经典易错题大汇总,学霸错题本(已整理)强烈建议收藏
常见错题整理
常见错题整理一、数学常见错题整理一、数学符号运用错误在数学问题中,数学符号的运用是非常重要的。
不正确使用数学符号可能导致计算错误或者理解错误。
下面列举几个常见的数学符号运用错误:1. 加减号的混淆在计算中,经常会遇到加法和减法的运算。
有些学生容易将加号和减号混淆,导致计算错误。
例如,计算表达式$5 + ( - 3)$时,一些学生会错误地计算为$5 - 3$,最终得到错误的答案为2。
正确的计算应该是将括号内的负数视为减法,所以$5 + ( - 3)$可以转化为$5 - 3$,最终答案为2。
2. 乘号和除号的混淆在数学运算中,乘法和除法是常见的运算符号。
有些学生容易将乘号和除号混淆,导致计算错误。
例如,计算表达式$6 \div ( - 2)$时,一些学生会错误地计算为$6\times -2$,最终得到错误的答案为-12。
正确的计算应该是将除号视为分数形式的倒数,即$6 \div ( - 2)$可以转化为$6 \times ( - \frac{1}{2})$,最终答案为-3。
3. 等号的误用等号(=)是数学中表示“等于”的重要符号。
有些学生在方程或等式中使用等号时容易出错,导致得出错误的结论。
例如,解方程$2x + 3 = 7$时,一些学生会错误地将等号两边的计算结果直接相等,得出$x = 4$的错误解。
正确的解法应该是将方程变形为$2x = 7 - 3$,再进行计算得到$x = 2$。
二、几何常见错题整理二、几何图形错误绘制在几何问题中,绘制图形是理解和解决问题的重要步骤。
下面列举几个常见的几何图形错误绘制:1. 画错直线画直线是几何问题中常见的操作。
有些学生在画直线时容易出错,导致图形不准确。
例如,画出一条连接点A和点B的直线时,有些学生会画出一条有所弯曲的线段,导致无法准确判断直线的性质。
正确的做法是要保证直线是最短的连接路径,且不弯曲。
2. 画错角度画角是几何问题中常见的操作。
有些学生在画角时容易出错,导致角度不准确。
人教版数学八年级上册易错题难题整理含答案+易错题及答案
人教版数学八年级上册易错题难题整理含答案+易错题及答案人教版数学八年级上册易错题整理一、选择题3、正确说法的个数有(C)3个。
改写:在一组数据中,中位数只有一个;中位数可能是这组数据中的数,也可能不是;一组数据的众数可能有多个;众数是这组数据中出现次数最多的数据的次数;众数一定是这组数据中的数。
5、正确说法的个数有(D)4个。
改写:数轴上的点要么表示有理数,要么表示无理数;实数a的倒数是1/a;带根号a的数都是无理数;两个绝对值不相等的无理数,其和、差、积、商仍是无理数。
6、答案为(B)m2+1.改写:设自然数为n,则n的算术平方根为m,即m^2≤n<(m+1)^2,因此n的范围为m^2≤n≤m^2+2m,与n相邻的下一个自然数为m^2+2m+1=(m+1)^2.二、填空题11、样本容量为(240÷100)×=7500,正常视力的初中生人数为(0.16÷100)×=48.12、b(10+a)的值为(根号10-3)×(根号10+3)=10-9=1.13、-.36-1/2=-1.86.14、该图形的面积为∆ABC的面积减去∆ADC的面积,即(1/2)×12×5-(1/2)×3×4=21.15、根据勾股定理,BD=5,所以该图形的面积为(1/2)×12×5=30.16、解方程可得x=2.17、由不等式组得x>a且x>b,所以a<b。
18、甲管的注水速率为1/6,乙管的注水速率为1/x,两管同时开的注水速率为1/3,因此1/6+1/x=1/3,解方程可得x=9.三、解答题20、计算:1)因式分解题略。
2)已知$\frac{a-b}{a+b}=9$,$\frac{a-b}{a+b}=49$,求$a+b$和$ab$的值。
由$\frac{a+b}{a-b}=\frac{1}{9}$,得$a+b+2ab=9$(1)。
初中数学错题本整理范例
初中数学错题本整理范例
以下是一个初中数学错题本的整理范例,供您参考:
初中数学错题本范例
章节:二次函数
1. 错题摘录
题目:求二次函数 y = x^2 - 2x - 3 的顶点坐标。
答案:顶点坐标为 (1, -4)。
解析:此题考查二次函数的顶点公式。
顶点坐标为 (h, k),其中 h 和 k 是通过配方得到的。
对于给定的函数,我们可以将其写成 y = (x - h)^2 + k 的形式,从而得到顶点坐标。
错误点:在配方过程中出错,导致顶点坐标计算错误。
正确答案应为 (1, -4)。
2. 知识点回顾
二次函数的顶点公式为 (h, k),其中 h 和 k 是通过配方得到的。
配方的步骤是:y = x^2 - 2x - 3 = (x - 1)^2 - 4。
3. 类似题目练习
求二次函数 y = x^2 + 2x - 3 的顶点坐标。
求二次函数 y = x^2 - 4x + 3 的顶点坐标。
4. 学习心得
在配方过程中要细心,确保每一步都正确。
理解二次函数的顶点公式是解题的关键,要熟练掌握其应用。
(word完整版)初中数学易错题集锦及答案
初中数学易错题及答案(A)2 (B(C)2±(D)解:2,2的平方根为2.若|x|=x,则x一定是()A、正数B、非负数C、负数D、非正数答案:B(不要漏掉0)3.当x_________时,|3-x|=x-3。
答案:x-3≥0,则x34.22___分数(填“是”或“不是”)答案:22是无理数,不是分数。
5.16的算术平方根是______。
答案:16=4,4的算术平方根=26.当m=______时,2m-有意义答案:2m-≥0,并且2m≥0,所以m=07分式4622--+xxx的值为零,则x=__________。
答案:226040x xx⎧+-=⎪⎨-≠⎪⎩∴122,32x xx==-⎧⎨≠±⎩∴3x=-8.关于x的一元二次方程2(2)2(1)10k x k x k---++=总有实数根.则K_______答案:[]2202(1)4(2)(1)0kk k k-≠⎧⎪⎨----+≥⎪⎩∴3k≤且2k≠9.不等式组2,.xx a>-⎧⎨>⎩的解集是x a>,则a的取值范围是.(A)2a<-,(B)2a=-,(C)2a>-,(D)2a≥-.答案:D10.关于x 的不234a ≤<等式40x a -≤的正整数解是1和2;则a 的取值范围是_________。
答案:234a ≤< 11.若对于任何实数x ,分式214x x c++总有意义,则c 的值应满足______. 答案:分式总有意义,即分母不为0,所以分母240x x c ++=无解,∴C 〉412.函数y 中,自变量x 的取值范围是_______________. 答案:1030x x -≥⎧⎨+≠⎩∴X ≥1 13.若二次函数2232y mx x m m =-+-的图像过原点,则m =______________.2020m m m ≠⎧⎨-=⎩∴m =2 14.如果一次函数y kx b =+的自变量的取值范围是26x -≤≤,相应的函数值的范围是119y -≤≤,求此函数解析式________________________.答案:当26119x x y y =-=⎧⎧⎨⎨=-=⎩⎩时,解析式为:26911x x y y =-=⎧⎧⎨⎨==-⎩⎩时,解析式为 15.二次函数y=x 2-x+1的图象与坐标轴有______个交点。
六年级数学上册易错题集锦及答案
01填空题。
(分)1、一种盐水的含盐率是20%,盐与水的比是(1:5)。
2、生产同样多的零件,小张用了4小时,小李用了6小时,小张和小李工作效率的最简比是(3:2)。
【解析:将这批零件看作单位“1”,则小张的工作效率为:1÷4=1/4 小李的工作效率为:1÷6=1/6 两人的工作效率比为:1/4:1/6,化简后就是3:2】3、从甲地到乙地,客车要行驶4时,货车要行驶5时,客车的速度与货车的速度比是(5:4),货车的速度比客车慢(20)%。
【解析:求速度比的方法同第2题。
货车的速度比客车慢((5-4)÷5=20%)】4、100克糖溶在水里,制成的糖水的含糖率为12.5%,如果再加200克水,这时糖与糖水的比是(1:10)。
【解析:此题关键是要先算出原来的糖水是多少克:100÷12.5%=800(克)。
再求加水后糖与糖水的比:100:(800+200)=100:1000=1:10】5、若从六(1)班调全班人数的1/10到六(2)班,则两班人数相等,原来六(1)班与六(2)班的人数比是(5:4)。
【解析:用方程来解答:设六(1)人数有a人,六(2)班人数有b人。
根据题意列出方程后并求解:通过解方程得出a与b的比为10:8,即六(1)班与六(2)班的人数为10:8,化简后为5:4。
】6、把甲队人数的1/4调入乙队,这时两队人数相等,甲队与乙队原人数的比为(2:1)。
【解析:方法同第5题。
】7、六(1)班今天到校40人,请病假的5人,该班的出勤率是(88.9%)。
【解析:用到校人数就是出勤人数。
出勤人数÷全班人数×100%=出勤率。
40÷(40+5)×100%≈88.9%】8、把一个半径是10cm的圆拼成接成一个近似的长方形后,长方形的周长是(62.8cm),面积是(228cm2)。
