数学分析 不定积分概念与基本积分公式
积分的基本公式和法则
积分的基本公式和法则积分是微积分的一个重要概念,它在数学中具有广泛的应用。
本文将介绍积分的基本公式和法则,帮助读者更好地理解和应用积分。
一、基本公式在介绍积分的基本公式之前,我们先来了解一下积分的定义。
积分可以理解为曲线与坐标轴所围成的面积。
具体来说,对于函数f(x)在[a,b]区间上的积分,可以表示为∫(a到b)f(x)dx。
1. 不定积分不定积分是指对一个函数进行积分,但没有明确的积分上下限。
不定积分可以表示为∫f(x)dx,其中f(x)为被积函数,dx表示与x的无穷小增量。
不定积分具有以下基本公式:∫kdx = kx + C (k为常数,C为常数项)∫x^ndx = (x^(n+1))/(n+1) + C (n≠-1,C为常数项)∫e^xdx = e^x + C (C为常数项)其中,kx表示k乘以x,x^n表示x的n次方。
2. 定积分定积分是指对一个函数在一个闭区间上进行积分,可以表示为∫(a到b)f(x)dx。
定积分的结果是一个具体的数值。
定积分的计算方法有多种,其中最常用的是牛顿-莱布尼茨公式和换元积分法。
牛顿-莱布尼茨公式可以简化定积分的计算,其表达式为:∫(a到b)f(x)dx = F(b) - F(a)其中,F(x)为f(x)的一个原函数。
二、积分的法则积分的法则是指在进行积分运算时,可以根据一些规律和性质简化计算过程。
积分的法则包括线性法则、分部积分法、换元积分法等。
1. 线性法则线性法则是指对于两个函数相加或相减的积分,可以分别对每个函数进行积分,然后再相加或相减。
具体表达式为:∫(f(x) + g(x))dx = ∫f(x)dx + ∫g(x)dx∫(f(x) - g(x))dx = ∫f(x)dx - ∫g(x)dx2. 分部积分法分部积分法是一种将积分运算转化为乘法运算的方法。
其基本公式为:∫u(x)v'(x)dx = u(x)v(x) - ∫v(x)u'(x)dx这里的u(x)和v'(x)是原函数f(x)的两个因子,可以根据具体情况选择合适的函数进行求导和积分。
不定积分的15个基本公式
不定积分的15个基本公式不定积分是微积分中的一个重要概念,它是对一个函数的不定积分时求出它的原函数。
在计算不定积分时,有一些基本公式可以帮助我们简化计算。
下面是关于不定积分的15个基本公式:1. 常数公式:对于任意常数k,∫kdx = kx + C,其中C为任意常数。
2. 幂函数公式:对于任意常数n,∫x^n dx = (x^(n+1))/(n+1) + C,其中C为任意常数。
3. 倒数公式:∫1/x dx = ln|x| + C,其中C为任意常数。
4. 正弦函数公式:∫sin(x) dx = -cos(x) + C,其中C为任意常数。
5. 余弦函数公式:∫cos(x) dx = sin(x) + C,其中C为任意常数。
6. 正切函数公式:∫tan(x) dx = -ln|cos(x)| + C,其中C为任意常数。
7. 余切函数公式:∫cot(x) dx = ln|sin(x)| + C,其中C为任意常数。
8. 指数函数公式:∫e^x dx = e^x + C,其中C为任意常数。
9. 对数函数公式:∫ln(x) dx = xln(x) - x + C,其中C为任意常数。
10. 反正弦函数公式:∫arcsin(x) dx = xarcsin(x) + sqrt(1-x^2) + C,其中C为任意常数。
11. 反余弦函数公式:∫arccos(x) dx = xarccos(x) - sqrt(1-x^2) + C,其中C为任意常数。
12. 反正切函数公式:∫arctan(x) dx = xarctan(x) - ln|1+x^2| + C,其中C为任意常数。
13. 反余切函数公式:∫arccot(x) dx = xarccot(x) + ln|1+x^2| + C,其中C为任意常数。
14. 双曲正弦函数公式:∫sinh(x) dx = cosh(x) + C,其中C为任意常数。
15. 双曲余弦函数公式:∫cosh(x) dx = sinh(x) + C,其中C为任意常数。
不定积分的概念与基本积分公式
1 x2
dx
1 x
c
axdxl1naaxC
启示 根据求导公式得出积分公式
由于
x1
x
xdxx1 C.
1
(1)
结论 根据不定积分运算和微分运算是互逆的, 可以根据导数基本公式可得到对应的不 定积分基本公式.
