机器视觉系统的组成及工作流程
机器人视觉系统介绍
机器人视觉(Robot Vision)简介机器视觉系统的组成机器视觉系统是指用计算机来实现人的视觉功能,也就是用计算机来实现对客观的三维世界的识别。
按现在的理解,人类视觉系统的感受部分是视网膜,它是一个三维采样系统。
三维物体的可见部分投影到网膜上,人们按照投影到视网膜上的二维的像来对该物体进行三维理解。
所谓三维理解是指对被观察对象的形状、尺寸、离开观察点的距离、质地和运动特征(方向和速度)等的理解。
机器视觉系统的输入装置可以是摄像机、转鼓等,它们都把三维的影像作为输入源,即输入计算机的就是三维管观世界的二维投影。
如果把三维客观世界到二维投影像看作是一种正变换的话,则机器视觉系统所要做的是从这种二维投影图像到三维客观世界的逆变换,也就是根据这种二维投影图像去重建三维的客观世界。
机器视觉系统主要由三部分组成:图像的获取、图像的处理和分析、输出或显示。
将近80%的工业视觉系统主要用在检测方面,包括用于提高生产效率、控制生产过程中的产品质量、采集产品数据等。
产品的分类和选择也集成于检测功能中。
下面通过一个用于生产线上的单摄像机视觉系统,说明系统的组成及功能。
视觉系统检测生产线上的产品,决定产品是否符合质量要求,并根据结果,产生相应的信号输入上位机。
图像获取设备包括光源、摄像机等;图像处理设备包括相应的软件和硬件系统;输出设备是与制造过程相连的有关系统,包括过程控制器和报警装置等。
数据传输到计算机,进行分析和产品控制,若发现不合格品,则报警器告警,并将其排除出生产线。
机器视觉的结果是CAQ系统的质量信息来源,也可以和CIMS其它系统集成。
图像的获取图像的获取实际上是将被测物体的可视化图像和内在特征转换成能被计算机处理的一系列数据,它主要由三部分组成:*照明*图像聚焦形成*图像确定和形成摄像机输出信号1、照明照明和影响机器视觉系统输入的重要因素,因为它直接影响输入数据的质量和至少3 0%的应用效果。
由于没有通用的机器视觉照明设备,所以针对每个特定的应用实例,要选择相应的照明装置,以达到最佳效果。
机器视觉系统组成总结
机器视觉系统组成总结机器视觉系统通常由以下几个主要组成部分构成:
1. 图像采集设备
- 数字相机或工业相机
- 照明系统
- 镜头和滤光片
2. 图像传输接口
- 数据传输线路
- 图像采集卡或帧存储器
3. 图像处理硬件
- 中央处理器()
- 图形处理器()
- 数字信号处理器()
- 现场可编程门阵列()
4. 图像处理软件
- 图像预处理模块
- 图像分割模块
- 特征提取模块
- 模式识别模块
- 决策模块
5. 输出设备
- 显示器
- 控制系统
- 机器人执行器
6. 通信接口
- 工业以太网
- 现场总线
- 无线通信
机器视觉系统的各个组成部分协同工作,完成从图像采集到处理、分析、识别和执行控制的全过程。
每个部分都对系统的整体性能和可靠性起着重要作用。
根据具体应用场景和需求,可以对各个组成部分进行优化和定制化设计。
简述机器视觉系统的组成部分
简述机器视觉系统的组成部分一、引言机器视觉是指通过计算机技术实现对图像或视频的自动分析和处理,从而达到模拟人类视觉感知和认知的目的。
它包括了图像采集、预处理、特征提取、目标检测与识别等多个方面,是人工智能领域中的一个重要分支。
本文将详细介绍机器视觉系统的组成部分。
二、图像采集图像采集是机器视觉系统中最基本的部分之一,其主要任务是通过相机或其他传感器获取目标场景中的图像信息。
现代相机可以通过光学透镜将外界光线聚焦在传感器上,然后将传感器上的电信号转化为数字信号,并通过数据接口传输给计算机进行处理。
三、预处理由于采集到的图像可能存在噪声、失真等问题,因此需要对其进行预处理以提高后续算法的准确性。
预处理包括了灰度化、滤波、增强等多个步骤。
其中灰度化是将彩色图像转换为灰度图像,以便于后续处理;滤波则是通过卷积运算去除噪声;增强则是对图像进行锐化或者对比度调整等操作,以使目标更加明显。
四、特征提取特征提取是机器视觉系统中最核心的部分之一,其主要任务是从预处理后的图像中提取出有用的信息。
这些信息可以用于目标检测、识别等多个方面。
特征可以分为局部特征和全局特征两种。
局部特征包括了SIFT、SURF、ORB等多个算法,其主要思想是通过检测关键点并计算其周围区域的梯度来描述图像;全局特征则包括了HOG、LBP等多个算法,其主要思想是通过对整张图像进行处理来描述图像。