【解析:拼成的长方形的周长就是这个半径为10cm的圆的周长:3.14×10×2=62.8cm;根据周长先算出长方形的一条长与一条宽的和:62.8÷2=31.4cm,假设一条长为20cm,则一条宽就为11.4(只要一条长与一条宽加起来等于31.4即可。
人教版初中数学经典易错题100例
人教版初中数学经典易错题100例1. 顺序填空1. 4的连续两个因数的和是______。
2. 素数有自己和1以外的两个因数。
3. 3/7+ 5/7 = ______。
4. 5/8 - 3/8 = ______。
2. 选择1. 小明从家到学校一共走了420米,他先走了180米,再走了220米,最后又走了______米。
A. 20B. 30C. 40D. 502.一个矩形的长是宽的4倍,如果宽是6厘米,则它的长是______厘米。
A. 18B. 20C. 24D. 363. 2 × (3 + 4) ÷ 6 = ______。
A. 2B. 3C. 4D. 94. 1 ÷ (3 × 4 ⁄ 6) = ______。
A. 0.5B. 1C. 2D. 63. 解方程1. 已知某数的 5 倍再加上 8 的结果等于 33,那这个数是______。
2. 已知某数加上 7 的结果再乘以 4 等于 72,那这个数是______。
4. 填空1. 已知一天有24小时,一小时有60分钟,那一天有______分钟。
2. 世界人口有70亿人,其中中国人口占世界人口的1/______。
3. 某商品原价100元,打八折后的价格是______元。
4. 小华和小明比赛跑步,小华跑了600米,小明跑了600米,小华比小明多跑了______米。
5. 判断对错判断下列各题的对错,对的打“√”,错的打“×”。
1. 加法交换律是指:两数相加,其结果与加数的顺序无关。
2. 减法可交换两个减数的位置,结果不变。
3. 一个合有1个相同数字的偶数,它可以分解为两个质数相加。
4. 如果两个数的乘积为1,这两个数一定相等。
6. 简答题1. 对折一张纸后再展开,将对象折痕对称轴,纸上任何一点到对称轴的距离相等,这句话描述的是:______。
2. 有一张纸条,它的长度是宽度的5倍,它的面积是宽度的______倍。
小学数学人教版高频错题+实例讲解,提前收藏,考试拿高分!
正确:
排队时,小华前面有4人,后面有3人,一共有( 8 )人。 方法指导: 这是非常熟悉的队伍可以分成几部分,是哪几个部分?”学生容易把小华遗忘,在学生确认可以分为小华前 面的、小华后面的和小华后,不难列出4+3+1的连加算式从而得出共有8人。
一年级
易错题精讲:
易错题1: □-□=□-□=□-□=1 错例:9-8=1-8=7-6=1。 正确:9-8=8-7=7-6=1 方法指导: 先让学生认识“=”的含义,即把□-□看成是一个整体,可以在其下面画出一条横线起到强调作 用,所有这样的整体都等于1。再让学生思考□-□=1,最后完成后可以这样来读一读深化学 生对整体的认识——5-4=1,3-2=1等。
易错题4:
10个小朋友玩老鹰捉小鸡,捉到了5只小鸡,还有( )只没小鸡没捉到。
错例: 10个小朋友玩老鹰捉小鸡,捉到了5只小鸡,还有( 5 )只没小鸡没捉到。
正确: 10个小朋友玩老鹰捉小鸡,捉到了5只小鸡,还有( 3)只没小鸡没捉到。
方法指导: 让学生先明白玩老鹰捉小鸡的游戏时,要有一人做老鹰,一人做鸡妈妈,这样10个小朋友玩
正确: 有3个苹果,5个梨,8个香蕉,小方可以选择两种水果,她最多能拿到( 13)个,最少能拿 到( 8)个。 方法指导: 先让学生说说什么水果最多,什么水果最少,哪两种水果比较多,哪两种水果比较少,再强调 只能选择两种水果。在思考两个的问题时,试问“你不选哪种水果?”要求学生说出理由,可以 适当引导学生说出哪两种水果比较多,哪两种水果比较少。最后总结出解决最多能拿几个就是 要从多的开始选,选两种,不选最少的水果,解决最少能拿几个就是要从少的开始选,选两 种,不选最多的水果。
六年级上册数学错题本归纳
六年级上册数学错题本归纳一、整数运算题目:计算下列各式的值:1.5-8+3=?2.6+(-4)-2=?3.(-9)-(-7)+(-3)=?解析:1.5-8+3=5+(-8)+3=0,计算时注意符号的运用。
2.6+(-4)-2=6-4-2=0,负数和正数相加时,可以看作减法进行运算。
3.(-9)-(-7)+(-3)=-9+7-3=-5,负数之间相减要注意符号的变化。
二、面积和周长题目:求下列图形的面积和周长:1.正方形,边长为8cm。
2.长方形,长为12cm,宽为6cm。
3.圆,半径为5cm。
解析:1.正方形的面积为边长的平方,周长为边长的四倍。
所以正方形的面积为8*8=64平方厘米,周长为4*8=32厘米。
2.长方形的面积为长乘以宽,周长为长和宽的两倍之和。
所以长方形的面积为12*6=72平方厘米,周长为2*(12+6)=36厘米。
3.圆的面积为半径的平方乘以π(取近似值3.14),周长为直径乘以π。
所以圆的面积为5*5*3.14=78.5平方厘米,周长为2*5*3.14=31.4厘米(近似)。
三、几何图形分类题目:把下列图形按照形状分类:1.正方形2.圆3.矩形4.三角形解析:-正方形和矩形都是四边形,但正方形的边长相等,而矩形的边长可以不相等。
-圆是一个闭合的曲线,内部所有点到圆心的距离都相等。
-三角形有三条边和三个角,根据角的大小又可以分为锐角三角形、钝角三角形和直角三角形。
四、时间计算题目:计算下列时间间隔:1.9点30分到11点15分,共经过了多少分钟?2.8小时40分钟后是几点?3.从上午7点20分到下午4点50分,共经过了多少小时和分钟?解析:1.9点30分到11点15分,时间间隔为11时15分-9时30分=1时45分=105分钟。
2.8小时40分钟后,时间为当前时间加上8小时40分钟。
3.从上午7点20分到下午4点50分,时间间隔为4时50分-7时20分=9时30分=9小时30分钟。
初中数学经典易错题集锦及答案
数学错题集一、选择题1、A、B是数轴上原点两旁的点,则它们表示的两个有理数是-----------------------------〔〕A、互为相反数B、绝对值相等C、是符号不同的数D、都是负数2、有理数a、b在数轴上的位置如下图,则化简|a-b|-|a+b|的结果是--------------------〔A、2aB、2bC、2a-2bD、2a+b3、轮船顺流航行时m千米/小时,逆流航行时(m-6)千米/小时,则水流速度-----------------〔〕A、2千米/小时B、3千米/小时C、6千米/小时D、不能确定4、方程2x+3y=20的正整数解有---------------------------------------------------------〔〕A、1个B、3个C、4个D、无数个5、以下说法错误的选项是-------------------------------------------------------------------〔〕A. 两点确定一条直线B、线段是直线的一部分C、一条直线是一个平角D、把线段向两边延长即是直线6.函数y=(m2-1)x2-(3m-1)x+2的图象与x轴的交点情况是---------------------------------- ( )≠3时,有一个交点B、1±≠m时,有两个交C、当1±=m时,有一个交点D、不管m为何值,均无交点7.如果两圆的半径分别为R和r〔R>r〕,圆心距为d,且(d-r)2=R2,则两圆的位置关系是---------〔〕A、内切B、外切C、内切或外切D、不能确定8、在数轴上表示有理数a、b、c的小点分别是A、B、C且b<a<c,则以下图形正确的选项是---------〔〕A B C D9、有理数中,绝对值最小的数是---------------------------------------------------------〔〕A、-1B、1C、0D、不存在10、21的倒数的相反数是--------------------------------------------------------------- 〔〕A、-2B、2C、-21D、2111、假设|x|=x,则-x一定是------------------------------------------------------------- 〔〕A、正数B、非负数C、负数D、非正数12、两个有理数的和除以这两个有理数的积,其商为0,则这两个有理数为------------------- 〔〕A、互为相反数B、互为倒数C、互为相反数且不为0D、有一个为013、长方形的周长为x,宽为2,则这个长方形的面积为------------------------------------ 〔〕A、2xB、2(x-2)C、x-4D、2·(x-2)/214、“比x的相反数大3的数”可表示为------------- ----------------------------------- 〔〕A、-x-3B、-(x+3)C、3-xD、x+315、如果0<a<1,那么以下说法正确的选项是------------------------------------------------- 〔〕A、a2比a大B、a2比a小C、a2与a相等D、a2与a的大小不能确定16、数轴上,A 点表示-1,现在A 开始移动,先向左移动3个单位,再向右移动9个单位,又向左移动5个单位,这时,A 