整理课件
15
若 F(x)f(x)则 , f(x)dx F(x)c
导数公式
基本积分表
(kx)k
kdxkxc dxxc
( 1 x1)x
(2) f (x)的所有原函数表示为: F(x)c(cR)
(3)f(x)的所有原f(函 x)在 数 区 I称 上 间 为 的不,定积
记作 f (x)dx
即 ,若F(x)f(x)则 , f(x)dxF(x)c(cR)
整理课件
7
若F(x) f (x), 则 f(x)d xF(x)c(cR)
f(x)d xF (x)C
9
例.计算下列不定积分
(1)(2x5)dx
解 (1 ) x2 5 x2 x 5 ,
(2)(exsin x)d.x (2 ) ex co x sex six,n
(2x 5 )d xx2 5xC . (e x six )d n x e x cx o C s
1 1 x2
2dx
arc x s2x i n c
(arcxs)in 1 1x2
(arcxt)an11x2
dx arcxsiC n 1x2
1 1x2dxarcxt aCn
整理课件
18
基本积分公式 若 F(x)f(x)则 , f(x)dx F(x)c
kdxkxCdxxc
数学分析第八章不定积分
数 , 则 k1 f + k2 g 在 I 上也存在原函数 , 且
∫ ∫ ∫ [ k1 f ( x ) + k2 g( x) ] d x = k1 f ( x) d x + k2 g( x ) d x .
( 5)
证 这是因为
∫ ∫ ∫ ∫ k1 f ( x )d x + k 2 g( x) d x ′= k1 f ( x )d x ′+ k 2 g( x) d x ′
知函数 .提出这个逆问题 , 首先是因为它出现在许多实际问题之中
.例如 : 已知速
度求路程 ; 已知加速度求速度 ; 已知曲线 上每一 点处 的切线 斜率 ( 或斜率 所满 足
的某一规律 ) , 求曲线方程等等 .本章与 其后两 章 ( 定 积分与 定积 分的 应用 ) 构 成
一元函数积分学 .一 原函数与不定积分源自(2 , 5) .3 . 验证
y=
x
2
sgn
x
是
| x| 在
∫ v( t) = ad t = at + C .
若已知 v( t0 ) = v0 , 代入上式后确定积分常数 C = v0 - at0 , 于是就有
v( t ) = a( t - t0 ) + v 0 . 又因 s′( t) = v( t ) , 所以又有
∫ s( t) = [ a( t - t 0 ) + v 0] d t
2 (-
1 cos 2x
都是 )′=
sin 2 x 在 ( - ∞ , + ∞ ) 上的原函数 ( - 1 cos 2 x + 1)′= sin 2 x .
, 因为
2
2
如果这些简单的例子都可从基本求导公式反推而得的话
不定积分公式表
不定积分公式表一、基本积分公式。
1. 幂函数积分公式。
- ∫ x^ndx=(1)/(n + 1)x^n+1+C(n≠ - 1)- 例如:∫ x^2dx=(1)/(3)x^3+C,∫ x^5dx=(1)/(6)x^6+C。
2. 指数函数积分公式。
- ∫ a^xdx=frac{a^x}{ln a}+C(a>0,a≠1)- 特别地,当a = e时,∫ e^xdx=e^x+C。
3. 对数函数积分公式。
- ∫(1)/(x)dx=lnx+C4. 三角函数积分公式。
- ∫sin xdx=-cos x + C- ∫cos xdx=sin x + C- ∫sec^2xdx=tan x + C,因为(tan x)'=sec^2x- ∫csc^2xdx=-cot x + C,因为(cot x)' =-csc^2x- ∫sec xtan xdx=sec x + C,因为(sec x)'=sec xtan x- ∫csc xcot xdx=-csc x + C,因为(csc x)'=-csc xcot x5. 反三角函数积分公式。
- ∫(1)/(√(1 - x^2))dx=arcsin x + C=-arccos x + C_1- ∫(1)/(1+x^2)dx=arctan x + C=-text{arccot}x + C_1二、换元积分法相关公式(凑微分法)1. 常见凑微分形式。
- ∫ f(ax + b)dx=(1)/(a)∫ f(ax + b)d(ax + b)(a≠0)- 例如:∫sin(2x+1)dx=(1)/(2)∫sin(2x + 1)d(2x+1)=-(1)/(2)cos(2x + 1)+C。
- ∫ x^n - 1f(x^n)dx=(1)/(n)∫ f(x^n)d(x^n)- 例如:∫ x^2sin(x^3)dx=(1)/(3)∫sin(x^3)d(x^3)=-(1)/(3)cos(x^3)+C。
第一节不定积分概念与基本积分公式(数学分析)(数学分析)
∫ adx=ax+C, ∫
xα dx =
其 中 a是 常 数
∫ dx
= x +C
1 x α +1 + C . α +1
其 中 α 是 常 数 , 且 α ≠ −1.