五、目标检测与识别目标检测与识别是机器视觉系统中最重要的应用之一,其主要任务是在图像或视频中自动识别出感兴趣的物体,并进行分类或跟踪。
目前常用的算法包括了Haar Cascade、YOLO、SSD等多个算法。
这些算法可以通过训练模型来实现对不同类别物体的检测和识别。
六、应用领域机器视觉系统广泛应用于工业自动化、智能交通、医疗影像分析等众多领域。
在工业自动化中,机器视觉可以用于产品质量检测、机器人视觉引导等方面;在智能交通中,机器视觉可以用于车辆识别、交通流量统计等方面;在医疗影像分析中,机器视觉可以用于疾病诊断、手术辅助等方面。
机器视觉系统工作原理
机器视觉系统工作原理
机器视觉是一种通过计算机科学和人工智能技术,使计算机能够识别、理解和解释图像和视频的过程。
机器视觉系统主要包括以下几个核心步骤:
1. 图像采集:机器视觉系统首先需要获取图像或视频数据。
这可以通过摄像头、相机或其他图像采集设备来实现。
2. 图像预处理:获取到的图像数据首先需要进行预处理,以提高后续处理的效果。
预处理步骤可能包括图像去噪、图像增强、图像变换等。
3. 特征提取:在预处理后,机器视觉系统需要从图像中提取关键特征。
这些特征可以是图像的边缘、纹理、颜色等。
特征提取可以通过各种计算机视觉算法实现。
4. 特征匹配:提取到的特征需要与模板或分类器进行匹配。
特征匹配的目的是将提取到的特征与已知的模式进行比较,以确定图像中的目标物体或场景。
5. 目标识别和分类:经过特征匹配后,机器视觉系统可以识别和分类图像中的目标物体或场景。
这可以通过训练好的分类器或深度学习模型来实现。
6. 目标跟踪:在某些应用中,机器视觉系统需要实时跟踪目标物体的运动。
目标跟踪可以通过目标的特征匹配或运动估计来完成。
7. 结果输出:机器视觉系统将处理结果输出给用户或其他系统。
输出结果可能包括识别的对象、位置信息、运动轨迹等。
以上是机器视觉系统的基本工作原理。
不同的应用领域可能会有不同的算法和技术来实现特定的功能,但总体上,机器视觉系统是通过图像采集、图像预处理、特征提取、特征匹配、目标识别和跟踪等步骤来实现图像和视频的分析和处理。
机器视觉系统详述
右图中,绿色背景 采用红色光源提高 对比度 (灰阶图像)
光源
代码 R G B V W IR UV
颜色 红 绿 蓝 紫 白 红外 紫外
波长(nm) 625(600~720) 517(510~530) 465(430~480) 400 色温:5500k
应用 背景为黑色的透明软板孔位定位、绿色线路 板检测、透光膜厚度测量等。 红色背景产品检测、银色背景产品检测等。
• 特殊要求,需要用到红外或紫外相机情况
镜头--如何选择镜头
•
定焦与变焦 变焦镜头
工作距离不变的情况下获得不同的放大倍率
镜头--如何选择镜头
•
远心镜头与标准工业镜头
远心镜头
• 精密测量系统
CCTV镜头
• 一般工业测量、缺陷检测,对物体成像的放大倍率没有严格要求
远心镜头
CCTV镜头
镜头--如何选择镜头
目录
1 2
机器视觉系统构成 成像系统核心器件选型方法
3 4
5
机器视觉系统设计步骤 应用案例
飞行捕捉和相机丢帧解决办法
机器视觉系统构成
机 器 (Machine)
1、机器视觉系统介绍
+
视 觉 (Vision)
机械
运动
控制
视(硬件)
觉(软件)
机器视觉是一个系统的概念,运 用现代先进的控制技术、计算机 技术及传感技术,表现为光机电 的结合。
镜头
镜头畸变
畸变是镜头放大倍率随着视场变化而变化的现象。
测量应用,畸变越小越好
畸变可以通过软件进行校正
镜头
镜头景深
对于理想的光学系统,像平面对应一个理想物平面。实际光学
系统,能清晰成像的最远物面到理想物平面的距离称为远景深 度,能清晰成像的最近物面到对准平面的距离称为近景深度, 远景深度和近景深度的和就是光学系统的景深。
机器视觉系统基本构成和各部件基本原理
Bu
Ru
b b=1/2(Bu+Bl
Bl
)
r r=1/2(Ru+Rl
Rl
)
Bayer Filter CV-M77
Bl b Br
Rr r Rl
b=1/2(Br+Bl)
r=1/2(Rr+Rl)
True 3CCD TR-33
wwww
数字/模拟
JAI CV-A1
JAI CV-M77
wwww
JAI CV-A33 DALSA 1M75
Xsg1 Xsg2
Xsub
Odd Even
Photo diode
(pixel)
Shutter
Xsg1
Photo diode (pixel)