点表示的数是----------------------------------------------------------------------------------- 〔 〕 A 、-1 B 、0 C 、1 D 、817、线段AB=4cm ,延长AB 到C ,使BC=AB 再延长BA 到D ,使AD=AB ,则线段CD 的长为---------- 〔 〕A 、12cmB 、10cmC 、8cmD 、4cm 18、21-的相反数是-------------------------------------------------------------------- 〔 〕 A 、21+ B 、12- C 、21-- D 、12+-19、方程x(x-1)(x-2)=x 的根是-------------------------------------------------------------- 〔 〕 A 、x 1=1, x 2=2 B 、x 1=0, x 2=1, x 3=2 C 、x 1=253+, x 2=253-D 、x 1=0,x 2=353+, x 3=253-20、解方程04)1(5)1(322=-+++x x x x 时,假设设y xx =+1,则原方程可化为--------------- 〔 〕A 、3y 2+5y-4=0B 、3y 2+5y-10=0C 、3y 2+5y-2=0D 、3y 2+5y+2=021、方程x 2+1=2|x|有----------------------------------------------------------------------- 〔 〕A 、两个相等的实数根;B 、两个不相等的实数根;C 、三个不相等的实数根;D 、没有实数根 22、一次函数y=2(x-4)在y 轴上的截距为----------------------------------------------------- 〔 〕 A 、-4 B 、4 C 、-8 D 、823、解关于x 的不等式⎩⎨⎧-<>a x ax ,正确的结论是----------------------------------------------- 〔 〕A 、无解B 、解为全体实数C 、当a>0时无解D 、当a<0时无解 24、反比例函数xy 2=,当x ≤3时,y 的取值范围是------------------------------------------- 〔 〕 A 、y ≤32 B 、y ≥32C 、y ≥32或y<0D 、0<y ≤3225、0.4的算术平方根是-------------------------------------------------------------------- 〔 〕 A 、0.2 B 、±0.2 C 、510D 、±51026、李明骑车上学,一开始以某一速度行驶,途中车子发生故障,只好停车修理,车修好后,因怕耽误时间,于时就加快了车速,在以下给出的四个函数示意图象,符合以上情况的是------------------------------------------- 〔 〕A B C D27、假设一数组x 1, x 2, x 3, …, x n 的平均数为x ,方差为s 2,则另一数组kx 1, kx 2, kx 3, …, kx n 的平均数与方差分别是〔 〕A 、k x , k 2s 2B 、x , s 2C 、k x , ks 2D 、k 2x , ks 228、假设关于x 的方程21=+-ax x 有解,则a 的取值范围是---------------------------------------- 〔 〕A 、a ≠1B 、a ≠-1C 、a ≠2D 、a ≠±129、以下图形中既是中心对称图形,又是轴对称图形的是----------------------------------------- 〔 〕A 、线段B 、正三角形C 、平行四边形D 、等腰梯形 30、已知dcb a =,以下各式中不成立的是------------------------------------------------------- 〔 〕 A 、d c b a d c b a ++=-- B 、d b c a d c 33++= C 、bd ac b a 23++= D 、ad=bc 31、一个三角形的三个内角不相等,则它的最小角不大于--------------------------------------- 〔 〕A 、300B 、450C 、550D 、60032、已知三角形内的一个点到它的三边距离相等,那么这个点是--------------------------------- 〔 〕A 、三角形的外心B 、三角形的重心C 、三角形的内心D 、三角形的垂心 33、以下三角形中是直角三角形的个数有----------------------------------------------------- 〔 〕①三边长分别为3:1:2的三角形 ②三边长之比为1:2:3的三角形 ③三个内角的度数之比为3:4:5的三角形 ④一边上的中线等于该边一半的三角形 A 、1个 B 、2个 C 、3个 D 、4个34、平行四边形的一边长为5cm ,则它的两条对角线长可以是----------------------------------- 〔 〕 A 、4cm, 6cm B 、4cm, 3cm C 、2cm, 12cm D 、4cm, 8cm 35、如图,△ABC 与△BDE 都是正三角形,且AB<BD ,假设△ABC 不动,将△BDE 绕B 点旋转,则在旋转过程中,AE 与CD 的大小关系是------------ 〔A 、AE=CDB 、AE>CDC 、AE>CD D 、无法确定36、顺次连结四边形各边中点得到一个菱形,则原四边形必是------------------〔〕A 、矩形B 、梯形C 、两条对角线互相垂直的四边形D 、两条对角线相等的四边形 37、在圆O 中,弧AB=2CD ,那么弦AB 和弦CD 的关系是----------------------------------------- 〔 〕A 、AB=2CDB 、AB>2CDC 、AB<2CD D 、AB 与CD 38、在等边三角形ABC 外有一点D ,满足AD=AC ,则∠BDC 的度数为 A 、300 B 、600 C 、1500 D 、300或150039、△ABC 的三边a 、b 、c 满足a ≤b ≤c ,△ABC 的周长为18,则------------A 、a ≤6 B 、b<6 C 、c>6 D 、a 、b 、c 中有一个等于640、如图,在△ABC 中,∠ACB=Rt ∠,AC=1,BC=2,则以下说法正确的选项是------〔 〕A 、∠B=300B 、斜边上的中线长为1C 、斜边上的高线长为552D 、该三角形外接圆的半径为141、如图,把直角三角形纸片沿过顶点B 的直线BE 〔BE 交CA 于E 直角顶点C 落在斜边AB 上,如果折叠后得到等腰三角形EBA ,那么以下结论中〔1〕∠A=300 〔2〕点C 与AB 的中点重合 〔3〕点E 到AB 的距离等于CE 的长,正确的个数是---------------------------------------------------〔 〕A 、0B 、1C 、2D 、342、不等式6322+>+x x 的解是----------------------------------------------------〔 〕A 、x>2B 、x>-2C 、x<2D 、x<-243、已知一元二次方程(m-1)x 2-4mx+4m-2=0有实数根,则m 的取值范围是----------------------〔 〕 A 、m ≤1 B 、m ≥31且m ≠1 C 、m ≥1 D 、-1<m ≤1B44、函数y=kx+b(b>0)和y=xk-(k ≠0),在同一坐标系中的图象可能是------------------------------〔 〕A B C D45、在一次函数y=2x-1的图象上,到两坐标轴距离相等的点有----------------------------------------〔 〕A 、1个B 、2个C 、3个D 、无数个 46、假设点〔-2,y 1〕、〔-1,y 2〕、〔1,y 3〕在反比例函数xy 1=的图像上, 则以下结论中正确的选项是------------------------------------------------------------------------〔 〕 A 、y 1>y 2>y 3 B 、y 1<y 2<y 3 C 、y 2>y 1>y 3 D 、y 3>y 1>y 247、以下根式是最简二次根式的是-----------------------------------------------------------------〔 〕 A 、a 8 B 、22b a + C 、x 1.0 D 、5a48、以下计算哪个是正确的-----------------------------------------------------------------------〔 〕 A 、523=+ B 、5252=+ C 、b a b a +=+22 D 