12
1 3、 ∫ dx = ln x + C. x 特别有: ∫ ex dx = ex + C.
1 x 4、 ∫ a dx = a + C, 其中a > 0, 且a ≠ 1. ln a
若 F ( x )已 知 , f ( x )未 知 , 由 F ( x ) → f ( x ), 则 称 (3)式 为 求 导 运 算 , ' 称 f ( x )为 F ( x )的 导 数 。 若 f ( x )已 知 , F ( x )未 知 , 由 f ( x ) → F ( x ), 则 称 (3)式 为 积 分 运 算 , 称 F ( x )为 ' f ( x )的 原 函 数 。
7
思考题: 1、 如果函数f ( x)的定义域是若干个分离的区间,那么它的原函数彼此之 间是否仅相差一个常数? x2 , 可考虑函数 f ( x) = x, x ∈ (−∞, − 1) U (0, + ∞), 则 : F ( x) = 2 x2 , x ∈ (−∞, − 1) , 都是f ( x) = x 在 (−∞, − 1) U (0, + ∞)的原 G ( x) = 22 x + 1 , x ∈ (0, + ∞) 2 函数,它们之间的关系如何? 2、 设F ( x)是连续函数f在R上的原函数,问: 1 )、如果f ( x)是以T为周期的周期函数,那么F ( x)是否为周期函数? 考虑: ( x) = cos x + 1. f 2)、 如果f ( x)是偶函数,那么F ( x)是否为奇函数? 考虑: ( x) = cos x + 1. f
不定积分基本公式
不定积分基本公式不定积分是微积分中的一个重要概念,它是函数的定义域上的一族原函数。
在计算不定积分时,我们使用的是不定积分的基本公式,也叫做不定积分的运算法则,下面是一些常用的不定积分基本公式。
1.一次幂函数的不定积分公式:∫x^n dx = 1/(n+1) * x^(n+1) + C,其中n不等于-12.常数函数的不定积分公式:∫a dx = ax + C,其中a是常数。
3.幂函数的不定积分公式:∫(a^x) dx = 1/(lna) * a^x + C,其中a是正常数且不等于14.指数函数的不定积分公式:∫e^x dx = e^x + C。
5.对数函数的不定积分公式:∫(1/x) dx = ln,x, + C,其中x不等于0。
6.三角函数的不定积分公式:∫sin(x) dx = -cos(x) + C∫cos(x) dx = sin(x) + C∫tan(x) dx = -ln,cos(x), + C∫cot(x) dx = ln,sin(x), + C∫sec(x) dx = ln,sec(x) + tan(x), + C∫csc(x) dx = ln,csc(x) - cot(x), + C7.反三角函数的不定积分公式:∫arcsin(x) dx = x*arcsin(x) + sqrt(1-x^2) + C∫arccos(x) dx = x*arccos(x) - sqrt(1-x^2) + C∫arctan(x) dx = x*arctan(x) - 1/2ln(1+x^2) + C∫arccot(x) dx = x*arccot(x) + 1/2ln(1+x^2) + C∫arcsec(x) dx = x*arcsec(x) + ln,sec(x)+tan(x), + C∫arccsc(x) dx = x*arccsc(x) - ln,csc(x)+cot(x), + C8.双曲函数的不定积分公式:∫sinh(x) dx = cosh(x) + C∫cosh(x) dx = sinh(x) + C∫tanh(x) dx = ln,cosh(x), + C∫coth(x) dx = ln,sinh(x), + C∫sech(x) dx = arcsin(e^x) + C∫csch(x) dx = ln,tanh(x/2), + C以上是一些常用的不定积分基本公式,但请注意,不定积分是一个广义的概念,有很多特殊函数的不定积分无法用基本公式表示,需要通过其他的方法进行求解,比如换元法、分部积分法、特殊函数等。
常用的24个不定积分公式及证明
常用的24个不定积分公式及证明一、基本积分公式。
1. ∫ kdx = kx + C(k为常数)- 证明:根据求导公式(kx + C)'=k,所以∫ kdx = kx + C。
2. ∫ x^n dx=frac{x^n + 1}{n+1}+C(n≠ - 1)- 证明:对frac{x^n + 1}{n+1}+C求导,根据求导公式(x^m)'=mx^m - 1,可得(frac{x^n+1}{n + 1}+C)'=frac{(n + 1)x^n+1-1}{n+1}=x^n,所以∫ x^n dx=frac{x^n +1}{n+1}+C(n≠ - 1)。
3. ∫(1)/(x)dx=lnx+C- 证明:当x>0时,(ln x)'=(1)/(x);当x < 0时,[ln(-x)]'=(1)/(-x)×(-1)=(1)/(x)。
所以∫(1)/(x)dx=lnx+C。
4. ∫ e^x dx=e^x+C- 证明:因为(e^x)' = e^x,所以∫ e^x dx=e^x+C。
5. ∫ a^x dx=(a^x)/(ln a)+C(a>0,a≠1)- 证明:设y = a^x,则ln y=xln a,y = e^xln a。
对y=(a^x)/(ln a)+C求导,((a^x)/(ln a)+C)'=(1)/(ln a)× a^xln a=a^x,所以∫ a^x dx=(a^x)/(ln a)+C(a>0,a≠1)。
6. ∫sin xdx=-cos x + C- 证明:因为(-cos x)'=sin x,所以∫sin xdx =-cos x+C。
7. ∫cos xdx=sin x + C- 证明:因为(sin x)'=cos x,所以∫cos xdx=sin x + C。
8. ∫(1)/(cos^2)xdx=tan x + C- 证明:因为(tan x)'=sec^2x=(1)/(cos^2)x,所以∫(1)/(cos^2)xdx=tan x + C。
数学分析8.1不定积分概念与基本积分公式
2、f在I上的任意两个原函数之间,只可能相差一个常数.