Vertical ccd register
Vertical ccd register
Horizontal ccd register
Horizontal ccd register
wwww
Standard Lens
wwww
Telecentric lens
远心镜头
wwww
机器视觉原理简介
三、相机(光电转换器,完成信号转换)
C
C
A/D
D
种类:线&面、隔/逐、黑/彩、数/模、低/高、CCD/CMOS
指标:象元尺寸、分辨率、靶面大小、感应曲线、动态范围、灵 敏度、速度、噪声、填充因子、体积、质量、工作环境等
相机的光谱响应特性、LED器件(颜色、发光角、 亮 度、寿命等)、形状、打光方式(dark field, bright field, low angle, structure light)、辅助手段(偏光片、 滤光片、漫射片等)
【机器视觉培训】机器视觉系统概论
机器视觉系统概论一、机器视觉系统构成1.机器视觉的概念机器视觉就是用机器代替人眼来做测量和判断。
机器视觉系统是指通过机器视觉产品(即图像摄取装置,分CMOS 和CCD两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。
美国制造工程师协会(SME Society of Manufacturing Engineers)机器视觉分会和美国机器人工业协会(RIA Robotic Industries Association)的自动化视觉分会对机器视觉下的定义为:“机器视觉是通过光学的装置和非接触的传感器自动地接收和处理一个真实物体的图像,以获得所需信息或用于控制机器人运动的装置”。
在现代工业自动化生产中,涉及到各种各样的检验、生产监视及零件识别应用,例如零配件批量加工的尺寸检查,自动装配的完整性检查,电子装配线的元件自动定位,IC上的字符识别等。
通常人眼无法连续、稳定地完成这些带有高度重复性和智能性的工作,其它物理量传感器也难有用武之地。
由此人们开始考虑利用光电成像系统采集被控目标的图像,而后经计算机或专用的图像处理模块进行数字化处理,根据图像的像素分布、亮度和颜色等信息,来进行尺寸、形状、颜色等的判别。
这样,就把计算机的快速性、可重复性,与人眼视觉的高度智能化和抽象能力相结合,由此产生了机器视觉的概念。
1机器视觉系统的特点是提高生产的柔性和自动化程度。
在一些不适合于人工作业的危险工作环境或人工视觉难以满足要求的场合,常用机器视觉来代替人工视觉;同时在大批量工业生产过程中,用于人工视觉检查产品质量的效率低且精度不高,用机器视觉检测方法可以大大提高生产效率和生产的自动化程度。
而且机器视觉易于实现信息集成,是实现计算机集成制造的基础技术。
正是由于机器视觉系统可以快速获取大量信息,而且易于自动处理,也易于同设计信息以及加工控制信息集成,因此,在现代自动化生产过程中,人们将机器视觉系统广泛地用于工况监视、成品检验和质量控制等领域。
机器视觉系统工作原理
机器视觉系统工作原理
机器视觉系统是一种通过模拟人类的视觉感知能力来实现物体识别、检测和跟踪的技术。
它由摄像机、图像处理和分析算法以及人工智能技术组成。
机器视觉系统的工作流程如下:
1. 图像采集:系统通过一个或多个摄像机采集所需的图像或视频流。
2. 图像预处理:对采集到的图像进行预处理,包括去噪、增强和图像校正等操作,以提高后续处理的准确性和效果。
3. 特征提取:系统利用图像处理和分析算法,从预处理后的图像中提取有用的特征,例如颜色、纹理、形状和边缘等。
4. 物体识别:通过比对已知物体模型或特征数据库,系统能够识别图像中的物体,并将其分类。
5. 检测和跟踪:系统能够实时检测和跟踪物体的位置、运动和姿态等。
这一步骤通常利用计算机视觉和机器学习算法来实现。
6. 结果输出:系统将处理后的结果以可视化的形式呈现给用户,例如在图像或视频上标注物体位置和信息。
机器视觉系统的工作原理依赖于先进的图像处理、模式识别和机器学习算法。
这些算法通过提取图像的局部特征,然后进行
特征匹配和分类。
利用大量标注好的图像和训练样本,机器学习算法能够自动学习并优化模型,提高系统的准确度和鲁棒性。
总的来说,机器视觉系统通过图像采集、预处理、特征提取、物体识别、检测和跟踪等步骤实现对图像和视频的分析和理解。
它可以应用于许多领域,如工业自动化、无人驾驶、安防监控、医疗诊断和机器人技术等,为人们的生产、生活和工作提供更高效和智能的解决方案。
机器视觉_??????