、212221221+=-49、把aa1--〔a 不限定为正数〕化简,结果为----------------------------------------------------〔 〕A 、aB 、a- C 、-aD 、-a-50、假设a+|a|=0,则22)2(a a +-等于------------------------------------------------------------〔 〕A 、2-2aB 、2a-2C 、-2D 、251、已知02112=-+-x x ,则122+-x x 的值------------------------------------------------〔 〕 A 、1 B 、±21 C 、21 D 、-2152、设a 、b 是方程x 2-12x+9=0的两个根,则b a +等于------------------------------------------〔 〕 A 、18 B 、6 C 、23 D 、±2353、以下命题中,正确的个数是---------------------------------------------------------------------〔 〕①等边三角形都相似 ②直角三角形都相似 ③等腰三角形都相似④锐角三角形都相似 ⑤等腰三角形都全等 ⑥有一个角相等的等腰三角形相似⑦有一个钝角相等的两个等腰三角形相似 ⑧全等三角形相似 A 、2个 B 、3个 C 、4个 D 、5个 二、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是_____非正数____。
三年级上册数学易错题50道及参考答案(满分必刷)
三年级上册数学易错题50道及答案一.选择题(共10题,共20分)1.李华跳绳35下,赵刚跳的数比李华的2倍多一些,3倍少一些。
赵刚可能跳了()下。
A.70B.82C.105D.1102.用两个完全一样的正方形可以拼成一个()。
A.正方形B.长方形C.长方体3.最大的两位数与最大的一位数的积是()。
A.1000B.900C.891D.89914.320×5的积末尾有()个0。
A.1B.2C.35.小红有5元钱,小明有15元钱,小明的钱数是小红的()倍。
A.2B.4C.3D.56.能拼成的是()组图形。
A. B.7.一块正方形菜地周长是84米,边长()米。
A.21米B.22米C.42米8.306×2的积是()位数。
A.二位数B.三位数C.四位数9.爬行动物有375种,两栖类有284种。
爬行类和两栖类大约有几种?下面那个数据最接近。
()A.660B.650C.70010.量操场的跑道有多长,下列哪个工具最合适?()A.学生尺B.米尺C.卷尺二.判断题(共10题,共20分)1.有两个杯子,各装了的水,将他们倒在一起刚好是一杯水。
()2.大货车的载重量,通常用吨作单位。
()3.甲数是658,乙数比甲数多794,乙数是1352。
()4.12是3的36倍。
()5.一根绳子对折后又折,这时量得绳子长3dm,原来这根绳子比1米长。
()6.497×5<2500。
()7.1米铁丝,用去或用去米,剩下的一样长。
()8.两根一样长的铁丝,围成一个长方形和一个正方形,它们的周长相等。
()9.钟面上最长最细的针是秒针。
()10.数学书的封面是长方形。
()三.填空题(共10题,共32分)1.在括号里填上“>”“<”或“=”。
308+325()700 784-351()4002.飞机每分钟比汽车每分钟多行多少米?() -()=()3.一个数的7倍是56,这个数是(),它是4的()倍,它的6倍是()。
错题本整理范例
错题本整理范例一、错题原题题目:已知函数f(x)=x^2 + 2ax + 1在区间[-1, 2]上的最大值为4,求实数a的值。
二、错误答案及错误思路我当时是这么写的:因为函数f(x)=x^2 + 2ax + 1=(x + a)^2+1 - a^2,对称轴是x=-a。
我就想啊,当-a ≤ (-1 + 2)/(2)=(1)/(2)的时候,也就是a ≥ -(1)/(2),函数在x = 2处取得最大值。
所以就把x = 2代入函数得:4 + 4a + 1 = 4,解得a = -(1)/(4)。
当-a > (1)/(2),也就是a < -(1)/(2)时,函数在x = -1处取得最大值。
把x = -1代入函数得:1 - 2a + 1 = 4,解得a = -1。
我错就错在啊,只考虑了对称轴在区间中点左边和右边这两种情况,完全忽略了对称轴就在区间端点的时候。
这就好比我只看了路的左边和右边,没注意到自己就站在路口上,傻不傻呀!三、正确答案及正确思路1. 函数f(x)=x^2 + 2ax + 1=(x + a)^2+1 - a^2,对称轴为x=-a。
2. 分三种情况讨论:- 当-a ≤ -1,即a ≥ 1时,函数在[-1, 2]上单调递增,所以f(x)_max=f(2)=4 + 4a + 1 = 4,解得a = -(1)/(4),但是这个值不符合a ≥ 1,所以舍去。
- 当-1 < -a < 2,即-2 < a < 1时,f(x)_max=f(-a)=1 - a^2 = 4,这个方程无解。
- 当-a ≥ 2,即a ≤ -2时,函数在[-1, 2]上单调递减,所以f(x)_max=f(-1)=1 - 2a + 1 = 4,解得a=-1,这个值不符合a ≤ -2,所以舍去。
再回头看之前忽略的端点情况,当-a=-1,即a = 1时,f(x)=x^2 + 2x + 1=(x + 1)^2,f(2)=9不符合最大值为4;当-a = 2,即a=-2时,f(x)=x^2 - 4x + 1=(x - 2)^2 - 3,f(-1)=6也不符合最大值为4。
五年级上册数学典型易错题集附答案【完整版】
五年级上册数学典型易错题集一.选择题(共10题,共22分)1.一个数的3倍加上6.1得7.6,这个数是()。
A.1.5B.15C.0.15D.0.52.食堂买来6袋大米,每袋50千克.吃了4天后,还剩下116千克.平均每天吃多少千克?列出方程错误的是()。
解:设平均每天吃x千克。
A.4x+116=50×6B.4x=50×6-116C.50×6-4x=116D.116-4x=50×63.一个正方体的一个面上写“甲”,两个面上写“乙”,三个面上写“丙”。
抛掷这个正方体,落下后,()朝上的可能性最大。
A.甲B.乙C.丙D.无法确定4.微机课上,笑笑坐在微机教室的第4列第2行,用数对(4,2)表示,明明坐在笑笑正后方的第一个位置上,明明的位置用数对表示是()。
A.(5,2)B.(4,3)C.(3,2) D.(4,1)5.下列算式中,结果与不相等的是()。
A.0.2÷0.5B.20÷500C.4÷10D.16÷406.下面各式中,积最小的算式是()。
A.1.65×2.48B.16.5×24.8C.165×0.2487.根据图片,20年后爸爸比敏敏大()岁。
A.36-a+20B.36-aC.208.下面两个图形中,(1)A的周长()B的周长.A.>B.<C.=(2)A的面积()B的面积。
A.>B.<C.=9.如下图:如果点y的位置表示为(5,4),则点x的位置可以表示为()。
A.(3,4)B.(4,3)C.(2,3)D.(3,2)10.两个数相除的商是14.5,如果被除数和除数同时扩大到原来的10倍,所得的商是()。
A.14.5B.145C.1450D.290二.判断题(共10题,共20分)1.电影票上的1排6号记作(6,1),则2排3号记作(2,3)。
()2.今年冬天土豆的价格是每千克1.4元,某学校食堂采购员带了500元买了240千克土豆,还剩264元钱。
(易错题精选)初中数学反比例函数易错题汇编附答案解析
(易错题精选)初中数学反比例函数易错题汇编附答案解析一、选择题1.如图,菱形ABCD的两个顶点B、D在反比例函数y=的图象上,对角线AC与BD的交点恰好是坐标原点O,已知点A(1,1),∠ABC=60°,则k的值是()A.﹣5 B.﹣4 C.﹣3 D.﹣2【答案】C【解析】分析:根据题意可以求得点B的坐标,从而可以求得k的值.详解:∵四边形ABCD是菱形,∴BA=BC,AC⊥BD,∵∠ABC=60°,∴△ABC是等边三角形,∵点A(1,1),∴OA=,∴BO=,∵直线AC的解析式为y=x,∴直线BD的解析式为y=-x,∵OB=,∴点B的坐标为(−,),∵点B在反比例函数y=的图象上,∴,解得,k=-3,故选C.点睛:本题考查反比例函数图象上点的坐标特征、菱形的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.2.如图,反比例函数y=2x的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为( )A .1B .2C .4D .8【答案】C【解析】【分析】 由反比例函数的系数k 的几何意义可知:2OA AD =g ,然后可求得OA AB g 的值,从而可求得矩形OABC 的面积.【详解】解:Q 反比例函数2y x=, 2OA AD ∴=g . D Q 是AB 的中点,2AB AD ∴=.∴矩形的面积2224OA AB AD OA ===⨯=g g .故选:C .【点睛】本题主要考查的是反比例函数k 的几何意义,掌握反比例函数系数k 的几何意义是解题的关键.3.