变换的运用方法。

3. 随堂练习:(1)教师给出几个简单的三角恒等变换题目,让学生独立完成;(2)教师选取部分学生的作业进行点评,指出优点和不足;(3)教师针对学生的错误,进行讲解和辅导。

4. 课堂小结:六、板书设计三角恒等变换:1. 三角形的内角和等于180度;2. 三角形的面积公式:S = 1/2 base height;3. 三角恒等变换的基本公式:sinα = sin(π/2 α),cosα = cos(π/2 α),tanα = tan(π/2 α)。

七、作业设计α = 120°,β = 150°,γ = 210°。

答案:α' = 60°,β' = 30°,γ' = 30°。

简单的三角恒等变换(教案)

简单的三角恒等变换(教案)

简单的三角恒等变换(一)张掖中学 宋娟一、教学目标知识与技能:理解并掌握二倍角的正弦、余弦、正切公式,并会利用公式进行简单的恒等变形,体会三角恒等变形在数学中的应用;过程与方法:通过二倍角的变形公式推导半角的正弦、余弦、正切公式,体会化归、方程、逆向使用公式的数学思想,提高学生推理能力;情感、态度与价值观:通过例题的讲解,让学生体会化归、变形使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生推理能力. 二、教学重、难点教学重点:利用公式进行简单的恒等变换;教学难点:利用倍角公式推出半角公式,并利用变形的方法解决问题. 三、教学方法:探究式教学法. 四、教学类型:新授课. 五、教学内容复习引入(学生组织完成)问题1:和差角的正弦、余弦、正切公式(六个); 问题2:二倍角的正弦、余弦、正切公式(三个); 问题3:二倍角的变形公式(四个). 新课讲解思考1(学生组织完成):如何用cos α表示222sin cos tan 222ααα、、?分析:观察α与2α的关系是2倍的关系,所以我们要利用刚刚学过的二倍角的变形公式.解:α是2α的二倍角.在倍角公式2cos 212sin αα=-中,以α代替2α,以2α代替α,即得2cos 12sin 2αα=-,所以21cos sin 22αα-=; ①在倍角公式2cos 22cos 1αα=-中,以α代替2α,以2α代替α,即得2cos 2cos 12αα=-,所以21cos cos 22αα+=. ②将①②两个等式的左右两边分别相除,即得21cos tan 21cos ααα-=+.思考2:若已知cos α,如何计算sincos tan 222ααα、、?sincos tan 222ααα=== (半角公式) 强调:“±”号由2α所在象限决定. 例1:已知5sin 13α=,且2παπ<<,求tan 2α的值.解512sin cos 13213,tan24222tan tan 522πααπαππαπααπαα=<<∴=-<<∴<<∴>=====因为且又由公式例2 求证sin 1cos tan 21cos sin ααααα-==+ 证明22sin sin2cossin sin 222tan21cos cos cos 2cos 2cos 2222sin sin 2sin 2sin1cos 2222tan2sin sin coscos2sin222αααααααααααααααααααααα⋅====+⋅⋅-====⋅利用例2的结论,再做一下例1,比较两种方法.例3 已知3sin 25θ=,022πθ<<,求22cos sin 12)4θθπθ--+.分析:由降幂公式知22cos 1cos 2αα=+,故有cos sin cos sin θθθθ-=+原式 ﹡ 此处有两种处理方法:方法一、由已知求出cos sin θθ、的值,带入﹡式计算,即可得到结果; 方法二、由﹡继续变形,将半角化为倍角进行计算. 解法一22cos sin......cos sin020cos0,sin02434sin2,02cos2525cos212sin2cos1sin121010θθθθππθθθθπθθθθθθθθ-=*+<<∴<<∴>>=<<==-=-∴==**==原式由由得又带入式得解法二222cos sincos sin(cos sin)(cos sin)(cos sin)12sin cos1sin2......cos sin cos234sin2,02cos252532115544255θθθθθθθθθθθθθθθθπθθθ-=+-=+---==*-=<<=*-*==原式由得带入式得=小结:对于例3,我们从不同角度出发,解法一先利用倍角计算半角,再带入求值,解法二先利用半角化为倍角,再带入求值.在三角恒等变换中,正所谓“条条大路通罗马”.在以后的学习当中,此类问题是三角恒等变换中常见的问题.万丈高楼平地起,在此告诫同学们,基础知识的理解和必要的记忆是很重要的,所以在以后的学习中,不管题目如何变化,都有一个固定的解题理论,那就是我们的倍角公式,及其逆用,掌握好了基础的理论知识,不管题目如何变化,我们都能将他们各个击破.所谓“咬定青山不放松,任尔东南西北风”.下面我们来分小组讨论一下这一个问题:(练一练)化简22221sin sin cos cos cos2cos22αβαβαβ⋅+⋅-⋅.分析:1.从“角”入手,倍角化半角;2.从“幂”入手,利用降幂公式将次;3.从“形”入手,利用配方法.本题目至少有6种解法,请同学们讨论完成.课堂小结三个数学方法1.从“角”入手,倍角化半角(半角化倍角);2.从“幂”入手,利用降幂公式将次(利用升幂公式升次);3.从“形”入手,利用配方法(分母有理化、分子有理化).两个人生哲理1.条条大路通罗马;2.咬定青山不放松,任尔东南西北风.布置作业习题3.2A组1(1)、(2)、(4)、(5)课后反思。