证:1、依题意F’=f,则当C为常量函数时,(F+C)’=F’=f,得证.
2、设F,G是f在I上的任意两个原函数,则有(F-G)’=F’-G’=f-f=0.
根据拉格朗日中值定理推得:F-G≡C, C为常量函数.
[∫f(x)dx]’=[F(x)+C]’=f(x);d∫f(x)dx=d[F(x)+C]=f(x)dx.
不定积分的几何意义:若F是f的一个原函数,则称y=F(x)的图象为f的一条积分曲线.所以f的不定积分在几何上表示f的某一积分曲线沿纵轴方向任意平移所得一切积分曲线组成的曲线族。显然,在每一条积分曲线上横坐标相同的点处作切线,则这些切线互相平行。
7、∫cosaxdx= sinax+C (a≠0);8、∫sinaxdx=- cosax+C (a≠0);
9、∫sec2xdx=tanx+C;10、∫csc2xdx=-cotx+C;11、∫secx·tanxdx=secx+C;
12、∫cscx·cotxdx=-cscx+C;13、∫ =arcsinx+C=-arccosx+C1;
(2)∫(x- )2dx=∫(x2- + )dx=∫x2dx-∫2x dx+∫ dx= - x +ln|x|+C.
(3)∫ = ∫x- dx= x +C= +C.
(4)∫(2x-3x)2dx=∫(22x-2·6x+32x)dx=∫4xdx-2∫6xdx +∫9xdx= -2· + +C.
(5)∫( +sinx)dx= ∫ dx+∫sinxdx= arcsinx-cosx+C.
不定积分基本公式及运算法则
不定积分基本公式及运算法则
不定积分的基本公式包括幂函数、一次二项式、二次二项式、三角函数等类型的积分公式。
例如,不定积分的幂函数公式包括∫
x^ndx=x^(n+1)/(n+1)+C,其中n≠-1,以及∫1/xdx=ln|x|+C。
对于含有一次二项式的积分,有∫x/(a+bx)dx=(bx-aln|a+bx|)/b^2+C,以及∫x^2/(a+bx)dx=(-bx(2a-bx)/2+a^2ln|a+bx|)/b^3+C等公式。
此外,不定积分的运算法则包括常数倍法则、代换法则、分部积分法则和恒等变形法则等。
这些法则可以帮助我们更好地进行不定积分计算,需要根据情况选择合适的方法,结合基本积分公式进行计算。
最后,在进行不定积分计算时,需要注意一些常见的陷阱和错误,例如忽视函数的定义域、混淆不定积分和定积分的概念、忽视原函数的唯一性等。
因此,在计算不定积分时需要认真审题、明确概念、掌握基本公式和运算法则,并注意检查答案的正确性和合理性。
不定积分26个基本公式
不定积分26个基本公式不定积分是微积分中的一个重要概念,它是对一些函数的原函数进行求解。
当我们求解不定积分时,可以利用一些基本的公式来简化计算。
下面将介绍26个常用的基本不定积分公式。
1.幂函数的不定积分:如果k不等于-1,那么∫x^k dx = (1/(k+1)) * x^(k+1) + C2.指数函数的不定积分:∫e^x dx = e^x + C3.三角函数的不定积分:(1) ∫sin(x) dx = -cos(x) + C(2) ∫cos(x) dx = sin(x) + C(3) ∫tan(x) dx = -ln,cos(x), + C(4) ∫cot(x) dx = ln,sin(x), + C(5) ∫sec(x) dx = ln,sec(x) + tan(x), + C(6) ∫csc(x) dx = ln,csc(x) - cot(x), + C4.反三角函数的不定积分:(1) ∫1/(√(1-x^2)) dx = arcsin(x) + C(2) ∫1/(1+x^2) dx = arctan(x) + C(3) ∫1/,x,(x≠0) dx = sign(x) ln,x, + C,其中sign(x)是x的符号函数5.对数函数的不定积分:(1) ∫1/x dx = ln,x, + C,其中x≠0(2) ∫ln(x) dx = xln,x, - x + C,其中x≠06.双曲函数的不定积分:(1) ∫sinh(x) dx = cosh(x) + C(2) ∫cosh(x) dx = sinh(x) + C(3) ∫tanh(x) dx = ln,cosh(x), + C(4) ∫coth(x) dx = ln,sinh(x), + C(5) ∫s ech(x) dx = arctan(sinh(x)) + C(6) ∫csch(x) dx = ln,tanh(x/2), + C7.