在同一直角坐标系中,函数y=k(x -1)与y=(0)k k x<的大致图象是 A . B . C . D .【答案】B【解析】【分析】【详解】解:k<0时,y=(0)k k x<的图象位于二、四象限, y=k(x -1)的图象经过第一、二、四象限,观察可知B 选项符合题意,故选B.4.下列函数中,当x >0时,函数值y 随自变量x 的增大而减小的是( ) A .y =x 2B .y =xC .y =x+1D .1y x = 【答案】D【解析】【分析】需根据函数的性质得出函数的增减性,即可求出当x >0时,y 随x 的增大而减小的函数.【详解】解:A 、y =x 2是二次函数,开口向上,对称轴是y 轴,当x >0时,y 随x 的增大而增大,错误;B 、y =x 是一次函数k =1>0,y 随x 的增大而增大,错误;C 、y =x+1是一次函数k =1>0,y 随x 的增大而减小,错误;D 、1y x=是反比例函数,图象无语一三象限,在每个象限y 随x 的增大而减小,正确; 故选D .【点睛】本题综合考查了二次函数、一次函数、反比例函数的性质,熟练掌握函数的性质是解题的关键.5.如图,点A 是反比例函数y =k x(x <0)的图象上的一点,过点A 作平行四边形ABCD ,使点B 、C 在x 轴上,点D 在y 轴上.已知平行四边形ABCD 的面积为8,则k 的值为( )A .8B .﹣8C .4D .﹣4【答案】B【解析】【分析】 作AE ⊥BC 于E ,由四边形ABCD 为平行四边形得AD ∥x 轴,则可判断四边形ADOE 为矩形,所以S 平行四边形ABCD =S 矩形ADOE ,根据反比例函数k 的几何意义得到S 矩形ADOE =|k|.【详解】解:作AE⊥BC于E,如图,∵四边形ABCD为平行四边形,∴AD∥x轴,∴四边形ADOE为矩形,∴S平行四边形ABCD=S矩形ADOE,而S矩形ADOE=|k|,∴|k|=8,而k<0∴k=-8.故选:B.【点睛】本题考查了反比例函数y=kx(k≠0)系数k的几何意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.6.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(﹣1,1),点B在x轴正半轴上,点D在第三象限的双曲线y=8x上,过点C作CE∥x轴交双曲线于点E,则CE的长为( )A.85B.235C.3.5 D.5【答案】B 【解析】【分析】设点D(m,8m),过点D作x轴的垂线交CE于点G,过点A过x轴的平行线交DG于点H,过点A作AN⊥x轴于点N,根据AAS先证明△DHA≌△CGD、△ANB≌△DGC可得AN=DG=1=AH,据此可得关于m的方程,求出m的值后,进一步即可求得答案.【详解】解:设点D(m,8m),过点D作x轴的垂线交CE于点G,过点A过x轴的平行线交DG于点H,过点A作AN⊥x轴于点N,如图所示:∵∠GDC+∠DCG=90°,∠GDC+∠HDA=90°,∴∠HDA=∠GCD,又AD=CD,∠DHA=∠CGD=90°,∴△DHA≌△CGD(AAS),∴HA=DG,DH=CG,同理△ANB≌△DGC(AAS),∴AN=DG=1=AH,则点G(m,8m﹣1),CG=DH,AH=﹣1﹣m=1,解得:m=﹣2,故点G(﹣2,﹣5),D(﹣2,﹣4),H(﹣2,1),则点E(﹣85,﹣5),GE=25,CE=CG﹣GE=DH﹣GE=5﹣25=235,故选:B.【点睛】本题考查了正方形的性质、反比例函数图象上点的坐标特点和全等三角形的判定与性质,构造全等、充分运用正方形的性质是解题的关键.7.函数kyx=与y kx k=-(0k≠)在同一平面直角坐标系中的大致图象是()A .B .C .D .【答案】C【解析】【分析】分k>0和k<0两种情况确定正确的选项即可.【详解】当k:>0时,反比例函数的图象位于第一、三象限,一次函数的图象交 y 轴于负半轴,y 随着x 的增大而增大,A 选项错误,C 选项符合;当k<0时,反比例函数的图象位于第二、四象限,一次函数的图象交y 轴于正半轴,y 随着x 的增大而增减小,B. D 均错误,故选:C.【点睛】此题考查反比例函数的图象,一次函数的图象,熟记函数的性质是解题的关键.8.已知点()1,3M -在双曲线k y x =上,则下列各点一定在该双曲线上的是( ) A .()3,1-B .()1,3--C .()1,3D .()3,1 【答案】A【解析】【分析】先求出k=-3,再依次判断各点的横纵坐标乘积,等于-3即是在该双曲线上,否则不在.【详解】∵点()1,3M -在双曲线k y x=上, ∴133k =-⨯=-,∵3(1)3⨯-=-,∴点(3,-1)在该双曲线上,∵(1)(3)13313-⨯-=⨯=⨯=,∴点()1,3--、()1,3、()3,1均不在该双曲线上,故选:A.【点睛】此题考查反比例函数解析式,正确计算k 值是解题的关键.9.如图所示是一块含30°,60°,90°的直角三角板,直角顶点O 位于坐标原点,斜边AB垂直于x 轴,顶点A 在函数y 1=1k x(x>0)的图象上,顶点B 在函数y 2= 2k x (x>0)的图象上,∠ABO=30°,则21k k =( )A .-3B .3C .13D .- 13【答案】A【解析】【分析】 根据30°角所对的直角边等于斜边的一半,和勾股定理,设出适当的常数,表示出其它线段,从而得到点A 、B 的坐标,表示出k 1、k 2,进而得出k 2与k 1的比值.【详解】如图,设AB 交x 轴于点C ,又设AC=a.∵AB ⊥x 轴 ∴∠ACO=90°在Rt △AOC 中,OC=AC·tan ∠OAB=a·tan60°3∴点A 3a ,a )同理可得 点B 3,-3a )∴k 1332 , k 23a×(-3a )3a∴213333k a k a==-. 故选A.【点睛】考查直角三角形的边角关系,反比例函数图象上点的坐标特征,设适合的常数,用常数表示出k ,是解决问题的方法.10.对于反比例函数2y x=-,下列说法不正确的是( ) A .图象分布在第二、四象限B .当0x >时,y 随x 的增大而增大C .图象经过点(1,-2)D .若点()11,A x y ,()22,B x y 都在图象上,且12x x <,则12y y <【答案】D【解析】【分析】根据反比例函数图象的性质对各选项分析判断后利用排除法求解.【详解】A. k=−2<0,∴它的图象在第二、四象限,故本选项正确;B. k=−2<0,当x>0时,y 随x 的增大而增大,故本选项正确;C.∵221-=-,∴点(1,−2)在它的图象上,故本选项正确; D. 若点A (x 1,y 1),B (x 2,y 2)都在图象上,,若x 1<0< x 2,则y 2<y 1,故本选项错误. 故选:D.【点睛】本题考查了反比例函数的图象与性质,掌握反比例函数的性质是解题的关键.11.已知反比例函数y =﹣2x的图象上有三个点(x 1,y 1)、(x 2,y 2)、(x 3,y 3),若x 1>x 2>0>x 3,则下列关系是正确的是( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 2<y 1D .y 2<y 3<y 1【答案】B【解析】【分析】根据函数的解析式得出图象所在的象限和增减性,再进行比较即可.【详解】 解:∵反比例函数y =﹣2x, ∴函数图象在第二、四象限,且在每个象限内,y 随x 的增大而增大,∵函数的图象上有三个点(x 1,y 1),(x 2,y 2)、(x 3,y 3),且x 1>x 2>0>x 3, ∴y 2<y 1<0,y 3>0∴. y 2<y 1<y 3故选:B .【点睛】本题考查了反比例函数图象上点的坐标特征和函数的图象和性质,能灵活运用函数的图象和性质进行推理是解此题的关键.12.如图所示,Rt AOB ∆中,90AOB ∠=︒ ,顶点,A B 分别在反比例函数()10y x x =>与()50y x x=-<的图象器上,则tan BAO ∠的值为( )A 5B 5C 25D 10【答案】B【解析】【分析】过A 作AC ⊥x 轴,过B 作BD ⊥x 轴于D ,于是得到∠BDO=∠ACO=90°,根据反比例函数的性质得到S △BDO =52,S △AOC =12,根据相似三角形的性质得到=5OB OA =,根据三角函数的定义即可得到结论. 【详解】解:过A 作AC ⊥x 轴,过B 作BD ⊥x 轴于D , 则∠BDO=∠ACO=90°,∵顶点A ,B 分别在反比例函数()10y x x =>与()50y x x =-<的图象上, ∴S △BDO =52,S △AOC =12, ∵∠AOB=90°,∴∠BOD+∠DBO=∠BOD+∠AOC=90°,∴∠DBO=∠AOC ,∴△BDO ∽△OCA ,∴251522BODOACSOBS OA⎛⎫==÷=⎪⎝⎭△△,∴5OBOA=,∴tan∠BAO=5OBOA=.故选B.【点睛】本题考查了反比例函数的性质以及直角三角形的性质,三角形相似的判定和性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法.13.如图,若点M是x轴正半轴上任意一点,过点M作PQ∥y轴,分别交函数1(0)ky xx=>和2(0)ky xx=>的图象于点P和Q,连接OP和OQ.