机器视觉(1)——从业人员细分摘自中国机器视觉网论坛到底如何学习机器视觉?为了说明这个问题,我觉得应该先要简单地说明另一个问题:国内外机器视觉发展的不同。
我本人认为,只有先搞清了两边的不一样,才便于说清如何下手学习。
国外机器视觉发展到今天,已经从“一包到底”式的工作程序,发展到了细致分工的阶段了。
由于篇幅问题。
就不细讲这一行当如何从“一包到底”发展到细致分工过程。
一句话,国外机器视觉发展到今天,已经可以清清楚楚分为三个部分:1,底层开发部分。
2,二次开发部分。
3,最终使用部分。
于是在国外,从事这一行业的人现在也就可以简单而清楚地分成三种人:1,底层开发的人(从事底层开发工作的人)。
2,二次开发的人(从事二次开工作的人)。
3,使用及操作机器视觉系统的人(从事最终使用工作的人)。
第一类人。
就是我们常说的,开发通用视觉系统(如:DVT,西门子,欧姆龙,EVISION,COGNEX等等)的开发人员,也就是DVT,COGNEX这些公司开发部的技术职工。
第二类。
就是大家所说的OEM用户。
是专门用第一类人所开发出的系统,给第三类人搞二次开发,开发各种专为第三类人所用的系统。
第三类人,就是用户(enduser)。
这类人是真正将机器视觉系统应用到各个领域中的人,他们不仅在各自的行业中使用种种已经开发成型的机器视觉系统。
而且负责对各类系统进行测试及评估。
举个实际例子,这里有不少朋友问过这类问题:如何检测某一工件;检测光盘表面的系统该如何配置CCD相机、镜头及灯源等。
问这些问题的朋友应该算是第三类人。
他们公司要他们寻找一个系统可以用来检测本公司的产品。
但由于第一类人所开发的,只是通用的系统以及视觉系统开发工具的软件包。
并没有哪家公司专门开发一套系统来检测光盘或是某种特定的工件。
所以,这些朋友就应该来找我,因为我是第二类人。
我的工作就是,专门用DVT,EVISION,COGNEX等的视觉卡,以及视觉系统开发工具软件包为他们专门开发一套他们所需要的光盘检测系统或是工件检测系统。
计算机视觉系统的组成
计算机视觉系统的组成
1 计算机视觉系统简介
计算机视觉系统,也叫机器视觉系统,是一种由计算机组成的机器人系统,可以通过原始的图像或视频序列进行自动识别,理解,检测和检测图像或视频中存在的信息。
计算机视觉系统具有通用性,广泛应用于物体识别、人脸检测、图像处理、视觉导航和机器人操作等各种应用领域,是AI技术中的重要组成部分。
2 计算机视觉系统的组成
计算机视觉系统主要由传感器、计算硬件、图像处理系统、视觉算法系统、控制系统等几个部分组成。
(1)传感器:传感器是计算机视觉系统的基础,它能够捕获图像和视频信息。
传感器可以是由摄像头、红外摄像头等组成的。
(2)计算硬件:计算硬件包括中央处理器(CPU)、图形处理器(GPU)、存储器等,它们能够处理图像和视频数据的存储和运算。
(3)图像处理系统:图像处理系统是从原始图像中提取出有用信息的过程,它可以实现图像分割、边沿检测、形状识别等多种功能。
(4)视觉算法系统:视觉算法系统是机器视觉的核心组成部分,它将图像处理的结果进行分析,为计算机视觉系统选择最合适的策略和方法,更好的实现材料识别和运动目标检测等,从而进行相关的处理。
(5)控制系统:控制系统是对计算机视觉系统的总体控制,可以实时监控系统的运行状态,根据数据处理结果进行控制和调整,从而实现视觉系统的有效运行。
3 结论
计算机视觉系统是一种复杂的机器视觉系统,它由传感器、计算硬件、图像处理系统、视觉算法系统、控制系统等多重组成部分所组成。
计算机视觉系统广泛应用于多种领域,有助于提高机器智能系统的技术水平,实现自动检测和识别等作用。
机器视觉系统的组成
机器视觉系统的组成机器视觉系统是指用计算机来实现人的视觉功能,也就是用计算机来实现对客观的三维世界的识别。
按现在的理解,人类视觉系统的感受部分是视网膜,它是一个三维采样系统。