反双曲函数的不定积分:(1) ∫1/(√(x^2+1)) dx = arsinh(x) + C(2) ∫1/(√(x^2-1)) dx = arcosh(x) + C,其中x≥1(3) ∫1/x dx = arcoth(x) + C,其中,x,>1(4) ∫1/x dx = arcosech(x) + C,其中0<x≤1(5) ∫1/x dx = arccsch(x) + C,其中,x,≥18.部分分式的不定积分:∫(A/(x-a) + B/(x-b)) dx = A ln,x-a, + B ln,x-b, + C,其中a≠b9.三角函数复合函数的不定积分:(1) ∫sin(kx) dx = - (1/k) cos(kx) + C(2) ∫cos(kx) dx = (1/k) sin(kx) + C10.反函数的不定积分:∫f'(x) / f(x) dx = ln,f(x), + C11.方根的不定积分:(1) ∫√(a^2-x^2) dx = (1/2) (x √(a^2-x^2) + a^2arcsin(x/a)) + C,其中,x,≤a(2) ∫√(x^2+a^2) dx = (1/2) (x √(x^2+a^2) + a^2 ln,x + √(x^2+a^2),) + C12.有理函数的不定积分:∫(P(x)/Q(x)) dx = F(x) + C,其中F(x)是P(x)/Q(x)的一个原函数这些是常见的基本不定积分公式,掌握了这些公式可以在计算不定积分时减少计算量和复杂性。
不定积分的基本公式
不定积分的基本公式不定积分是微积分中的一个重要概念,指的是求一个函数的原函数的过程。
在求不定积分时,有一些基本公式可以帮助我们简化计算。
下面是一些常用的不定积分的基本公式。
1.可加性公式:如果函数G(x)是f(x)的一个原函数,那么对于任意常数C,函数G(x)+C也是f(x)的一个原函数。
这个公式告诉我们,在求解不定积分时,无需指定积分常数C的值。
2.幂函数积分:对于正整数n,有如下公式:∫x^n dx = (1/(n+1)) * x^(n+1) + C这个公式告诉我们,对于一个幂函数的不定积分,可以通过将指数加1并除以新的幂指数来得到结果。
3.倒数函数积分:对于函数f(x)=1/x,有如下公式:∫(1/x) dx = ln,x, + C这个公式告诉我们,对于倒数函数的不定积分,结果是ln,x,(ln表示自然对数)。
4.指数函数积分:对于指数函数ex,有如下公式:∫e^x dx = e^x + C这个公式告诉我们,对于指数函数的不定积分,结果是该指数函数本身。
5.三角函数积分:对于正弦函数sin(x)和余弦函数cos(x),有如下公式:∫sin(x) dx = -cos(x) + C∫cos(x) dx = sin(x) + C这两个公式告诉我们,对于正弦函数和余弦函数的不定积分,结果是对应的三角函数的负函数和本身。
6.反三角函数积分:对于反正弦函数arcsin(x)和反余弦函数arccos(x),有如下公式:∫(1/√(1-x^2)) dx = arcsin(x) + C∫(-1/√(1-x^2)) dx = arccos(x) + C这两个公式告诉我们,对于反正弦函数和反余弦函数的不定积分,结果是对应的反三角函数。
7.自然对数函数积分:对于自然对数函数ln(x),有如下公式:∫(1/x) dx = ln,x, + C这个公式告诉我们,对于自然对数函数的不定积分,结果是ln,x。
8.反双曲函数积分:对于反双曲正弦函数arcsinh(x)和反双曲余弦函数arccosh(x),有如下公式:∫(1/√(x^2+1)) dx = arcsinh(x) + C∫(1/√(x^2-1)) dx = arccosh(x) + C这两个公式告诉我们,对于反双曲正弦函数和反双曲余弦函数的不定积分,结果是对应的反双曲函数。
《高数》必背公式之不定积分(完整版)
《高数》必背公式之不定积分(完整版)高等数学中的不定积分是一种数学运算,它是求解导数的逆运算,也称为反导函数。
在学习高等数学的过程中,我们需要掌握一些常用的不定积分公式,以便能够更好地解决各种数学问题。
下面是一些常见的不定积分公式的完整版,共计超过1200字。
1.基本积分公式(1) ∫k dx = kx + C (k为常数,C为任意常数)(2) ∫x^n dx = (x^(n+1))/(n+1) + C (n不等于-1,C为任意常数)(3) ∫e^x dx = e^x + C(4) ∫a^x dx = (a^x)/(lna) + C (a为常数且a不等于1)(5) ∫sinx dx = -cosx + C(6) ∫cosx dx = sinx + C(7) ∫sec^2x dx = tanx + C(8) ∫csc^2x dx = -cotx + C(9) ∫secx tanx dx = secx + C(10) ∫cscx cotx dx = -cscx + C(11) ∫1/(x^2+1) dx = arctanx + C2.分部积分法分部积分法是求解不定积分的一种常用方法,可以通过将一个积分式子拆分成两部分来求解。