则下列结论正确的是()A.∠POQ不可能等于90°B.12PMQMkk=C.这两个函数的图象一定关于x轴对称D.△POQ的面积是()1212k k+【答案】D【解析】【分析】【详解】解:根据反比例函数的性质逐一作出判断:A .∵当PM=MO=MQ 时,∠POQ=90°,故此选项错误;B .根据反比例函数的性质,由图形可得:1k >0,2k <0,而PM ,QM 为线段一定为正值,故12PM QM k k =,故此选项错误; C .根据1k ,2k 的值不确定,得出这两个函数的图象不一定关于x 轴对称,故此选项错误;D .∵|1k |=PM•MO ,|2k |=MQ•MO ,∴△POQ 的面积=12MO•PQ=12MO (PM+MQ )=12MO•PM+12MO•MQ=()1212k k +. 故此选项正确.故选D .14.若A (-3,y 1)、B (-1,y 2)、C (1,y 3)三点都在反比例函数y=k x (k >0)的图象上,则y 1、y 2、y 3的大小关系是( )A . y 1>y 2>y 3B . y 3>y 1>y 2C . y 3>y 2>y 1D . y 2>y 1>y 3 【答案】B【解析】【分析】反比例函数y=k x(k >0)的图象在一、三象限,根据反比例函数的性质,在每个象限内y 随x 的增大而减小,而A (-3,y 1)、B (-1,y 2)在第三象限双曲线上的点,可得y 2<y 1<0,C (1,y 3)在第一象限双曲线上的点y 3>0,于是对y 1、y 2、y 3的大小关系做出判断.【详解】∵反比例函数y=k x(k >0)的图象在一、三象限, ∴在每个象限内y 随x 的增大而减小,∵A (-3,y 1)、B (-1,y 2)在第三象限双曲线上,∴y 2<y 1<0,∵C (1,y 3)在第一象限双曲线上,∴y 3>0,∴y 3>y 1>y 2,故选:B .【点睛】此题考查反比例函数的图象和性质,解题关键在于当k >0,时,在每个象限内y 随x 的增大而减小;当k <0时,y 随x 的增大而增大,注意“在每个象限内”的意义,这种类型题目用图象法比较直观得出答案.15.矩形ABCO如图摆放,点B在y轴上,点C在反比例函数ykx=(x>0)上,OA=2,AB=4,则k的值为()A.4 B.6 C.325D.425【答案】C【解析】【分析】根据矩形的性质得到∠A=∠AOC=90°,OC=AB,根据勾股定理得到OB22OA AB=+=5C作CD⊥x轴于D,根据相似三角形的性质得到CD855=,OD45=求得8545,)于是得到结论.【详解】解:∵四边形ABCO是矩形,∴∠A=∠AOC=90°,OC=AB,∵OA=2,AB=4,∴过C作CD⊥x轴于D,∴∠CDO=∠A=90°,∠COD+∠COB=∠COB+∠AOB=90°,∴∠COD=∠AOB,∴△AOB∽△DOC,∴OB AB OA OC CD OD==,∴25424CD OD==,∴CD85=,OD45=,∴4585),∴k325 =,故选:C.【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数的性质,矩形的性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.16.在函数()0k y k x=<的图象上有()11,A y ,()21,B y -,()32,B y -三个点,则下列各式中正确的是( ) A .123y y y <<B .132y y y <<C .321y y y <<D .231y y y <<【答案】B【解析】【分析】根据反比例函数图象上点的坐标特征得到11y k ⨯=,21y k -⨯=,32y k -⨯=,然后计算出1y 、2y 、3y 的值再比较大小即可.【详解】 解:(0)k y k x=<Q 的图象上有1(1,)A y 、2(1,)B y -、3(2,)C y -三个点, 11y k ∴⨯=,21y k -⨯=,32y k -⨯=, 1y k ∴=,2y k =-,312y k =-, 而k 0<,132y y y ∴<<.故选:B .【点睛】 本题考查了反比例函数图象上点的坐标特征:反比例函数k y x=(k 为常数,且0k ≠)的图象是双曲线,图象上的点(),x y 的横纵坐标的积是定值k ,即xy k =.17.已知反比例函数b y x=与一次函数y ax c =+有一个交点在第四象限,该交点横坐标为1,抛物线2y ax bx c =++与x 轴只有一个交点,则一次函数b c y x a a=+的图象可能是( )A .B .C .D .【答案】B【解析】【分析】根据题意得b <0,a+c <0,240b ac =>,可得a <0,c <0,进而即可判断一次函数b c y x a a =+的图象所经过的象限. 【详解】 ∵反比例函数b y x=与一次函数y ax c =+有一个交点在第四象限, ∴反比例函数的图象在二、四象限,即b <0,∵该交点横坐标为1,∴y=a+c <0,∵抛物线2y ax bx c =++与x 轴只有一个交点, ∴240b ac -=,即:240b ac =>,∴a <0,c <0,∴0b a>,0c a >, ∴b c y x a a=+的图象过一、二、三象限. 故选B .【点睛】 本题主要考查反比例函数与一次函数的图象和性质,掌握函数图象上点的坐标特征以及函数解析式的系数的几何意义,是解题的关键.18.如图,矩形ABCD 的顶点A ,B 在x 轴的正半轴上,反比例函数k y x =在第一象限内的图象经过点D ,交BC 于点E .若4AB =,2CE BE =,34AD OA =,则线段BC 的长度为( )A .1B .32C .2D .23【解析】【分析】设OA 为4a ,则根据题干中的比例关系,可得AD=3a ,CE=2a ,BE=a ,从而得出点D 和点E 的坐标(用a 表示),代入反比例函数可求得a 的值,进而得出BC 长.【详解】设OA=4a 根据2CE BE =,34AD OA =得:AD=3a ,CE=2a ,BE=a ∴D(4a ,3a),E(4a+4,a)将这两点代入解析得; 3444k a a k a a ⎧=⎪⎪⎨⎪=⎪+⎩解得:a=12∴BC=AD=32 故选:B【点睛】本题考查反比例函数和矩形的性质,解题关键是用含有字母的式子表示出点D 、E 的坐标,然后代入解析式求解.19.如图,Rt ABO ∆中,90AOB ∠=︒,3AO BO =,点B 在反比例函数2y x =的图象上,OA 交反比例函数()0k y k x=≠的图象于点C ,且2OC CA =,则k 的值为( )A .2-B .4-C .6-D .8-【答案】D【分析】过点A 作AD ⊥x 轴,过点C 作CE ⊥x 轴,过点B 作BF ⊥x 轴,利用AA 定理和平行证得△COE ∽△OBF ∽△AOD ,然后根据相似三角形的性质求得21()9BOF OAD S OB S OA ==V V ,24()9COE AOD S OC S OA ==V V ,根据反比例函数比例系数的几何意义求得212BOF S ==V ,从而求得4COE S =V ,从而求得k 的值.【详解】解:过点A 作AD ⊥x 轴,过点C 作CE ⊥x 轴,过点B 作BF ⊥x 轴∴CE ∥AD ,∠CEO=∠BFO=90°∵90AOB ∠=︒∴∠COE+∠FOB=90°,∠ECO+∠COE=90°∴∠ECO=∠FOB∴△COE ∽△OBF ∽△AOD又∵3AO BO =,2OC CA = ∴13OB OA =,23OC OA = ∴21()9BOF OAD S OB S OA ==V V ,24()9COE AOD S OC S OA ==V V ∴4COE BOFS S =V V ∵点B 在反比例函数2y x =的图象上 ∴212BOF S ==V ∴4COE S =V ∴42k =,解得k=±8 又∵反比例函数位于第二象限,∴k=-8故选:D .【点睛】本题考查反比例函数的性质和相似三角形的判定和性质,正确添加辅助线证明三角形相似,利用数形结合思想解题是关键.20.如图,四边形OABF中,∠OAB=∠B=90°,点A在x轴上,双曲线kyx=过点F,交AB于点E,连接EF.若BF2OA3=,S△BEF=4,则k的值为()A.6 B.8 C.12 D.16【答案】A【解析】【分析】由于23BFOA=,可以设F(m,n)则OA=3m,BF=2m,由于S△BEF=4,则BE=4m,然后即可求出E(3m,n-4m),依据mn=3m(n-4m)可求mn=6,即求出k的值.【详解】如图,过F作FC⊥OA于C,∵23 BFOA,∴OA=3OC,BF=2OC ∴若设F(m,n)则OA=3m,BF=2m ∵S△BEF=4∴BE=4 m则E(3m,n-4m)∵E在双曲线y=kx上∴mn=3m(n-4m)∴mn=6即k=6.故选A.【点睛】此题主要考查了反比例函数的图象和性质、用坐标表示线段长和三角形面积,表示出E点坐标是解题关键.。
高一数学易错题85道(经典)
则.故
44. 函数的单调减区间为
。
解答:,令,函数的定义域为函数的单调减区间为
说明:此题考查基本函数的导数及导数的运算法则
45. 一个膨胀中的球形气球,其体积的膨胀率恒为,则但其半径增至
时,半径的增长率是
.