三维物体的可见部分投影到网膜上,人们按照投影到视网膜上的二维的像来对该物体进行三维理解。
所谓三维理解是指对被观察对象的形状、尺寸、离开观察点的距离、质地和运动特征(方向和速度)等的理解。
机器视觉系统的输入装置可以是摄像机、转鼓等,它们都把三维的影像作为输入源,即输入计算机的就是三维管观世界的二维投影。
如果把三维客观世界到二维投影像看作是一种正变换的话,则机器视觉系统所要做的是从这种二维投影图像到三维客观世界的逆变换,也就是根据这种二维投影图像去重建三维的客观世界。
机器视觉系统主要由三部分组成:图像的获取、图像的处理和分析、输出或显示。
将近80%的工业视觉系统主要用在检测方面,包括用于提高生产效率、控制生产过程中的产品质量、采集产品数据等。
产品的分类和选择也集成于检测功能中。
下面通过一个用于生产线上的单摄像机视觉系统,说明系统的组成及功能。
视觉系统检测生产线上的产品,决定产品是否符合质量要求,并根据结果,产生相应的信号输入上位机。
图像获取设备包括光源、摄像机等;图像处理设备包括相应的软件和硬件系统;输出设备是与制造过程相连的有关系统,包括过程控制器和报警装置等。
数据传输到计算机,进行分析和产品控制,若发现不合格品,则报警器告警,并将其排除出生产线。
机器视觉的结果是CAQ系统的质量信息来源,也可以和CIMS其它系统集成。
图像的获取图像的获取实际上是将被测物体的可视化图像和内在特征转换成能被计算机处理的一系列数据,它主要由三部分组成:*照明*图像聚焦形成*图像确定和形成摄像机输出信号1、照明照明和影响机器视觉系统输入的重要因素,因为它直接影响输入数据的质量和至少3 0%的应用效果。
由于没有通用的机器视觉照明设备,所以针对每个特定的应用实例,要选择相应的照明装置,以达到最佳效果。
机器视觉系统的一般工作过程
一、一个完整的机器视觉系统的主要工作过程如下:1、工件定位传感器探测到物体已经运动至接近摄像系统的视野中心,向图像采集单元发送触发脉冲;2、图像采集单元按照事先设定的程序和延时,分别向摄像机和照明系统发出触发脉冲;3、摄像机停止目前的扫描,重新开始新的一帧的扫描,或者摄像机在触发脉冲来到之前处于等待状态,触发脉冲到来后启动一帧扫描;4、摄像机开始新的一帧扫描之前打开电子快门,曝光时间可以事先设定;5、另一个触发脉冲打开灯光照明,灯光的开启时间应该与摄像机的曝光时间匹配;6、摄像机曝光后,正式开始一帧图像的扫描和输出;7、图像采集单元接受模拟视频信号通过A/D将其数字化,或者是直接接受数字化后的数字视频数据;8、图像采集单元将数字图像存放在处理器或计算机的内存中;9、处理器对图像进行处理、分析、识别,获得测量结果或逻辑控制值;10、处理结果控制生产流水线的动作、进行定位、纠正运动误差等。
从上述的工作流程可以看出,机器视觉系统是一种相对复杂的系统。
大监控对象都是运动物体,系统与运动物体的匹配和协调动作尤为重要,所以给系统各部分的动作时间和处理速度带来了严格的要求。
在某些应用领域,例如机器人、飞行物体制导等,对整个系统或者系统的一部分的重量、体积和功耗都会有严格的要求。
二、尽管机器视觉应用各异,不过归纳一下,都包括以下几个过程。
1、图像采集:光学系统采集图像,图像转换成数字格式并传入计算机存储器。
2、图像处理:处理器运用不同的算法提高对检测有重要影响的图像像素。
3、特征提取:处理器识别并量化图像的关键特征,例如位置、数量、面积等。
然后这些数据传送到控制程序。
4、判决和控制:处理器的控制程序根据接收到的数据做出结论。
例如,未知是否合乎规格,或者执行机构如何移动去拾取某个部件。
在流水线上,零件经过传送带到达触发器时,摄像单元立即打开照明,拍摄零件图像;随机图像数据被传递到处理器,处理器根据像素分布和和亮度、颜色等信息,进行运算来抽取目标特征:面积、长度、数量、位置等;再根据预设的判据来输出结果:尺寸、角度、偏移量、个数、合格或不合格、有或无等;通过现场总线与Plc通信,只会执行机构,弹出不合格产品。