∫u dv = uv - ∫v du其中,u和v是函数,∫u dv和∫v du分别表示u和v的不定积分。
3.三角函数的积分公式(1) ∫sin(ax) dx = -1/a cos(ax) + C(2) ∫cos(ax) dx = 1/a sin(ax) + C(3) ∫tan(ax) dx = -ln,cos(ax),/a + C (a不等于0)(4) ∫cot(ax) dx = ln,sin(ax),/a + C (a不等于0)(5) ∫sec(ax) dx = (1/a) ln,sec(ax) + tan(ax), + C(6) ∫csc(ax) dx = (1/a) ln,csc(ax) - cot(ax), + C4.指数函数和对数函数的积分公式(1) ∫e^ax dx = (1/a) e^ax + C (a不等于0)(2) ∫ln(ax) dx = x(ln(ax) - 1) + C5.三角函数与指数函数的积分公式(1) ∫e^x sin(x) dx = (1/2) e^x (sinx - cosx) + C(2) ∫e^x cos(x) dx = (1/2) e^x (sinx + cosx) + C(3) ∫e^ax sin(bx) dx = (a e^ax sin(bx) - b e^axcos(bx))/(a^2 + b^2) + C(4) ∫e^ax cos(bx) dx = (a e^ax cos(bx) + b e^axsin(bx))/(a^2 + b^2) + C以上只是一部分常用的不定积分公式,还有许多其他的公式可以根据需要进行学习。
不定积分公式大全 含求积分通用方法及例题
不定积分小结一、不定积分基本公式(1)∫x a dx=x a+1a+1+C(a≠−1) (2)∫1xdx=ln|x|+C(3)∫a x dx=a xln a+C(4)∫sin x dx=−cos x+C(5)∫cos x dx=sin x+C(6)∫tan x dx=−ln|cos x|+C (7)∫cot x dx=ln|sin x|+C(8)∫sec x dx=ln|sec x+tan x|+C (9)∫csc x dx=ln|csc x−cot x|+C(10)∫sec2x dx=tan x+C (11)∫csc2x dx=−cot x+C(12)∫dx1+x2=arctan x+C(13)∫dxx2+a2=1aarctan xa+C(14)∫dxx2−a2=12aln|a−xa+x|+C(15)∫dxa2−x2=12aln|a+xa−x|+C(16)∫√1−x2=arcsin x+C(17)√a2−x2=arcsin xa+C(18)√x2±a2=ln|x+√x2±a2|+C(19)∫√a2−x2dx=x2√a2−x2+a22arcsinxa+C(20)∫√x2±a2dx=x2√x2±a2±a22ln|x+√x2±a2|+C二、两个重要的递推公式(由分部积分法可得)(1)D n=∫sin n x dx(详情请查阅教材166页)则D n=−cos x sin n−1xn+n−1nD n−2(求三角函数积分)易得D n:n为奇数时,可递推至D1=∫sin x dx=−cos x+C;n为偶数时,可递推至D2=∫sin2x dx=x2−sin2x4+C;(2)I n=∫dx(x2+a2)n(详情请查阅教材173页)则I n+1=12na2x(x2+a2)n+2n−12na2I n易得I n可递推至I1=∫dxx2+a2=1aarctan xa+C迅捷P DF编辑器(这是有理函数分解后一种形式的积分的求法,大家可以回顾课本恢复记忆)三、普遍方法(一)换元积分法:第一类换元积分法(凑微分法)这类方法需要敏锐的观察力,即观察出某个函数的导数,这就要求我们熟悉常见函数的导数。
不定积分公式大全 基本公式有哪些