解答:
说明:考查对导数概念的理解能力
46. 若函数在内单调递减,则实数a的范围为____________.
判断角所在的象限.
23. 已知
.
说明:本题考查了倍角公式的应用,在公式应用是注意符号的取
舍,特别关注的是角的范围.
24. 已知
.
说明:本题通过降冪联想到三角函数的基本公式和倍角公式进行化
简求值.
25. 要得到函数只需将函数的图像
.
解:,图像向右平移个单位就得到的图像.
说明:本题考查三角函数的平移变换,掌握“左加右减”法则,以及正
可取回的钱的总数(元)为
.
正确答案:] 错因: 学生对存款利息的计算方法没掌握。
43. 定义一个“等积数列”:在一个数列中,如果每一项与它后一项的积
都是同一常数,那么这个数列叫“等积数列”,这个常数叫做这个数列的
公积.
已知数列是等积数列,且,公积为5,则这个数列的前项和的计算
公式为:
.
解:这个数列为2,,2,,2,,…,若是偶数,则,若是奇数,
余弦之间的转化是解决问题的关键.
26. 已知有最小值,无最大值,则
。
说明:本题考查正弦的对称轴及周期,以及正弦图像的知识。
27. 将全体正整数排成一个三角形数阵:
1
2 3
4 5 6
7 8 9 10
11 12 13 14 15
高考状元数学错题本:第1章集合易错题含解析
我的高考数学错题本第1章 集合易错题易错点1 遗忘空集致误由于空集是任何非空集合的真子集,在解题中如果思维不够缜密就有可能忽视了B =∅这种情况,导致解题结果错误.【例 1】 设2{|230}A x x x =--=,{|10}B x ax =-=,B A ⊆,求的值.【错解】 {3,1}A =-,1{}B a =,从而13a =或1-. 【错因】忽略了集合B =∅的情形【正解 】当B ≠∅时,得13a =或1-;B =∅时,得0a =.所以13a =或1a =-或0a =. 【纠错训练】已知{|23}A x a x a =≤≤+,{|15}B x x x =<->或,若=AB ∅,求a 的取值范围. 【解析】由=A B ∅,(1)若A =∅,有23a a >+,所以3a >.(2)若A ≠∅,则有213523a a a a ≥-⎧⎪+≤⎨⎪≤+⎩,解得122a -≤≤. 综上所述,的取值范围是1{|23}2x a a -≤≤>或. 易错点2 忽视集合元素的三要素致误集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求.【例2】已知集合{1,4,}A a =,2{1,,}B a b =,若A B =,求实数,的值.【错解】由题意得,24a a b ⎧=⎨=⎩,解得22a b =⎧⎨=⎩或22a b =-⎧⎨=-⎩. 【错因】本题误认为两个集合相等则对应项相同,这显然违背了集合的无序性.【正解】∵A B =,由集合元素的无序性,∴有以下两种情形:(1)24a a b ⎧=⎨=⎩,解得22a b =⎧⎨=⎩或22a b =-⎧⎨=-⎩; (2)24a a b ⎧=⎨=⎩,解得04a b =⎧⎨=⎩或12a b =⎧⎨=-⎩,经检验12a b =⎧⎨=-⎩与元素互异性矛盾,舍去.∴22a b =⎧⎨=⎩或22a b =-⎧⎨=-⎩或04a b =⎧⎨=⎩.【例3】 已知集合{1,4,}A a =,集合2{1,}B a =,若B A ⊆,求的值.【错解】24a =或2a a =,解得2a =±或0a =或1a =.【错因】没有将计算结果代回到集合中检验,忽略了集合中元素的互异性,导致出现了增解.【正解】24a =或2a a =,解得2a =±或0a =或1a =,经检验当1a =时,{1,4,1}A =,与集合中元素的互异性相矛盾,舍去,所以2a =±或0a =.【纠错训练】已知集合{1,2}A =,{|30}B x ax =-=,若B A ⊆,则实数的值是( )A .30,,32B .0,3C . 3,32D .【解析】若B A ⊆,则集合B 是集合A 的子集,当B =∅,显然0a =;当B ≠∅时,解得3B a ⎧⎫=⎨⎬⎩⎭,则有31a=或32a =,解得3a =或32a =,即的值为30,,32,选A .易错点3 弄错集合的代表元【例4】已知{}| 1 A y y x ==+,{}22(,)|1B x y x y =+=,则集合A B 中元素的个数为________.【错解】 1个或无穷多个【错因】没有弄清集合B 的代表元的含义【正解】集合A 是一个数集,集合B 是一个点集,二者的交集为空集,所包含的元素个数为0.【例5】已知函数()y f x =,[,]x a b ∈,那么集合{(,)|(),[,]}{(,)|2}x y y f x x a b x y x =∈=中元素的个数为( )A .1 A .0 C .0或1 D .1或2【错解】不知题意,无从下手,蒙出答案D【错因】没有弄清两个集合打代表元,事实上,{|()}x y f x =、{|()}y y f x =、{(,)|()}x y y f x =分别表示函数()y f x =的定义域、值域、函数图象上的点的坐标组成的集合.【正解】本题中集合的含义是两个图象交点的个数,从函数值的唯一性可知,两个集合的交中之多有一个交点,故选C .【纠错训练】1.已知集合2{|1}A y y x ==+,{|2}B x y =,则A B =_______________. 【解析】{|1}A y y =≥,{|0}B x x =≥,所以{|1}A B x x =≥.【纠错训练】2.设集合{(,)|25}A x y x y =+=,{(,)|23}B x y x y =-=-,则A B =______.【解析】由2523x y x y +=⎧⎨-=-⎩,解得12x y =⎧⎨=⎩,从而{(1,2)}A B =.易错点4 忽略了题目中隐含的限制条件【例6】【2015高考陕西,理1】设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N =( )A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞ 【错解】{}{}20,1x x x M ===,{}{}lg 01x x x x N =≤=≤,所以(,1]M N =-∞,故选D .【错因】在解lg 0x ≤时,忽略了0x >这个隐含的限制条件. 【正解】{}{}20,1x x x M ===,{}{}lg 001x x x x N =≤=<≤,所以[]0,1M N =,故选A .【纠错训练】【2015高考重庆,理4】“1x >“是“12log (2)0x +<”的( )A 、充要条件B 、充分不必要条件C 、必要不充分条件D 、既不充分也不必要条件 【解析】12log (2)0211x x x +<⇔+>⇔>-,因此选B .易错点5 集合的交并运算弄反【例7】【2015高考山东,理1】已知集合{}2430A x x x =-+<,{}24B x x =<<,则A B =() A .(1,3) B .(1,4) C .(2,3) D .(2,4) 【错解】因为{}13A x x =<<,{}24B x x =<<,所以{}14A B x x =<<,故选B .【错因】将集合的“交运算”误认为是“并运算”.【正解】{}{}{}132423A B x x x x x x =<<<<=<<,故选C .【纠错训练】【2015高考四川,理1】设集合{|(1)(2)0}A x x x =+-<,集合{|13}B x x =<<,则A B =( )A .{|13}x x -<<B .{|11}x x -<<C .{|12}x x <<D .{|23}x x <<【解析】{|12},{|13},{|13}A x x B x x A B x x =-<<=<<∴=-<<,故选A .