工业自动化中的机器视觉系统
工业自动化中的机器视觉系统工业自动化是指应用先进的技术和设备,使得工业生产过程实现自动化、智能化的一种方式。
机器视觉系统作为其中重要的一环,广泛应用于工业生产中的质检、检测、测量等环节。
本文将对机器视觉系统在工业自动化中的应用进行探讨。
一、机器视觉系统的基本原理和组成1. 机器视觉系统的基本原理机器视觉系统是指通过使用摄像机、图像处理软件和控制系统等技术,对产品或物体进行图像获取和图像处理,从而实现对产品的检测、识别和测量等功能。
其基本原理是通过摄像机获取图像,然后通过图像处理软件进行图像处理和分析,最终由控制系统进行判断和控制。
2. 机器视觉系统的基本组成机器视觉系统主要由以下几个组成部分构成:(1)图像获取设备:通常使用摄像机进行图像的获取。
不同的应用场景和需求会选择不同类型的摄像机,如CCD摄像机或CMOS摄像机。
摄像机的选择应该根据应用环境的光线、速度等条件来确定。
(2)光源系统:光源系统用于提供光线照明,以便于摄像机获取清晰的图像。
常见的光源有LED光源、激光光源等。
(3)图像处理软件:图像处理软件用于对图像进行处理和分析,包括图像预处理、特征提取、模式匹配等。
(4)控制系统:控制系统根据图像处理软件的结果,进行相应的判断和控制。
可以是一个PLC控制器、PC控制器或其他数字控制设备。
二、机器视觉系统在工业自动化中的应用1. 质量检测机器视觉系统在工业生产中广泛应用于产品质量的检测。
例如在流水线上,通过机器视觉系统对产品的尺寸、颜色、外观等进行检测和判断,一旦发现不合格品,系统会自动进行剔除或标记,保证产品质量的稳定和一致性。
2. 缺陷检测机器视觉系统能够精准地检测产品表面的缺陷,如裂纹、划痕、异物等。
通过对图像进行处理分析,系统能够判断出产品是否存在缺陷,并及时采取相应的措施进行处理。
3. 检测与定位机器视觉系统能够对产品进行定位和对位。
通过对产品图像进行处理和分析,系统能够识别和定位产品的位置,确保产品在生产过程中正确地摆放和装配。
机器视觉检测系统的工作原理与检测流程
机器视觉检测系统的工作原理与检测流程在机器视觉检测系统工作流程中,主要分为图像信息获取、图像信息处理和机电系统执行检测结果3个部分,另外根据系统需要还可以实时地通过人机界面进行参数设置和调整。
当被检测的对象运动到某一设定位置时会被位置传感器发现,位置传感器会向PLC控制器发送“探测到被检测物体”的电脉冲信号,PLC控制器经过计算得出何时物体将移动到CCD相机的采集位置,然后准确地向图像采集卡发送触发信号,采集开检测的此信号后会立即要求CCD相机采集图像。
被采集到的物体图像会以BMP文件的格式送到工控机,然后调用专用的分析工具软件对图像进行分析处理,得出被检测对象是否符合预设要求的结论,根据“合格”或“不合格”信号,执行机会对被检测物体作出相应的处理。
系统如此循环工作,完成对被检测物体队列连续处理。
如下图所示。
机器视觉检测系统工作原理一个完整的机器视觉检测系统的主要工作过程如下:①工件定位传感器探测到被检测物体已经运动到接近机器视觉摄像系统的视野中心,向机器视觉检测系统的图像采集单元发送触发脉冲。
②机器视觉检测系统的图像采集单元按照事先设定的程序和延时,分别向摄像机和照明系统发出触发脉冲。
③机器视觉摄像机停止目前的扫描,重新开始新的一帧扫描,或者机器视觉摄像机在触发脉冲来到之前处于等待状态,触发脉冲到来后启动一帧扫描。
④机器视觉摄像机开始新的一帧扫描之前打开电子快门,曝光时间可以事先设定。
⑤另一个触发脉冲打开灯光照明,灯光的开启时间应该与机器视觉摄像机的曝光时间相匹配。
⑥机器视觉摄像机曝光后,正式开始新一帧图像的扫描和输出。
⑦机器视觉检测系统的图像采集单元接收模拟视频信号通过A/D转换器将其数字化,或者是直接接收机器视觉摄像机数字化后的数字视频信号。