不定积分公式大全基本公式有哪些不定积分有很多的公式是需要学生学习和掌握的,本文整理了相关公式信息,以及不定积分的基本公式,供大家阅读参考!不定积分的公式∫ a dx = ax + C,a和C都是常数∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1∫ 1/x dx = ln|x| + C∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1∫ e^x dx = e^x + C∫ cosx dx = sinx + C∫ sinx dx = - cosx + C∫ cotx dx = ln|sinx| + C = - ln|cscx| + C∫ tanx dx = - ln|cosx| + C = ln|secx| + C∫ secx dx =ln|cot(x/2)| + C = (1/2)ln|(1 + sinx)/(1 - sinx)| + C = - ln|secx - tanx| + C = ln|secx + tanx| + C∫ cscx dx = ln|tan(x/2)| + C = (1/2)ln|(1 - cosx)/(1 + cosx)| + C = - ln|cscx + cotx| + C = ln|cscx - cotx| + C∫ sec^2(x) dx = tanx + C∫ csc^2(x) dx = - cotx + C∫ secxtanx dx = secx + C∫ cscxcotx dx = - cscx + C∫ dx/(a^2 + x^2) = (1/a)arctan(x/a) + C∫ dx/√(a^2 - x^2) = arcsin(x/a) + C∫ dx/√(x^2 + a^2) = ln|x + √(x^2 + a^2)| + C∫ dx/√(x^2 - a^2) = ln|x + √(x^2 - a^2)| + C∫√(x^2 - a^2) dx = (x/2)√(x^2 - a^2) - (a^2/2)ln|x + √(x^2 - a^2)| + C∫√(x^2 + a^2) dx = (x/2)√(x^2 + a^2) + (a^2/2)ln|x + √(x^2 + a^2)| + C∫√(a^2 - x^2) dx = (x/2)√(a^2 - x^2) +(a^2/2)arcsin(x/a) + C不定积分的基本公式有哪些什么是不定积分若f(x)是F(x)的导函数(简称导数),则F(x)+C(C为任意常数)为f(x)的不定积分,f(x)的不定积分用符号表示为∫f(x)dx,即∫f(x)dx=F(x)+ C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
xdx x1 C . 1
( 1)
启示 能否根据求导公式得出积分公式?
结论 既然积分运算和微分运算是互逆的, 因此可以根据求导公式得出积分公式.
基 (1) kdx kx C (k是常数);
本
积
(2)
xdx x1 C ( 1); 1
分 表
(3)
dx x
说明:
ln x x 0,
C;
dx x
ln
x
C
,
x 0, [ln( x)] 1 ( x) 1 ,
x
x
dx x
ln(
x
)
C
,
dx x
ln
|
x
|
C
,
简写为
dx x
ln
x
C.
(4)
1
1 x
2
dx
arctan
x
C;
(11) csc x cot xdx csc x C;
(12) e xdx e x C;
(13)
a
xdx
ax ln a
C;
(14) sinh xdx cosh x C;
(15) cosh xdx sinh x C;
例 求积分 x2 xdx.
(5)
1 dx arcsin x C; 1 x2
(6) cos xdx sin x C;
(7) sin xdx cos x C;
(8)
dx cos2
x
sec2
xdx
tan
x
C;
(9)
dx sin 2
x
csc2
xdx
cot
x
C;
(10) sec x tan xdx sec x C;
y
因为 2xdx x 2 C ,
所以y = f(x) x2C。
yx2+2
因为所求曲线通过点(1, 3),
故
31C,C2。
于是所求曲线方程为
yx22。
(1, 3) .
yx2
2 1
2 1 O 1 2 x
1 2
四、 基本积分公式
实例
x1 x
2xdx x2 C
y
函数f(x)的积分曲线也 有无限多条。函数f(x)的不 定积分表示f(x)的一簇积分 曲线,而f(x)正是积分曲线 的斜率。
C1 -1 O 1
y=x2+C1 y=x2
y=x2+C2 y=x2+xC3
C2
C3
例 求过点(1, 3),且其切线斜率为2x的曲线方程。 解:设所求的曲线方程为 yf(x),则 y f (x) 2x, 即f(x)是2x 的一个原函数。
sin
2x)dx
1 ( 1 cos 4x 1 cos 2x) c
24
2
1 (cos4x cos2x) c 8
例5
(10x 10x )2 dx (102x 102x 2)dx
[(102 )x (102 )x 2]dx
1 (102x 102x ) 22 c 2 ln 10
但F ( x)在x 0处不可微, 故假设错误
所以 f ( x) 在 (, ) 内不存在原函数.