三角恒等变换教案(完整资料).doc

三角恒等变换教案(完整资料).doc

教学过程一、复习预习二、知识讲解1.两角和与差的余弦、正弦、正切公式cos(α-β)=cos αcos β+sin αsin β(Cα-β)cos(α+β)=cos_αcos_β-sin_αsin_β(Cα+β) sin(α-β)=sin_αcos_β-cos_αsin_β(Sα-β)sin(α+β)=sin_αcos_β+cos_αsin_β (S α+β) tan(α-β)=tan α-tan β1+tan αtan β (T α-β)tan(α+β)=tan α+tan β1-tan αtan β (T α+β)2. 二倍角公式sin 2α=2sin_αcos_α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α1-tan 2α. 3. 半角公式sin α2=±1-cos α2;cos α2=± 1+cos α2; tan α2=±1-cos α1+cos α=sin α1+cos α=1-cos αsin α.根号前的正负号,由角α2所在象限确定.4. 函数f (x )=a sin α+b cos α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)(其中tan φ=ba )或f (α)=a 2+b 2cos(α-φ)(其中tan φ=a b).三、例题精析考点1 公式应用:化简、求值例1-1化简求值:⑴sin163sin223sin253sin313+=⑵=-001414cos74sinsincos74⑶=+007119sincoscossin161109⑷oo o o o o 80cos 15cos 25sin 10sin 15sin 65sin -+=例1-21.化简:1+sin θ+cos θsin θ2-cos θ22+2cos θ(0<θ<π);2.求值:1+cos 20°2sin 20°-sin 10°(1tan 5°-tan 5°).3. 化简:1+sin α+cos α⎝ ⎛⎭⎪⎪⎫sin α2-cos α22+2cos α(π<α<2π).4.已知34π<α<π,tan α+1tan α=-103,求5sin 2α2+8sin α2cos α2+11cos 2α2-82sin ⎝ ⎛⎭⎪⎪⎫α-π2练1.在△ABC 中,角C =120°,tan A +tan B =233,则tan A tanB 的值为( ).A.14B.13C.12D.532.如果cos 2α-cos 2β=a ,则sin(α+β)sin(α-β)等于( ). A .-a2B.a2C .-aD .a3.2cos 10°-sin 20°sin 70°的值是( )A.12B.32C. 3D. 2 4.(2012·大纲全国)已知α为第二象限角,sin α+cos α=33,则cos 2α等于( )A .-53B .-59 C.59 D.535.(2012·重庆)sin 47°-sin 17°cos 30°cos 17°等于( )A.-32B.-12C.12D.326. 化简:2cos4x-2cos2x+122tan⎝⎛⎭⎪⎪⎫π4-x sin2⎝⎛⎭⎪⎪⎫π4+x.考点2 三角函数的给值求值、给值求角例2 1.已知0<β<π2<α<π,且cos⎝⎛⎭⎪⎪⎫α-β2=-19,sin⎝⎛⎭⎪⎪⎫α2-β=23,求cos(α+β)的值;2.已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值.3.若0<α<π2,-π2<β<0,cos(π4+α)=13,cos(π4-β2)=33,则cos(α+β2)等于( )A.33 B .-33 C.539 D .-694.已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则角β等于( )A.5π12B.π3C.π4D.π6【练】 1.已知sin ⎝⎛⎭⎪⎪⎫x +π4=-34,则sin 2x =__________.2. 已知0<β<π4<α<34π,cos ⎝ ⎛⎭⎪⎪⎫π4-α=35,sin ⎝ ⎛⎭⎪⎪⎫3π4+β=513,求sin(α+β)的值.考点3 三角恒等式的证明【例3】1.求证:cos 2α1tan α2-tan α2=14sin 2α.2.已知0<α<π4,0<β<π4,且3sin β=sin(2α+β),4tan α2=1-tan 2α2,证明:α+β=π4.3.已知sin β=m sin(2α+β)(m ≠1),求证:tan(α+β)=1+m1-mtanα.考点4 三角变换的简单应用 例41.已知函数f (x )=sin ⎝ ⎛⎭⎪⎪⎫x +7π4+cos ⎝ ⎛⎭⎪⎪⎫x -3π4,x ∈R . (1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f (β)]2-2=0. 【练】(1)函数f (x )=3sin x +cos(π3+x )的最大值为( )A .2 B. 3 C .1 D.12(2)函数f (x )=sin(2x -π4)-22sin 2x 的最小正周期是________.课程小结课后作业A 组 专项基础训练 (时间:40分钟)一、选择题1. 若θ∈[π4,π2],sin 2θ=378,则sin θ等于( )A.35B.45C.74D.342. 已知tan(α+β)=25,tan ⎝ ⎛⎭⎪⎪⎫β-π4=14,那么tan ⎝⎛⎭⎪⎪⎫α+π4等于( )A.1318B.1322C.322D.163. (2013·重庆)4cos 50°-tan 40°等于( )A. 2B.2+32C. 3 D .22-1 4. 若tan α+1tan α=103,α∈(π4,π2),则sin(2α+π4)的值为 ( )A .-210 B.210 C.3210 D.72105. 在△ABC 中,tan A +tan B +3=3tan A ·tan B ,则C 等于( )A.π3B.2π3C.π6D.π4二、填空题6. 若sin(π2+θ)=35,则cos 2θ=________. 7. 若α=20°,β=25°,则(1+tan α)(1+tan β)的值为________.8. 3tan 12°-34cos 212°-2sin 12°=________. 三、解答题9. 已知tan α=-13,cos β=55,α∈(π2,π),β∈(0,π2),求tan(α+β)的值,并求出α+β的值.10.已知α∈⎝ ⎛⎭⎪⎪⎫π2,π,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝ ⎛⎭⎪⎪⎫π2,π,求cos β的值.B 组 专项能力提升(时间:30分钟)1. 已知tan(α+π4)=12,且-π2<α<0,则2sin 2α+sin 2αcos α-π4等于 ( )A .-255B .-3510C .-31010 D.2552. 定义运算⎪⎪⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,若cos α=17,⎪⎪⎪⎪⎪⎪⎪⎪sin α sin βcos α cos β=3314,0<β<α<π2,则β等于 ( )A.π12B.π6C.π4D.π33. 设x ∈⎝ ⎛⎭⎪⎪⎫0,π2,则函数y =2sin 2x +1sin 2x的最小值为________. 4. 已知tan(π+α)=-13,tan(α+β)=sin 2π2-α+4cos 2α10cos 2α-sin 2α. (1)求tan(α+β)的值;(2)求tan β的值.5. 已知函数f (x )=2cos ⎝ ⎛⎭⎪⎪⎫ωx +π6(其中ω>0,x ∈R )的最小正周期为10π.(1)求ω的值;(2)设α,β∈⎣⎢⎢⎡⎦⎥⎥⎤0,π2,f ⎝ ⎛⎭⎪⎪⎫5α+53π=-65,f ⎝ ⎛⎭⎪⎪⎫5β-56π课后评价。