⑧处理结果控制生产流水线的动作、进行定位、纠正运动的误差等。
从上述的工作流程可以看出,机器视觉检测系统是一种相对复杂的系统。
大多监控和检测对象都是运动的物体,系统与运动物体的匹配和协调动作尤为重要,所以给系统各部分的动作时间和处理速度带来了严格的要求。
机器视觉系统
LED的特性使得其广泛的应用于机器视觉系统中。
目前常用的LED光源有:环形光、条形光、面板光、 同轴光、点光源、线光源等等。
根据不同的产品选择合适的光源,有时候会需要几种 光源进行组合照明。
镜头
基本功能 -实现光束变换,将目标成像在图像传感器的光敏面上
工作距离(WD) 视 野 (
成象面
➢ 光源:为确保视觉系统正常取像获得足够光信息而提供照明的装置。
➢ 光源是一个视觉应用开始工作的第一步,好的光源与照明方案往往是整个系统
成败的关键,起着非常重要的作用。
➢ 使用光源的目的:光源并不是简单的照亮物体而已。
1.光源与照明方案的配合应尽可能地突出物体特征量;
2.将待测区域与背景明显区分开,增加对比度,消隐不感兴趣的部分;
景深(Depth Of Field) 在某个调焦位置上,景深内的物体都可以清晰成像。
焦距
焦距是像方主面到像方焦点的距离。如16mm, 25mm,35mm等。
畸变 几何畸变指的是由于镜头方面的原因导致的图像范围内不同位置上的放大率
存在的差异。几何畸变主要包括径向畸变和切向畸变。如枕形或桶形失真。 畸变小于2%人眼是看不出来的。如果畸变小于CCD的一个像素,那么相机也 看不出来了。
47
嵌入式图像处理系统: 直接将图像处理系统集成到芯片中, 结构与功能相对比较简单。
基于PC的视觉系统:需要在PC环境中才能运行,结构及功 能复杂,且可多路并行处理。
有些图像处理系统还可以在其基础进行二次开发。
软件
• 国外品牌: • Halcon、VisionPro、Labview Vision等商业软件包;OpenCV开源免费软 件包。
镜头结构、材质、加工精度 镜头的相对孔径越大、分辨率越高 光波长度,波长越短分辨率越高 视场中心较边缘分辨率高 同档次的固定焦距镜头较变焦镜头分辨率高 短焦镜头一般边缘分辨率较中心低,长焦镜头一般中心较边缘分辨率低。
机器视觉系统工作原理
机器视觉系统工作原理
机器视觉系统是一种利用计算机视觉技术实现自动化检测、识别和控制的系统。
它通过摄像机、图像处理器、计算机和控制器等组成,可以对物体进行图像采集、处理和分析,从而实现自动化控制和检测。
机器视觉系统的工作原理主要包括以下几个步骤:
1.图像采集
机器视觉系统首先需要采集物体的图像。
这一步通常通过摄像机来完成,摄像机可以将物体的图像转换成数字信号,然后传输给图像处理器进行处理。
2.图像处理
图像处理是机器视觉系统的核心部分,它主要包括图像预处理、特征提取、图像分割、目标识别和测量等步骤。
在这些步骤中,图像处理器会对采集到的图像进行处理和分析,提取出物体的特征信息,然后将这些信息传输给计算机进行处理。
3.目标识别
目标识别是机器视觉系统的重要功能之一,它可以通过图像处理技术对物体进行识别和分类。
在这一步中,机器视觉系统会根据预先
设定的特征和算法,对物体进行分类和识别,从而实现自动化控制和检测。
4.控制和检测
机器视觉系统最终的目的是实现自动化控制和检测,这一步通常通过控制器来完成。
控制器可以根据机器视觉系统提供的信息,对物体进行控制和检测,从而实现自动化生产和检测。
机器视觉系统是一种利用计算机视觉技术实现自动化控制和检测的系统,它通过图像采集、处理和分析,实现对物体的自动化识别和分类,从而实现自动化控制和检测。
随着计算机视觉技术的不断发展,机器视觉系统在工业生产、医疗、安防等领域的应用越来越广泛。
简述机器视觉系统的组成部分
机器视觉系统的组成部分一、引言机器视觉系统是一种使用计算机技术对图像或视频进行分析和处理的系统。