【错题巩固】1.设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N =( )A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞A 【解析】2{|}{0,1}M x x x ===,{|lg 0}{|01}N x x x x =≤=<≤,所以M N =[0,1].故选A .2.集合A = { x | x < a },B = { x | 1 < x < 2},若A B =R R ð,则实数a 的取值范围是( )A .a ≤1B .a < 1C .a ≥2D .a > 2 C 【解析】{|1,2}B x x x =≤≥R 或ð,因为A B =R R ð,所以a ≥2,选C.3.已知A ={x | -2≤x ≤5}, B =a +1,2a -1].若B A ⊆,则实数的取值范围是______.【解析】易知B ≠∅,所以应满足21521211a a a a -≤+⎧⎪≥-⎨⎪->+⎩,解得2<a ≤3.故实数的取值范围是(2,3].4.已知A ={x | -2≤x ≤5},B ={x | a +1≤x ≤2a -1}.若B A ⊆,则实数的取值范围是______.3a ≤【解析】①当B =∅时,即121a a +>-,有a <2;②当B ≠∅,则21521211a a a a -≤+⎧⎪≥-⎨⎪-≥+⎩,解得2≤a ≤3.综合①②得a 的取值范围为a ≤3.5.已知集合A =14(,]a a-,集合B =1(,2]2-.若B A ⊆,则实数的取值范围是______. 02a <≤【解析】1411242a a aa ⎧-<⎪⎪⎪-≤-⎨⎪⎪≥⎪⎩,解得02a <≤,所以实数a 的取值范围为02a <≤. 6.知集合2[2,2],{|430}A a a B x x x =-+=-+≤,AB ,则实数的取值范围是01a <<【解析】122322aa a a ≤-⎧⎪+≤⎨⎪-<+⎩,得01a <≤,当1=a ,[1,3],[1,3]A B ==不符合,所以01a <<。
小学三年级数学上册易错题集锦(附答案)
一、选择题。
1、小红的身高15()。
A、米B、分米C、厘米2、10张纸厚约()A、1毫米B、1厘米C、1分米3、2米和80厘米加起来是()A、100厘米B、280厘米C、208厘米4、文具商店有各种笔1000盒,第一天卖了252盒,第二天比第一天多卖78盒,两天一共卖了()盒。
A、330B、582C、4185、小敏10:55分上第四节课,一节课要上40分钟,那么下课时间应该是()。
A、11:30B、11:45C、11:356、比较下面的质量,最重的应该是()A、3800千克B、3吨9千克C、3吨900千克7、一桶水重()A、20千克B、200千克C、2000千克8、分针走5小格,秒针走了()。
A、5圈B、50圈C、5小格9、一场电影从7:30开始到9:20分结束,这场电影放映了()。
A、2小时50分B、2小时10分钟C、1小时50分钟10、()时,分针和时针重合。
A、12:00B、6:00C、3:00二、判断题。
1、小刚的体重是35吨。
()2、0和任何数相乘、相加、相减都得0。
()3、两个数相乘的积一定大于这两个数相加的和。
()4、1200千克-200千克=1000。
()5、钟面上时针走一大格是一小时,分针走一大格是一分钟,秒针走一大格是一秒钟。
()6、求279比260多多少?列式计算是279+260。
()7、两物体的长度可以用千克作单位。
()8、最大的三位数加上最大的一位数等于最大的四位数。
()9、一个数乘1一定比这个数乘0大。
()10、比11千米少1米是10千米。
()三、填空题。
1、分针从数字1走到2,是()分,走一圈是()分。
秒针从数字1走到2,是()秒,走一圈是()秒。
2、8:20小明正在看球赛,球赛已经开始了30分钟,球赛开始的时间是()。
3、4000米-2000米=( )千米 13千米-6千米=()米2吨+3000千克=()吨 1千米+800米=()米10毫米+20厘米=()厘米 1厘米-6毫米=( )毫米8000米-2千米=()米4、工程队挖一条水渠,第一周挖了753米,第二周挖的比第一周少25米,第二周挖了()米,两周一共挖了()米。
学霸们是如何整理错题集的(附错题集参考范例)
学霸们整理错题集的方法和参考范例每次考试中,同学们都会有不少题目做错,在这些做错题的背后,往往是学习时所产生的知识漏洞。
那么,如何弥补这些漏洞呢?整理“错题集”是解决这一问题的最佳措施。
本文介绍新型的“错题集”--活页型错题集,其整理步骤为:1.分类整理。
将所有的错题分类整理,分清错误的原因:概念模糊类、粗心大意类、顾此失彼类、图型类、技巧类、新概念类、数学思想类等等,并将各题注明属于某一章某一节,这样分类的优点在于既能按错因查找,又能按各章节易错知识点查找,给今后的复习带来简便,另外也简化了“错题集”,整理时同一类型问题可只记录典型的问题,不一定每个错题都记。
2.记录方法。
老师试卷评讲时,要注意老师对错题的分析讲解,该题的引入语、解题的切入口、思路突破方法、解题的技巧、规范步骤及小结等等。
并在该错题的一边注释,写出自己解题时的思维过程,暴露出自己思维障碍产生的原因及根源的分析。
这种记述方法开始时可能觉得较困难或写不出,不必强行要求自己,初始阶段可先用自己的语言写出小结即可,总结得多了,自然会有心得体会,渐渐认清思维的种种障碍(即错误原因)。
3.必要的补充。
前面的工作仅是一个开始,最重要的工作还在后面,对“错题集”中的错题,不一定说订正得非常完美了,就证明你这一知识的漏洞就已经弥补好了。
对于每一个错题,还必须要查找资料或课本,找出与之相同或相关的题型,并作出解答。
如果没有困难,说明这一知识点,你可能已经掌握了,如果还是不能解决,则对于这一问题的处理还要再深入一点。
因为在下一次测试中,在这一问题上,你可能还要犯同样的错误。
4.错题改编。
初始阶段,同学们只需对题目条件做一点改动。
5.活页装订。
将“错题集”按自己的风格,编号页码,进行装订,由于每页不固定,故每次查阅时还可及时更换或补充。
在整理错题集时,一定要有恒心和毅力,不能为完成差事而搞花架子,整理时不要在乎时间的多少,对于相关错误知识点的整理与总结,虽然工作繁杂,但其作用绝不仅仅是明白了一道错题是怎样求解这么简单,更重要的是通过整理“错题集”,你将学会如何学数学、如何研究数学,掌握哪些知识点在将来的学习中会犯错误,真正做到“吃一堑长一智”。
小学四年级数学上册易错题集(错题本).doc
8、把下面的每一组算式,合并成综合算式
73+27=100 100÷25=4
____________2-36=16 45×16=720
________________________________________
4、100张纸厚1厘米,1亿张纸厚约()千米。
5、用万作单位写出下面各数的近似数:
945000≈()万305100≈()万996043≈()万
6、用亿作单位写出下面各数的近似数。
420000000≈()亿650000000≈()亿6990000000≈()亿
7、写出□里的数。
□□□÷26=7......6 298÷□□=9 (1)
42×13=546 102+546=646
________________________________________
用两根一样长的铁丝分别围成一个长方形和一个正方形
小学四年级数学上册易错题集(错题本).doc
小学四年级数学上册易错题集(错题本)
一、填空题。
1、与最小的八位数相邻的两个数是()和()。
2、10个鸟蛋重50克,100万个鸟蛋约重()吨。
3、用两根一样长的铁丝分别围成一个长方形和一个正方形,()的面积大。