三角恒等变换教案

三角恒等变换教案

教学过程一、课堂导入思路1.我们知道变换是数学的重要工具,也是数学学习的主要对象之一,三角函数主要有以下三个基本的恒等变换:代数变换、公式的逆向变换和多向变换以及引入辅助角的变换.前面已经利用诱导公式进行了简单的恒等变换,本节将综合运用和(差)角公式、倍角公式进行更加丰富的三角恒等变换.思路2.三角函数的化简、求值、证明,都离不开三角恒等变换.学习了和角公式,差角公式,倍角公式以后,我们就有了进行三角变换的新工具,从而使三角变换的内容、思路和方法更加丰富和灵活,同时也为培养和提高我们的推理、运算、实践能力提供了广阔的空间和发展的平台.对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,并以此为依据选择可以联系它们的适当公式,这是三角式恒等变换的重要特点.二、复习预习复习三角函数值的计算及诱导公式(一)-(六)。

απαsin )2sin(=+k , απαcos )2cos(=+k , απαtan )2tan(=+k (公式一)sin()sin , cos()cos , tan()tan (公式二) sin()sin , cos()cos ,tan()tan (公式三)ααπsin sin(=-) , ααπ-cos cos(=-), ααπtan tan(-=-)(公式四)sin()cos 2 (公式五) sin()cos 2 (公式六) cos()sin 2cos()sin 2三、知识讲解考点1两角和的正弦、余弦、正切公式⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-;⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+;⑸()tan tan tan 1tan tan αβαβαβ--=+⇒ (()()tan tan tan 1tan tan αβαβαβ-=-+); ⑹()tan tan tan 1tan tan αβαβαβ++=-⇒ (()()tan tan tan 1tan tan αβαβαβ+=+-).考点2二倍角的正弦、余弦、正切公式⑴sin22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒ ⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-⇒升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+ ⇒降幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=. ⑶22tan tan 21tan ααα=-.考点3 辅助角公式2tan 12tan 1 cos ;2tan 12tan 2 sin :222αααααα万能公式+-=+=把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的 B x A y ++=)sin(ϕϖ形式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题型1 三角函数式的化简、求值
给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.
【例1】(1)(2015年课标全国Ⅰ)=- 10sin 160cos 10cos 20sin ( )
A.23-
B.23
C.21-
D.2
1 (2)计算
155
sin 155cos 20sin 110sin 22-的值为( ) A.23- B.23 C.21- D.2
1 (3)化简
40sin 125cos 40cos -等于( )
A.1
B.3
C.2
D.2
(4)()
=+ 10tan 3150sin 【规律方法】
三角函数式的化简要遵循“三看”原则
(1)一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;
(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”;
(3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式要通分”等.
题型2 给值求值问题(已知某角的三角函数值,求另一角的三角函数值)
“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键。

相关文档
最新文档