它模拟人眼和大脑处理视觉信息的方式,通过摄像机或其他图像采集设备获取图像或视频,并通过算法和模型对其进行分析和理解。
机器视觉系统在许多领域都有广泛应用,如工业自动化、医疗诊断、安全监控等。
本文将详细介绍机器视觉系统的组成部分。
二、图像采集设备图像采集设备是机器视觉系统的基础,它主要负责获取图像或视频数据。
常见的图像采集设备包括摄像机、扫描仪和雷达等。
摄像机是最常用的图像采集设备,它通过电荷耦合器件(CCD)或互补金属氧化物半导体(CMOS)传感器将光信号转换为电信号。
摄像机可以分为黑白摄像机和彩色摄像机,彩色摄像机能够获取RGB三个颜色通道的信号,而黑白摄像机只能获取灰度信号。
三、图像预处理图像预处理是机器视觉系统中的重要环节,它通常包括图像去噪、图像增强、图像分割等步骤。
图像去噪是为了去除图像中的噪声干扰,常用的方法包括均值滤波、中值滤波和高斯滤波等。
图像增强是为了提高图像的质量和视觉效果,常用的方法包括直方图均衡化、灰度变换和滤波等。
图像分割是将图像划分为不同的区域或对象,常用的方法包括阈值分割、边缘检测和区域生长等。
四、特征提取与表示特征提取与表示是机器视觉系统中的关键步骤,它目的是从图像中提取出具有代表性的特征用来描述图像。
常用的特征包括纹理特征、颜色特征和形状特征等。
纹理特征描述了图像中的纹理信息,常用的方法包括灰度共生矩阵(GLCM)和小波变换等。
颜色特征描述了图像中的颜色分布,常用的方法包括颜色直方图和彩色矩等。
形状特征描述了图像中的形状信息,常用的方法包括边缘直方图和轮廓描述等。
五、目标检测与识别目标检测与识别是机器视觉系统的核心任务之一,它主要针对图像中的目标或对象进行识别和检测。
目标检测是指确定图像中是否存在目标以及目标的位置信息,常用的方法包括滑动窗口法和区域卷积神经网络(R-CNN)等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机器视觉系统的组成及工作流程
机器视觉系统分别有以下配件组成:
1.相机:黑白智能相机、线扫描智能相机、彩色智能相机、CMOS智能相机、读码器等;
2.板卡:黑白图像采集卡、图象压缩/解压板卡、彩色采集卡、1394接口板卡、图象处理板卡等;
3.软件包:图象处理软件、机器视觉工具软件;
4.工业相机:cmos相机、ccd彩色相机、面阵相机、CAMERA-LINK相机、行扫描相机、红外相机、高速相机、1394接口相机;
5.工业镜头:相机镜头、放大镜、高分辨率镜头、图象扫描镜头、聚光透镜、望远镜、摄象机镜头
6.光源:led光源、氙气照明系统、紫外照明系统、红外光源、光纤照明系统、荧光照明系统;
7.辅助产品:标定块、光栅、围圈、连线及连接器、电源、底板;
8.图象处理系统:光学文字、识别系统、自动化/机器人技术、红外图象系统;
9.光学系统:显微镜、激光扫描仪、电子视频内窥镜、工业内窥镜;
机器视觉系统工作过程:
1、工件定位检测器探测到物体已经运动至接近摄像系统的视野中心,向图像采集部分发送触发脉冲。
2、图像采集部分按照事先设定的程序和延时,分别向摄像机和照明系统发出启动脉冲。
3、摄像机停止目前的扫描,重新开始新的一帧扫描,或者摄像机在启动脉冲来到之前处于等待状态,启动脉冲到来后启动一帧扫描。
4、摄像机开始新的一帧扫描之前打开曝光机构,曝光时间可以事先设定。
5、另一个启动脉冲打开灯光照明,灯光的开启时间应该与摄像机的曝光时间匹配。
6、摄像机曝光后,正式开始一帧图像的扫描和输出。
7、图像采集部分接收模拟视频信号通过A/D将其数字化,或者是直接接收摄像机数字化后的数字视频数据。
8、图像采集部分将数字图像存放在处理器或计算机的内存中。
9、处理器对图像进行处理、分析、识别,获得测量结果或逻辑控制值。
10、处理结果控制流水线的动作、进行定位、纠正运动的误差等。