结论 每一个含有第一类间断点的函数都 没有原函数.
x(1 x 2 )
x(1 x 2 )
1 x2 x
1
1 x2
dx
1dx x
arctgxln|x|C。
例例例111222
xxx444
dddxxx
xxx444 111111dddxxx
(((xxx222 111)))(((xxx222 111)))111 dddxxx
例例 4
5
1
x (x 2 5)dx (x 2 5x 2 )dx
5
1
5
1
x 2 dx 5x 2 dx x 2 dx 5 x 2 dx
1
5
1
5x 2 dx x 2 dx 5 x 2 dx
2
x
7 2
5
2
x
3 2
C
2 x3
x 10 x
2
x
例例66 ((eexx33ccoossxx))ddxxeexx33ssininxxCC。。
例 7
2x exdx (2e)x dx (2e) x C 2 x e x C。
ln(2e) 1 ln 2
例 8 tg2xdx (sec2x1)dx tgxxC。
第八章 不定积分
8.1 不定积分的概念与基本积分公式
8.2 换元积分法与分部积分法
8.3 几类特殊函数的不定积分
8.1 不定积分的概念和基本积分公式
一 原函数和不定积分 二 基本积分公式表 三 不定积分的线性运算法则
一、原函数与不定积分的概念
定义1: 如果在区间I 内,可导函数F ( x)的 导函数为 f ( x),即x I ,都有F ( x) f ( x) 或dF ( x) f ( x)dx,那么函数F ( x)就称为 f ( x)
f ( x)dx F( x) C
积 分 号
被 积 函 数
被 积 表 达 式
积 分 变 量
任 意 常 数
例 1 因为(sinx)cosx,所以 cos xdx sin x C 。
例 2 因为(x3) 3x2,所以 3x 2 dx x3 C 。
例 3 求函数 f (x) 1 的不定积分。 x
二、不定积分
定义2 函数 f(x) 的所有原函数称为 f(x) 的不定积分,
记作 f (x)dx 。
根据定义,如果 F(x) 是 f(x) 的一个原函数,则
f (x)dx F(x)C,
其中 C 是任意常数,称为积分常数。
不定积分的相关名称:
———叫做积分号, f(x) ——叫做被积函数, f(x)dx —叫做被积表达式, x ———叫做积分变量。
解:当 x>0 时,(ln x)
1 x
,
1 x
dx ln x C
(x>0);
时,,当[l[nlxn(<(0xx)时])],[1l1nxx((x()1]1))1x1xx,, (1x11x)ddxx1xl,nln((x1xx))dxCC (lnx(x(<<0x0))。。 C (x<0
(此性质可推广到有限多个函数之和的情况)
例1 p(x) a0 x n a1x n1 an1x an , 则
p(x)dx
a0 x n1 n 1
a1 n
xn
an1 2
x2
an x c
例2
x4
x2
1dx 1
(x2
1
x
2 2
)dx 1
111xxx222
111xxx222
111xxx222
(x 2 1 1 )dx 1 x3xarctgxC。
1 x2
3
例
求积分
1
1 cos
2
x
dx.
解
1
1 cos
2x
dx
1
1 2 cos 2
x
dx 1
1 2
1 cos2
x
dx
1 2
tan
或 f ( x)dx 在区间I 内原函数.
例 sin x cos x sin x是cos x的原函数. ln x 1 ( x 0)
x ln x是1 在区间(0,) 内的原函数.
x
原函数存在定理: 定理8.1 如果函数 f ( x)在区间 I 内连续,
那么在区间 I 内存在可导函数F ( x), 使x I ,都有F ( x) f ( x).
合并上面两式,得到
1 x
dx
ln
|
x
|
C
(x0)。
求微分与求积分的互逆关系
[ f (x)dx] f (x)
d f (x)dx f (x)dx
f (x)dx f (x) c df (x) f (x) c
三、不定积分的几何意义
函数f(x)的原函数的图 形称为f(x)的积分曲线。
x C 。
7
3
7
3
3 2
C
2 x3
x 10 x
x C 。
7
3
例 5
(x 1)3 dx
x2
x3 3x2 3x 1 dx
x2
(x 3 3 1 )dx x x2
xdx
3
dx
3
1 x
dx
1 x2
dx
1 x2 3x3ln|x| 1 C。
1
5 1
x 2 C
5 1
2
2
7
x2
C